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AbstracI- This paper presents a vision-based localization 
approach for an underwater robot in a ~ t ~ e t u r r d  envi- 
ronment. The system is based on a coded pattern placed 
on the bottom of a water tank and an onhoard down- 
looking camera. Main features are, absolute and map-based 
localization, landmark detection and tracking, and real-time 
computation (12.5 Hz). The proposed system provides three- 
dimensional position and orientation of the vehicle along 
with its velocity. Accuracy of the drift-free estimates is very 
high, allowing them to he used as feedback measures of 
a velocity-based low level controller. The paper details the 
localization algorithm, by showing some graphical results, 
and the accuracy of the system. 

1. INTRODUCTION 

The positioning of an underwater vehicle is a big chal- 
lenge. Techniques involving inertial navigation systems, 
acoustic or optical sensors have been developed to esti- 
mate the position and orientation of the vehicle. Among 
these techniques, visual mosaics have greatly advanced 
during last years offering, besides position, a map of 
the environment [6], [ 5 ] .  Main advantages of mosaicking 
with respect inertial and acoustic sensors are smaller cost 
and smaller sensor size. Another advantage respect to 
acoustic transponder networks is that the environment does 
not require any preparation. However, position estimation 
based on mosaics can only be used when the vehicle 
is performing tasks near the ocean floor and requires a 
reasonable visibility in the working area. There are also 
unresolved problems like motion estimation in presence 
of shading effects, presence of ”marine snow” or non- 
uniform illumination. Moreover, as the mosaic evolves, 
a systematic bias is introduced in the motion estimated 
by the mosaicking algorithm, producing a drift in the 
localization of the robot [3]. 

Current work on underwater vehicle localization at 
the University of Girona concentrates on visual mosaics 
[Z]. While a real time application which deals with the 
mentioned problems is being developed, a simplified po- 
sitioning system was implemented. The aim of it is to 
provide an accurate estimation of the position and velocity 
of URIS Autonomous Underwater Vehicle (AUV) in a 
water tank, see Fig. 1. The utility of this water tank is 
to experiment in different research areas, like dynamics 

Fig. I .  URIS’s erpenmental envir~nmenf 

modelling or control architectures, in which the position 
and velocity of the vehicle are usually required. 

In this paper we present a vision-based localization 
system to estimate the position, orientation and veloc- 
ity of an underwater robot in a structured environment. 
Main features of this system are absolute and map-based 
localization, landmark detection and tracking, and real- 
time computation. The components of the system are an 
onboard down-looking camera and a coded pattern placed 
on the bottom of the water tank. The algorithm calculates 
the three-dimensional position and orientation, referred to 
the water tank coordinate system, with a high accuracy 
and drift-free. An estimation of the vehicle’s velocities, 
including surge, sway, heave, roll, pitch and yaw,  is also 
computed. These estimates are used by the velocity-based 
low level controller of the vehicle. 

The structure of this paper is as follows: section I1 
describes URIS’s underwater vehicle and its experimental 
setup. In this section emphasis is given to the down- 
looking camera and to the visually coded pattern, both 
used by the localization system. Section III details the 
localization algorithm explaining the different phases. In 
section IV, some results which show the accuracy of the 
system are presented. And finally, conclusions are given 
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Fig. 2. URIS's AUV, a) picture b) schema 

in section V. 

11. URIS'S EXPERIMENTAL SETUP 

In order to experiment with URIS underwater vehicle, 
a water tank is used, see Fig. 1. The shape of the tank is 
a cylinder with 4.5 meters in diameter and 1.2 meters in 
height, This environment allows the perfect movement of 
the vehicle in the horizontal plane and a restricted vertical 
movement of only 30 centimeters. The localization system 
is compounded by a coded pattern which covers the whole 
bottom of the tank and a down-looking camera attached 
on URIS. Next subsections describe URIS, the model of 
the camera and the coded pattern. 

A. URIS'r Autonomous Underwater Vehicle 

The robot for which has been designed this navigation 
system is URIS, see Fig. 2. Tbis vehicle was developed 
at the University of Girona with the aim of building a 
small-sized AUV. The hull is composed of a stainless steel 
sphere with a diameter of 350mm, designed to withstand 
pressures of 3 atmospheres (30 meters depth). On the 
outside of the sphere there are two video cameras (forward 
and down looking) and 4 thrusters (2 in X direction and 2 
in Z direction). Due to the stability of the vehicle in pitch 
and roll, the robot has four degrees of freedom (DOF); 
surge, sway, heave and yaw. Except for the sway DOE 
the others DOFs can be directly controlled. 

