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1 Institut d’Informàtica i Aplicacions (IIiA)

Universitat de Girona, 17071 Girona, Spain

{albert.trias,joan.puiggali,francesc.castro,teodor.jove,mateu.sbert,joseluis.marzo}@udg.edu

Abstract—In computer graphics, global illumination algo-
rithms take into account not only the light that comes directly
from the sources, but also the light interreflections. This kind
of algorithms produce very realistic images, but at a high
computational cost, especially when dealing with complex en-
vironments. Parallel computation has been successfully applied
to such algorithms in order to make it possible to compute
highly-realistic images in a reasonable time. We introduce here
a speculation-based parallel solution for a global illumination
algorithm in the context of radiosity, in which we have taken
advantage of the hierarchical nature of such an algorithm.

Index Terms—global illumination, radiosity, distributed envi-
ronments, speculation, parallelization, computer clusters.

I. INTRODUCTION

Radiosity techniques [1], [2] aim at estimating the illumina-

tion for environments with diffuse reflecting surfaces in order

to produce highly-realistic results. The multipath algorithm [3]

is a Monte Carlo technique that solves the radiosity problem

by using random lines which simulate the exchange of radiant

power among the objects in the environment.

In the present paper we introduce the parallelization of a

variant [4] of the multipath algorithm in which the environ-

ment is structured in a hierarchy of subscenes, allowing the

algorithm to be run at different levels, which involves a better

exploitation of the random lines. We aim at taking advantage

of the parallelism at the maximum, in order to accelerate the

computations.

The hierarchical nature of the algorithm to be parallelized

has allowed us to apply a master/slave speculative paral-

lelization architecture for computer clusters. A noticeable

parallelization efficiency has been obtained in our experiments.

The paper is organized as follows. In section II we present

the previous work. Section III describes in detail the contri-

butions presented in this article, namely the parallel strategy

we have used. Section IV presents the results obtained in our

experiments. Finally, section V summarizes the conclusions of

the paper and presents some future lines of research.

II. PREVIOUS WORK

A. Radiosity

Radiosity [1], [2] is a global illumination algorithm that

simulates the multiple reflections of light around a scene. The

radiosity model assumes that the exiting radiance of a point

is direction independent, which is valid to simulate diffuse

reflections. The equation for the radiosity B(x) (emitted plus

reflected light leaving point x) is:

B(x) =

∫
D

ρ(x)F (x, y)B(y)dy + E(x), (1)

where D stands for the set of all the surfaces in the scene,

ρ(x) and E(x) respectively stand for the reflectance (fraction

of the incoming light that is reflected) and emittance (emission

radiosity if x is a light source) at point x, and F (x, y) stands

for the form-factor between points x and y, a geometric term

which includes the visibility between x and y.

In practice, a discrete version of the radiosity equation is

considered, corresponding to a discretization of the environ-

ment in small polygons called patches:

Bi = Ei + ρi

Np∑
j=1

FijBj , (2)

where Bi, Ei, and ρi stand respectively for the radiosity,

emittance, and reflectance of patch i, Np stands for the number

of patches in the scene, and Fij stands for the patch-to-patch

form factor from patch i to patch j.

B. The multipath algorithm

The radiosity multipath algorithm was first described in [3].

It is a member of a family of methods called by different

authors global Monte Carlo, global radiosity, or transillumina-

tion methods [5], [6], [7] which use random global lines (or

directions) to transport energy. Global lines are independent

of the surfaces or patches in the scene, contrary to local lines,

and can take advantage of all their intersections with the scene.

The multipath algorithm can be seen as a random walk

whose transition probabilities are given by the form factors.

Such a random walk is generated from a uniform density of

global lines [8]. Each global line simulates the exchange of

energy between several pairs of patches, contributing to several

geometric paths (Fig. 1a).

Let us briefly review the algorithm. Global lines are sequen-

tially intersected with the scene. For each line, intersections

are sorted by distance, resulting in a list of pairs of intersected

patches. Each patch keeps two amounts: its accumulated

outgoing power, and its unshot outgoing power. The patches

in each pair along the intersection list exchange their unshot
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power times the corresponding reflectances, and sum this

amount to their corresponding accumulated power. If a patch

is a source, we also keep a third quantity, the emission power

per line exiting the source. Thus, if one of the patches of the

pair is a source, we must add, at each exchange, its emission

power per line to its unshot power. This “emitted per line”

power is previously computed by dividing the total emission

power of the patch by the forecast number of lines crossing

the patch, which is proportional to the area of the patch [8].

