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Abstract: Medicinal chemistry is facing new challenges in approaching precision medicine. Several
powerful new tools or improvements of already used tools are now available to medicinal chemists
to help in the process of drug discovery, from a hit molecule to a clinically used drug. Among the
new tools, the possibility of considering folding intermediates or the catalytic process of a protein
as a target for discovering new hits has emerged. In addition, machine learning is a new valuable
approach helping medicinal chemists to discover new hits. Other abilities, ranging from the better
understanding of the time evolution of biochemical processes to the comprehension of the biological
meaning of the data originated from genetic analyses, are on their way to progress further in the drug
discovery field toward improved patient care. In this sense, the new approaches to the delivery of
drugs targeted to the central nervous system, together with the advancements in understanding the
metabolic pathways for a growing number of drugs and relating them to the genetic characteristics
of patients, constitute important progress in the field.
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1. Introduction

The fascinating path of drug discovery shares many features with a very complex and
multidimensional maze, in which the medicinal chemist starts from the chemical space,
more than 1060 small drug-like molecules of which only about 108 of have been synthesized
so far [1], and has to find the way to the drug at the center of the maze. A further intriguing
property of this maze is that the walls and the center keep moving with time. Obviously,
the maze is the body, with its barriers and transporters, and the center is the target site for
a drug, which we call a receptor in its extensive sense. Very often, for sake of simplicity,
the properties of a drug are grouped in pharmacodynamics and pharmacokinetics, but it
must be remembered that a drug is a single entity, comprising both groups. The pharmaco-
dynamic and pharmacokinetic properties stem from the chemistry of the drug molecule;
the chemistry of the body, which is also made up by molecules; and the chemistry of the
water that is interacting with both. All these molecules are not fixed in place, but con-
tinuously move. Particularly important are the movements happening when a molecule
interacts with the target or off-target sites, leading to a biological effect. The understanding
of body–drug interactions is a very complex problem where the properties of the molecules,
which the medicinal chemist can know either from fundamental chemistry rules or from
empirical observations of complex macromolecules and the biology of living organisms,
can help to find the right way to the drug. A substantial simplification that is often made
by medicinal chemists is to forget about the time course: in other words, to consider both
the small molecules and the macromolecules as fixed. In this short perspective on the drug
discovery process, a static situation is considered first, then some considerations on how to
possibly account for the chemical motions are made. Moreover, the discussion is limited
mainly to chemical entities complying with Lipinski′s rule of five (Ro5), even if there are
new trends looking at chemical entities beyond the Ro5 (bRo5) [2]. This enlargement of
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the chemical space from Ro5 to bRo5 molecules may reflect the enlargement of the target
space, up to now often limited at the inhibition of enzymatic action antagonizing the action
of signal transmission in the body, to the modulation of macromolecule behavior as it
happens in protein–protein or protein–nucleic acid interaction. This enlargement of the
target space also requires new tools to manage the absorption, distribution, metabolism,
and excretion (ADME) and toxicity of the new active pharmaceutical ingredients. In this
short perspective, the attention is focused only on active pharmaceutical ingredients and
not on excipients, drug delivery, or dosing regimens. Furthermore, pathways leading to
“me-too drugs”, even if very important for the pharmaceutical industry, are not considered.

2. The Lead Discovery
2.1. Target Selection and Validation: Possible Expansion of Chemical Space

When looking for a new drug, the first choice to be made, almost always, is the
selection of the target disease [3]. This decision is based mostly on economic considerations
but can also be made following the discovery of a new biochemical pathway leading to a
pathological state, or the finding of an important biomarker. Sometimes, it is the observation
of the properties of a substance or metabolite that sparks the interest to better investigate
a topic. Recently, many pharmaceutical companies have been searching in universities
or in contract research organizations (CROs) [4,5] for new biochemical pathways or new
chemical entities to treat diseases. The selection of the target disease is a basic choice, since
the overall failure rate in drug discovery is very high, over 96%, including a 90% failure
rate during clinical development, and costs are massive [6]. Once the target disease is
defined, the next step toward the discovery of a new drug is the selection and validation of
the biological target: a protein [7], a nucleic acid [8], or a different biochemical structure
critical to the development of the disease, that can be characterized and is druggable [2].
During the last thirty years, a tremendous effort has been devoted to the selection of the
correct target, with the widespread use of genome-wide association studies [9]. Even if this
approach is increasingly showing problems [10], it remains a fundamental investigation
tool for target selection, and in the last several years, since the chemical space available has
expanded with the massive introduction of monoclonal antibodies, there are many new
opportunities, such as the challenging task of the delivery of monoclonal antibodies to the
central nervous system.

