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Abstract—This paper proposes a pose-based algorithm to
solve the full SLAM problem for an Autonomous Underwater
Vehicle (AUV), navigating in an unknown and possibly un-
structured environment. The technique incorporate probabilistic
scan matching with range scans gathered from a Mechanical
Scanning Imaging Sonar (MSIS) and the robot dead-reckoning
displacements estimated from a Doppler Velocity Log (DVL) and
a Motion Reference Unit (MRU). The proposed method utilizes
two Extended Kalman Filters (EKF). The first, estimates the
local path travelled by the robot while grabbing the scan as well
as its uncertainty and provides position estimates for correcting
the distortions that the vehicle motion produces in the acoustic
images. The second is an augment state EKF that estimates and
keeps the registered scans poses. The raw data from the sensors
are processed and fused in-line. No priory structural information
or initial pose are considered. The algorithm has been tested on
an AUV guided along a 600m path within a marina environment,
showing the viability of the proposed approach.

I. INTRODUCTION

In spite of the recent advances in unmanned underwater
vehicles (UUV) navigation techniques, robustly solving their
localization in unstructured and unconstrained areas is still a
challenging problem. The last decades, a number of studies
in mobile robotics had developed techniques to address the
localization problem with very promising results. In particular,
the so-called Simultaneous Localization and Mapping (SLAM)
techniques have been broadly and successfully applied to
indoor and outdoor environments [1]. Hence, it is of interest
to study how to adapt these techniques for their use in hostile
underwater environments. Underwater SLAM for UUVs can
be classified, from the sensors vantage point, in two main
categories: vision and sonar based SLAM. Underwater vision,
in the best conditions, is restricted to few meters from the
vehicle but its normaly rich in information and has very
good resolution. On the other hand, sonar has the ability
of long distance penetration, even in turbulent waters, but
with the downside of sparsely and noisy readings. In both
cases, with the physical properties of the media, the unstruc-
tured environment and the poor quality of the data gathered
with a conventional sensor suite, underwater SLAM becomes
real challenging. For this reason, when compared with land
robotics, very few SLAM algorithms working with real data
have been reported in the literature [2].

This paper is a contribution in this area, proposing a
pose-based algorithm to solve the full SLAM problem of an
AUV navigating in an unknown and possibly unstructured
environment. A DVL and a low cost gyrocompass are used
for dead reckoning while a mechanical scanning imaging sonar
(MSIS) is used for sensing the environment. Scan matching
is a technique that can be used to estimate the vehicle
displacement using successive range scans. Many applications
in robotics like mapping, localization or tracking use this
technique to estimate the robot’s relative displacement [3],
[4] (to mention some but a few). Scan Matching estimates
the robot relative displacement between two configurations,
by maximizing the overlap between the range scans normally
gathered with a laser or a sonar sensor. The existing scan
matching techniques can be divided in two groups depending
on if they use high-level entities like lines or planes or
otherwise they rely on the raw scan. On one hand, it is
possible to assume the existence of polygonal structures in
structured environments as is supposed in [5] [6], or even in
some underwater applications [7]. However, extracting simple
polygons for representing the environment is not always
possible, particularly in unstructured scenarios which are the
most common in underwater robotics. On the other hand, there
is a second type of algorithms that work with raw data from
the scanner to solve the matching. Usually, these techniques
are based on a two step iterative process which is repeated
till convergence. The sensor displacements are computed by
approximating the solution to the best overlap between two
scans by looking for the closest point for each single data of
the scan. After that, a minimization process to estimate the
solution is done. The process is repeated until convergence.

The most popular technique is the ICP (Iterative Closest
Point) algorithm [8] which has been modified in different
ways [9]. However, most of these algorithms do not take into
account the sensor or the displacement uncertainties which are
very important, especially when sonar sensors are used. The
probabilistic Iterative Correspondence method (pIC), proposed
in [10], explicitly deals with those uncertainties to decide
which points in the reference scan are statistically compatible
with a certain point of the new scan. A probabilistic weight
average is used then to compute a virtual association point
for the matching during the minimization [11]. Although the
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method is suitable for laser data, the same authors have noted
that for sparse noisy data like sonar, better results can be
achieved using the ICNN data association algorithm instead
of using the virtual point (spIC). A reduced version of the
spIC algorithm is used in this paper, being extended with
the MSISpIC algorithm proposed in [12], to dial with data
gathered by an AUV utilizing MSIS. Hence, an EKF using a
constant velocity model with acceleration noise, updated with
velocity and attitude measurements obtained from a DVL and
a MRU respectively, is used to estimate the trajectory followed
by the robot along the scan. This trajectory is used to remove
the motion induced distortion of the acoustic image as well as
to predict the uncertainty of the range scans prior to register
them through the spIC algorithm.

