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Abstract— This paper proposes a high-level Reinforcement
Learning (RL) control system for solving the action selection
problem of an autonomous robot. Although the dominant ap-
proach, when using RL, has been to apply value function based
algorithms, the system here detailed is characterized by the use
of Direct Policy Search methods. Rather than approximating a
value function, these methodologies approximate a policy using
an independent function approximator with its own parameters,
trying to maximize the future expected reward. The policy based
algorithm presented in this paper is used for learning the internal
state/action mapping of a behavior. In this preliminary work, we
demonstrate its feasibility with simulated experiments using the
underwater robot GARBI in a target reaching task.

I. INTRODUCTION

Reinforcement Learning is a widely used methodology in
robot learning [1]. In RL, an agent tries to maximize a scalar
evaluation obtained as a result of its interaction with the
environment. The goal of a RL system is to find an optimal
policy to map the state of the environment to an action
which in turn will maximize the accumulated future rewards.
The agent interacts with a new, undiscovered environment
selecting actions computed as the best for each state, receiving
a numerical reward for every decision. The rewards are used
to teach the agent and in the end the robot learns which action
it must take at each state, achieving an optimal or sub-optimal
policy (state-action mapping).

The dominant approach over the last decade has been to ap-
ply reinforcement learning using the value function approach.
As a result, many RL based control systems have been applied
to robotics. In [2], an instance-based learning algorithm was
applied to a real robot in a corridor-following task. For the
same task, in [3] a hierarchical memory-based RL method was
proposed, obtaining good results as well. In [4] an underwater
robot that learnt different behaviors using a modified Q-
learning algorithm was presented. Although value function
methodologies have worked well in many applications, they
have several limitations. Function approximator methods in
“value-only” RL algorithms may present converge problems,
if the state-space is not completely observable, small changes
in the the value function can cause big changes in the policy
[5].

Over the past few years, studies have shown that ap-
proximating a policy can be easier than working with value
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functions, and better results can be obtained [6] [7]. Informally,
it is intuitively simpler to determine how fo act instead of
value of acting [8]. So, rather than approximating a value
function, new methodologies approximate a policy using an
independent function approximator with its own parameters,
trying to maximize the future expected reward. Furthermore,
scientists have developed different kinds of policy search
algorithms obtaining good results [5] [9] [10]. Also in [10]
a study about how gradient methods can be used to search in
the space of stochastic policies is presented.

Policy gradient algorithms can be used to represent the
policy. For example, an ANN whose weights are the policy
parameters. The state would be the input of the network and
as output we would have a distribution probability function
for action selection. In (1) we can see that if 6 represents the
vector of the policy parameters and p the performance of the
policy (e.g., reward received), then the policy parameters are
updated approximately proportional to the gradient [6]:

op

where « is a positive step size. In comparison with the value
function approach, small changes in 6 can cause only small
changes in the policy.

The advantages of policy gradient methods against value-
function based methods are various. The main advantage is
that using a function approximator to represent the policy
directly solves the generalization problem. Besides, a problem
for which the policy is easier to represent should be solved
using policy algorithms [7]. Furthermore, learning systems
should be designed to explicitly account for the resulting viola-
tions of the Markov property. Studies have shown that stochas-
tic policy-only methods can obtain better results when working
in partially observable Markov decision processes (POMDP)
than those obtained with deterministic value-function methods
[11]. In [7] a comparison between a policy-only algorithm [12]
and a value Q-learning method [13] is presented; both algo-
rithms use a simple neural network as function approximator.
A 13-state Markovian decision process is simulated for which
the Q-learning oscillates between the optimal and a suboptimal
policy while the policy-only method converges to the optimal
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policy. On the other hand, as disadvantage, policy gradient
estimators used in these algorithms may have large variance,
so these methods learn much more slower than RL algorithms
using a value function [14] [15] [6] and they can converge to
local optima of the expected reward [16].

The first example of an algorithm optimizing the averaged
reward obtained, for stochastic policies working with gradient
direction estimates, was Williams’s REINFORCE algorithm
[17]. This algorithm learns much more slower than other RL
algorithms which work with a value function and, maybe for
this reason, has received little attention. However, the ideas
and mathematical concepts presented in REINFORCE were a
basic platform for later algorithms.

A few years later, in [18], Williams’s algorithm was ex-
tended to the infinite horizon setting. Kimura’s method is, as
REINFORCE, based on stochastic gradient ascent (SGA). The
authors compared its algorithm with Jaakola’s method [19] and
Watkin’s Q-learning algorithm [13] in a robot control problem
achieving good results.

