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1 Summary

The publication of The Theory of Island Biogeography by MacArthur
and Wilson (1967) marks a shift in Ecology from a descriptive science
towards a more analytical one that tries to find underlying principles
and laws. Its main idea is that species richness in an island shows
a dynamical equilibrium between the colonization of species from
the mainland and the extinction of species in the site. Colonization
depends on the distance to the mainland and extinction on the area of
the island. The Theory of Island Biogeography was highly successful
as a research program, and rapidly extended its domain of application
to several types of ecological communities, generating ideas and
paradigms that inspire today’s Ecology. However, the temporal aspects
of the theory remained largely unexplored. Recognition of the intrinsic
stochastic character of the main processes of the theory, controlled by
colonization and extinction rates, allowed recent theoretical approaches
to estimate them from presence-absence temporal studies under the
assumptions of species equivalence and independence. Based on those
advances, this thesis aims to develop a quantitative approach to
understand and predict the spatio-temporal distribution of biodiversity.
It presents the R package ’island’ that: i) estimates colonization and
extinction rates in a variety of temporal settings, ii) estimates the
influence of the environment over these processes, and iii) simulates
the dynamics of the associated models. The R package can be applied
to any community, although it is applied preferentially to microbial
communities in this thesis. Recent methodological advances have
overcome some of the inherent difficulties in studying these types
of communities, generating broader insights for community ecology.
Particularly, this work examines the temporal dynamics of ecological
communities, the niche concept in microbial communities, and the
influence of selection and environmental filter in microbial community
assembly. We have found that a characteristic time governed
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community temporal dynamics, that indicates the temporal scale of
change in biodiversity, helping to design longitudinal studies. Also, we
characterized the evolution in time of compositional change through
analytical expressions. Concerning the concept of niche, this work
ascertains the usefulness of the stochastic approach to study microbial
communities, as it obtains parameters coherent with environmental
knowledge. In this sense, several natural microbial communities
displayed a colonization-persistence trade-off, largely dominated
by rare species. Furthermore, we confirm that the importance of
environmental filtering for airborne bacterial communities is higher
than for airborne eukaryal communities, more influenced by community
origin. Thanks to the estimation of airborne microbial niches, we
have predicted, by 2080 – 2100, general airborne bacterial declines in
richness, idiosyncratic responses for the eukaryal component, changes
in seasonality, and declines in putative eukaryotic pathogen richness.
Finally, we have devised a four-step approach to distinguish between
organismic communities, mostly structured by biotic interactions, and
individualistic communities, where adaptation to local environmental
conditions predominate. This approach was tested with a long
time-series of phytoplankton in lake Zürich, Switzerland, finding that
both kinds of communities can be characterized in the process of
reoligotrophication of the lake. The value of the stochastic version
of the theory of island biogeography reinforces its use as a effective
model where the effects of dispersal, selection, and drift are averaged
in model parameters. This thesis also emphasizes the importance of
long-term research to obtain new insights into community ecology.
I hope it will contribute to improving our understanding of species
distributions and community dynamics in space and time.
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RESUMEN

La publicación de La Teoría de Biogeografía de Islas por MacArthur y
Wilson (1967) marca un cambio en ecología, de una ciencia descriptiva
a una ciencia más analítica que trata de encontrar los principios y leyes
subyacentes. Su idea principal es que la riqueza de especies en una isla
muestra un equilibrio dinámico entre la colonización de las especies
desde el continente y la extinción de las especies en la isla. La colo-
nización depende de la distancia al continente y la extinción del área de
la isla. La Teoría de Biogeografía de Islas fue extremadamente exitosa
como programa de investigación y rápidamente extendió su dominio de
aplicación a diversos tipos de comunidades ecológicas, generando ideas
y paradigmas que inspiran la ecología actual. Sin embargo, los aspectos
temporales de la teoría permanecieron en gran parte inexplorados. El
reconocimiento del carácter intrínsecamente estocástico de los procesos
de la teoría, la colonización y la extinción, ha permitido recientemente
enfoques teóricos para estimar dichos procesos a partir de estudios
temporales de presencia-ausencia, bajo los supuestos de equivalencia e
independencia entre especies. Profundizando en dichos avances, esta
tesis trata de desarrollar una aproximación cuantitativa para entender y
predecir la distribución en el tiempo y el espacio de la biodiversidad. Se
presenta el paquete de R ’island’ que: i) estima tasas de colonización
y extinción en una variedad de muestreos temporales, ii) estima la
influencia del ambiente sobre estos procesos, y iii) simula la dinámica
de los modelos asociados. El paquete de R se puede aplicar a cualquier
tipo de comunidad, aunque en esta tesis se aplica preferentemente a
las comunidades microbianas. Superando las dificultades inherentes
de este tipo de comunidades, se han generado nuevas percepciones
de mayor alcance en ecología de comunidades. En particular, este
trabajo examina la dinámica temporal de las comunidades ecológicas,
el concepto de nicho en las comunidades microbianas y la influencia de
la selección y el filtro ambiental en el ensamblaje de las comunidades
microbianas. Se ha encontrado que la dinámica temporal de una comu-

3



Summary / Resumen / Resum

nidad se rige por un tiempo característico, que indica la escala temporal
de cambio en biodiversidad, lo cual puede ayudar a diseñar adecuada-
mente estudios longitudinales. Además, se proporcionan expresiones
analíticas para la evolución en el tiempo del cambio composicional.
Con respecto al concepto de nicho, este trabajo determina la utilidad
del enfoque estocástico para estudiar comunidades microbianas, ya
que obtiene parámetros coherentes con el conocimiento ambiental. En
este sentido, se muestra que varias comunidades microbianas naturales
muestran un compromiso (trade-off ) entre colonización y persistencia,
en gran parte dominado por especies raras. Además, confirmamos que
la importancia del filtro ambiental para las comunidades bacterianas
aerotransportados es mayor que para sus análogos eucariotas, más
influenciados por el origen de la comunidad. Gracias a la estimación de
nichos microbianos en comunidades aerotrasportadas, hemos pronosti-
cado, para 2080 – 2100, la disminución general de la riqueza bacteriana,
respuestas idiosincráticas para el componente eucariótico, cambios en
la estacionalidad y disminuciones en la riqueza de patógenos putativos
eucarióticos. Finalmente, hemos ideado un procedimiento de cuatro
pasos para distinguir entre comunidades orgánicas, en su mayoría es-
tructuradas por interacciones bióticas, y comunidades individualistas,
donde predomina la adaptación a las condiciones ambientales locales.
Este enfoque se probó con una serie temporal de fitoplancton en el
lago Zürich, Suiza, y se descubrió que ambos tipos de comunidades se
pueden identificar durante el proceso de reoligotrofización del lago. El
valor de la versión estocástica de la teoría de la biogeografía de islas
refuerza su uso como un modelo efectivo que promedia los efectos de
dispersión, selección y deriva, lo que facilita el manejo de dinámicas
temporales complejas. Esta tesis también enfatiza la importancia de
los estudios a largo plazo para obtener nuevos conocimientos sobre
ecología de comunidades y nos deja un paso más cerca para comprender
la distribución de las especies en el espacio y el tiempo.
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RESUM

La publicació de La Teoria de Biogeografia d’Illes per MacArthur i
Wilson (1967) marca un canvi en ecologia d’una ciència descriptiva
a una ciència més analítica que tracta de trobar els principis i lleis
subjacents. La seva idea principal és que la riquesa d’espècies en una
illa està en un equilibri dinàmic entre la colonització de les espècies des
del continent i l’extinció de les espècies a l’illa. La colonització depèn
de la distància al continent i l’extinció de l’àrea de l’illa. La Teoria de
Biogeografia d’Illes va ser extremadament reeixida com a programa
d’investigació i ràpidament va estendre el seu domini d’aplicació a di-
versos tipus de comunitats ecològiques, generant idees i paradigmes que
transpiren l’ecologia actual. No obstant això, els aspectes temporals
de la teoria van romandre en gran part inexplorats. El reconeixement
del caràcter intrínsecament estocàstic dels processos principals de la
teoria, la colonització i l’extinció, ha permès enfocaments teòrics re-
cents per estimar aquests processos a partir d’estudis temporals de
presència-absència sota els supòsits de equivalència i independència
entre espècies. Basada en aquests avenços, aquesta tesi tracta de
desenvolupar una aproximació quantitativa per entendre i predir la dis-
tribució en el temps i l’espai de la biodiversitat. Es presenta el paquet
de R ’island’ que: i) estima taxes de colonització i extinció en una
varietat de mostrejos temporals, ii) estima la influència de l’ambient
sobre aquests processos, i iii) simula la dinàmica dels models associats.
El paquet de R es pot aplicar a qualsevol tipus de comunitat, encara
que s’aplica preferentment a les comunitats microbianes en aquesta tesi.
Superant les dificultats inherents d’aquest tipus de comunitats, s’han
generat noves percepcions de més abast en ecologia de comunitats. En
particular, aquest treball examina la dinàmica temporal de les comuni-
tats ecològiques, el concepte de nínxol en les comunitats microbianes
i la influència de la selecció i el filtre ambiental en l’acoblament de
les comunitats microbianes. Hem trobat que la dinàmica temporal
d’una comunitat es regeix per un temps característic, que indica l’escala
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temporal de canvi en biodiversitat, ajudant a dissenyar adequadament
estudis longitudinals, i caracteritzem l’evolució en el temps del canvi
composicional a través d’ expressions analítiques. Pel que fa el concepte
de nínxol, aquest treball determina la utilitat de l’enfocament estocàstic
per estudiar comunitats microbianes, ja que obté paràmetres coherents
amb el coneixement ambiental. En aquest sentit, es mostra que diverses
comunitats microbianes naturals mostren un compromís (trade-off )
entre colonització i persistència, en gran part dominat per espècies
rares. A més, confirmem que la importància del filtre ambiental per a
les comunitats bacterianes aerotransportats és més gran que pels seus
anàlegs eucariotes, més influenciats per l’origen de la comunitat. Grà-
cies a l’estimació de nínxols microbians en comunitats aerotrasportadas,
hem pronosticat, per 2080 - 2100, disminucions generals en la riquesa
bacteriana, respostes idiosincràtiques per al component eucariòtic, can-
vis en l’estacionalitat i disminucions en la riquesa de patògens putatius
eucariòtics. Finalment, hem ideat un procediment de quatre passos per
distingir entre comunitats orgàniques, majoritàriament estructurades
per interaccions biòtiques, i comunitats individualistes, on predomina
l’adaptació a les condicions ambientals locals. Aquest enfocament es
va provar amb una llarga sèrie de fitoplàncton al llac Zürich, Suïssa, i
es va descobrir que ambdós tipus de comunitats es poden identificar
durant el procés de reoligotrofización de l’estany. El valor de la versió
estocàstica de la teoria de la biogeografia d’illes reforça el seu ús com
un model efectiu que mitjana els efectes de dispersió, selecció i deriva,
el que facilita el maneig de dinàmiques temporals complexes. Aquesta
tesi també emfatitza la importància dels estudis a llarg termini per
obtenir nous coneixements sobre ecologia de comunitats i ens deixa un
pas més a prop per comprendre la distribució de les espècies en l’espai
i el temps.
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7 Chapter 1

Introduction

This thesis intended to develop a quantitative approach to
understand and predict the spatio-temporal distribution of
biodiversity. This approach is applicable across ecological

communities of any kind. However, the application of these methods to
microbial communities, in particular, represents a big challenge due to
the inherent characteristics of the microbial world. This is the reason
why most examples in this thesis deal with microbial communities.
Throughout my work, I emphasize that overcoming these difficulties has
also generated new insights of broader scope into community ecology
and conservation biology.