2.2. From Hit to Lead: Structure-Guided Drug Design and Beyond

Once the target is selected and validated, there are many possible pathways leading to
a chemical entity able to bind the target. The selection of chemical structures able to bind
the selected target is usually conducted by screening large libraries of molecules, available
in-house or from outsourcing, against the selected biological target [5]. The molecule
collection may be made up of virtual or real chemical entities. Real chemical entities, until
the second half of the last century, were obtained by a separate synthesis of every single
molecule or by isolating them from natural sources. After Merrifield’s discovery of solid
phase synthesis (Figure 1) [11], the development of computers able to manipulate large
datasets, and the possibility of performing biochemical and biological experiments using
very small amounts of compounds, combinatorial chemistry was introduced to help and
speed up the drug discovery and optimization process [12].

Combinatorial chemistry started in the mid-1980s with the synthesis of hundreds of
thousands of peptides on solid supports in parallel or with the split–and–mix methods
(Figure 2). Lam et al. [13] introduced the one-bead, one-compound combinatorial peptide
libraries, which first allowed only one bond to be formed: the peptidic amide bond. The fol-
lowing step in the evolution of solid phase synthesis was to make the phosphoroester bond
connecting the nucleotides using mainly phosphoramidite chemistry [14,15]. In 1992, Bunin
and Ellman reported the first example of a small-molecule combinatorial library [16] and
started the era of the synthesis of libraries of small drug-like molecules satisfying the Ro5.
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The combinatorial synthesis of drug-like compounds was strongly pushed on by
the pharmaceutical industry around the turn of the century, and so were the analytical
tools, with respect to the chemical characterization of very small quantities of substance,
the decoding of chemical libraries, and the biochemical assays. The high-throughput
era had begun, and someone referred to this as an accelerated evolution in the search
of new active compounds: instead of using millions of years to select molecules able to
protect life against predators or perform precise biochemical tasks, scientists could obtain
the same result in a period that was very short in comparison. At the end of the last
century, libraries of oligopeptides, oligonucleotides, and drug-like small molecules [17]
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were routinely prepared on automated synthesizers, providing pure substances in a rapid
and efficient manner. However, the solid phase synthesis of oligosaccharide libraries was
not yet feasible due to either the presence of functional groups of similar reactivity on each
saccharide monomer, or to the fact that a new stereogenic center is created each time a
glycosidic bond is formed [18]. Another consideration that slowed the development of the
solid phase synthesis of oligosaccharide libraries was that while proteins and nucleic acids
are genetically encoded structures, polysaccharides are not. This made polysaccharides
ill-defined and unappealing targets for many investigators and pharmaceutical managers,
as carbohydrates are considered particularly important only in few signal transduction
pathways [19] and vaccines [20].

The availability of a very large number of compounds from combinatorial synthesis,
in-house libraries, robotics, high-throughput screening methods, and fast structure deter-
mination constitutes a great help in the drug discovery process. Moreover, computers and
software able to store, organize, and manage a huge, and continuously growing, amount
of data are available to the pharmaceutical field. Despite this, we need something else
to improve and speed up the pharmacodynamics in drug discovery when a validated
target is established. No recipe is available for this, but taking into consideration the time
evolution of chemical processes, instead of the static snapshots of the target structure as
determined by X-ray crystallography, NMR, or cryo-electron microscopy, can help the
medicinal chemist. To better understand the target structure behavior while it is per-
forming its biological task, we must extrapolate the time course from many structure
determinations, often crystallographic or NMR. The determination of the time course for
a biochemical process, which is fascinating, although very challenging, will allow us to
understand how the signal is managed by the validated target structures such as proteins,
nucleic acids, or other biochemical players. More accurate structural data and improved
chemistry software will allow a better look at the structure and its changes with time,
environment, and regulator molecules. A recent example that explicitly considers the
time evolution of a target molecule is the PPI-FIT method, which involves the targeting
of intermediates along the path of protein folding (Figure 3) [21]. These structures are
regarded as the druggable targets because they present binding pockets not present in the
protein’s final structure. The drug-intermediate interaction should stabilize the complex,
thus preventing the protein from reaching its native conformation. The method employs
computer simulations together with experimental techniques, and supports the idea that
folding intermediate targeting could represent a useful way to regulate protein levels.
Regarding the crystallographic support to the drug-discovery process, it was recently
reported that a detailed understanding of the interactions between drugs and their targets
is crucial to developing the best possible therapeutic agents, and that structure-based
drug design still relies on the availability of high-resolution structures obtained primarily
through X-ray crystallography [22]. Working on a single crystal is marginally useful to
understanding the enzyme movements during the catalytic process and to plan possible
molecular structures interacting or interfering with different conformational states of the
enzyme. At the moment, it is possible to combine different crystal snapshots to have an idea
of the enzyme conformational changes during the catalytic process, as it was performed
for the ubiquitous enzymes α-D-phosphohexomutases [23].