The Baxter and Bartlett approach [20] is the one selected in
this paper to carry out the experiments. Its method calculates
a parameterized policy that converges to an optimal by com-
puting approximations of the gradient of the averaged reward
from a single path of a controlled POMDP. The convergence
of the method is proven with probability 1, and one of the most
attractive features is that it can be implemented on-line. Baxter
and Bartlett’s approach is based on the fact that, given a state
s, it searches for a policy that minimizes the expected reward.
Moreover, in [21] and [22] an algorithm similar to Baxter
and Bartlett’s approach was described and its convergence
demonstrated. The algorithm is only suitable for finite MDP
and can be implemented to work on-line.

Close to the root of these theoretical variants of policy
search methods, only a few but promising practical appli-
cations of these algorithms have appeared. Chronologically,
this paper emphasizes the work presented in [23], where an
autonomous helicopter learns to fly using an off-line model-
based policy search method. Also important is the work pre-
sented in [24] where a simple “biologically motivated” policy
gradient method is used to teach a robot in a weightlifting
task. More recent is the work done in [25] where a simplified
policy gradient algorithm is implemented to optimize the gait
of Sony’s AIBO quadrupedal robot. Finally, in [26] and [27],
a biped robot is trained to walk by means of a “hybrid” RL
algorithm that combines policy search with value function
methods.

In this paper we apply Baxter and Bartlett’s algorithm to a
particular robotic task in which a neural network acts as the
policy function. The task consists on reaching a target which
is detected by a forward looking camera. These experiments
have been designed for the Autonomous Underwater Vehicle
(AUV) GARBL. In this paper the learning has been fulfilled
with the hydrodynamic model of GARBI and the model of
a video camera. The structure of the paper is as follows.
In Section II the algorithm and the learning procedure are
detailed. Section IIT describes all the elements considered in

the target reaching camera (the simulated world, the robot
model and the controller). The experimentation procedure and
the results obtained are included in Section IV and finally,
conclusions and the future work to be done after this work
are included in Section V.

II. LEARNING PROCEDURE

The objective of this work is to transfer an accurate policy,
learned in a simulated environment, to a real robot and test
the behavior of the policy in real conditions. So, the learning
process can be divided into two main phases. First, the learning
task will be performed in simulation using the model of the
environment. Once the learning process is considered to be
finished, the policy will be transferred to GARBI AUV in
order to test it in the real world. In this paper we present only
the results of the first phase.

A. The Algorithm

Baxter and Bartlett’s algorithm procedure is summarized
in Algorithm 1. The algorithm works as follows: having
initialized the parameters vector 6, the initial state 7 and
the eligibility trace zp = 0, the learning procedure will be
iterated 7' times. At every iteration, the parameters’ eligibility
z; will be updated according to the policy gradient approxi-
mation. The discount factor 5 € [0, 1) increases or decreases
the agent’s memory of past actions. The immediate reward
received r(i;41), and the learning rate « allows us to finally
compute the new vector of parameters ¢, 1. The current policy
is directly modified by the new parameters becoming a new
policy to be followed by the next iteration, getting closer to a
final policy that represents a correct solution of the problem.

Algorithm 1: Baxter and Bartlett’s On-Line POMDP
(OLPOMDP) algorithm

1. Initialize:
T>0
Initial parameter values 8y € R¥
Initial state ig
2. Set 29 = 0 (20 € R¥)
3. fort=0to T do:
(a) Observe state y¢
(b) Generate control action u; according to current policy (6, yt)
(c) Observe the reward obtained 7 (i¢+1)
(d) Set 211 = Bzt + V;‘j(ig"j))
(e) Set Oz11 = 0f + ayr(ig41)2¢4+1
4. end for

As aforementioned, the algorithm is designed to work on-
line. The function approximator adopted to define our policy
is an artificial neural network (ANN) (see Figure 1).

Next lines will relate closely to the update weight process
done by the algorithm. Once the ANN is initialized at random,
the network will be given an observation of the state and,
as a result, a stochastic control action is computed. Then the
learner will be driven to another state and will receive a reward
associated with this new state. The first step in the parameter
update procedure is to compute the ratio:

3179

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 10:24:26 UTC from IEEE Xplore. Restrictions apply.



Vo, (6,

/’1’ t( yt) (2)
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for every weight of the network. In artificial neural networks

like the one used in the algorithm, the expression defined in

step 3.d of Algorithm 1 can be rewritten as:

Zip1 = Bz + 0ty 3)

At any step time ¢, the term z; represents the estimated gra-
dient of the reinforcement sum with respect to the network’s
layer weights. In addition, ¢; refers to the local gradient asso-
ciated with a single neuron of the ANN and is multiplied by
the input to the neuron ;. In order to compute these gradients,
we evaluate the soft-max distribution for each possible future
state exponentiating the real-valued ANN outputs {01, ..., 05 },
being n the number of neurons of the output layer [8].

