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Abstract— This paper proposes a field application of a high-
level Reinforcement Learning (RL) control system for solv-
ing the action selection problem of an autonomous robot in
cable tracking task. The learning system is characterized by
using a Direct Policy Search method for learning the internal
state/action mapping. Policy only algorithms may suffer from
long convergence times when dealing with real robotics. In
order to speed up the process, the learning phase has been
carried out in a simulated environment and, in a second step,
the policy has been transferred and tested successfully on a
real robot. Future steps plan to continue the learning process
on-line while on the real robot while performing the mentioned
task. We demonstrate its feasibility with real experiments on
the underwater robot ICTINEU

AUV .

I. INTRODUCTION

Reinforcement Learning (RL) is a widely used methodol-

ogy in robot learning [1]. In RL, an agent tries to maximize

a scalar evaluation obtained as a result of its interaction

with the environment. The goal of a RL system is to find

an optimal policy to map the state of the environment to

an action which in turn will maximize the accumulated

future rewards. The agent interacts with a new, undiscovered

environment selecting actions computed as the best for

each state, receiving a numerical reward for every decision.

Obtained rewards are used to teach the agent so the robot

learns which action to take at each state, achieving an optimal

or sub-optimal policy (state-action mapping).

The dominant approach over the last decade has been to

apply reinforcement learning using the value function ap-

proach. Although value function methodologies have worked

well in many applications, they have several limitations.

The considerable amount of computational requirements that

increase time consumption and the lack of generalization

among continuous variables represent the two main dis-

advantages of ”value” RL algorithms. Over the past few

years, studies have shown that approximating a policy can

be easier than working with value functions, and better

results can be obtained [2] [3]. Informally, it is intuitively

simpler to determine how to act instead of value of acting

[4]. So, rather than approximating a value function, new

methodologies approximate a policy using an independent

function approximator with its own parameters, trying to

maximize the future expected reward. Only a few but promis-

ing practical applications of policy gradient algorithms have

appeared, this paper emphasizes the work presented in [5],
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where an autonomous helicopter learns to fly using an off-

line model-based policy search method. Also important is

the work presented in [6] where a simple “biologically

motivated” policy gradient method is used to teach a robot

in a weightlifting task. More recent is the work done in [7]

where a simplified policy gradient algorithm is implemented

to optimize the gait of Sony’s AIBO quadrupedal robot.

All these recent applications share a common drawback,

gradient estimators used in these algorithms may have a large

variance [8][9] what means that policy gradient methods

learn much more slower than RL algorithms using a value

function [2] and they can converge to local optima of the

expected reward [10], making them less suitable for on-line

learning in real applications. In order to decrease conver-

gence times and avoid local optimas, newest applications

combine policy gradient algorithms with other methodolo-

gies, it is worth to mention the work done in [11] and

[12], where a biped robot is trained to walk by means of

a “hybrid” RL algorithm that combines policy search with

value function methods.

A good proposal for speeding up gradient methods may

be offering the agent an initial policy. Example policies can

direct the learner to explore the promising part of search

space which contains the goal states, specially important

when dealing with large state-spaces whose exploration may

be infeasible. Also, local maxima dead ends can be avoided

with example techniques [13]. The idea of providing high-

level information and then use machine learning to improve

the policy has been successfully used in [14] where a mobile

robot learns to perform a corridor following task with the

supply of example trajectories. In [15] the agent learns a

reward function from demonstration and a task model by

attempting to perform the task. Finally, cite the work done

in [16] concerning an outdoor mobile robot that learns to

avoid collisions by observing a human driver operate the

vehicle.

This paper proposes a reinforcement learning application

where the underwater vehicle ICTINEUAUV carries out

a visual based cable tracking task using a direct gradient

algorithm to represent the policy. In order to reduce the

learning time, an initial example policy is first computed

by means of computer simulation where a model of the

vehicle simulates the cable following task. Once the sim-

ulated results are accurate enough, in a second phase, the

policy is transferred to the vehicle and executed in a real

test. A third step will be mentioned as a future work, where

the learning procedure continues on-line while the robot

performs the task, with the objective of improving the initial
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Fig. 1. Learning phases.

example policy as a result of the interaction with the real

environment. This paper is structured as follows. In Section II

the learning procedure and the policy gradient algorithm are

detailed. Section III describes all the elements that affect

our problem: the underwater robot, the vision system, the

simulated model and the controller. Details and results of the

simulation process and the real test are given in Section IV

and finally, conclusions and the future work to be done are

included in Section V.