In the following sections, first, I introduce basic concepts in commu-
nity ecology, such as a working definition of an ecological community
and well-known patterns in the spatio-temporal distributions of species,
together with the concept of ecological niche. After that, I revisit
these concepts, especially within the field of microbial ecology, giving
particular emphasis to the role of selection (sensu Vellend, 2010; 2016)
and environmental filtering in community assembly. Then, I present
the dynamic model of island biogeography that has been used through-
out this thesis and the rationale behind it. Finally, I enumerate the
objectives of this thesis formally, and I summarize the structure of the
chapters that follow.

1.1 Spatio-temporal distribution of biodiversity

Biodiversity on Earth is organized in ecological communities. But,
what is an ecological community? A working definition could read: "An
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ecological community is a group of sympatric species that potentially
interact" (Stroud et al., 2015). This simple definition hides the whole
complexity of spatio-temporal studies of biodiversity within ecological
communities. First, if species share the same environment, it is because
they have developed, independently or not, suitable adaptations to it.
Second, if species coexist within a distinct, long-lasting community, it
is because they interact in a way that no major extinctions occur on
average. And third, potential species interactions emphasize the spatio-
temporal nature of communities and the importance of observational
scales. All these aspects cannot be overlooked: species come and
go, while the community remains only as a highly dynamic entity.
Therefore, adaptation, coexistence, the scale of observation, interaction,
and dynamics are keywords both in community ecology and throughout
this thesis.

The first studies concerning the spatial and temporal distribution
of biodiversity can be traced back to Preston (1948; 1960). Preston
recognized that the relation between species and area follows Arrhenius
law (1921),

N = kAz, (1.1)

where N is the number of species on area A, and k and z are con-
stants recovered from the data at hand. He also realized that the same
expression might be applied to time, rendering both space and time ex-
changeable, in what has been termed ’ergodic conjecture’ (Rosenzweig,
2001). We now call these relationships as Species-Area Relationship
(SAR) and Species-Time Relationship (STR). The first one has been
extensively studied, while STRs did not get much attention until recent
times.

SARs inspired one of the most influential theories in Ecology, the
Theory of Island Biogeography (TIB). The joint work of Robert H.
MacArthur and Edward O. Wilson (1963; 1967) produced the famous
depiction of the equilibrium model of faunas in islands of different area
and distance from the continent (see Figure 1.1). The equilibrium
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Figure 1.1: The Theory of Island Biogeography. The colonization and extinc-
tion curves cross in a point, determining a constant number of species in a dynamic
equilibrium, as colonization and extinction compensate each other. MacArthur &
Wilson hypothesized that colonization depends on the distance to the mainland
and extinction on island area. Species colonizations and extinctions are considered
independent random processes described by constant rates (therefore the straight
lines).

is attained as total external colonization and local species extinction
balance out. The equilibrium point can be calculated as two curves,
the colonization and extinction curves, intersect, which determine the
number of species at equilibrium. The first experimental confirma-
tion did not have to wait (Simberloff, 1969; Simberloff and Wilson,
1969), and more examples of equilibrium in species number ensued (as
shown in Losos and Ricklefs 2010). I will deal more extensively with
the simple stochastic model of island biogeography in subsection 1.3.
Many extensions spawned (e.g., Brown and Kodric-Brown 1977 or Dia-
mond and May 1977), and island biogeography became predominant
in Conservation Biology in the 1980s (Hanski and Simberloff, 1997).

Still in the 1960s, Levins (1969) proposed the classic metapopulation
theory (CMT). Although not properly in the domain of community
ecology, its subsequent importance in the study of spatio-temporal
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dynamics makes it deserve a quick overview. Metapopulations are local
patches potentially hosting viable populations connected by dispersal,
which allows species to undergo colonization and extinction dynamics.
The basic Levins model was formulated as follows:

dN

dt
= mN(1−N/T )− EN (1.2)

where N is the number of occupied patches, m is a migration (col-
onization) rate per patch, T the total number of patches, and E an
extinction rate. This model is a species-specific model that assumes
homogeneous patches and constant extinction and colonization rates
(per patch). Metapopulation theory gained momentum in the 1980s
and 1990s and shifted the paradigm in Conservation Biology (Hanski
and Simberloff, 1997), even becoming spatially explicit (Hanski, 1998,
1999, 2001) (see Fig 1.2).

The 2000s saw the advent of two major research programs: neutral
theory (NT) and metacommunity ecology. NT, as proposed by Hubbell
(2001), was born as an attempt to draw a new general theory of biodi-
versity in a geographical context, and, as such, it is directly inspired
by TIB. It is based on a radical assumption, that per capita birth
and death rates are equivalent for all species. Despite its controversial
assumption, NT has proven useful (Alonso et al., 2006; Chave, 2004;
Leigh, 2007) for reasons such as i) its heuristic power as a generator
of predictions for well-established patterns for which explanations had
remained elusive to ecologists for years; ii) being a precursor of the-
ories that, along with stochasticity, sampling, dispersal limitation or
speciation, extend and incorporate more realistic aspects of all these
processes; and iii) being capable of acting as a null model. However, the
relevance of NT in conservation biology is still limited and unrecognized
(Rosindell et al., 2011). Metacommunity ecology (Holyoak et al., 2005;
Leibold and Chase, 2017), on his part, draws from metapopulation
theory and can be regarded as an attempt to reconcile major paradigms
from the past, namely species sorting (SS), patch dynamics (PD), mass
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(a) ngrams: Google books

(b) Theory of Island Biogeogranpy (c) Metapopulation Model

Figure 1.2: During the 20th century several key concepts contributed to the
theoretical development of ecology as a science, indicated with arrows. Here I
emphasize the importance of two of these landmarks. The upper panel shows the
growth of the use of the digrams "Ecological Theory" and "Community Ecology"
in millions of digitiled books (Michel et al., 2011). The lower ones, (b) and (c),
show the parallel increase in the number of citations per year of MacArthur &
Wilson monography (1967), and Levins seminal work on metapopulations (1969),
respectively.
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effects (ME) and NT. However, while metapopulation theory has found
valuable applications to conservation Hanski (1999), this is not the
case for metacommunity theory, whose use, in practice, is also still
limited (Bengtsson, 2010).

Rio Declaration on Environment and Development in 1992 interna-
tionally recognized that one of the major threats humanity currently
faces is the loss of biological diversity (Ripple et al., 2017). There-
fore, the development of new theory in ecology should provide robust
methods and clear-cut guidance to conservation biology. Conservation
biology has developed tools as population viability analysis (Morris
and Doak, 2002) to assess species extinction risk. It also has benefited
from technological advances in genomics, giving rise to fields such
as evolutionary conservation genetics (Hoglund, 2009). In addition,
with the rise of Geographical Information Systems since the 1990s
and 2000s (Guisan and Zimmermann, 2000), conservation biology has
also embraced the concept of ’niche’, which, in practice, has become
widely accepted with the use of Species Distribution Models (SDMs),
which are somewhat disconnected from ecological theory (Elith and
Leathwick, 2009).

1.1.1 The niche concept

The concept of niche has a long tradition in Ecology. Grinnell (1917)
interpreted it as the habitat of the species, Elton (1927) added trophic
relations, and Hutchinson expanded the definition greatly, considering
it an N-dimensional hypervolume (Hutchinson, 1957). All points that
allow indefinite persistence in this hypervolume are called the funda-
mental niche. In contrast, the realized niche of a species corresponds to
the points in a habitat that coincide with the fundamental niche and
where other species do not exclude our focal species. Niche theory has
further developed to what today is termed as contemporary niche the-
ory (Chase and Leibold, 2003), a term that can be considered parallel
to modern coexistence theory (Chesson, 2000; Letten et al., 2017).
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SDMs are defined as models that relate species distribution data
with information on the environmental, spatial, or both characteristics
of those locations (Elith and Leathwick, 2009). SDMs may be con-
sidered as depictions of the realized niche (Booth et al., 1988), which
produces the increasing recognition of the importance of explicit biotic
interactions (Araújo and Luoto, 2007). However, most techniques are
species-centered, this is, they rely on species independence (but see
Ferrier and Guisan 2006), and ignore the dynamic nature of species
populations and ecological communities (as can be seen in Naimi and
Araújo 2016 and references therein). One of the few approaches that
take into account species dynamics is the one by MacKenzie et al. (2003,
2017). This approach estimates and models species occupancy, and it
is inspired by Diamond seminal use of incidence functions (Cody and
Diamond, 1975), and Hanski’s studies of metapopulations, which also
assume that the observed occupancies can be regarded as the stationary
states of a simple Markov processes (Hanski, 1994, 1998, 1999). As
MacKenzie’s approach is fully probabilistic, time is considered discrete,
rather than continuous, which imposes certain restrictions on data
acquisition and usage.

Changes in species distribution and responses to climate change have
been extensively demonstrated (Parmesan, 2006). Thus, ecology needs
to become predictive to respond, manage, and palliate the effects of
climate and global change (Clark et al., 2001). The prediction of species
responses to climate change relies on statistical approaches devoid of
a mechanistic basis (Urban et al., 2016). This is so, in part, because
it seems very costly to include mechanisms and represent ecological
processes in predictive models. At a community level, trait-based
approaches seem the way forward to predict responses to and effects of
global change (Lavorel and Garnier, 2002; Suding et al., 2008). However,
we still lack a null community model able to provide a baseline, as this
is of paramount interest for conservation and management (Hillebrand
et al., 2018).
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1.2 Microbial communities in space and time

Microbial Ecology is very young (Konopka et al., 2015). Strongly
influenced by early mottos like Baas-Becking’s (1934) "everything is
everywhere, but the environment selects", progress in the understanding
of microbial species distributions across habitats is still very limited.
However, microbial species do show biogeographic patterns and disper-
sal limitation (Bell et al., 2005; Reche et al., 2005; Thompson et al.,
2017). Microbial communities can also be considered metacommu-
nities (Nemergut et al., 2013), that is, local communities linked by
dispersal. However, the study of microbial metacommunities has relied
on statistical approaches, such as correlational, hypothesis-testing, or
variance-partitioning frameworks (Soininen, 2012). Dynamical approx-
imations are generally lacking, as metapopulation or TIB dynamical
approaches have been seldom used for microbes. Consequently, this
has led to a lack of broad principles that potentially explain microbial
community dynamics (Konopka et al., 2015). Nevertheless, recent work
on microbial community assembly (Faust et al., 2015) has started to
consider temporal dynamics.

A study on temporal changes in microbial communities shows that
they do change with time, presenting STRs with higher exponents than
macroscopic communities (Shade et al., 2013). STRs also show that the
turnover of microbial taxa decreases as selective pressures increase (Van
Der Gast et al., 2008). Other traditional approaches such as time-series
analysis need long time series with short and regular sampling intervals,
which are difficult to find in microbial ecology (Faust et al., 2015),
although some have looked for interactions and alternative stable states
(Gerber, 2014; Gonze et al., 2017; Lahti et al., 2014). Dynamic models
have also been used to study microbial dynamics, as ARIMA models
have been used to estimate microbial community dynamics, including
the effect of environmental variables and interactions (Ridenhour et al.,
2017). Additionally, taxa-specific measures of time to recovery after
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an antibiotics treatment have been developed (Gerber et al., 2012).
Still, the connection with ecological theory of these models is thin.
However, generalized Lotka-Volterra models have been recently fitted
to microbial community data, although they are challenging to scale up
and do not include the influence of immigration (Gonze et al., 2018).