After applying the soft-max function, the outputs of the
neural network give a weighting £; € (0,1) to each of the
possible control actions. Finally, the probability of the ith
control action is then given by:

exp(0;)

Pri=—<——
Za:1 eXp(Oa)

“4)

where n is the number of neurons at the output layer. Actions
have been labeled with the associated control action and
chosen at random from this probability distribution. Once
we have computed the output distribution over all possible
actions, the next step is to calculate the gradient for the action
chosen by applying the chain rule. The whole expression is
implemented similarly to error back propagation [28]. Before
computing the gradient, the error on the neurons of the output
layer must be calculated. This error is given by (5).

ej = dj — PTj (5)

The desired output d; will be equal to 1 if the action selected
was o;, and 0 otherwise (see Figure 2).

Soft-Max
lg\w lm»

Fig. 1.

Schema of the ANN architecture adopted.
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Fig. 2. Soft-Max error computation for every output.

With the soft-max output error calculation completed, the
next phase consists of computing the gradient at the output of
the ANN and back propagate it to the rest of the neurons of
the hidden layers. For a local neuron j located in the output
layer, we may express the local gradient as:

5 = €59}(05) ©)

where e; is the soft-max error at the output of neuron j,
¢ (0;) corresponds to the derivative of the activation function
associated with that neuron, and o; is the function signal
at the output for that neuron. So we do not back propagate
the gradient of an error measure, but instead back propagate
the soft-max gradient of this error. Therefore, for a neuron
7 located in a hidden layer, the local gradient is defined as
follows:

(5;-’ = ¢’(05) Z Sk Wi (7)
&

When computing the gradient of a hidden-layer neuron, the
previously obtained gradient of the following layers must
be back propagated. In (7) the term ¢(o;) represents the
derivative of the activation function associated to that neuron,
o; is the function signal at the output for that neuron and
finally the summation term includes the different gradients of
the following neurons back propagated by multiplying each
gradient to its corresponding weighting (see Figure 3).

5‘/: = q)](OIh)X wy,

Fig. 3. Gradient computation for a hidden layer neuron.
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Having all the local gradients of all the neurons calculated,
the expression in (3) can be obtained. Finally, the old param-
eters are updated following expression 3.(e) of Algorithm 1:

Or1 = 0 + ar(iv41)2e41 ®)

The vector of parameters ; represents the network weights to
be updated, r(i;+1) is the reward given to the learner at every
time step, z;4i1describes the estimated gradients mentioned
before and, at last, we have « as the learning rate of the
algorithm.

III. CASE TO STUDY: TARGET REACHING

This section is going to describe the different elements that
take place in our problem: the problem of target reaching, the
neural-network controller and the underwater robot GARBI.

A. Target Tracking

One of the sensory systems developed for the experimental
set-up of GARBI is the target detection and tracking system.
This vision-based application has the goal of detecting an
artificial target by means of the forward looking camera. This
camera provides a large underwater field of view (about 57° in
width by 43° in height). This system was designed to provide
the control architecture with a measurement of the position of
an object to be tracked autonomously. Since the goal of these
experiments are to test control and learning systems, a very
simple target was used. The shape selected for the target was
a sphere because it has the same shape from whatever angle it
is viewed. The color of the target was red to contrast with the
blue color of the water tank. These simplifications allowed us
to use simple and fast computer vision algorithms to achieve
real-time (12.5 Hz) performance. Figure 4 shows a diagram
of the target being observed by GARBI.

The procedure of detecting and tracking the target is based
on image segmentation. Using this simple approach, the
relative position between the target and the robot is found.
Also, the detection of the target in subsequent images is
used to estimate its relative velocity. Once the target has
been detected, its relative position with respect to the robot
has to be expressed. The coordinate frame which has been
used for the camera has the same orientation as the GARBI
coordinate frame, but is located in the focal point of the
camera. Therefore, the transformation between the two frames
can be modeled as a pure translation.

The X coordinate of the target, represented by f,, is related
to the target size detected by the segmentation algorithm. A
normalized value between 0 and [ is linearly assigned to the
range comprised between a maximum and minimum target
size respectively. Similarly, the Y coordinate of the target is
related to the horizontal position of the target in the image.
However, in this case, the value represented by the f, variable
do not measure a distance, but an angle from the center of the
image to the target around the Z axis. In this case, the angle
is normalized from -/ to [ as it can be seen in the Figure 4.

coordinate
frame

Fig. 4. Coordinates of the target in respect with GARBI.

In order to properly reach the target, the measure of its
relative position is not enough. An estimation of its relative
velocity is also necessary. To calculate this velocity, the f, and
fy variables are differentiated from the sequence of images. In
particular, a first order Savitzky-Golay [29] filter, with a first
order derivative included, is applied to these signals.