Source

1

2

4
3

(a) (b)

Fig. 1. Multipath algorithm. (a) A global line (the thick one) simulates two
paths, indicated with the continuous stroke and the dashed stroke (b) A path
can contribute to the emission of radiant power from several patches. In the
figure, path 1-2-3-4 simulates logical paths 1-2-3-4, 2-3-4 and 3-4.

C. The multipath algorithm using a hierarchy of subscenes

A variant of the multipath algorithm was presented in

[4], where a hierarchy of subscenes was used in order to

run multipath not only for the whole scene but also for the

subscenes, submitting each subscene to its own density of lines

(referred to as locally global lines). This arised from the idea

of better exploiting the lines by using more lines where they

were more necessary. We have to note that such densities of

lines were uniform in the context of each subscene but not in

the context of the whole scene. Next we elaborate on the main

features of this algorithm:

1) Hierarchy of subscenes and adaptive densities of lines:

The hierarchy of subscenes is built using a clustering bottom-

up strategy [9]. Fig. 2 shows a simple example of a 2-

level hierarchy, although the algorithm allows any number of

levels. Note in the example that a subscene can contain other

subscenes and/or single objects.

2) Subdivision of the bounding boxes: virtual patches and

angular regions: Each face of each bounding box (unless the

box at the top level) acts as a virtual wall (VW), which is

subdivided in a grid of virtual patches (VP), as seen in Fig.

3 (left). The directional hemisphere over each virtual patch

is subdivided in angular regions (AR) (see Fig. 3 (right)).

Each AR acts as an accumulator of undistributed incoming

and outgoing power.

3) The pre-process and the reuse of lines: Each subscene

is submitted into a uniform density [8] of locally global

lines. For each line cast in a subscene S, a sorted-by-distance

intersection list is computed, considering the intersections of

the line against:

• Single objects inside S.

SINGLE OBJECTS

SUBSCENES

MAIN  SCENE

A

B

B

A

Fig. 2. A 2-level hierarchy of subscenes.

(a) (b)

Fig. 3. (a) Subdivision of the bounding box virtual wall in a grid of virtual
patches. (b) Directional subdivision in angular regions over a virtual patch.

• Virtual walls of the inner subscenes of S (ignoring their

interior).

• Virtual walls of S.

This pre-process allows to obtain information about the

geometry of the subscenes, estimating the transmittance for

each AR. The transmittance TR for the angular region R

represents the fraction of power entering subscene S in the

directions in R that crosses S finding no obstacle in its

way. Transmittances give an idea about the opaqueness of a

subscene in each direction, allowing, with a moderate loss

of accuracy, to ignore the interior of the subscenes when

executing multipath at a higher level. The transmittance TR

is estimated as

TR ≈
nd

R

nR

, (3)

where nd
R is the number of lines crossing S in the directions

in R and hitting no object, and nR is the total number of lines

crossing S in the directions in R. If nR = 0, TR is estimated

by interpolation of the values of the neighboring regions.

For each line, and after sorting by distance, the identifiers

of the intersected patches and angular regions are stored. This
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information is repeatedly used in the iterative process, avoiding

to compute again the intersections.

4) The algorithm: The full algorithm is presented in Fig.

4. Note that recursive function MP (Fig. 5) deals with the ex-

change of power inside and between each subscene. Note also

that a first-shot stage [10] is needed before applying multipath,

in order to efficiently distribute the direct illumination. Thus,

multipath only estimates the indirect illumination.

Generate hierarchy of subscenes

Subdivide each VW of the boxes in VP and AR

for each subscene S (including the whole scene)

Cast global lines and store intersection lists

if S is not the whole scene

for each AR in S

Compute and store its transmittance

endfor

endif

endfor

First shot (computing direct illumination)

for each iteration (4 or 5 are usually enough)

MP(whole scene) // RECURSIVE FUNCTION

endfor

Fig. 4. The iterative algorithm.

D. Master/Slave Speculative Parallelization Architecture for

Computer Clusters (MSSPACC)

Master/Slave Speculative Parallelization Architecture for

Computer Clusters [11], [12], [13] achieves parallelism by

using speculation in distributed environments, allowing the

parellel execution of a sequential program in a computer

cluster. It simulates the behavior of a superscalar system

by implementing a form of parallelism called instruction-

level parallelism. These techniques try to break true data

dependencies and control dependencies by means of using

speculation of future data values and future branch results

respectively. Speculation is based on the fact that the program

behaviour is usually repetitive and consequently predictable, as

demonstrated in studies of branch [14], memory dependencies,

and data values [15]. These techniques can be classified into

two types:

• Software speculations: Compilers carry out the necessary

coding. It cannot be applied dynamically [16], [17], [18].

• Hardware speculations: They require duplicated hardware

elements, e.g. adding extra registers to store provisional

values until they are definitive [15], [19], [20].