The robot has an onboard PC-104 computer, running 
the real-time operative system QNX. In this computer, the 
low and high level controllers are executed. An umbilical 
wire is used for communication, power and video signal 
transmissions. The localization system is currently being 
executed on an external computer. A new onboard com- 
puter for video processing purposes will be incorporated 
in the near future. 

B. Down-Looking Camera Model 
The camera used by the positioning system is an analog 

B/W camera. It provides a large field of view (ahout 
5 7 O  in width by 43' in height underwater). The camera 
model that has been used is the Faugeras-Toscani [ l ]  
algorithm in which only a first order radial distortion has 

Fig. 3. Camera projective geametly 

been considered. This model is based on the projective 
geometry and relates a three-dimensional position in the 
space with a two-dimensional position in the image, see 
Figure 3. These are the equations of the model: 

where, (CX,CY,CZ) are the coordinates of a point in the 
space respect the camera coordinate system {C} and (xp 
,y are the coordinates. measured in pixels, of this point 
projected in the image plane. And, as intrinsic parameters 
of the camera: ( 4 , v o )  are the coordinates of the center 
of the image, (k.,k,) are the scaling factors, f is the 
focal distance, kl is the first order term of the radial 
distoxtion and r is the distance, in length units, between 
the projection of the point and the center of the image. 

The calibration of the intrinsic parameters of the camera 
was done off-line using several representative images and 
applying an optimization algorithm, which by iteration, 
estimated the optimal parameters. 

C. Visually Coded Pattern 
The main goal of the pattern is to provide a set of known 

global positions to estimate, by solving the projective 
geometry, the position and orientation of the underwater 
robot. The pattern is based on grey level colors and 
only round shapes appear on it to simplify the landmark 
detection, see Fig. 4,a). Each one of these rounds or 
dots will become a global position used in the position 
estimation. Only three colors appear on the pattern, white 
as background, and grey or black in the dots. Again, the 
reduction of the color space was done to simplify the dots 
detection and to improve the robustness. The dots have 
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Fig. 4. Visually Coded pattern. The absence of a dot identifies a global 
mark. The dots marked here with a circle are used Lo find the onentation 
of the pattern 

been distributed among the pattern following the X and Y 
directions, see Fig. 4. These two directions are called the 
main lines af the pattern. 

The pattern contains some global marks, which encode 
a unique global position. These marks are recognized by 
the absence of one dot surrounded by 8 dots, see Fig. 4. 
From the 8 dots that surround the missing one, 3 are used 
to find the orientation of the pattern and 5 to encode the 
global position. The 3 dots which mark the orientation, 
appear in all the global marks in the same position and 
with the same colors. The detailed view seen in Fig. 4 
shows with a circle these 3 dots. The global position 
is encoded in the binary color (grey or black) of the 5 
remainder dots. The maximum number of positions is 32. 
These global marks have been uniformly distributed on the 
pattern. A total number of 37 global marks have been used, 
repeating 5 codes in opposite positions on the pattern. The 
zones of the pattern that do not contain a global mark, 
have been fulfilled with alternately black and grey dots, 
which helps the tracking algorithm, as will be explained 
in Section II-C. 

In order to choose the distance between two neighbor 
dots several aspects were taken into account. A short 
distance represents a higher number of appearing dots 
in the image, and therefore, a more accurate estimation 
of the vehicle's position. On the other band, if a lot of 
dots appear in the image and the vehicle moves fast, dot 
tracking can be very hard or impractical. A long distance 
between two neighbor dots produces the contrary effects. 
Therefore, an intermediate distance was chosen for this 

Fig. 5 .  Phases of the localization system: a) acquired "age. b) 
binarization, c) detection of the dots, d) main lines of the pattern, e) 
dots neighborhood. 0 estimated position and orientation 

particular application. The aspects which influenced the 
decision were the velocities and oscillations of the vehicle, 
the camera field of view and the range of depths in which 
the vehicle can navigate. The final distance between each 
two neighbor dots was 10 cm. 

111. LOCALIZATION PROCEDURE 

The vision-based localization algorithm was designed 
to work at 12.5 frames per second, half of the video 
frequency. Each iteration requires a set of sequential tasks 
starting from image acquisition to velocity estimation. 
Next subsections describe the phases that constitute the 
whole procedure. 