To characterize the various enzyme conformations involved in the isomerization of
1-phospho to 6-phosphohexoses, 15 high-resolution crystal structures of the phosphoglu-
comutase enzyme while performing the isomerization of glucose 1-phosphate to glucose
6-phosphate were obtained. Glucose 1,6-bisphosphate undergoes a 180◦ reorientation
between the two phosphoryl transfer steps of the reaction. The enzyme with the phospho-
serine bound to a Mg2+ ion has the same conformation at the beginning of the catalytic
process, when it is bound to the substrate glucose 1-phosphate, and at the end of it,
when it is bound to the product glucose 6-phosphate. During the reorientation of the sugar,
when the catalytic serine is in the dephosphorylated state and bound to the glucose 1,6-
bisphosphate intermediate, the enzyme has a different structure. In the future, the structure
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of such intermediates of the enzymes may suggest new drug molecules eventually able to
trap, in these intermediate conformations, even the enzymes that are currently not drug-
gable. It is also possible to use an in silico methodology combining a classic and quantum
mechanics approach [24] to better understand the catalytic path, as is performed on the
selenoenzyme glutathione peroxidase in the reduction reaction of hydrogen peroxides and
organic hydroperoxides by glutathione. NMR [25] and EPR [26] measurements can also
feed data to molecular in silico calculations to determine the evolution of a protein with
time, although limited to the active site or oligonucleotide structures. At the moment,
dealing with the changes of structures with time in protein–protein interaction, as in GPCR
receptors and the intracellular effector proteins or in a protein regulator [27], or with
protein-oligonucleotides binding, as in transcription regulators, is much more complicated,
but very appealing [28].

Molecules 2021, 26, 7061 5 of 13 
 

 

 
Figure 3. Schematic representation of the PPI-FIT approach to protein regulation. U = unfolded; FI 
= folding intermediate; N = native. The red sphere represents the drug molecule. 

To characterize the various enzyme conformations involved in the isomerization of 
1-phospho to 6-phosphohexoses, 15 high-resolution crystal structures of the 
phosphoglucomutase enzyme while performing the isomerization of glucose 1-phosphate 
to glucose 6-phosphate were obtained. Glucose 1,6-bisphosphate undergoes a 180° 
reorientation between the two phosphoryl transfer steps of the reaction. The enzyme with 
the phosphoserine bound to a Mg2+ ion has the same conformation at the beginning of the 
catalytic process, when it is bound to the substrate glucose 1-phosphate, and at the end of 
it, when it is bound to the product glucose 6-phosphate. During the reorientation of the 
sugar, when the catalytic serine is in the dephosphorylated state and bound to the glucose 
1,6-bisphosphate intermediate, the enzyme has a different structure. In the future, the 
structure of such intermediates of the enzymes may suggest new drug molecules 
eventually able to trap, in these intermediate conformations, even the enzymes that are 
currently not druggable. It is also possible to use an in silico methodology combining a 
classic and quantum mechanics approach [24] to better understand the catalytic path, as 
is performed on the selenoenzyme glutathione peroxidase in the reduction reaction of 
hydrogen peroxides and organic hydroperoxides by glutathione. NMR [25] and EPR [26] 
measurements can also feed data to molecular in silico calculations to determine the 
evolution of a protein with time, although limited to the active site or oligonucleotide 
structures. At the moment, dealing with the changes of structures with time in protein–
protein interaction, as in GPCR receptors and the intracellular effector proteins or in a 
protein regulator [27], or with protein-oligonucleotides binding, as in transcription 
regulators, is much more complicated, but very appealing [28]. 