In this paper we extend the MSISpIC algorithm in the
pose-based SLAM framework. Now, each new pose of a
scan is maintained in a second augment state EKF (ASEKF)
and is compared with previous scans that are in the nearby
area. If there is enough data overlapping, a new scan match
will put a constrain between the poses updating the ASEKF.
These constrains help to identify and close the loops which
correct the entire previously trajectory, bounding the drift.
The proposed method has been tested with a real world
dataset, including DGPS for ground truth, acquired during a
survey mission in an abandoned marina located in the Girona
coast. The results show substantial improvements in trajectory
correction and map reconstruction.

The paper is structured as follows. In section II the prob-
abilistic scan matching algorithm is described. Section III
details the MSISpIC to be used in our SLAM algorithm which
is described in section IV. Section V reports the experimental
results before conclusions and future work.

II. PROBABILISTIC SCAN MATCHING

The geometric representations of the scan in the conven-
tional ICP algorithm do not model the uncertainty of the
sensor measurements. Correspondences between two scans are
chosen based on the closest-point rule normally using the
Euclidean distance. As pointed out in [10], this distance do not
take into account that the points in the new scan, which are far
from the sensor, could be far from their correspondents in the
previous scan. On the other hand, if the scan data is very noisy,
two statistically compatible points could appear far enough, in
terms of the Euclidean distance. Both situations might prevent
a possible association or even generate a wrong one. The spIC
algorithm proposed in [11] is a statistical extension of the
ICP algorithm where the relative displacement q as well as
the observed points in both scans ri and ni, are modeled as
random Gaussian variables (r.g.v.). For a better understanding
the algorithm is reproduced in Algorithm 1. The inputs are the
reference scan Sref with points ri (i = 1..n), the new scan
Snew with points nj (j = 1..m) and the initial relative dis-
placement estimation q̂ with its covariance Pq. The following
procedure is iteratively executed until convergence. First, the
points of the new scan (nj) are compounded with the robot
displacement (qk). The result (cj), are the points of the new

scan referenced to the reference frame. Then, for each point
(cj), its association point (aj) is computed using individual
compatibility nearest neighbor (ICNN) algorithm. Note that
q ≡ N(q̂,Pq), nj ≡ N(n̂j,Pnj

) and ri ≡ N(r̂i,Pri) are
r.g.v. which describes the error of the {ri, cj} pairing:

ej = ai − qk ⊕ nj (1)
ej
∼= N(âi − q̂k ⊕ n̂j,Pej

) (2)

Pej
= Pai

+ JqPqJq
T + JnPnj

Jn
T (3)

with

Jq =
∂ ai − q⊕ nj

∂ q

∣∣∣∣
q̂

,Jn =
∂ ai − q⊕ nj

∂ nj

∣∣∣∣
n̂j

Pej
is the uncertainty of the matching error (aj − cj)

which is used to estimate the displacement q̂min through the
minimization of the squares error of the Mahalanobis Distance
[13] between aj and cj. This is done using Least Squares
minimization method. If there is convergence, the function
returns, otherwise another iteration is required.