A. Pattern Detection 
The first phase of the localization algorithm consists 

in detecting the dots of the pattern. To accomplish this 
phase a binarization is first applied to the acquired image, 
see Fig. 5a and 5b. Due to the non-uniform sensitivity of 
the camera in its field of view, a correction of the pixel 
grey level values is performed before binarization. This 
correction is based on the illumination-reflectance model 
[4] and provides a robust binarization of the pattern also 
under non-uuiform lighting conditions. 
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Once the image is binarized, the algorithm finds the 
objects and checks the area and shape of them, dismissing 
the ones that do not match the characteristics of a dot ob- 
ject. Finally, for each detected dot, the algorithm classifies 
its grey level labelling them in three groups: grey, black 
or unknown. In case the label is unknown, the dot will 
he partially used in next phases, as Section 111-C details. 
Fig. 5c shows the original image with some marks on the 
detected dots. 

B. Dots Neighborhood 

The next phase in the localization system consists in 
finding the neighborhood relation among the detected dots. 
The goal is to know which dot is next to which one. This 
will allow the calculation of the global position of all of 
them, starting from the position of only one. Next phase 
will consider how to find this initial position. 

The first step, in this phase, is to compensate the 
radial distortion that affects the position of the detected 
dots in the image plane. In Fig. 5d, the dots before 
distortion compensation are marked in black and, after 
the compensation, in grey. The new position of the dots 
in the image is based on the ideal projective geometry. 
This means that lines in the real world appear as lines 
in the image. Using this property, and also by looking at 
relative distances and angles, the main lines of the pattern 
are found. Fig. 5d shows the detected main lines of the 
pattern. To detect the main lines, at least 6 dots must 
appear in the image. 

Next step consists in finding the neighborhood of each 
dot. The algorithm starts from a central dot, and goes over 
the others according to the direction of the main lines. 
To assign the neighborhood of all the dots, a recursive 
algorithm was developed which also uses distances and 
angles between dots. After assigning all the dots, a net- 
work joining all neighbor dots can be drawn, see Fig. 5e. 

C. Dots Global Position 

Two methodologies are used to identify the global 
position of the detected dots. The first one is used when 
a global mark is detected, what means that, a missing dot 
surrounded by 8 dots appears on the network and, any of 
them has the unknown color label, see Fig. 5e. In this case, 
the algorithm checks the three orientation dots to find how 
the pattern is oriented. From the four possible orientations, 
only one matches the three colors. After that, the algorithm 
checks the five dots which encode a memorized global 
position. Then, starting from the global mark, the system 
calculates the position of all the detected dots using the 
dot neighborhood. 

The second methodology is used when any global mark 
appears on the image, or when there are dots of the global 
mark which have the color label unknown. It consists on 
tracking the dots from one image to the next one. The dots 

that appear in the same zone in two consecutive images 
are considered to be the same, and therefore, the global 
position of the dot is transferred. The high speed of the 
localization system, compared with the slow dynamics of 
the underwater vehicle, assures the tracking performance. 
The algorithm distinguishes between grey and black dots, 
improving the robustness on the tracking. Also, because 
different dots are tracked at the same time, the transferred 
positions of these dots are compared, using the dot neigh- 
borhood, and therefore, mistakes are prevented. 

D. Position and .orientation estimation 
Having the global positions of all the detected dots, 

the localization of the robot can he carried out. Equa- 
tion 4 contains the homogeneous matrix which relates 
the position of one point (Xi,Yj,Zi) respect the camera 
coordinate system { C } ,  with the position of the same 
point respect to the water tank coordinate system {T}. The 
parameters of this matrix are the position ( ‘ G , 7 Y , , T Q )  
and orientation (111, ..., r33) of the camera respect { T } .  
The nine parameters of the orientation depend only on 
the values of roll, pitch and yaw angles. 