1.2.1 The concept of niche in microbial communities

Traditionally, microbial species have been classified in attention to
their morphology, biochemistry, physiology and metabolism. However,
the advent of new genotypic and sequencing tools has revolutionized
the field discovering vast amounts of organisms that are not possible
to cultivate, whose main characteristics remain hidden (Kämpfer and
Glaeser, 2013). These unknown characteristics comprise aspects such
as nutritional requirements, biochemical abilities, or tolerance to envi-
ronmental conditions that allow them to perform particular functions
in an ecosystem (Schlegel and Jannasch, 2013). However, there exist
computational tools that estimate the functional profile of microbial
communities based on the known ones (Aßhauer et al., 2015; Langille
et al., 2013).

A possible limitation of these approaches in natural environments
comes from the existence of core and flexible parts in the genome due
to mechanisms as recombination (Fraser et al., 2009, 2007). Microbes
form multiple subpopulations in the same habitat (Kashtan et al., 2014;
Polz et al., 2013), which challenges the traditional view of canonical
species-level niches and favors a view where different genotypes arise
due to selection to microhabitat conditions and act as populations with
exclusive niches and preferential gene flow (Arevalo et al., 2019; Cordero
and Polz, 2014; Niehus et al., 2015). Tools that associate environmental
and habitat metadata with specific OTUs (Sinclair et al., 2016) can
serve as a broad approximation to their niche and their response or
tolerance to environmental variables. A first approximation to model
these responses would be to find linear relations with the environmental
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factors, although in the case of microbial species other relations might
reflect better the actual mechanisms underlying microbial dynamics,
for example, Monod’s equation in the case of microbial growth (Wade
et al., 2016).

1.2.2 Selection and environmental filter in microbial
community assembly

The importance of selection (sensu Vellend 2016) and environmental
filtering in microbial community assembly has been studied tradition-
ally in comparison with other mechanisms in at least three similar
frameworks, represented by the dichotomies niche-neutral, SS-NT or
deterministic-stochastic. As I find the metacommunity framework more
amenable, I will stick to SS-NT. The two main views of this debate
are that either NT predominates over SS for the whole communities
studied (Lee et al., 2013; Ofiteru et al., 2010; Woodcock et al., 2007),
particularly for generalists (Langenheder and Székely, 2011), or that
SS predominates over NT (Dumbrell et al., 2010; Hanson et al., 2012;
Lindström and Langenheder, 2012; Morrison-Whittle and Goddard,
2015; Nemergut et al., 2013; Stegen et al., 2012; Van der Gucht et al.,
2007). However, some studies found acting both at different spatial
scales (van der Gast et al., 2011) or components of the community
(Caruso et al., 2011; Lindström and Langenheder, 2012). Moreover, a
shift from NT to SS in succession has been reported (Dini-Andreote
et al., 2015; Ferrenberg et al., 2013; Langenheder and Székely, 2011;
Lee et al., 2013; Nemergut et al., 2013), although the role of NT may
be more influential in temporal changes (Stegen et al., 2012). Besides,
the effect of high dispersal (ME) has been shown to overcome the
power of SS experimentally (Lindström and Östman, 2011; Souffreau
et al., 2014), although observations do not report the same outcome
(Van der Gucht et al., 2007) and a recent simulation of a community
of decomposers needed high dispersal to show the effect of SS (Evans
et al., 2017). Finally, several studies express concerns such as i) an
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overrepresentation of SS being it easier to measure than other mecha-
nisms (Lindström and Langenheder, 2012), ii) inability of partitioning
the effects of dispersal, selection or drift (Evans et al., 2017), but see
van der Plas et al. (2015), or iii) the inadequacy of naive interpretations
of these dichotomies to produce experimental results, which should be
backed on mathematical modeling (Pholchan et al., 2013).

One interesting aspect of microbial communities is that they are
usually found to be phylogenetically clustered (Goberna et al., 2014a,b;
Soininen, 2012). Under the terminology of modern coexistence the-
ory (Chesson, 2000), clustering may be produced by niche differences
(environmental filtering) or fitness differences (competitive exclusion
of deeply branching clades) (Mayfield and Levine, 2010). Disentan-
gling the effects of these environmental and competitive filters may
be achieved using knowledge of the underlying traits, more related
to either tolerance or competition (Goberna et al., 2014b; van der
Plas et al., 2015), or through null model approaches in environmental
gradients (Triadó-Margarit et al., 2019). This knowledge will help to
comprehend the mechanisms of the responses of microbial communities
to the environment and climate change (Amend et al., 2016).

1.3 The dynamic model of island biogeography

The dynamic model of island biogeography, sometimes called the
Equilibrium Theory of Island Biogeography, can be formulated as
follows:

dS

dt
= c(SP − S)− eS (1.3)

where S is the number of species in a site, SP the number of species in
the regional pool and c and e colonization and extinction rates. Alonso
et al. (2015) found that this equation can be easily solved for a single
species (see also Diamond and May 1977), and that the solution allows
for treating these dynamics as a Markov chain between two states
for the species, present and absent, and to estimate the colonization
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and extinction rates from the data, maximizing the likelihood of the
observed dynamics regardless its sampling scheme, whether regular or
not (Ontiveros et al., 2019). Thus, our approach tries to understand
and highlight community dynamics and aims to provide a null model of
richness and compositional change, which is of potential interest in the
management and conservation of biodiversity (Hillebrand et al., 2018).
Our model assumes species equivalence, since all species share the same
rates, and species independence. Still, it has to be emphasized the
average character of the model, as it encompasses the mean effects of
drift, selection, and dispersal over the species of the community. These
two assumptions are reasonable in the case of horizontal communities,
that is, groups of species that share similar needs of resources and space.
However, we can always relax the equivalence assumption and apply
the model on a per species basis, given a sufficiently thorough sampling.
Moreover, colonization and extinction rates can depend explicitly on
environmental covariates, offering us a dynamic first approximation
to the niche of the considered species. These approximations would
make our model close to SDMs, but incorporating, explicitly, temporal
dynamics. Using these models, from the extremely simplified average
model to the more advanced species-specific, environmentally-driven
models, I seek to address the following objectives.
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1.4 Objectives of this thesis

• Developing theoretical models to explore, quantify, and evaluate
the mechanisms that control spatio-temporal variability, especially
in microbes.

• Evaluating the importance of dispersal in microbial community
assembly.

• Evaluating the concept of ecological niche in microbial ecology.

• Evaluating the importance of selection and the environmental
filter in microbial community assembly.

A description of the structure of my thesis follows. The next chapter,
Chapter 2, corresponds to the general methodology of this thesis. It
delves into the dynamic model of island biogeography and explains the
general functioning of the tool that implements it, package ’island’.

Chapter 3 corresponds to the published application paper of pack-
age ’island’, entitled ’Colonization and extinction rates estimated
from temporal dynamics of ecological communities: The island R
package’ (Ontiveros et al., 2019), and presents the main uses of the
package.

Chapter 4, ’The characteristic time of ecological communities’,
explores the use of the basic community model to describe the temporal
dynamics of ecological communities and generate predictions about
their STRs, turnover, and changes in community composition, also
identifying the underlying temporal scale at which these communities
change.

Chapter 5, ’Colonization – persistence trade-offs in natural micro-
bial communities’, reports and investigates a colonization – persistence
trade-off in microbial communities largely driven by rare taxa, highlight-
ing the importance of equalizing mechanisms for microbial coexistence.

Chapter 6, ’General decline in the diversity of the airborne micro-
biome under future climatic scenarios’, examines the usefulness of the
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model to discover the contrasting responses of airborne Bacteria and
Eukarya to predicted climate change.

Chapter 7, ’Individualistic and organismic communities in the
reoligotrophication process of a lake’, expands the methods of the
previous chapter to include non-linear responses to the environment,
which leads to propose a general approach to determine the existence of
both individualistic and organismic communities, which is then applied
to the plankton of Lake Zürich.

Chapter 8 corresponds to the general discussion and future per-
spectives from this work, with an emphasis on further developments
of the model, and Chapter 9 corresponds to the general conclusions
of this thesis. Finally, after the bibliography, I conclude with three
appendixes that correspond to Chapters 3, 4, and 6.



21 Chapter 2

General methodology

Island Biogeography is one of the most influential and successful
theories in ecology, a rich source of inspiration for new research
and ideas since it was first suggested. MacArthur and Wilson

originally proposed that the number of species on an island is deter-
mined by the size of the island and its distance from the mainland.
These factors result in a dynamic equilibrium between colonization from
the mainland and extinction of species once they arrive on the island.
The theory initially presented by MacArthur and Wilson was called
Equilibrium Theory of Island Biogeography (ETIB, Simberloff 1974).
Wilson and Simberloff’s (Simberloff, 1969; Simberloff and Wilson, 1969;
Wilson and Simberloff, 1969) study of the experimental defaunation
of mangrove islands in the Florida Keys was the first validation of
the theory, which explicitly emphasizes its dynamic aspects, and it
showed how different mangrove islands reached an equilibrium with a
species richness equivalent to the number of species present before the
experimental defaunation.

The following sections are devoted to explaining the general method-
ology of this thesis, that is, the dynamic stochastic model of island
biogeography. First, I revisit the basic ETIB and how the use of
a stochastic approach for a single species enables us to estimate its
basic parameters. Then, I introduce the R package ’island’, which
implements the previous approach and expands it in several directions.
Finally, I explain a novel way to apply the stochastic approach to
multiple species following ETIB dynamics.
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2.1 The Equilibrium Theory of Island
Biogeography

The seminal series of Simberloff & Wilson (1969; 1969; 1969) on the
experimental defaunation of mangrove islands in the Florida Keys was
the first experimental validation of the ETIB, which predicted that
colonization and extinction on an island would balance out and reach
a dynamic equilibrium. The basic model underlying the theory can be
expressed as in Eq. 1.3:

dS

dt
= c(SP − S)− e S

where S is the number of species present at a site, SP is the number of
species in the regional pool, and c and e are colonization and extinction
rates, respectively. This model states that the temporal variation in
the number of species in a site over time is equal to the total rate
of arrival of species from the pool that are not already at the site
minus the total rate of species loss from the site. Since all species are
equivalent in their rates, S/SP can be interpreted as the probability
of presence of any species on the island. Therefore, by dividing the
last equation by SP , we obtain an equation for the probability of any
single species being present in the island, which can be easily solved
(Alonso et al., 2015).

Alonso and colleagues used what has been called a master equation
(van Kampen, 1992). The formalism known as master equation has
been used in the last decades to build a strong theoretical foundation
for population and community ecology. It has several advantages
as it i) represents an extension of classical deterministic approaches,
ii) emphasizes the natural continuous flow of time, iii) recognizes
the essential discreteness of ecological events such as colonization or
extinction, and iv) models based on this approach are usually amenable
to mathematical analysis. A master equation is essentially a set of
ODEs expressing the temporal evolution of the probabilities of having
the system at each configurational state.
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A general master equation, for instance counting the number of
species, n, in a site, can be written as a system of ODEs (which is called
a continuous-time birth-death process in a mathematical context):

dP (n, t)
dt

= gn−1P (n− 1, t) + rn+1P (n+ 1, t)− (gn + rn)P (n, t) (2.1)

where gn is the probability rate at which n increases in one species
and rn the probability rate at which n decreases in one species. Notice
that there is an equation for any possible configuration in the system.
Let us assume we only have one species in the pool, SP = 1, then the
configuration of the system is determined by only a Boolean variable
(presence/absence). The system in Eqs (2.1) then collapses into a
system of only two equations (g0 = c, g1 = 0, r1 = e, and r0 = 0):

dP (1, t)
dt

= cP (0, t)− eP (1, t) (2.2)

dP (0, t)
dt

= eP (1, t)− cP (0, t) (2.3)

Since P (1, t) + P (0, t) should be 1 for any time, we can write:

dP (1, t)
dt

= c(1− P (1, t))− eP (1, t) (2.4)

The full solution of Eq. 2.4 can be easily calculated. It depends on
an initial condition, C, as usual, that corresponds with p0, that is, the
probability of being present at t = 0.