Algorithm 1 The ”‘reduced”’ spIC algorithm
q̂pIC = spIC(Sref , Snew, q̂,Pq) {
k = 0
q̂k = q̂
do {

for(j = 0; size(Snew); j + +) {
ĉj = q̂k ⊕ n̂j

A = {ri ∈ Sref/D2
M (ri, cj) ≤ χ2

2,α}
âj = arg minri∈A{D2

M (ri, cj)}
ej = ai − qk ⊕ nj

Pej
= Pai

+ JqPqJq
T + JnPnj

Jn
T

}
q̂min = arg minq

{∑
j

(
ej
TPej

ej

)}
if(Convergence())

q̂pIC = q̂min

else {
q̂k+1 = q̂min

k + +
}
}
while(!Convergence()and k < maxIterations)

}

III. MSISPIC ALGORITHM

Scan matching techniques are conceived to accept as input
parameters two range scans with a rough displacement esti-
mation between them. Most of the algorithms use laser range
finders which gather scans almost instantaneously. However,
for the underwater environment, commercially available scan
sensors are based on acoustics. Most of these sensors have a
mechanical head that rotates at fixed angular steps. At each
step, a beam is emitted and received a posteriori, measuring
ranges to the obstacles found across its trajectory. Thus, getting
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a complete scan that lasts few seconds while the vehicle
is moving, generating deformed acoustic images. Therefore,
a correction taking into account the robot pose when the
beam was grabbed is necessary. This is part of the MSISpIC
algorithm (see Algorithm 2). It forms a scan, corrected from
the vehicle’s motion distortion, through the ScanGrabbing
algorithm (detailed below). ScanGrabbing uses an EKF with
a constant velocity model and acceleration noise for the
prediction step. Then, it updates with velocity and attitude
measurements obtained from a DVL and a MRU respectively,
in order to estimate the trajectory followed by the robot along
the scan. This trajectory is used to remove the motion induced
distortion of the acoustic image as well as to predict the
uncertainty of the range scans prior to register them. After
the corrected scan has formed, MSISpIC grabs two scans and
registers them using the spIC algorithm. It is worth noting
that the pIC takes as input two consecutive scans (Snew and
Sref ) and its relative displacement which coincides with the
position occupied by the robot at the end of the first scan
(q̂ref ). The output is an improved estimation of the robot
displacement (q̂new) which compounding allows to track the
global robot position. ScanGrabbing algorithm, consist of three

Algorithm 2 MSISpIC
MSISpIC() {

[Sref , q̂ref ,Pqref
] = ScanGrabbing()

q̂global = 0
while(true) {

[Snew, q̂new,Pqnew ] = ScanGrabbing()
q̂pIC = spIC(Sref , Snew, q̂ref ,Pqref

)
q̂global = q̂global ⊕ q̂pIC

Sref = Snew
q̂ref = q̂new

}
}

major parts: Beam segmentation, Relative vehicle localization
and Scan forming.

A. Beam segmentation and range detection

The MSIS returns a polar acoustic image composed of
beams. Each beam has a particular bearing angle value and
a set of intensity measurements. The angle corresponds to the
orientation of the sensor head when the beam was emitted. The
acoustic linear image corresponding to one beam is returned
as an array acoustic intensities detected at a certain distance.
The beam is then segmented using a predefined threshold
to compute the intensity peaks. Due to the noisy nature of
the acoustic data, a minimum distance between peaks criteria
is also applied. Hence, positions finally considered are those
corresponding to high intensity values above the threshold with
a minimum distance between each other.

B. Relative vehicle localization

The spIC algorithm needs a complete scan to be registered
with the previous one in order to estimate the robot’s dis-

Fig. 1. The distortion produced by the displacement of the robot while
acquiring data can be corrected with the relative displacement.

placement. Since MSIS needs a considerable period of time
to obtain a complete scan, if the robot does not remain static,
the robot’s motion induces a distortion in the acoustic image
(Fig. 1). To deal with this problem it is necessary to know the
robot’s pose at the beam reception time. Hence, it is possible
to define an initial coordinate system I to reference all the
range measurements belonging to the same scan. In our case,
this initial frame is fixed at the robot pose where the first
beam of the current scan was read. The localization system
used in this work is a slight modification of the navigation
system described in [14]. In this system, a Xsense MTi MRU
provides heading measurements and a SonTek Argonaut DVL
unit which includes 2 inclinometers and a depth sensor is
used to estimate the robot’s pose during the scan (navigation
problem). MSIS beams are read at 30 Hz while DVL and
MRU readings arrive asynchronously at a frequency of 1.5
Hz and 10 Hz respectively. An EKF is used to estimate the
robot’s 6DOF pose whenever a sonar beam is read. DVL and
MRU readings are used asynchronously to update the filter. To
reduce the noise inherent to the DVL measurements, a simple
6DOF constant velocity kinematics model is used.