B. The controller

A one-hidden-layer neural-network with 4 input nodes, 3
hidden nodes and 4 output nodes was used to generate a
stochastic policy. As can be seen in Figure 5 the inputs to
the network correspond to the normalized X and Y relative
positions of the target, f, and f,, and the estimations of its

relative velocity g—f and (g—ty. Each hidden and output layer
has the usual additional bias term. The best results have been
obtained using the hyperbolic tangent function as the activation
function for the neurons of the hidden layer, while the output
layer nodes are linear. The four output neurons represent the
possible four control actions, as can be seen in Figure 6 every
action is a combined movement in surge (X movement) and
yaw (rotation in Z axis). Note that in this preliminary work
a very small action set has been considered. As explained
in Section II-A, the outputs have been exponentiated and
normalized to produce a probability distribution. In order to
guarantee exploration, control actions are selected at random

from this distribution.

C. GARBI AUV description

The GARBI platform was conceived as an AUV for explo-
ration in waters up to 100 meters in depth. With a weight
of 170 Kg, GARBI has a complete sensor suite including
an imaging sonar, a DVL, a compass, a pressure gauge, a
temperature sensor, a DGPS unit and a color camera. Hardware
is enclosed into two cylindrical hulls designed to withstand
pressures of 11 atmospheres. Two additional cylinders for
batteries are placed at the bottom of the vehicle, ensuring the
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Fig. 5. The ANN used by the controller.

stability in both pitch and roll degrees of freedom. Its five
thrusters will allow GARBI to be operated in the remaining
degrees of freedom (surge, sway, heave and yaw) achieving
maximum speeds of 3 knots (see Figure 7).

The mathematical model of GARBI was obtained using
parameter identification methods [30]. The whole model has
been uncoupled and reduced to emulate a robot with only two
degrees of freedom (DOF), X movement and rotation respect Z
axis. Also, the model of the camera has been used to simulate
the vision system of GARBI AUV.

IV. RESULTS

The controller was trained in an episodic task. According
to the variables, f; in the X DOF and f, in the Yaw DOF, a
reward value was given. Only three reward values were used:
-20, -1 and 0. In order to maintain the target in front of the
robot, the reward » = 0 is given when the position of the
target is around f, = 0 (between -0.2 and 0.2) and at a certain
distance from the robot in X axis, around f, = 0.3 (between
0.2 and 0.4). The reward value of -20 is given if the target is
almost outside the image (f, < —0.9 and f, > 0.9) and the
robot perceives a reward of -1 if it definitively loses the target.
Robot an target positions are reset either every 50 seconds or
when a “success”(reach reward 0) takes place, whatever comes
first. The sample time was 0.1 seconds. The robot is always
reset to position (0,0) meanwhile the target is reset to a random
location inside the robot field of view.

Achieving a “success” or spending 50 seconds without
reaching the target represents the end of an episode. The num-
ber of episodes to be done has been set to 100.000. For every
episode, the total amount of reward perceived is calculated.

Action4

Action3

Actionl

Fig. 6. GARBI schema. Control actions.

Figure 8 represents the performance of the neural-network
robot controller as a function of the number of episodes when
trained using OLPOMDP. The episodes have been averaged
over bins of 40 episodes. The experiment has been repeated
in 100 independent runs, and the results here presented are a
mean over these runs. The simulated experiments have been
repeated for different values of the discount factor 3.

Once the vehicle has learnt the task, it needs a few time steps
to reach the goal. As it can be appreciated in Figure 8, the
best performance is around -40. The best results are obtained
when using a decay factor of 8 = 0.95. Different values of «
have been tested without improving the results here presented.
Figure 9 represents the behavior of a trained robot controller.
Targets positions were deterministically selected to observe the
robot moving to different locations.

V. CONCLUSIONS

A direct policy search algorithm for robot control based
on Baxter and Bartlett’s direct-gradient algorithm has been
studied. The method has been applied to a simulated control
system where the robot GARBI navigates a two-dimensional
world learning to reach a target by means of a forward looking
camera. The policy is represented by a neural network whose
weights are the policy parameters. The objective of the agent
was to compute a stochastic policy, which assigns a probability
over each action.

The results of this preliminary work show a good perfor-
mance of the algorithm. The convergence times are quite good.
A future work will compare these results with a value function
algorithm. A classical value method would have been affected
by the generalization problem and, therefore, spent much more
iterations to converge. Is is also important to note the reduced
dimensions of the ANN used in the simulation.

The current work is focused on transferring the learned
policy to the real robot and testing in real conditions. A
future work will consist on performing the learning process on-
line with the robot GARBI navigating in the real underwater
environment.
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