II. LEARNING PROCEDURES

The introduction of prior knowledge in a gradient descent

methodology can dramatically decrease the convergence time

of the algorithm. This advantage is even more important

when dealing with real systems, where timing is a key factor.

Such learning systems divide its procedure into two phases

or steps as shown in Fig. 1. In the first phase of learning

(see Fig. 1(a)) the robot is being controlled by a supply

policy while performing the task; during this phase, the agent

extracts all useful information. In a second step, once it is

considered that the agent has enough knowledge to build a

“secure” policy, it takes control of the robot and the learning

process continues, see Fig. 1(b).

The proposal presented here takes advantage of learning

by simulation as an initial startup for the learner. The

objective is to transfer an initial policy, learned in a simulated

environment, to a real robot and test the behavior of the

learned policy in real conditions. First, the learning task

will be performed in simulation with the aim of a model

of the robot. Once the learning process is considered to be

finished, the policy will be transferred to ICTINEUAUV

in order to test it in the real world. In a future task, the

learning procedure will switch to a second phase, continuing

to improve the policy while in real conditions. The Baxter

and Bartlett approach [17] is the gradient descent method

selected to carry out the simulated learning corresponding

to phase one. The next subsection gives details about the

algorithm.

A. The gradient descent algorithm

The Baxter and Bartlett’s algorithm is a policy search

methodology with the aim of obtaining a parameterized

policy that converges to an optimal by computing approx-

imations of the gradient of the averaged reward from a

single path of a controlled POMDP. The convergence of

the method is proven with probability 1, and one of the

most attractive features is that it can be implemented on-

line. In previous work [18], the same algorithm was used in

a simulation task achieving good results. The procedure is

summarized in Algorithm 1. The algorithm works as follows:

having initialized the parameters vector θ0, the initial state

i0 and the eligibility trace z0 = 0, the learning procedure

will be iterated T times. At every iteration, the parameters’

eligibility zt will be updated according to the policy gradient

approximation. The discount factor β ∈ [0, 1) increases or

decreases the agent’s memory of past actions. The immediate

reward received r(it+1), and the learning rate α allows us

to finally compute the new vector of parameters θt+1. The

current policy is directly modified by the new parameters

becoming a new policy to be followed by the next iteration,

getting closer to a final policy that represents a correct

solution of the problem.

Algorithm 1: Baxter and Bartlett’s OLPOMDP algorithm

1. Initialize:
T > 0
Initial parameter values θ0 ∈ RK

Initial state i0
2. Set z0 = 0 (z0 ∈ RK )
3. for t = 0 to T do:

(a) Observe state yt

(b) Generate control action ut according to current policy µ(θ, yt)
(c) Observe the reward obtained r(it+1)

(d) Set zt+1 = βzt +
∇µut

(θ,yt)

µut
(θ,yt)

(e) Set θt+1 = θt + αtr(it+1)zt+1

4. end for

The algorithm is designed to work on-line. The function

approximator adopted to define our policy is an artificial

neural network (ANN) whose weights represent the policy

parameters to be updated at every iteration step (see Fig. 2).

As input, the network receives an observation of the state

and, as output, a soft-max distribution evaluates each possible

future state exponentiating the real-valued ANN outputs

{o1, ..., on}, being n the number of neurons of the output

layer [4]. After applying the soft-max function, the outputs

of the neural network give a weighting ξj ∈ (0, 1) to each

of the possible control actions. The probability of the ith

control action is then given by:

Pri =
exp(oi)∑n

a=1
exp(oa)

(1)

where n is the number of neurons at the output layer. Actions

have been labeled with the associated control action and

chosen at random from this probability distribution, driving

the learner to a new state with its associated reward.

Once the action has been selected, the error at the output

layer is used to compute the local gradients of the rest of

the network. The whole expression is implemented similarly
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to error back propagation [19]. The old network parameters

are updated following expression 3.(e) of Algorithm 1:

θt+1 = θt + αr(it+1)zt+1 (2)

The vector of parameters θt represents the network weights

to be updated, r(it+1) is the reward given to the learner

at every time step, zt+1describes the estimated gradients

mentioned before and, at last, we have α as the learning

rate of the algorithm.