The information of the system at step k is stored in the state
vector x

k
with estimated mean x̂

k
and covariance P

k
:

x̂
k
=
[
η̂

B
, ν̂

R
]T

P
k
=E

[(
x

k
− x̂

k

)(
x

k
− x̂

k

)T ]
(4)

with:

η
B = [x, y, z, φ, θ, ψ]T ; ν

R = [u, v, w, p, q, r]T (5)

where, as defined in [15], ηB is the position and attitude
vector referenced to a base frame B, and νR is the linear and
angular velocity vector referenced to the robot’s coordinate
frame R. The coordinate frame B is chosen coincident with
I but oriented to the north, hence the compass measurements
can be integrated straight forward.

The vehicle’s movement prediction is performed using the
6DOF kinematic model:

x
k
=f(x

k−1 )=

[
ηB

k

νR

k

]
=

[
ηB

k−1
+ J(ηB

k−1
)νR

k−1
T

νR

k−1

]
(6)

J(η)=


cψcθ cψsθsφ−sψcφ cψsθcφ+sψsφ 0 0 0
sψcθ sφsψsθ+cψcφ sψsθcφ−sφcψ 0 0 0
−sθ cθsφ cθcφ 0 0 0
0 0 0 1 sφtθ cφtθ
0 0 0 0 cφ −sφ
0 0 0 0 sφ/cθ cφ/cθ

 (7)
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Although in this model the velocity is considered to be
constant, in order to allow for slight changes, a velocity
perturbation modeled as the integral of a stationary white
noise v

k
is introduced. The covariance matrix Q

k
of this

acceleration noise is diagonal and in the order of magnitude
of the maximum acceleration increment that the robot may
experience over a sample period.

ν
R

k
= ν̂

R

k
+ v

k
T (8)

E[v
k
] = 0; E[v

k
v

T

j
] = δ

kj
Q (9)

Hence, v
k

is an acceleration noise which is integrated and is
added in velocity ( 8), being nonlinearly propagated to the
position. Finally, the model prediction and update is carried
out as detailed below:

1) Prediction: The estimate of the state is obtained as:

x̂
k

= f(x̂
k−1 ) (10)

and its covariance matrix as:

P
k

= F
k
P

k−1F
T

k
+ G

k
Q

k
GT

k
(11)

where F
k

and G
k

are the Jacobian matrices of partial deriva-
tives of the non-linear model function f with respect to the
state xB

R,k
and the noise v

k
, respectively.

2) Update using DVL measurements: The model prediction
is updated by the standard Kalman filter equations each time
a new DVL measurement arrives:

z
DV L,k

= [u
b
, v

b
, w

b
, uw , vw , ww , φi , θi , ψc , zdepth

]T (12)

where subindex b stands for bottom tracking velocity, w for
through water velocity, i for inclinometers and c represents
the compass. The measurement model is:

z
DV L,k

= H
DV L,k

x
k|k−1 + w

k
(13)

H
DV L

=


03×3 03×3 I3×3 03×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 03×3

0 0 1 01×3 01×3 01×3

 (14)

where w
k

(measurement noise) is a zero-mean white noise:

E[w
k
] = 0; E[w

k
w

T

j
] = δ

kj
R

DV L,k
(15)

Since the DVL sensor provides a status measurement for
bottom tracking and water velocity, depending on the quality
of the measurements, different versions of the H matrix are
used to fuse one (removing row 2), the other (removing row
1), or both readings (using the full matrix).