P (1, t) = c

c+ e
C exp(−(c+ e)t); P (1, 0) = p0

if p0 = 0 then P (1, t) = c

c+ e
(1− exp(−(c+ e)t)) (2.5)

Note that we have obtained an expression for the transition between
the two states that can have a species in a community, absent and
present, given that the species was absent at the initial time. Alonso
denotes this as T10. It is known that T10 + T00 = 1. So just repeating
the process above for P (0, t) and p0 = 1, we find T01, the transition
probability of going from present to absent. Again, T01 + T00 = 1.
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So, with these probabilities, we can construct a matrix of transition
probabilities for the associated Markov model:

T00 = 1− c
e+c(1− exp(−(e+ c)∆t))

T10 = c
e+c(1− exp(−(e+ c)∆t))

T01 = e
e+c(1− exp(−(e+ c)∆t))

T11 = 1− e
e+c(1− exp(−(e+ c)∆t))

(2.6)

where ∆t is the time-step between consecutive samplings, T01 is the
probability of extinction, T10 the probability of colonization, T11 of
repeated presence, and T00 of repeated absence.

Two key assumptions, the assumption of species equivalence (the
same parameters apply for a group of species), and the assumption
of species independence (the presence of other species does not affect
the dynamics of a focal species), enables us to generalize this Markov
process to groups of species or even communities. In particular, we can
apply the formalism to recover Eq. 1.3. Since all species are equivalent
and independent, the average of species present in the island at any
given time would be SP P (1, t), which is the continuous variable S in
Eq 1.3. This equation is just recovered by multiplying Eq. (2.4) times
the number of species in the pool, SP .

Importantly, by using the expressions given in Eqs (2.6), we can accu-
rately calculate the likelihood of a given data set under the colonization-
extinction model with the following expression for a regular sampling
scheme, that is, when samplings are repeated at equivalent time-steps,
given specific colonization and extinction rates, c and e:

P (M |c, e) = (1− T10)N00TN10
10 TN01

01 (1− T01)N11 (2.7)

where N00 is the number of events of repeated absence, N10 events
of colonization, N01 events of extinction, and N11 events of repeated
presence. In the case of an irregular sampling scheme, we need to
calculate the transition probabilities and the matching likelihood for
each transition.
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As an example, imagine that we have sampled arthropods on an
island for three seasons and we have the following data:

Table 2.1: Example of colonization and extinction events. Ten species (A-J)
were sampled in seasons 1-3, and found to be absent (0) or present (1).

Sp. 1 2 3
A 0 0 1
B 0 1 1
C 1 1 1
D 0 0 0
E 0 1 0
F 0 0 0
G 1 0 0
H 0 0 0
I 1 1 0
J 0 0 0

Table 2.1 shows that between samples 1 and 2 we have N01 = 1
(G), N11 = 2 (C, I), N00 = 5 (A, D, F, H, J), and N10 = 2 (B, E);
we can similarly calculate events between samples 2 and 3. Assuming
we already know the true value of transition probabilities (T01 = 0.4,
T11 = 0.6, T00 = 0.7, and T10 = 0.3), we can easily calculate the
likelihood of the observed dataframe using Eq. 2.7:

0.43 · 0.64 · 0.710 · 0.33 = 6.326 · 10−6

This is a small likelihood, and such low numbers are susceptible to
numerical errors. So, I will use log-likelihoods from now on.

log(0.4) · 3 + log(0.6) · 4 + log(0.7) · 10 + log(0.3) · 3 = −11.971

This is the log-likelihood associated with the given set of transition
probabilities. Notice that we obtain the same value with both ap-
proaches.
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2.2 Package ’island’

R package ’island’ follows the stochastic implementation of Sim-
berloff’s model (Simberloff, 1969) developed by Alonso et al. (2015),
which uses a likelihood approach to estimate colonization and extinc-
tion rates for communities that have been repeatedly sampled through
time. The package allows:

1. Estimating colonization and extinction rates with regular and
irregular sampling schemes, for whole communities or groups
within those communities, taking into account or not imperfect
detectability.

2. Converting those rates into transition probabilities.

3. Performing Akaike Information Criterion (AIC) -based model
selection.

4. Estimating the influence of environmental variables on coloniza-
tion and extinction dynamics.

5. Simulating the dynamics of the Equilibrium Theory of Island
Biogeography, as well as three other population models.

6. Evaluating model error and R2.

In the following paragraphs, I will address the practicalities of the
package. A list of the main functions of the package can be found in
Table 3.1.

2.2.1 Data entry

In order to estimate colonization and extinction rates with package
’island’, we need a dataframe of repeatedly sampled communities,
organized in time and with at least one species (or the relevant taxo-
nomic unit for our analysis). In this package, we adopt the convention
of indicating sampling times in columns and species in rows of the
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dataframe. Table 2.2 shows an example that uses a regular sampling
scheme for 4 years (2000 to 2003).

Table 2.2: Dataframe example of regular sampling schemes. All the species
shown pertain to genus Acanthurus, present in Kadmat atoll (dataset alonso15).
T.L., trophic level.

Species T.L. Kd.2000 Kd.2001 Kd.2002 Kd.2003 Kd.2010 Kd.2011 Guild
A. auranticavus NA 1 1 1 1 1 1 Algal Feeder
A. leucosternon 2 1 1 1 1 1 1 Algal Feeder
A. lineatus 2 1 1 1 1 1 1 Algal Feeder
A. nigrofuscus 2 1 1 1 1 1 1 Algal Feeder
A. triostegus 2,78 1 1 1 1 1 1 Algal Feeder
A. xanthopterus 2,87 0 0 0 1 1 1 Algal Feeder

In the case of irregular sampling schemes, we adopt a convention
of recording subsequent time intervals in the column header. For
example, if our sampling started on day 17, and the next sample was
taken 20 days after, that is, on day 37, the column heads for those
samples should read 17 and 37. These conventions have been followed
in data(simberloff), for which an extract is shown in Table 2.3:

Table 2.3: Dataframe example of irregular sampling schemes. Data for
island E2 in simberloff dataset. PRE indicates if the taxa were present or absent
in the sampling previous to the defaunation of the islands.

Taxa PRE 31 51 69 86 111
Aglaopteryx sp. 0 0 0 0 0 0
Latiblattella n. sp. 1 0 0 0 0 0
Latiblattella rehni 1 0 0 0 0 1
Cycloptilum sp. 1 0 0 0 0 0
Cyrtoxipha sp. 0 0 0 0 1 1

In both examples, we can see that we have columns for the taxa (or
species) studied, some columns with additional information (such as
Guild or Taxonomic Unit considered), and consecutive columns with
data on presence (1) or absence (0). Studying ecological communities
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can be messy. Temporal studies that track changes over many sites may
often result in sampling schemes that are irregular both in time and
space. In cases where we have different sampling schemes in our data,
we require the different sampling schemes to be treated as different
dataframes inside a list. An example would be the dataset simberloff.

2.2.2 Regular sampling schemes

The ideal scenario for ecological studies is one in which we sample our
subject of study (say the community of fishes on a coral reef) regularly
and frequently enough to observe changes in the community. Even
though this is rare in ecology, it facilitates the estimation of rates
and is less computationally intense. The estimation of rates for these
regular sampling schemes has an analytically exact expression, while
for irregular sampling schemes, we need to rely on heuristic methods
or numerical solvers (see subsection 2.2.3).

Briefly, we can come back to table 2.1 to finish the example there.
Say that we did not know the transition probabilities that generate
the example. Using function regular_sampling_scheme, we obtain
the m.l.e. of the rates producing the data. These are c = 0.3769 and
e = 0.7000. With these rates, we can now calculate the associated
transition probabilities, using function cetotrans, and obtaining T01 =
0.4286 and T10 = 0.2308. The equations T11 = 1−T01 and T00 = 1−T10

will give us a complete set of transition probabilities estimated from
the data.

I include here another example to discuss several functionalities of
the package. I will use data(alonso15), a dataset of three lists that
have information on presence-absence of the community of coral reef
fish communities in atolls in the Lakshadweep Archipelago (India). I
will use data only from one of the atolls, Kadmat. We have already
seen an extract of the data in Table 2.2. There are several columns
of data. The first column of the data.frame lists the species studied,
while the second, its associated trophic level. The third to the eighth
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columns contain presence-absence data of temporal samples collected
in consecutive years between 2000 to 2003 and once again in 2010-
2011. Finally, the last column has data on the guild of the species
studied. For example, the third entry in the data.frame has data for
Acanthurus lineatus, an algal feeder present in all the years studied.

From here, we can start estimating colonization and ex-
tinction rates for the entire community using the function
regular_sampling_scheme. First, we have to specify a single
data.frame in the function using argument x = and the name of
our data.frame. Next, we need to tell the function in which columns
the presence-absence data located with the argument vector =, in this
case, columns 3 to 6. We will not use the data from 2010 and 2011.
So let’s estimate the colonization and extinction rates.

c c_up c_low e e_up e_low N NLL

0.6035 NA NA 0.3506 NA NA 156 276.58

As we can see the colonization rate is c = 0.6035 and the extinction
rate e = 0.3506. In addition, the output of the function tells us that
we have examined 156 species and that the Negative Log-Likelihood
of this model is NLL = 276.58. What if we want to know the rates
for each guild? We just have to add to use arguments level, as in
level = "Guild", indicating the name of the column that divides the
data into groups, and n, as in n = 5 indicating the minimum number
of species that a group needs in order to estimate its rates. When we
do so, we obtain the following results.
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Group c c_up c_low e e_up e_low N NLL

Algal Feeder 0.7685 NA NA 0.1630 NA NA 30 38.96
Corallivore 0.4427 NA NA 0.3935 NA NA 20 35.72
Macroinvertivore 1.0152 NA NA 0.5647 NA NA 41 78.09
Microinvertivore 0.4960 NA NA 0.5120 NA NA 21 39.37
Omnivore 0.5091 NA NA 0.4072 NA NA 9 16.34
Piscivore 0.5263 NA NA 0.6000 NA NA 21 40.03
Zooplanktivore 0.5125 NA NA 0.0919 NA NA 14 15.94

Note that now we have relaxed the equivalence assumption.

2.2.3 Irregular sampling schemes

Given the complexities and challenges inherent to collecting real-
world ecological data, temporal monitoring is often patchy, mak-
ing irregular sampling schemes common in ecology. Data typi-
cally includes one or even several data sets with different sam-
pling schemes. For accommodating the messiness of real-world
data, island has two functions, irregular_single_dataset and
irregular_multiple_datasets. Irregular sampling schemes force
to alter how we calculate colonization and extinction rates, precluding
the use of the algebraic (exact) method for estimating rates. We can
still calculate the likelihood of the dynamic model using two methods
with different approaches: a heuristic method and a semianalytical
method.