For each dot i ,  the position (TXi,TYi,TZi) is known, as 
well as the ratios: 

which are extracted from Equations 1 and 2. These ratios 
can he applied to Equation 4 eliminating ‘Xi  and ‘ f i .  Also, 
cZi can he eliminated by using the next equation: 

( T x i - 7 x j ) 2 + ( T Y j - 7 Y j ) 2 + ( 7 Z i - 7 Z j ) 2  = 
( C xi -cxj)* + (Ck; -CYr)>+ (CZi - C Z r ) 2  (6) 

in which the distance between two dots, i and j ,  calculated 
respect { T }  is equal to the distance respect { C } .  Using 
Equation 6 together with 4 and 5 for dots i and j ,  an 
equation with only the camera position and orientation is 
obtained. And repeating this operation for each couple of 
dots, a set of equations is obtained from which an estima- 
tion of the position and orientation can he performed. In 
particular, a two-phase algorithm has been applied. In the 
first phase, ‘a, roll and pitch are estimated using the non- 
linear fitting method proposed by Levenberg-Marquardt. 
In the second phase, TG, ’& and yaw are estimated 
using a linear least square technique. Finally, the position 
and orientation calculated for the camera are recalculated 
for the vehicle. Fig. 5f shows the vehicle position in the 
water tank marked with a triangle. Also the detected dots 
are marked on the pattern. 
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Fig. 6 .  Position and orientation before and afler filtering 

E. Filtering 

Main sources of error that affect the system are the 
imperfections of the pattern, the simplification on the 
camera model, the intrinsic parameters of the camera, 
the accuracy in detecting the centers of the dots and, the 
error of least-square and Levenberg-Marquardt algorithms 
on its estimations. These errors cause small oscillations 
on the vehicle position and orientation even when the 
vehicle is not moving. To eliminate these oscillations, a 
first order Savitzky-Golay [71 filter was used. Fig. 6 shows 
the estimated three-dimensional position and orientation 
with and without filtering. Finally, the velocity of the robot 
respect the onhoard coordinate system is also estimated 
applying a first order Savitzky-Golay filter with a first 
order derivative included on it. Refer to section IV to show 
results about the estimated velocities. 

IV. RESULTS 

The vision based localization system, that has been 
presented in this paper, offers a very accurate estimation 
of the position and orientation of URIS inside the water 

Fig. 7.  Hirrogram of the eslimaled position and orientation 

tank'. After studying the nature of the source of errors 
(refer to Section II-E), it has been assumed that the 
localization system behaves as an aleatory process in 
which the mean of the estimates coincides with the real 
position of the robot. It is important to note that the system 
estimates the position knowing the global position of the 
dots seen by the camera. In normal conditions, the tracking 
of dots and the detection of global marks never fails, what 
means that there is not drift in the estimates. By normal 
conditions we mean, when the water and bottom of the 
pool are clean, and there is indirect light of the Sun. 

To find out the standard deviation of the estimates, the 
robot has been placed in 5 different locations. In each 
location, the robot was completely static and a set of 
2000 samples was taken. Normalizing the mean of each 
set to zero and grouping all the samples, a histogram can 
be plotted, see Fig. 7. From this data set, the standard 
deviation was calculated obtaining these values: 0.006[m] 
in X and Y,  0.003[ml in Z ,  0.2[01 in roll, OS["] in pitch 
and 0.2["1 in yaw. 

The only drawback of the system is the pattern detection 
when direct light of the Sun causes shadows to appear in 
the image. In this case, the algorithm fails in detecting the 
dots. Any software improvement to have a robust system 
in front of shadows would increase the computational 
time, and the frequency of the algorithm would be too 
slow. However, the algorithm is able to detect these kind 
of situations, and the vehicle is stopped. 

The system is fully integrated on the vehicle's con- 
troller, giving new measures 12.5 times per second. Due 
to the high accuracy of the system, other measures l i e  
the heading from a compass sensor, or the depth from a 
pressure sensor, are not needed. h example of a trajectory 
measured by the localization system can be seen in Fig. 8. 

'Some videos showing the performance of the system can be seen at: 
h1lp:lleia.udg.esl-marcciresearch 
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Fig. 8. 
system. Three views .ax shown 

Three-dimensional trajectory measured by the localization 

The accuracy on the velocity estimations is also very 
high. These measurements are used by the low level 
controller of the vehicle which controls the surge, heave 
and yaw velocities. In Fig. 9 the performance of the surge 
and yaw controllers is shown. 

V. CONCLUSIONS 

This paper has presented a vision-based localization 
system for an underwater robot in a structured envi- 
ronment. The paper has detailed the experimental set- 
up, as well as, the different phases of the .algorithm. 
Main feature of the system is its high-accuracy drift- 
free estimations. The system is fully integrated on the 
vehicle's controller, giving new measures 12.5 times per 
second. Due to the high accuracy of the system, other 
measures like the beading from a compass sensor, or the 
depth from a pressure sensor, are not needed. In addition, 
the localization system can also be used to evaluate the 
performance of the video mosaicking system, designed to 
work in unshuctured environments. 
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