The above techniques allow the processor to divide program

execution into several thread executions, and increase the

program’s degree of parallelism. Moore’s law (processing

power doubles each 18 months) and Gilder’s law (bandwidth

triples each 12 months) show that the costs of information

transmission and synchronization between workstations de-

crease faster than processing speed. These premises make it

procedure MP(scene S)

Compute power per line for each patch in S

not included in any subscene of S

for each AR in S

Compute incoming power per line

Set to 0 accumulated outgoing power

endfor

for each subscene Si of S

for each AR in the box of Si

Compute outgoing power per line

Set to 0 accumulated incoming power per line

endfor

endfor

for each line cast in S

Faced patches and/or AR exchange power:

* Patches contribute unshot power + power per line

* AR of S contribute incoming power per line

* AR of S1...Sk contribute

outgoing power per line

* Power leaving S is accumulated as outgoing

power in the corresponding AR

* Power crossing S1..Sk is accumulated as incoming

power in the corresponding AR and attenuated

by the corresponding transmittance

endfor

for each subscene Si of S

MP(Si) // RECURSIVE

endfor

endprocedure

Fig. 5. The recursive function MP. S1..Sk are the subscenes of S.

possible the idea of transporting speculation techniques to a

distributed environment composed by cheap workstations. The

complete design of Master/Slave Speculative Parallelization

Architecture for Computer Clusters system [11], [12], [13]

consists of three subsystems:

• The parallelizing subsystem (Fig.6) transforms the orig-

inal sequential program into the parallel format needed

by the execution environment. The program is divided

into blocks that can be executed in parallel. Either two

or three programs (depending on the type of the original

program) are generated as a result of the translation

process: a master, a slave, and optionally a master/slave.

The master manages the parallelism and the speculation

of the system. The slave runs, at each of the nodes, the

code of the blocks into which the sequential program has

been divided. The master/slave program permits to reduce

the master bottleneck by distributing the tasks to others

nodes that work as a new master.

• The execution subsystem (see Fig.7) runs, by applying

speculation, the parallelized applications in a computer

cluster composed by a monoprocessor architecture using

PVM (Parallel Virtual Machine). The execution environ-
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Fig. 6. The parallelizing subsystem

ment behaves like a superscalar processor, where the

blocks are like the instructions into which the sequential

program has been divided, and the nodes where the

slave program is run are like the functional units. There

exist the following data speculation mechanisms: Data

Value Speculation [21]; Last Value Predictor [21]; Stride

Predictor [22]; and Context-based Value Predictor [23].

Control dependencies are managed with branch predic-

tion techniques based on a BTB (Branch Target Buffer)

with 2-bit history [24]. If there are blocks executed with

wrong speculated values or branch missprediction, such

blocks are discarded and their execution is restarted from

the last stable point.

• The simulation subsystem (see Fig.7) is developed in

order to evaluate the impact of the technological evolution

or the effect of using bigger computer clusters. The

simulation is able to be run in a single workstation,

using the information obtained from the monoprocessor

execution (the trace of the program), and the cluster

execution (the execution cost of the different blocks).

Fig. 7. Execution and Simulation Subsystem

III. OUR CONTRIBUTION

To apply the speculation techniques seen in section II-D to

the multipath algorithm (section II-C) it has been needed to

avoid the use of dynamic memory, because the cluster’s nodes

do not use shared memory, and the objects positions depend on

the node. We have also avoided recursivity because it produces

data dependencies which limit parallel execution. We have

tried to obtain a code as sequential as possible to get more

flexibility defining the blocks. An example of a block where

these transformations have been done (recursivity and dynamic

memory have been removed) is shown in Fig. 9, while in Fig.

8 we have the orignial methods.

procedure DividePolygons()

for each polygon i

polygon[i].divide()

endfor

endprocedure

procedure Polygon::divide()

if area() > maximum area allowed

for j = 0 to 3

addLeaf(division(j))
getLeaf(j).divide()

endfor

endif

endprocedure

Fig. 8. Polygons subdivision

block Divide Polygons

N = amount of polygons to divide

i = 0
while i < N

if polygon[i].area() > maximum area allowed

polygon[i].setLeafPointer(N)

for j = 0 to 3

polygon[N ] = polygon[i].division(j)
N = N + 1

endfor

endif

i = i + 1
endwhile

endblock

Fig. 9. Removing recursivity and dynamic memory from methods in Fig. 8

A. Basic blocks

The execution subsystem needs to divide in basic blocks the

algorithm to be executed. In our case, such a division can be

seen in Fig. 10, where:

• Parallelizable loop means that the iterations can be exe-

cuted at once using speculation on the induction variable.