The heuristic or semianalytical approaches of calculating rates
are implemented in functions irregular_single_dataset and
irregular_multiple_dataset, and we can switch between ap-
proaches using the argument jacobian. The heuristic method uses
R’s built-in optimization routine, optim, to obtain estimates for the
colonization and extinction rates. The function optim uses an imple-
mentation of the Nelder-Mead algorithm to find the optimum of the
likelihood function. However, heuristic methods do not guarantee to
find the global optimum of the objective function, and they do not have
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a mechanism to evaluate how good the optimum is for the selected point.
In contrast, the semianalytical method guarantees that the optimum
calculated is a root of the gradient of the log-likelihood function when
the algorithm converges. In this package, we call routine multiroot
from package rootSolve in order to find the semianalytical optimum
value for our likelihood function. Even though we encourage the use of
the gradient-based method, it may not always converge. The function
will notify possible problems, and we recommend using the heuristic
method if difficulties are encountered. One way to find good initial
values for the gradient-based method is to use the estimates of the
heuristic method as a starting point. The gradient-based method was
termed incorrectly Jacobian-based when the arguments were named.

The functions called irregular_single_dataset and
irregular_multiple_datasets reproduce all the functionalities of
regular_sampling_scheme. Note that irregular_single_dataset
requires numbers for the names of the columns with presence-absence
data. The only other difference with the function for the regular
sampling schemes is that we need to enter priors for c and e, our
colonization and extinction rates, using arguments c = and e =.

Sampling schemes for similar communities can be very different due
to multiple reasons, usually associated with the challenges of ecological
research. The function irregular_multiple_datasets allows us to
use data from different sampling schemes and estimate joint parameters
for these data sets. In order to use these data sets, they need to comply
with the general structure for irregular sampling schemes, and they
should be combined in a list. The argument list will collate the
data sets we want to study jointly, and the argument vectorlist
must contain the vectors (ordered in time) that indicate where the
presence-absence data is located. The remaining arguments work, as
discussed in earlier sections.
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2.2.4 Rates Vs. transition probabilities

There are two main differences between transition probabilities and
rates. First, transition probabilities are dimensionless numbers, while
rates have dimensions of time−1. Second, with rates, we can directly
estimate the transition probabilities for any time interval. In contrast,
transition probabilities are associated with a specific time interval,
so if we have T10 = 0.6 for a specific time interval and we need the
transition probability for twice that interval T ′10 6= 2× 0.6. However,
if a colonization rate per week is c = 0.6 week−1 the colonization
rate after 2 weeks, this is, biweekly, would be c′ = 2 week/1 (bi −
week) × 0.6 week−1 = 1.2 (bi − week)−1, this is, only the units in
which we express the rate change and everything else holds. This
property allows us to work with irregular sampling schemes —much
more common in ecology than regular ones— naturally, simply using a
pair of colonization and extinction rates.

Function cetotrans produces transition probabilities for equivalent
or different time intervals, given colonization and extinction rates.
Arguments c, e, and dt must be vectors of the same length, in the
case that we want to obtain transition probabilities that correspond to
different time-steps.

2.2.5 Estimating confidence intervals

The estimates of colonization and extinction rates can not be regarded
as fixed values, but have an associated uncertainty due, at least in part,
to the amount of data we use to calculate the estimates. In interpreting
these results, we recommend calculating confidence intervals for the
rates we estimate. Confidence intervals can be calculated using func-
tion regular_sampling_scheme with the argument CI = TRUE. This
option provides confidence intervals whose limits have a difference in
log-likelihood of 1.96 units around the estimator.
We employ two separate methods to estimate confidence intervals: a
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sequential method, which is computationally expensive, and a binary
search seeded with the Hessian of the likelihood function. The rationale
of the sequential method is the following: we start from one of the
parameters, say c, and we sequentially add a small amount step to
the parameter, obtaining the log-likelihood of the new value of the
parameter, c′, until the difference in log-likelihood between c and c′

climbs above 1.96. This gives us the upper boundary of c. The lower
boundary is calculated similarly, but with sequential subtraction. This
is a straightforward method, but it has to balance computational time
and accuracy with the size of the interval step.

The alternative method uses the Hessian of the likelihood function
as a seed for a binary search to determine the intervals. The Hessian
provides an asymptotic estimator of the confidence interval, thus being
a good starting point to look for the actual interval. The method
works by calculating the likelihood of this asymptotic estimator and
expanding the search (if the difference with our estimate is less than
1.96) or narrowing it (if it is greater than 1.96). This method typically
finds the confidence interval in about ten steps and is significantly
less computationally intense than the sequential method. However,
in some cases, the value of the Hessian reduces almost to zero or
produces a non-invertible matrix. In these cases, we recommend using
the argument step.

2.2.6 A few words on model selection

Model selection identifies the best model that fits a given data set.
In this package, we propose the use of AIC and the associated mea-
sure of weight of evidence (Burnham and Anderson, 2002) to choose
the model that best fits the data and compares it against several
alternative models. The functions in package ’island’ provide Nega-
tive Log-Likelihoods (NLLs) that can easily be transformed to AIC
with functions akaikeic or akaikeicc. We can then calculate the
weight_of_evidence for each competing model that potentially ex-
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plains our observations. As a reminder, AICs are only comparable
when we try to explain the same data with different models because it
makes no sense comparing the AIC of two different data sets with the
same model since the data is different in both cases.

As a little example, consider the likelihoods of the two competing
models that explain the community in Kadmat atoll. The model with
only one pair of rates had a NLL = 276.58, while for the model that
divides into guilds, it is NLL = 264.45. The log-likelihood of the model
with different dynamics for each guild is over 12 points better than the
model with a single dynamic group, which means that considering the
guilds separately better explains the data than lumping together all
guilds in a single group. However, the "guilds" model has 14 parameters
while the "community" model has only 2. It is unsurprising that the
more parameters the model has, the better it explains the data. For this
reason, we calculate the AIC of each model using function akaikeic,
that, to preserve parsimony, accounts for the number of parameters
with the argument k. AIC values suggest that the "guilds" model is only
marginally better than the "community" model, with a difference of
0.25. This is a tiny difference, and we cannot conclusively say that one
of the models has more support than the other. This analysis is backed
by the function weight_of_evidence, which provides a measure of the
support that each competing model has. We found that the "guilds"
model has a weight of evidence of 53% while the "community" model
has 47%, and, as already noted, we cannot conclude that any model is
clearly better.

2.2.7 Simulating colonization and extinction dynamics

The package island enables us to simulate ecological data, driven by
colonization and extinction dynamics. Functions data_generation
and PA_simulation allow us to generate species richness or presence-
absence data from an initial vector of presence-absence for specific
transition probabilities that can vary between different simulated tran-
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Figure 2.1: Temporal evolution in Kadmat atoll. Points indicate the observed
species richness, while the red shade indicates the 95% distribution of simulations.

sitions.
As an example, we will simulate the temporal evolution in richness

for Kadmat atoll. To do so, first, we have to transform the colonization
and extinction rates to transition probabilities with function cetotrans.
Next, I will use function data_generation. This function needs a
starting point to simulate the dynamics. I will use the first column of
presence-absence data, that has to be indicated with arguments x =,
to indicate the data.frame of the initial data, and column =, giving
the number of the column that contains the initial data. You also have
to identify the transitions probabilities with argument transitions
=. Finally, the number of realizations of the dynamics is specified with
argument iter = and the number time-steps with argument times
=. So, I simulated the dynamics in 999 realizations, up to the last
sampling recorded. Figure 2.1 shows the result.

In the simulation, I used colonization and extinction rates estimated
with the first four samples to simulate community dynamics from 2000
to 2011. We can use this to evaluate how reliably our parameter
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estimates of colonization-extinction dynamics fit observed data. The
plot shows the actual observations and the 95% distribution of the
simulations of the dynamics. The actual data falls well within the
boundaries delimited by the simulation except for the last sample.

We can estimate goodness-of-fit calculating model R2. Any esti-
mation of R2 requires a null model to compare with. R2 measures
how well our model performs compared to a null model of choice.
As a null model, here we assume that, at any given time, we can
have a number of species present from 0 to SP , the number of species
in the pool, which is drawn from a uniform probability distribution.
In order to estimate goodness-of-fit, we use the function r_squared,
which requires us to specify the arguments observed species richness,
simulated species richness, and the number of species in the pool sp.
The output, R2 = 0.9652, indicates that we have a good fit compared
to our null model. However, changes in the null model would lead to
different estimates of R2. For this reason, we also include the function
simulated_model that produces the quadratic error of a model given
some data. We can estimate a new R2 with a different null model and
the previous function using the equation below:

R2 = 1− ε2

ε20
, (2.8)

where ε2 corresponds to the quadratic error of a model given the data
and ε20 to the quadratic error of a null model.

2.2.8 Environmental fit

Apart from several biotic factors (e.g., the presence of top
predators or the abundance of primary producers), the num-
ber of species in a community can also be influenced by sev-
eral abiotic factors (e.g., temperature or rainfall) - referred
to as environmental covariates. The package ‘island‘ includes
functions all_environmental_fit, greedy_environmental_fit,
custom_environmental_fit, and rates_calculator to analyze the
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influence of environmental covariates on the colonization and extinction
dynamics of ecological communities. The functions assume a linear
functional response for environmental covariates since it is the simplest
way to build this dependency into colonization and extinction rates,

ct = α0 +
F∑
i=1

αiYit, et = β0 +
F∑
i=1

βiYit,

where Yit is the value of the i-th environmental covariate (i = 1, . . . , F )
at time t.

We employ R expressions in these functions. An expression is an
R object, frequently a call, symbol, or constant, that has to be evalu-
ated before its use. We have minimized the use of expressions to make
function calls easier to understand. However, we make use of them inter-
nally and provide function custom_environmental_fit that needs two
expressions in order to hone the results from all_environmental_fit
and greedy_environmental_fit as well as developing custom depen-
dencies with environmental covariates that can be specified by advanced
users.

All three functions for environmental fit need a single argument
dataset with the same structure as the one for irregular schemes
and an argument vector indicating the columns containing presence-
absence data. Also, all three functions need another data.frame with
related environmental covariates in columns. The names of these
columns have to be specified to functions all_environmental_fit
and greedy_environmental_fit with the argument env. These two
functions also need arguments c, e, and aic, this is, tentative values
for colonization and extinction rates and a tentative AIC value for the
model. In practice, this AIC value should be chosen very large (of the
order of 108, but this depends on the size of the data set). The difference
between all_environmental_fit and greedy_environmental_fit
is that the latter employs a greedy algorithm that sequentially adds
environmental covariates, one at a time, to the previously best set
(using AIC), i.e., the algorithm finds first the best environmental
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covariate and then the best combination with two covariates including
the previously selected, and so forth until AIC does not justify the
addition of new covariates. In contrast, all_environmental_fit tries
all combinations of environmental variables, starting with the minimum
number of environmental covariates to the maximum. Since the number
of combinations rapidly becomes unmanageable, this method is not
recommended except when we have a few environmental variables. An
example of the use of these functions can be found in section 3.2.

The function custom_environmental_fit calls R optimizer func-
tion to find the m.l.e. for the parameters of the model with en-
vironmental variables, honing the estimation done by the previous
functions. Besides arguments dataset and vector, it requires an
argument params that corresponds to the parameters estimated for
expressions c_expression and e_expression, for colonization and
extinction. To simulate the dynamics under environmental variation,
we need to calculate the value of the colonization and extinction rates
for each sampling. To do so, we use rates_calculator, that uses
arguments params, c_expression, and e_expression as in the previ-
ous function plus argument t that indicates the number of colonization
and extinction rates needed. This function calculates the actual rates
at each time in order to be able to simulate the dynamics of the colo-
nization and extinction process resulting from these parameters. Note
that these rates have dimensions of time−1, so when converting rates
to transition probabilities, we have to indicate the interval of time
between samples for each rate.