III. CASE TO STUDY: CABLE TRACKING

This section is going to describe the different elements

that take place into our problem: first, a brief description of

the underwater robot ICTINEUAUV and its model used in

simulation is given. The section will also present the problem

of underwater cable tracking and, finally, a description of the

neural-network controller designed for both, the simulation

and the real phases is detailed.

A. ICTINEUAUV

The underwater vehicle ICTINEUAUV was originally

designed to compete in the SAUC-E competition that took

place in London during the summer of 2006 [20]. Since then,

the robot has been used as a research platform for different

underwater inspection projects which include dams, harbors,

shallow waters and cable/pipeline inspection.

The main design principle of ICTINEUAUV was to

adopt a cheap structure simple to maintain and upgrade. For

these reasons, the robot has been designed as an open frame

vehicle. With a weight of 52 Kg, the robot has a complete

sensor suite including an imaging sonar, a DVL, a compass, a

pressure gauge, a temperature sensor, a DGPS unit and two

cameras: a color one facing forward direction and a B/W

camera with downward orientation. Hardware and batteries

are enclosed into two cylindrical hulls designed to withstand

pressures of 11 atmospheres. The weight is mainly located

at the bottom of the vehicle, ensuring the stability in both

pitch and roll degrees of freedom. Its five thrusters will allow

ICTINEUAUV to be operated in the remaining degrees of

freedom (surge, sway, heave and yaw) achieving maximum

speeds of 3 knots (see Fig. 3).
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Fig. 2. Schema of the ANN architecture adopted.

Fig. 3. The autonomous underwater vehicle ICTINEUAUV .

The mathematical model of ICTINEUAUV used during

the simulated learning phase has been obtained by means of

parameter identification methods [21]. The whole model has

been uncoupled and reduced to emulate a robot with only

two degrees of freedom (DOF), X movement and rotation

respect Z axis.

B. The Cable Tracking Vision System

The downward-looking B/W camera installed on

ICTINEUAUV will be used for the vision algorithm to

track the cable. It provides a large underwater field of view

(about 57◦ in width by 43◦ in height). This kind of sensor

will not provide us with absolute localization information

but will give us relative data about position and orientation

of the cable with respect to our vehicle: if we are too

close/far or if we should move to the left/right in order to

center the object in our image. The vision-based algorithm

used to locate the cable was first proposed in [22] and later

improved in [23]. It exploits the fact that artificial objects

present in natural environments usually have distinguishing

features; in the case of the cable, given its rigidity and

shape, strong alignments can be expected near its sides. The

algorithm will evaluate the polar coordinates ρ (orthogonal

distance from the origin of the camera coordinate frame) and

Θ (angle between ρ and X axis of the camera coordinate

frame) of the straight line corresponding to the detected

cable in the image plane (see Fig. 4).

Once the cable has been located and the polar coordinates

of the corresponding line obtained, as the cable is not a thin

line but a large rectangle, we will also compute the cartesian

coordinates (xg ,yg) (see Fig. 4) of the cable’s centroid with

respect to the image plane by means of (3).

ρ = xcos(Θ) + ysin(Θ) (3)

where x and y correspond to the position of any point of

the line in the image plane. The computed parameters Θ, xg

and yg together with its derivatives will conform the input of

the neural-network controller (see Fig. 5). For the simulated

phase, a downward-looking camera model has been used to

emulate the vision system of the vehicle.
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C. The neural-network controller

A one-hidden-layer neural-network with 6 input nodes, 3

hidden nodes and 5 output nodes was used to generate a

stochastic policy. As can be seen in Fig. 5 the inputs to

the network correspond to the normalized state vector com-

puted in the previous section s = {θ, xg, yg,
δθ
δt

,
δxg

δt
,

δyg

δt
}.

Each hidden and output layer has the usual additional bias

term. The activation function used for the neurons of the

hidden layer is the hyperbolic tangent type, while the output

layer nodes are linear. The five output neurons represent

the possible five control actions (see Fig. 6). The discrete

action set A = {a1, a2, a3, a4, a5} has been considered

where A1 = (Surge, Y aw),A2 = (Surge,−Y aw),A3 =
(−Surge, Y aw),A4 = (−Surge,−Y aw),A5 = (Surge, 0).
Each action corresponds to a combination of a constant

scalar value of Surge force (X movement) and Y aw force

(rotation respect Z axis).