2.3. Speeding Up Screening and Design: Artificial Intelligence in Drug Discovery 
In addition, artificial intelligence (AI) is finding its way in helping the process of 

speeding up drug discovery [29] with the design of improved experiments and more 
sophisticated machine learning (ML) algorithms to better understand the behavior of the 
target structure when performing its biological task. The increasing volume of available 
data has given a strong impulse to computer-aided drug design, with the latest 
developments focused on the applications of deep learning (DL) [30,31]. These methods 
take advantage of the already known concept of artificial neural networks and, due to the 
augmented performance of calculators, increase their complexity, reaching a much 
improved performance compared to other ML algorithms [32–34]. Moreover, their 

Figure 3. Schematic representation of the PPI-FIT approach to protein regulation. U = unfolded;
FI = folding intermediate; N = native. The red sphere represents the drug molecule.

2.3. Speeding up Screening and Design: Artificial Intelligence in Drug Discovery

In addition, artificial intelligence (AI) is finding its way in helping the process of
speeding up drug discovery [29] with the design of improved experiments and more
sophisticated machine learning (ML) algorithms to better understand the behavior of the
target structure when performing its biological task. The increasing volume of available
data has given a strong impulse to computer-aided drug design, with the latest devel-
opments focused on the applications of deep learning (DL) [30,31]. These methods take
advantage of the already known concept of artificial neural networks and, due to the aug-
mented performance of calculators, increase their complexity, reaching a much improved
performance compared to other ML algorithms [32–34]. Moreover, their application reaches
to not only the molecular discovery process of drug design (as in structure-activity predic-
tions [35] or de novo design [36]), but also the synthetic (or retrosynthetic) route [37,38] and
formulation design [39–41], and takes steps to also encompass fields that, while still per-
taining to the drug discovery process, lie outside of wet laboratory activity, such as product
quality assurance, marketing, and clinical trial management [29,30]. Other recent studies
that benchmarked DL against other machine learning algorithms for properties predic-
tion, using large biomolecular datasets comprising hundreds of thousands of compounds,
consistently showed that deep neural networks are the best performing approach [42,43].
In addition to properties prediction or screening, DL has been employed in de novo design.
As an example, a particular neural network was designed with the aim of transforming
a set of molecular structures of known properties into a continuous representation of a
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molecular structure that could be exploited to maximize a desired property, and then
reversibly transformed into an optimized molecular structure expressing such desired
property [44]. With this machinery, novel structures were proposed that showed poten-
tial specific anticancer properties [45] and a predicted activity against dopamine receptor
type 2 [46]. Analogous approaches employing the power of DL have been used to develop
tools for the design of a molecule that can adapt best to a given 3D protein pocket [47]
or that can display a particular desired property [48]. Moreover, DL has been integrated
with more traditional computer techniques to decrease the computational cost without
losing their predictive power. For instance, a DL-driven quantum mechanical approach
was employed to efficiently calculate electronic wavefunctions of possible drug candi-
dates [49], and the application of a neural network trained on MD simulations showed
that the calculation of free energies of transfer of 1500 small molecules is possible with
small errors [50]. Finally, DL techniques can also complement the drug discovery process,
shedding light on the fundamental interactions that take place in the human body at a
molecular level and on their disruption at the onset of disease. On the other hand, the lack
of a large amount of high-quality data, required to train the algorithms successfully, is one
of the main drawbacks of these methods. For example, the atomistic structure of many
proteins, which is essential to understand their mechanism of action, is still not known.
Again, DL has proven to be effective in these areas, as demonstrated by the successful
development of the AlphaFold method [51] and its extension, ColabFold [52], two of the
most promising structure prediction algorithms that, starting from an amino acid sequence,
can predict the 3D folded structure of a protein with an accuracy competing with exper-
imental structures [51]. Another feature that renders the obtained data sometimes hard
to interpret but, more importantly, provides no insight into the underlying biochemical
mechanism, is the fact that DL algorithms operate as a black box [35,53]. Nevertheless,
the clear knowledge of the molecular cause of a pathological condition combined with the
ability to obtain through AI-driven methods an effective and efficient compound without
severe side effects in a very short time can impart a strong impulse to successful drug
development. Moreover, as these techniques continue to develop, treatment possibilities
increase, opening new possible choices to fight pathological conditions. Again, DL has
proven useful in aiding the fine tailoring of the best treatment choice based on the analysis
of patient data such as life history, previous diagnostics, and manifested symptoms [53].