2.2.9 Imperfect detectability

Most real-world ecological studies are characterized by imperfect de-
tectability, i. e. the inability to detect a species or taxon despite its
presence in a location. Imperfect detectability is a potential source
of bias that must be avoided or at least estimated, particularly since
it influences estimates of colonization and extinction. Unfortunately,
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it is not always possible to avoid or estimate the effects of imperfect
detectability. We should be cautious in interpreting estimates derived
from the methods that assume perfect detectability. However, when
we have a replicated sampling design, we can account for detectability
while estimating colonization and extinction rates (MacKenzie et al.,
2003).

MacKenzie et al. (2003) present a likelihood function to estimate site
occupancy, colonization, and local extinction when a species is detected
imperfectly. The method relies on replicate observations per sampling
time. The implementation of this likelihood is not trivial because
there might be several underlying colonization-extinction trajectories
that are compatible with the same observed detection history. For
example, a detection history such as {101 100} means that we have
three replicates in the first sampling time, 101, where we detected
our hypothetical species twice, and a second sampling time, where
we observed 100, this is, we detected the species only once. Since we
detected it at least once at both time 0 and time 1, there is only one
underlying colonization-extinction trajectory compatible with it, which
we take the convention of collapsing it into (1 1). However, imagine
we fail to detect the species at time 1, being then our detection history
{101 000}. In this case, two underlying trajectories are compatible with
this observation, since the species could have or could not have gone
extinct at time 1. These are (1 1) and (1 0). Therefore, the probability
of the observed detection history {101 000} should sum over the two
ways in which that detection history could have been observed, either
through the trajectory (1 1) or (1 0). For simplicity, let us analyze first
what is the probability for the observed detection history {101 100}.
The first sampling time always considers the probability of the species
being present at the site, P0, as the fourth model parameter, and given
that, the probability of making two out of three possible detections,
d2 ·(1−d). d is the detectability per replicate or probability of detecting
a species when it is present per observation. The probability of being
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also present at the time 1 given that the species was present at time 0
is given by T11, and given that, the probability of making only one out
three possible detections is d · (1− d)2. Taking all together, this leads
us to the following probability for the full detection history:

Pr({101 100}) = P0 · d2 · (1− d) · T11 · d · (1− d)2

Now, let us examine the detection history {101 000}. As mentioned,
we have two possibilities for the second sampling time: the species
could be present and have not been detected or could have been truly
absent. Notice then that the probability of the full detection history
should sum over the two underlying colonization-extinction histories,
{1 1} and {1 0}. It would be:

Pr({101 000}) = P0 · d2 · (1− d) · T11 · (1− d)3 + P0 · d2 · (1− d) · T10

where T10 is the probability of colonization.
As a final example, consider the detection history

{001 000 101 000 111}. Four underlying colonization-extinction
trajectories can produce this detection history. These are: (1 1 1 1 1),
(1 0 1 1 1), (1 1 1 0 1), and (1 0 1 0 1). The probability of this
detection history should sum over these four possible underlying
colonization-extinction trajectories because all are compatible with it.
Below we detailed the four conditional probabilities:
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Pr({001 000 101 000 111}|(1 1 1 1 1)) =
P0 · d · (1− d)2 · T11 · (1− d)3 · T11 · d2 · (1− d) · T11 · (1− d)3 · T11 · d3

Pr({001 000 101 000 111}|(1 0 1 1 1)) =
P0 · d · (1− d)2 · T01 · T10 · d2 · (1− d) · T11 · (1− d)3 · T11 · d3

Pr({001 000 101 000 111}|(1 1 1 0 1)) =
P0 · d · (1− d)2 · T11 · (1− d)3 · T11 · d2 · (1− d) · T01 · T10 · d3

Pr({001 000 101 000 111}|(1 0 1 0 1)) =
P0 · d · (1− d)2 · T01 · T10 · d2 · (1− d) · T01 · T10 · d3

The algorithm implemented in the package ’island’ would sum over
these four conditional probabilities to calculate the total probability
for the initial detection history, Pr({001 000 101 000 111}). Note that,
for real-life examples, when a species goes fully undetected for many
sampling times, the full total sum becomes unfeasible because the
number of compatible trajectories undergoes a combinatorial explosion
rapidly. This may happen in practice if detectability per replicate is
very low. In this case, only approximated likelihoods can be given.
Alternatively, one could get around this problem by redesigning the
full survey and taking more replicates per sampling time. Transition
probabilities T00, T10, T01, T11 are functions of the rates c and e for
a given time interval ∆t between observations. Therefore, we have
all the elements required to estimate the likelihood of any detection
history, even if time intervals between observations vary, which allows
to find maximum likelihood estimates for the four model parameters,
colonization and extinction rates, c and e, along with the detectability,
d, and the probability of initial presence, P0.
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Table 2.4: Dataframe example for parameter estimation under imperfect
detectability. All the species shown pertain to the genus Acanthurus. 0.1 indicates
missing values.

Species Atoll Guild X2000 X2000.1 X2001 X2001.1 X2001.2 X2001.3
A. auranticavus Agathi Algal Feeder 1 1 1 0 1 0.1
A. leucosternon Agathi Algal Feeder 1 1 1 0 0 0.1
A. lineatus Agathi Algal Feeder 1 1 1 0 0 0.1
A. nigrofuscus Agathi Algal Feeder 0 0 0 0 0 0.1
A. thompsoni Agathi Zooplanktivore 0 0 0 0 0 0.1
A. triostegus Agathi Algal Feeder 1 1 0 1 1 0.1

Data entry

In order to estimate detectability, we need to provide presence-absence
data with replicated samples for the same sampling time, as in the ex-
ample below extracted from data set lakshadweepPLUS, where column
X2000 and X2000.1 correspond to two replicate transects sampled in
the same year. Besides, the data can have groups that can be treated
as levels of a factor, as in the column "Guild".

Estimating colonization and extinction rates with imperfect
detectability

Functions sss_cedp, mss_cedp allow the estimation of colonization
and extinction rates with imperfect detectability with single and mul-
tiple sampling schemes, respectively. The function sss_cedp allows
estimation for a single sampling scheme with repeated measures that
has to be specified with arguments Time, that contains the unique
sampling times, and argument Transects, that specifies the number
of transects per sampling time. By contrast, mss_cedp allows the
estimation of rates with perfect or imperfect detectability for multiple
sampling schemes, via the use of flags for missing values specified by
argument MV_FLAG, for the whole data set or groups of factors. A full
sampling scheme should be specified with argument Time, which is
internally used to calculate the particular sampling schemes associated
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with each separate row with the help of the missing value flags on the
columns that have not been sampled. When specifying the argument
Guild, we relax the equivalence assumption entirely and estimate the
four parameters for each group. An example can be found in section
3.1.

2.2.10 Model selection grouping

Model selection aims to select the best model for a given phenomenon
with a reasonable number of parameters describing it and avoiding
over-fitting. Our procedure is intended to distinguish, for example,
guilds or islands with different colonization and extinction dynamics.

The function upgma_model_selection incorporates a UPGMA al-
gorithm based model selection procedure intended to find an optimal
partition that minimizes AIC values. The algorithm needs a vector
of tags in order to estimate the partition. This function allows the
estimation of colonization and extinction rates with or without imper-
fect detectability. It also generates two output files in latex format
(.tex) with: a) the parameters of the best model found under the model
selection procedure and b) the summary of the procedure. Table 3.2
shows an example.

2.2.11 Inmigration, Birth, and Death stochastic models

Colonization and extinction rates can be considered effective rates in the
sense that they are average approximations to the intrinsic individual-
level processes driving species-specific dynamics. This function includes
three simple stochastic population models simulated with Gillespie’s
exact algorithm (Gillespie, 1977). All three models assume individuals
as discrete entities subject to a range of processes. These functions
aim to show the correspondence between parameters driving individual
deaths and births, and colonization-extinction rates at the population
level. The population models included in function ibd_models are the
seminal model by Kendall (1948), a mainland-island model by Alonso &
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Table 2.5: Stochastic IBD models included in package ’island’.

Model Immigration Birth Death
∅ → A A→ A+A A→ ∅

Kendall (1948) µ βn δn
Alonso & McKane (2002) µ(K − n) βn(1− n

K ) δn
Haegeman & Loreau (2010) µ βn n(δ + (β − δ) nK )

McKane (2002), and a basic population model with density-dependent
deaths by Haegeman & Loreau (2011).

The three models have three basic processes that differ in their
parametrization: inmigration (arrival of new individuals from outside
the population), individual births, and individual deaths. In table 2.5,
we specify the processes and the transitions (with probability rates in
units of time−1) associated with each model. Please note that Kendall’s
model may "explode" if the birth rate is higher than the death rate.
Notice also that the death rate in the Haegeman & Loreau model may
become ill-defined, this is, negative for death rate values higher than
the value for the birth rate, given that probability rates can never be
negative.

The function ibd_models enables us to simulate the stochastic
population dynamics described in the previous section. The function
requires that we specify arguments n0 (initial population size), beta
(birth rate), delta (death rate), mu (immigration rate), and K (carrying
capacity) when required. We also need to specify a vector of sampling
times time_v and the model we plan to use via argument type. To
illustrate its stochastic nature, I show a simulation of the dynamics
of Alonso and McKane’s (2002) model, with equal birth and death
rates and low immigration (Figure 2.2). An example of the use of IBD
stochastic models is shown in Box 1 (Chapter 3).
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Figure 2.2: Simulation of the dynamics of the model by Alonso &McKane.
In black, a stochastic realization with the following parameters n0 = 5, µ = 0.005,
β = 0.3, δ = 0.3 and K = 100.

2.3 The master equation approach for n species

I will finish this chapter with a result that, despite the extensive
literature on the TIB, has not been reported yet, to the best of my
knowledge. Consider the simplest stochastic model underlying TIB
again. This model describes the temporal evolution for the number of
species on an island, n. We could use n as our state variable in the
master equation. Now, species colonize the island at rate λ from the
mainland and undergo extinction at rate δ. The mainland harbors a
total number of potentially colonizing species, SP . With these elements,
the master equation, that is, the evolution over time of the probability
of finding each state n, can be written as follows:
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dP (n, t)
dt

=
probability of a colonization with n - 1 species︷ ︸︸ ︷

λ(SP − n− 1)P (n− 1, t)

+
probability of a extinction with n + 1 species︷ ︸︸ ︷

δ(n+ 1)P (n+ 1, t)

−
probability of a colonization with n species︷ ︸︸ ︷

λ(SP − n)P (n, t)

−
probability of a extinction with n species︷ ︸︸ ︷

δnP (n, t)

(2.9)

Solving a master equation directly is usually difficult, if not im-
possible. However, this equation can be solved through the associ-
ated probability generating function. Probability generating functions
(p.g.f.) are a useful way to describe a random variable, which allows
easy calculation of the expected value and higher moments, as the
variance. A p.g.f., G(x), is formally defined as:

G(x) =
∞∑
j=0

pjx
j (2.10)

Normalization requires that G(1) = 1 (meaning that the sum of
probabilities of all events must be 1), and the mean or expected
value is known to be E(x) = G′(1), as well as the variance is
V ar(x) = G′′(1) +G′(1)− [G′(1)]2.