3) Update using MRU measurements: Whenever a new
attitude measurement is available from the MRU sensor, the
model prediction is updated using the standard Kalman filter
equations:

z
MRU,k

= [φ, θ, ψ]T , z
MRU,k

= H
MRU,k

x
k|k−1 + w

k
(16)

H
MRU

=
[

03×3 I3×3 03×6

]
(17)

where w
k

(measurement noise) is a zero-mean white noise:

E[w
k
] = 0; E[w

k
, w

T

j
] = δ

kj
R

MRU,k
(18)

C. Scan forming

The navigation system presented above is able to estimate
the robot’s pose, but the uncertainty will grow without limit
due to its dead-reckoning nature. Moreover, we are only
interested in the robot’s relative position (and uncertainty)
with respect to the beginning of the scan (I). Hence a slight
modification to the filter is introduced making a reset in
position (setting x, y, z to 0 in the vector state) whenever a
new scan is started. Therefore, while the filter is working,
the estimated position is always relative to the position where
the first beam of the scan was gathered (I). Note that it
is important to keep the ψ value (it is not reset) because
it represents an absolute angle with respect to the magnetic
north and a reset would mean an unreal high rotation during
the scan. The same thing happens with φ and θ. Since we
are only interested in the uncertainty accumulated during the
scan, the reset process also affects the x, y, and z terms of
the covariance matrix P. Now, the modified filter provides
the robot’s relative position where the beams where gathered
including its uncertainty accumulated during the scan. Hence,
using a similar procedure than in [16], it is possible to
reference all the ranges computed from the beams to the
initial frame I , removing the distortion induced by the robot’s
motion.

IV. SLAM ALGORITHM

Our pose-based SLAM algorithm uses an augment state
EKF (ASEKF) for the scans poses estimation. In this imple-
mentation of the stochastic map, the estimate of the positions
of the vehicle at the end of each full scan {x1 . . .xn} are
stored in the state vector x̂.

x̂k = [x̂1k
. . . x̂nk

]T . (19)

The covariance matrix for this state is defined as:

Pk = E([xk − x̂k][xk − x̂k]T |Zk). (20)

All the elements on the state vector are represented in the
map reference frame B. Although this reference frame can be
defined arbitrarily, we have chosen to place its origin on the
initial position of the vehicle and to orient it to the north.
Hence, the compass measurements can be straight forward
integrated for vehicle’s heading estimation.

A. Prediction

The pose state xi is represented as:

xi=[x y ψ]T (21)

where, x, y and ψ is the position and orientation vector of the
vehicle. The motion model used for the prediction step is based
on the compounding [17] of the previous scan pose represented
in B-frame with the robot displacement (q̂ref ) returned by the
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MSISpIC scan matching algorithm:

x̂k =



x̂mk

x̂nk

...
x̂ik

...
x̂1k


=



x̂nk
⊕ q̂newk

x̂nk

...
x̂ik

...
x̂1k


(22)

With the new pose uncertainty represented as Pm, the whole
state uncertainty is updated as:

Pk = FPkFT + GPmk
GT (23)

F =


J1⊕ 0 . . . 0
0 I . . . 0
...

... . . .
...

0 0 . . . I

 G =


J2⊕
0
...
0


where J1⊕ and J2⊕ are the Jacobian matrices of the com-
pounding transformation. In our case, since all the frames are
oriented to the north, the compounding function becomes the
linear vector addition.

B. Loop closing candidates

Each new pose of a scan is compared against the previous
scans that are in the nearby area and if there is enough data
overlapping, a new scan match will put a constrain between
the poses, updating the ASEKF. These constrains help to
identify and close the loops which correct the whole trajectory,
bounding the drift. For this experiment, we set a threshold of
10 meters for the maximum range of candidates. To perform
a scan matching, the spIC algorithm, as we have seen, needs
two scans (Snew and Sref ) and the relative robot displacement
(q̂rel,Pqnew ). If the matched scans are consecutives then
qrel = qnew. In a loop closure situation the scans are placed at
different points along the trajectory. To find the displacement
for non consecutive scans, a tail-to-tail transformation [17] is
applied:

qrel = 	xi⊕xm (24)

Pqrel
= J1⊕J	PiiJT	J

T
1⊕ + J2⊕PmmJT2⊕ + ...

...J1⊕J	PikJT2⊕ + J2⊕PkiJT	J
T
1⊕ (25)

where J1⊕, J2⊕ and J	 are the Jacobian matrices of the
compounding and inversion transformations.