As explained in Section II-A, the outputs have been

exponentiated and normalized to produce a probability dis-

tribution. Control actions are selected at random from this

distribution.

IV. RESULTS

A. 1srt phase: Simulated Learning

The model of the underwater robot ICTINEUAUV nav-

igates a two dimensional world at 1 meter height above the

seafloor. The simulated cable is placed at the bottom in a

fixed circular position. The controller has been trained in an

episodic task. An episode ends either every 15 seconds (150
iterations) or when the robot misses the cable in the image

plane, whatever comes first. When the episode ends, the robot

Fig. 4. Coordinates of the target cable with respect ICTINEUAUV .

Fig. 5. The ANN used by the controller.

position is reset to a random position and orientation around

the cable’s location, assuring any location of the cable within

the image plane at the beginning of each episode. According

to the values of the state parameters {θ, xg, yg}, a scalar

immediate reward is given each iteration step. Three values

were used: -10, -1 and 0. In order to maintain the cable

centered in the image plane, the positive reward r = 0 is

given when the position of the centroid (xg, yg) is around

the center of the image (xg ± 0.15, yg ± 0.15) and the angle

θ is close to 90◦ (90◦±15◦), a r = −1 is given in any other

location within the image plane. The reward value of -10 is

given when the vehicles misses the target and the episode

ends.

The number of episodes to be done has been set to 2000.

For every episode, the total amount of reward perceived is

calculated. Figure 7 represents the performance of the neural-

network robot controller as a function of the number of

episodes when trained using Baxter and Bartlett’s algorithm

on the controller detailed in Section III-C. The experiment

has been repeated in 100 independent runs, and the results

here presented are a mean over these runs. The learning rate

Fig. 6. ICTINEUAUV discrete action set.
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Fig. 7. Performance of the neural-network robot controller as a function
of the number of episodes. Performance estimates were generated by
simulating 2000 episodes. Process repeated in 100 independent runs. The
results are a mean of these runs. Fixed α = 0.001, and β = 0.98.

was set to α = 0.001 and the discount factor β = 0.98. In

Figure 8 we can observe a state/action mapping of a trained

controller, yg and the state derivatives δθ
δt

,
δxg

δt
,

δyg

δt
have been

fixed in order to represent a comprehensive graph. Figure 9

represents the trajectory of a trained robot controller.
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B. 2nd phase: Learned policy transfer. Real test

Once the learning process is considered to be finished,

the weights of the trained ANN representing the policy are

transferred to ICTINEUAUV and its performance tested

in a real environment. The robot’s controller is the same

one used in simulation. The experimental setup can be seen

in Fig. 10 where the detected cable is shown while the

vehicle performs a test inside the pool. Fig. 11 represents

real measured trajectories of the θ angle while the vehicle

performs different attempts to center the cable in the image.

Finally, a short video is also provided where the vehicle

uses the simulated policy to perform a real autonomous

underwater cable tracking task.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a field application of a high-level

Reinforcement Learning (RL) control system for solving the

action selection problem of an autonomous robot in cable

tracking task. The learning system is characterized by using

a direct policy search algorithm for robot control based on

Baxter and Bartlett’s direct-gradient algorithm. The policy is

represented by a neural network whose weights are the policy

parameters. In order to speed up the process, the learning

phase has been carried out in a simulated environment and

then transferred and tested successfully on the real robot

ICTINEUAUV .

Results of this work show a good performance of the

learned policy. Convergence times of the simulation process

were not too long if we take into account the reduced

dimensions of the ANN used in the simulation. Although it is

not a hard task to learn in simulation, continuing the learning

autonomously in a real situation represents a challenge due

to the nature of underwater environments. Future steps are

focused on improving the initial policy by means of on-line

learning processes and comparing the results obtained with

human pilots tracking trajectories.

Fig. 9. Behavior of a trained robot controller, results of the simulated cable
tracking task after learning period is completed.
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Fig. 10. ICTINEUAUV in the test pool. Small bottom-right image:
Detected cable.
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