Now, I will derive the p.g.f. associated with the master equation of
the simplest model of TIB. Note that the temporal evolution of the
p.g.f. would arise multiplying the terms of the master equation 2.9 by
xn and summing terms over n. It would be as follows:

dP (n, t)xn
dt

=
∑

λ(SP − (n− 1))P (n− 1, t)xn

+
∑

δ(n+ 1)P (n+ 1, t)xn

−
∑

λ(SP − n)P (n, t)xn

−
∑

δnP (n, t)xn
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which reordering a bit corresponds to:

dP (n, t)xn
dt

= λSPx
∑

P (n− 1, t)xn−1 −λx2∑(n− 1)P (n− 1, t)xn−2

+ δ
∑

(n+ 1)P (n+ 1, t)xn

− λSP
∑

P (n, t)xn +λx
∑

nP (n, t)xn−1

− δx
∑

nP (n, t)xn−1

That in terms of G(x, t) is expressed as:

dG(x, t)
dt

= λSPxG(x, t) −λx2∂G(x, t)
∂x

+ δ
∂G(x, t)
∂x

− λSpG(x, t) +λx∂G(x, t)
∂x

− δx
∂G(x, t)
∂x

So we have that:
dG(x, t)
dt

= (λx+ δ)(1− x)∂G(x, t)
∂x

+ λSp(x− 1)G(x, t)

dG(x, t)
dt

− (λx+ δ)(1− x)∂G(x, t)
∂x

= λSp(x− 1)G(x, t)

The solution to the equation above is not readily available. However,
we can use the method of characteristics to solve it. The method
of characteristics is a general method to solve linear, first-order, par-
tial differential equations (PDE). It finds curves (called characteristic
curves) to define the solution of the initial PDE. The characteristic
curves of this equation are:

dx

(λx+ δ)(x− 1) = dt

1 = dG

λSp(x− 1)G(x, t) (2.11)

So, we will find now the first characteristic curve solving for the left
and right characteristic curves:

dx

(λx+ δ)(x− 1) = dG

λSp(x− 1)G(x, t)
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reordering λSp(x− 1)dx
(λx+ δ)(x− 1) = dG

G(x, t) ;

simplifying and integrating λSp

∫ dx

(λx+ δ) =
∫ dG

G(x, t) ⇒

Spln(λx+ δ) + k = ln(G); ln
[
k(λx+ δ)Sp

]
= ln(G);

and exponentiating K1(λx+ δ)Sp = G(x, t)

The integration constant K1 can be determined using the normalization
requirement of the p.g.f.:

G(x, 0) = 1 ⇒ K1(λx0 + δ)Sp = 1; K1 = (λx0 + δ)−Sp ⇒

G(x, t) = (λx0 + δ)−Sp(λx+ δ)Sp

We now must solve for x0 to have our p.g.f. ready. For that, we are
going to use the characteristic curves (equation 2.11) on the left and
center:

dx

(λx+ δ)(x− 1) = dt

1 ;

integrating
∫ (1/(λ+ δ)

x− 1 + −λ/(λ+ δ)
λx+ δ

)
dx =

∫ dt

1 ⇒

1
λ+ δ

ln( x− 1
λx+ δ

) = t+k; ( x− 1
λx+ δ

)
1

λ+δ = K2e
t; e−t( x− 1

λx+ δ
)

1
λ+δ = K2

K2 can be found easily with the initial condition, and it will be
possible to find x0:

K2 = ( x0 − 1
λx0 + δ

)
1

λ+δ ; e−t( x− 1
λx+ δ

)
1

λ+δ = ( x0 − 1
λx0 + δ

)
1

λ+δ ;

we solve for x0 = λx+ δ + δ(x− 1)e−t(λ+δ)

λx+ δ − λ(x− 1)e−t(λ+δ)

Substituting in our expression for G(x, t):

G(x, t) = (λx+ δ)Sp(λλx+ δ + δ(x− 1)e−t(λ+δ)

λx+ δ − λ(x− 1)e−t(λ+δ) + δ)−Sp (2.12)
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Figure 2.3: Species Area Relationship. In black, mean of 5 stochastic realiza-
tions of the stochastic model of island biogeography with the following parameters
SP = 300, λ = 0.3, δ = 0.3, α = 0.2, β = 0.1, over a range of areas. In red,
theoretical expectation of the same dynamics. Axes in Log10.

Equation 2.12 is the p.g.f. that we seek. Now we can find the
expected value for the temporal evolution of the dynamics and its
variance easily.

E(x) = G′(1, t) = SP
λ

λ+ δ
(1− e−t(λ+δ)) (2.13)

V ar(t) = SP
λ(1− e−t(λ+δ))(δ + λe−t(λ+δ))

(λ+ δ)2 (2.14)

Note that equation 2.13 is akin to the known number of species at
equilibrium when λ ≡ c, δ ≡ e and time goes to infinity.

To finish this part, I will do a little exercise to demonstrate the
potential use of the above expressions to derive the Species Area
Relationship. Usually bigger islands harbor more species. Assuming
that extinction an colonization rates scale with area according to:
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λ = λ0A
β

δ = δ0A
−α

where α and β are positive exponents, we could find the expression,
via Eq. 2.13, for the SAR. If we just assume that t =∞, so we have
reached equilibrium, the expression for the number of species in the
equilibrium reduces to E[n] = SP

λ
λ+δ . The expression for the SAR

would be:
E[n(A)] = SP

λ0A
β

λ0Aβ + δ0A−α

Simulations with R Package ’island’ confirm this approximation,
as can be seen in Figure 2.3. The simulations followed the expectation
closely, fluctuating around the expected number of species.
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53 Chapter 3

Colonization and Extinction Rates
estimated from Temporal
Dynamics of Ecological
Communities: The island R
Package

Abstract

1. The temporal dynamics of ecological communities are inherently
complex, as dispersal processes, interspecific biotic interactions
and environmental fluctuations interact to shape species assem-
blages. We developed an R package, island — a community
ecology tool to analyse temporal patterns and explore potential
drivers of community dynamics.

2. The R package island is inspired by the simplicity of the The-
ory of Island Biogeography. Our package includes a suite of
functions to easily confront models of increasing complexity to
community data from the simplest stochastic model underlying
Island Biogeography Theory to more elaborate models that in-
clude species responses to environmental variables and imperfect
detectability, obtained at regular or irregular sampling times,
using maximum-likelihood and AIC-based model selection.

3. Models implemented in island should be regarded as simple
approximations of true temporal community dynamics. In this
sense, we call them effective models which we use to estimate
effective parameters. These models are simple, but dynamic,
as opposed to purely statistical. We illustrate the concept of
dynamic effective models by using an immigration-birth-death
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stochastic model of population dynamics. We generated simu-
lated community data to demonstrate the correspondence be-
tween the underlying true model parameters values and our
effective parameter estimates.

4. We present three examples showcasing the uses of our package:
detectability estimation and model selection, influence of envi-
ronmental covariates on community dynamics and estimation
of co-occurrence networks. Three detailed vignettes with a full
set of examples accompany the R Package island available on
CRAN.

Keywords: temporal dynamics, community ecology, colonization, ex-
tinction, stochastic processes, island biogeography, R package, effective
models.

The dynamics of community assembly play out over ecological
time scales. Its central unresolved problems require datasets
that span these temporal scales. Long-term data hold the

key to unraveling the respective roles that ecological interactions and
environmental factors play in community assembly over space and
time. Our understanding of how species diversity and community
structure change with time has been influenced by opposing theories
emphasizing either dispersal and individual species adaptations to local
environments (Gleason, 1926), or biotic interactions (Clements, 1916).
Earlier approaches in studying the relative importance of community
assembly drivers have largely been based on randomization procedures
of species within the assembly (package STEPCAM, van der Plas et al.
(2015), Chase et al. (2011)). Related approaches use several community-
level patterns, such as the species–abundance distribution and the
aggregation of conspecific individuals, to constrain community assembly,
and study the behaviour of different biodiversity metrics across scales
(package mobsim, May et al. (2018)). Although these approaches are
useful for some purposes, we need models incorporating assumptions
at the individual and/or species level since community-level patterns
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truly emerge from bottom up ecological processes affecting the fate
of individuals and species (Allouche and Kadmon, 2009; Hortal et al.,
2009; Hubbell, 2001; May et al., 2015; Vellend, 2016). The range of
possible mechanistic simulation models for community dynamics is
infinite (Cabral et al., 2017; Hortal et al., 2012), and such models
are usually difficult to decipher (May et al., 2015), often clouding
rather than enlightening our understanding of community assembly
processes. It is our contention that there is still considerable power
in the dynamic simplicity of Island Biogeography Theory (MacArthur
and Wilson, 1963, 1967) that is yet unexplored and largely overlooked.
Here, we work with the stochastic model underlying this theory and
develop a dynamic framework to analyze the relative importance of
competing processes in structuring real-world communities.

The ultimate test of ecological theory lies in confronting it with
real-world data over ecologically relevant time scales to see if its basic
assumptions still hold. Ecological monitoring programmes are only
now beginning to generate rich long temporal datasets (Hortal et al.,
2015), for a variety of taxa around the world (see, for instance, Condit
(1998) and Hubbell et al. (2005)), and developing robust methods to
deal with their complexities is often a challenge. For many systems,
the speed of data accumulation far outstrips our ability to explore and
generate new conceptual ideas emerging from these data (Barberán
et al., 2014). This is perhaps unsurprising given the lack of common
conceptual frameworks providing simple effective models to confront
new theoretical ideas with community data.

We present an R package, island, that helps analyze temporal
patterns in community assembly. Inspired by Island Biogeography
Theory (IBT), we focus on estimating colonization and extinction
rates from species presence data over time and space. Functions in
island implement a number of methods to characterize communities
and guilds within communities, and test conceptual ideas of the drivers
of community assembly through AIC-based model selection. While
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other R packages exist that are geared to estimate colonization and
extinction dynamics, such as R package unmarked (function colext()),
they typically focus on single populations in space and time rather than
a community-level approach. In addition, using existing packages for
sparse data or irregular sampling schemes is not straightforward. Al-
though recent community-level approaches that expand IBT to include
biological interactions are of great value (Cazelles et al., 2016b; Gravel
et al., 2011), they do not provide robust maximum-likelihood methods
for the analysis of community time series data. Instead, they are
centered on the distribution of species presences at stationarity, under
different interaction structures, across scales, and over environmental
gradients (Cazelles et al., 2016b).

A detailed description of the theoretical underpinnings of the pack-
age is provided in the Supplementary Material S0. Our basic model is
the simplest stochastic formulation of the theory of island biogeography
(Alonso et al., 2015). Since temporal dynamics of real-world communi-
ties are influenced by an entangled web of factors, we emphasize that
the colonization-extinction models of R package island should only
be regarded as a simple way to effectively approximate community
dynamics under certain assumptions. Colonization and extinction
pairs (c, e) represent effective parameters characterizing communities
as if population changes were driven by independent species dynamics.
These parameters should be regarded as coarse-grained approximations
of the intrinsic, species-specific parameters driving population processes
and species interactions. In Box 1, we illustrate the correspondence
between effective (c, e) rates and the underlying parameters driving
community dynamics. Species population dynamics can be modeled as
a stochastic process driven by elemental events such as immigration of
new species to local communities, local births and deaths, and inter-
actions between individuals of the same or different species (Capitán
et al., 2015; Capitan et al., 2017; Haegeman and Loreau, 2011; Solé
et al., 2002; Vellend, 2010, 2016). In Box 1, abundances were generated
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Table 3.1: Vignettes and main functions of R package island.