Now, the spIC scan matching algorithm can be applied:

q̂pIC = spIC(Sref , Snew, q̂rel,Pqrel
) (26)

The problem with the spIC algorithm is that it does not
provide an estimation of the uncertainty of the displacement.
Thus, the observation noise is assumed to be a r.g.v. with zero
mean and fixed covariance:

Rq = diag{σxq
2, σyq

2, σxψ
2}

= diag{1.52
m, 1.5

2
m, 1

2
deg}

(27)

C. State Update

The measurement to be used for the update is obtained as:

z = x̂i ⊕ q̂pIC (28)

with measurement uncertainty:

Rz = J1⊕PiiJT1⊕ + J2⊕RqJT2⊕ (29)

where again the J1⊕ and J2⊕ are the Jacobian matrices of
the compounding transformation. Then, a linear measurement
model is used:

ẑ = H(x̂) = x̂m (30)

and the H matrix in the measurement equation ( 30) which
relates the state to the measurement z, is:

H =
[

I3x3 0 . . . 0
]

Now, an update of the stochastic map can be performed with
the standard Kalman filter equations.

V. EXPERIMENTAL RESULTS

The method described in this paper has been used with a
dataset obtained in an abandoned marina located in Sant Pere
Pescador, on the Catalan coast [18] [16]. This dataset is useful
to test if an algorithm is capable to register the limited informa-
tion provided by each scan in a large underwater environment.
It is in a structure environment but our algorithm does not take
into account any structural information neither features and
with the current sensor suit, can been used wherever there is
enough vertical information. The survey mission was carried
out using ICTINEUAUV [7] traveling along a 600m path. The
MSIS was configured to scan the whole 360◦ sector and it
was set to fire up to a 50m range with a 0.1m resolution
and a 1.8◦ angular step. Dead-reckoning was computed using
the velocity reading coming from the DVL and the heading
data obtained from the MRU sensor, both merged using the
described EKF. Standard deviation for the MSIS sensor was set
as it is specified by the manufacturer, 0.1m in range and 1.8◦

in angular measurements. Fig. 2.a shows the trajectory and
the map estimated using the dead-reckoning method. Fig. 2.b
shows the trajectory and the map estimated with our SLAM
algorithm. In these figures, the estimated trajectory is plotted
on an ortophotomap together with the GPS ground truth for
comparison. It can be appreciated that the dead-reckoning
estimated trajectory suffers from an important drift which is
drastically reduced when our algorithm is used.

In Fig. 2.b it can be appreciated that the mapped size of the
polygonal channel is smaller than the actual size whilst in the
long, almost horizontal, water channel some times is smaller
and some longer. This problem arises because during part of
the trajectory, the robot traverses an area where the scan only
observes one or two walls parallel to the robot path, being
able to correct the lateral displacement but still drifting in the
forward direction.
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a) b)

Fig. 2. Results: a) Trajectory and map generated with odometry (red). GPS trajectory (yellow) used as a ground truth. b) Map and trajectory (dotted cyan)
generated with the SLAM algorithm.

VI. CONCLUSIONS
This paper proposes an extension to the MSISpIC algorithm

in the pose-based SLAM framework. MSISpIC is able to
perform underwater scan matching using a MSIS. To deal with
the motion induced distortion of the acoustic image, an EKF
is used to estimate the robot motion during the scan. The filter
uses a constant velocity model with acceleration noise for mo-
tion prediction and velocity (DVL) and attitude measurements
(MRU) for updating the state. Through the compounding of
the relative robot position within the scan, with the range and
bearing measurements of the beams gathered with the sonar,
the acoustic image gets undistorted. Assuming Gaussian noise,
the algorithm is able to predict the uncertainty of the sonar
measurements with respect to a frame located at the position
occupied by the robot at the end of the scan. Each full scan
pose is maintained in a second filter, an augment EKF and
is cross registered with all the previous scan posses that are
in a certain range applying the spIC algorithm. The proposed
method has been tested with a real world dataset including
DGPS for ground truth acquired during a survey mission in
an abandoned marina located in the Girona coast. The results
show substantial improvements in trajectory correction and
map reconstruction.

VII. FUTURE WORK
Currently we are working on the calculation of the real

uncertainty of the scan matching algorithm which will depend
of the uncertainties of the input scans. Next step will con-
sist of gathering a new dataset in an complete unstructured
environment to check how the algorithm performs.
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