• Non-parallelizable loop means that there are dependen-

cies that cannot be solved by speculation.

B. Algorithm modifications

In a given iteration (see algorithm in Fig. 4), the dependen-

cies because of the power accumulators in the AR bear that
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Fig. 10. Block division for the master node.

we can only run at once MP for the boxes of the same level.

If power accumulated in the AR was not used until the next

iteration, MP could be run at once for all the boxes. Thus,

we decide to duplicate the AR accumulators of incoming and

outgoing power, keeping the power accumulated in the current

iteration and distributing it in the following one.

For a given execution of multipath, increasing the perfor-

mance of parallel execution involves breaking dependencies

on the unshot power variables (see section II-B) between

the global lines. In this sense, we add a new field for each

patch that accumulates the unshot power of a whole multipath

iteration in order to be distributed in the following one. One of

the problems of such a modification is that the unshot power

of the last iteration will be never distributed. Such a problem

has been reduced by increasing the number of iterations, which

reduces the amount of unresolved power after the last iteration.

Since the MSSPAC has a limitation on the amount of

embedded loops that can be managed, and it is not possible to

run multipath iterations at once, we applied a loop-unrolling

in the Multipath block, so that it is possible to run at once all

the boxes and use several slaves for each box. We also reduced

the hard disk operations by increasing the buffer size.

IV. RESULTS

In our experiments we have employed the scene office,

which represents a room with 4 tables, a desk and five chairs.

The light source is a lamp stuck on the center of the ceiling.

Our experiments have been done in a cluster of Pentium

IV with 3 Ghz and 1 Gbyte of RAM. The PCs, which are

connected in a LAN, have a shared hard disk, where the global

lines have been stored.

As shown in Fig. 11, the use of the speculation techniques

has reduced the cost with respect to the sequential implemen-

tation of the algorithm. Fig. 11 also shows the tendency of the

cost to stabilize from a given number of nodes on. The speed-

up of the parallel implementation regarding to the number of

nodes can be seen in Fig. 12, while the relative efficiency, that

is, the speed-up divided by the number of nodes, is shown

in Fig. 13, where it can be seen that the relative efficiency

is optimal near approximately 20 nodes, tending to decrease

from this value on.

Fig. 11. Running time vs. number of nodes. Horizontal line shows the running
time for the sequential implementation when generating the same number of
lines.

Fig. 12. Speed-up of our parallel implementation regarding to the number
of nodes.

Fig. 13. Relative efficiency of our parallel implementation regarding to the
number of nodes.

It is worth to be mentioned that, since speculation allows to

obtain a higher degree of parallelization, the speed-up obtained

with a parallel implementation without speculation would be

lower than the one presented above. On the other hand, we

have to remark that a slight bias has been introduced by the

speculative parallel implementation, due to the undistributed
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power after the last iteration (see section III-B). Such a bias is

visually imperceptible, however, as we can see in the images

in Fig. 14 and 15, in which we show some details of the scene

office from a radiosity solution obtained with our parallel

implementation.

Fig. 14. Detail of scene office

Fig. 15. Detail of scene office

V. CONCLUSIONS AND FUTURE WORK

The main goal of this work has been to improve the per-

formance of the multipath algorithm, a Monte Carlo radiosity

method that simulates the illumination of an environment. Tak-

ing advantage of a space-division-based hierarchical version of

multipath, it has been parallelized using speculation in a dis-

tributed Master/Slave Speculative Parallelization Architecture

for Computer Clusters [11], [12], [13].

The obtained results show that such a goal has been

achieved by applying data and control speculation. These

techniques try to use the maximum number of nodes in

parallel by increasing the inherent degree of parallelism of

the algorithm, and thus obtaining better performance from the

processors. We conclude that such a degree of parallelism

depends on many factors, such as scene complexity, space

division, direct lighting distribution, and number of Monte

Carlo samples. One of the first tasks carried out was to obtain

a mathematical model that represents the behavior of the

execution of the algorithm. Such a model has allowed us to

carry out empirical studies on the parallel implementation, for

example on the selection of the size of the blocks (pieces in

which we divide the program).

Our implementation of the algorithm in the engine of

speculation (MSSPACC) has allowed us to extract conclusions,

but also new ideas in order to improve the performance by

meeting some engine lacks. We have also proposed the imple-

mentation of the algorithm in a multiprocessor to compare an

environment where the communication between the processors

is based on the pass of messages (clusters) to an environment

based on shared memory and the PVM (multiprocessor).

This comparison will allow us to know the advantages and

drawbacks of both models and to explore the possibility of

mixing both models according to the problem evolution.
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