2.4. One Size Does Not Fit All: From General to Precision Medicine

The availability of large collections of molecules, the development of a large number
of microscale analytical tools, the genome-wide association studies, and the simple and fast
methods for the detection of target genes having a single-nucleotide polymorphisms took
modern medicinal chemistry to the precision medicine era. The early steps of precision
medicine were taken in the oncology field. The personalized therapies of the anticancer
drugs, along with the identification of tumor-specific targets, were in part due to the
general cytotoxicity and, as a consequence, the severe side effects of existing one-size-
fits-all cancer drugs [9]. Examples are the molecularly targeted cancer therapies, such as
small-molecule kinase inhibitors blocking the incorrect signaling of tumor cells from the
intracellular side of a growth factor receptor protein, and monoclonal antibodies that often
stop the same signal from outside the cell membrane. An early application of this was the
epidermal growth factor receptor (EGFR), abnormally activated in cancer, against which
the two classes of anti-EGFR agents, monoclonal antibodies and low-molecular-weight
tyrosine kinase inhibitors, showed antitumor activity in patients. It was also reported
that the kinase inhibitor gefitinib (Figure 4) and the monoclonal antibody cetuximab share
complementary mechanisms of action on EGFR and that a combined EGFR targeting is a
clinically exploitable strategy [54].
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Many dysregulated pathways are now characterized, and new targets, proteins,
and polynucleotides are attracting medicinal chemists. Among the new targets are not
only the classical receptors, but many enzymes that can be inhibited by binding the small
molecule to them, as in the case of the BCL-2 inhibitor venetoclax currently on the mar-
ket [55], or by hitting a regulator protein [56]. To better understand the mechanism of
action of drugs and to progress in the field of pharmacodynamics and precision medicine,
we need to know the different conformations that the targets, proteins, or polynucleotides,
assume in their energy minima during their functioning within the natural environment.

3. Pharmacokinetics

Pharmacokinetics, i.e., what is happening in the body to the drug molecule before
and after the interaction with the target, is often divided in absorption, distribution,
metabolism, and excretion (ADME). Many factors can influence the individual response
to pharmaceutical compounds, among which genomic differences, gut microbiome, sex,
nutrition, age, stress, and health status are included. They can impact drug absorption
and distribution, the metabolic profile, with the drug–drug and drug–food interactions,
and the toxicity in an individual. As for molecular design, computer simulations based
on artificial intelligence help with the recognition of toxicity of the administered drug
candidate. For example, an algorithm based on DL correctly predicted the toxicity of
drug compounds in the data set with an accuracy of over 80% in almost all instances and
was the Tox21 Data Challenge winner [33]; a similar approach was employed to study
the possible epoxidation sites of drug candidates, obtaining a detailed picture on the
likeliness of a molecule to be epoxidized and its consequent toxicity due to the structural
modification [57]. On the experimental side, the advances made in gene sequencing,
mainly using next-generation sequencing technologies [58] for pharmacogenomic studies
and in the chemical analysis of metabolites, in particular by HPLC-MS, allows the better
characterization the individuals and move toward what is commonly defined as precision
medicine, not only as far as the target selection in a pathological state, but also for the
pharmacokinetic effects. Precision medicine, which is defined as the capacity to prescribe
the most effective treatment with the fewest adverse effects to a patient [59], applies
principally to medical diagnostic, prescribing, and prevention [60], and is progressing very
fast. A main problem to be resolved for precision medicine is the development of effective
therapies targeted at the central nervous system (CNS). This is due to the failure to achieve
therapeutically relevant concentrations in the CNS, due to the presence of the blood–brain
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barrier and to the strong neuronal interconnection between the different brain regions,
as in the case of the dopaminergic effects of morphine and its derivatives targeted to the
opioid receptors. A very important and challenging therapeutic area is that of brain tumors.
Some of the approaches explored to address this challenge include blood–brain barrier
disruption and drug modifications to enhance CNS permeability; unfortunately, neither
approach has proven successful. Another approach is to deliver therapeutics locoregionally,
directly into the tumor mass and the surrounding tumor-infiltrated brain parenchyma.
The most widely used method for direct brain delivery is convection-enhanced delivery
(CED), whereby specially designed catheters are introduced into target tissue, and the
infusate is delivered slowly over a prolonged period of time. CED enables the delivery
of conventional, nano-, bio-, gene, and even cellular therapies [61–73]. Hopefully, in the
near future, it will be possible to deliver more small molecules in a therapeutic useful
concentration and antibodies to the CNS.

Progress in precision medicine in the pharmacokinetic field is also increasing due
to the improved use of experimental data on metabolic reactions and to the fact that the
collection of DNA samples from clinical trial participants to perform pharmacogenomic
studies has become standard practice for most pharmaceutical companies [74]. The analysis
of single-nucleotide polymorphisms (SNPs) is rapidly growing, in particular for genetic
variants that alter the activity of drug metabolizing enzymes and drug transporters.

As far as the experimental data is concerned, the massive work performed to gain in-
formation on metabolic pathways and the relative metabolizing enzymes of clinically used
drugs to better understand their therapeutic effect is central to understanding the therapeu-
tic drug properties, as well as the drug–drug and drug–food interactions. The metabolism
of opioids, also considering their low clinical dosage, always attracted the attention of many
investigators [75]. The developments in the pharmacokinetics of opioids is considered as a
case study to briefly show the role of metabolism as a predictor of the clinical response and
side effects of opioid analgesics, keeping the opioid crisis in mind [76]. The important side
effects are due to the neuronal connectivity between the reward, dopaminergic, and opioid
regions, as well as to the respiratory depression in the CNS, while many other side effects,
e.g., constipation, are derived from the interaction with the peripheral opioid receptors.
The common metabolic phase I reactions of opioids are dealkylations, O-dealkylation
being CYP2D6-mediated, while N-dealkylation is CYP3A4-mediated, and redox reactions
(e.g., for oxycodone and methadone); for phase II, glucuronation at positions three and six
of the morphine nucleus and on reduced keto groups or dealkylated ethers, is the most
important (Figure 5).

CYP2D6-mediated O-dealkylation of morphine 3-methoxy derivatives, such as codeine,
and tramadol, are required to generate the phenolic OH group important for binding to
a histidine of the opioid receptor. CYP2D6 is highly polymorphic, and the expression of
different variants results in several phenotypes. The implementation of pharmacogenetics-
based codeine prescribing that accounts for the CYP2D6 metabolizer status was described
in a recent work [77] and is an example of precision medicine. Genome-wide association
studies and candidate gene findings suggest that genetic approaches may help in choosing
the most appropriate opioid and its dosage, while preventing adverse drug reactions [78].

Beyond the experimental data on metabolic enzymes and transporters, it is also
possible to examine the genetic variants that alter the activity of enzymes or transporters
and to use this information in ADME and toxicity studies [74,79]. Pharmacogenomic studies
provide a growing list of clinically relevant markers that could be used to improve patient
care [80], but such information is still not widely used in clinical practice. The difficulty
of translating the pharmacogenomic information into ADME and toxicity studies during
clinical phases was examined [81], but the basic reason is that the drug response is often
highly complex, resulting from the interaction of many influencing factors. In the future,
this approach will be a very useful tool for helping in the drug discovery process and in
personalized medicine.
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4. Conclusions

The maze of the drug discovery process is still very complex and challenging, even when
only considering the small-molecule approach and no other promising approaches, such as
those involving monoclonal antibodies or polynucleotides. Precision medicine, from drug
discovery to the bedside, is the main concern nowadays. New powerful tools are made
available almost every day, but medicinal chemists are still looking in every direction,
from natural products [82] to sophisticated modeling [83], in search of new drug candidates
complying with the new targets emerging from precision medicine needs. To further
progress in the medicinal chemistry field, we need, in addition to new targets, a more accu-
rate description of their different conformations and possibly of the evolution of the target
structure with time during the biological process. This, combined with the knowledge of
the genetic variants of the targets, will lead to an increased number and precision of the
“magic bullets” that are drugs, and allow the progress of precision medicine.
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