Main functions Description
regular_sampling_scheme(), Estimates colonization and extinction rates under reg-

ular (temporally equispaced) sampling schemes.
irregular_single_dataset(),
irregular_multiple_datasets()

Estimates colonization and extinction rates under irreg-
ular sampling schemes for single or multiple datasets.

sss_cepd(), mss_cepd() Estimates colonization and extinction rates, as well as
detectability and initial occupancy probabilities, with
data in single or multiple replicated datasets.

upgma_model_selection() Conducts a model selection procedure that searches
for an optimal partition of the data (based on a cat-
egorical variable) for its colonization and extinction
parameters (or, alternatively, for detectability and ini-
tial occupancy).

greedy_environmental_fit() Estimates the best model for colonization and extinc-
tion rates and their dependency on environmental vari-
ables using a greedy algorithm that sequentially adds
the variables with most influence in the data.

cetotrans() Transforms colonization and extinction rates to transi-
tion probabilities after a specified interval of time.

PA_simulation(),
data_generation()

Simulates species richness dynamics or presence-
absence matrices according to specified transition prob-
abilities.

r_squared(),
simulated_model()

Returns the value of R2 or the average squared error
of the predictions of model simulations.

ibd_models() Simulates stochastic population dynamics under immi-
gration, birth and death processes under three different
models (Alonso and McKane, 2002; Haegeman and
Loreau, 2011; Kendall, 1948).

Vignette Description
vignette("island") Introduces the main concepts applied in the package,

details data preparation, and illustrates the use of
the functions that estimate colonization and extinc-
tion rates, as well as the influence of environmental
variables, and simulation of the associated dynamics.

vignette("detectability") Explains how colonization and extinction rates are
estimated under imperfect detectability, and details
data entry and use of functions under this scenario.
Also explains model selection to detect groups of species
of equivalent colonization-extinction dynamics.

vignette("IBDmodels") Shows the correspondence between parameters driving
deaths, births and immigrations at the individual level
and colonization-extinction rates at the population
level.
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from a species immigration-birth-death (IBD) model (Haegeman and
Loreau, 2011), and then transformed into presence-absence data in
order to estimate colonization-extinction probabilities. Other stochas-
tic community models can be also used (for detailed information see
help("ibd_models") and vignette("IBDmodels")).

Box 1. The colonization-extinction model and community
dynamics.

Here we generated synthetic, simulated communities using an
IBD stochastic model (Haegeman and Loreau, 2011). Births
occur with probability r+ai per unit time (ai is the i-th species
abundance), and immigrations at rate µ. Species abundances
decrease at rate r−ai (intrinsic mortality) or ra2

i /K (intraspe-
cific competition), where K represents a carrying capacity, and
r = |r+−r−|. These assumptions result in a deterministic logistic
population model with immmigration (dai/dt = rai(1−ai/K)+µ
for i = 1, 2, . . . , S). In Fig B1, we show the correspondence be-
tween the population carrying capacity, K, and the colonization
probability, T10, and the extinction probability, T01 (see Eq. S0-
6), in panel a and b, respectively. In panels c and d, we show
how an empirically-derived functional dependence between colo-
nization and extinction probabilities, estimated from community
time series data, would constrain the scaled rates of the IBD that
are compatible with it. Simulation averages over 3000 stochastic
replicates of the IBD community model yield two probability
surfaces, T01(µ/r+, r−/r+) and T10(µ/r+, r−/r+), as functions of
scaled immigration and mortality rates (c). The intersection
T01 = f(T10) provided an estimation of the region in parameter
space where the intrinsic IBD species rates are compatible with
the observed, macroscopic rates (d).
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Figure B1. All curves in panel a are shown for the same scaled mortality
(r−/r+ = 0.8), while all curves in panel b share the same value for the
scaled immigration (µ/r+ = 0.5). In all cases simulation were done for
S = 20 species. The assumed functional dependence between colonization
and extinction probabilities is T01 = f(T10) = 0.6− 0.5T10 (panels c and d).

Without exhausting the numerous possibilities of the package (Table
3.1 summarizes its functions and vignettes), we discuss three worked
examples showcasing the capabilities of island. In the first, we explore
how imperfect detectability influences model parameter estimates, and
show how our package functions identify species groups or guilds and
help investigate the extent to which species ecological equivalence
underlies temporal community dynamics (Alonso et al., 2015). We
then extend the basic model to analyze the influence of environmental
variability on community dynamics. Finally, we show how functions in
island can help unveil the potential interaction structure of species
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assemblages using a novel way of assigning significance to empirical
species co-occurrences.

3.1 Detectability and model selection

When working with presence datasets we often make the simplifying
assumption of perfect detectability, assuming that sufficient replica-
tion at the site level accounts for genuine absences. In reality, it is
difficult to discard interspecies differences in detectability, which could
have profound consequences when interpreting assemblage patterns.
MacKenzie developed a likelihood approach for parameter estimation
when species detectability is not perfect. Mackenzie’s seminal idea can
be used to obtain better estimates of site occupancies (MacKenzie et al.,
2002) as well as non-biased estimates of colonization-extinction model
parameters (MacKenzie et al., 2003). Package island provides a new
implementation of MacKenzie’s likelihood for uneven time intervals
and sparse sampling schemes.

Figure 3.1 shows parameter estimation, using function
regular_sampling_scheme, compared to estimates obtained with
imperfect detectability (function sss_cedp). We generated a set of
data matrices based on stochastic iterations of a colonization-extinction
model, whose parameters are known, drawn randomly from a uniform
distribution between 0 and 1. From these data, we compared true
parameter values with parameter estimates, both with perfect and
imperfect detectability, as detectability increases. We show that
detectability should be above 0.9 per site to yield parameter estimates
close to true parameter values. By contrast, detectability per transect
above 0.25 seems to be enough to obtain reliable parameter estimates
for models including imperfect detectability (see function mss_cepd
and vignette("detectability")).

In addition, we used data("lakshadweepPLUS") on coral reef fishes
(Alonso et al., 2015) to investigate whether trophic guilds are effectively
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(a) Perfect detectability

(b) Imperfect detectability

Figure 3.1: Effect of imperfect detectability on estimated colonization and
extinction rates. We generated colonization-extinction dynamics for communities
of 100 species (S = 100) for known colonization-extinction (true) values. In (a) we
generated S × T data matrices, where the number of rows (S = 100) is interpreted
as the number of species in a community undergoing independent colonization-
extinction dynamics (or, alternatively, as the number of sites that have been
monitored over T = 100 sampling times for just one species). True presences
were then filtered according to detectability levels to generate the observed data
matrices. 10000 different colonization-extinction pairs are represented. In (b)
we generated S × N data matrices, with S = 100 and T = 10, but 4 different
transects per sampling time, so that N = 40. Again true presences were filtered
according to detectability levels to generate the observed data matrices. 1000
different colonization-extinction pairs are represented.
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Table 3.2: Comparison of seven models for coral reef fishes. The column
k represents the number of model parameters. The first model, with only two
parameters (1st row, k = 2), considers all species described by the same colonization
and extinction rates. In this sense, they are all equivalent, and, therefore, this is
the most neutral one. The second model considers two groups (2nd row, k = 4),
where algal feeders are characterized by a different colonization-extinction pair,
and the remaining trophic guilds share the same colonization-extinction rates, and
so on, until the last model (7th row, k = 14), where every guild is described by a
different colonization-extinction pair.

Model k AICc AICdif AICweights
{Alg Cor Mac Mic Omn Pis Zoo} 2 12800 127.57 1.8 10−28

{Cor Zoo Mac Omn Pis Mic} {Alg} 4 12713 40.641 1.4 10−09

{Pis Mic Zoo Mac Cor} {Alg} {Omn} 6 12715 42.61 5.1 10−10

{Mic Zoo Mac Cor} {Pis} {Alg} {Omn} 8 12680 7.9 1.7 10−2

{Mic Mac Cor} {Zoo} {Pis} {Alg} {Omn} 10 12672 0 0.91
{Mic Mac} {Cor} {Zoo} {Pis} {Alg} {Omn} 12 12678 5.4 0.06
{Mic} {Mac} {Cor} {Zoo} {Pis} {Alg} {Omn} 14 12681 8.8 0.01

equivalent in terms of their effective colonization-extinction dynamics
across the sampling period so they can be characterized by the same
colonization-extinction-detectability-Φ0 model parameters across all
groups, or if they need to be grouped differently to optimize the trade off
between model simplicity and prediction ability according to Akaike In-
formation Criterion. The function upgma_model_selection performs
this analysis, with the input argument PerfectDetectability = FALSE
(see vignette("detectability") for more details), yielding, as an
output, table 3.2.

3.2 Environmental variability and community
dynamics

The influence of environmental variability on community dynamics has
been explored using a variety of approaches (Cazelles et al., 2016b;
Legendre et al., 1985; Parmesan, 2006). Colonization and extinction
rates may depend, in general, on a number of relevant environmental
covariates (understanding covariate as an independently-measured
variable with a potential influence on the dynamics). The simplest
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Figure 3.2: Simulations of a sagebrush steppe plant community in Idaho,
USA. The black line represents the local richness aggregated to all quadrats every
sampled year. The blue line stands for the median overall richness averaged over
1000 simulations, and the 95% confidence lines are depicted in red. a, These
simulations have been calculated with the maximum-likelihood estimated pair of
colonization and extinction rates for this dataset. b, Here we considered colonization
and extinction rates as functions of the environmental covariates selected sequen-
tially maximizing its AIC at each step. The use of the environmental covariates
improved substantially the performance of our simulations.

form incorporating environmental factors reduces to assume a linear
dependency,

ct = α0 +
F∑
i=1

αiYit, et = β0 +
F∑
i=1

βiYit, (3.1)

Yit being the value of the i-th environmental covariate (i = 1, . . . , F )
at time t. Note that colonization and extinction rates are once again
considered as effective parameters since they encompass the mean field
response of the community to the environment, regardless of species
identity.

We include in island a subset of a historical dataset, idaho, con-
sisting of a series of permanent 1 m2 quadrats located on the sagebrush
steppe in eastern Idaho, USA, sampled annually from 1923 to 1973
(Zachmann et al., 2010). It also contains records of covariates such as
monthly precipitation, mean temperature and snowfall, for which we
estimated annual summaries.
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We evaluated the influence of the environmental covariates on the
colonization and extinction rate of the whole community, between
1932 and 1956, using function greedy_environmental_fit, that se-
quentially selects the environmental covariate that better improves
the AIC of the model in each iteration. The model selected included
the influence over colonization of snow in November and March and
the influence over extinction of snow in May and June and temper-
ature in May, December and April. We simulated the dynamics of
the accumulated species richness in the quadrats using these rates.
Figure 3.2 shows that the model with environmental variables better
approximates observed species richness over time than a single pair of
colonization and extinction rates.

We estimated the goodness-of-fit of the environmental-based model
in relation to the null expectation yielded by the model driven solely
by averaged colonization and extinction rates using the quantity R2 =
1 − ε2/ε20, where ε2 (ε20, respectively) is the (null) model quadratic
error, estimated with simulated_model. We get R2 = 0.673 for the
model based on environmental covariates relative to the null model.
Calculations and model are detailed in the R script tvjo2of3.R (see
Supplementary Materials S1), and more information can be found in
vignette("island").

3.3 Species co-occurrence networks

The inference of interactions from patterns of presence/absence goes
back at least to Diamond’s ’checkerboard’ pattern to infer competitive
exclusion (Diamond, 1975). These research efforts continue today
(Barberán et al., 2012; Cazelles et al., 2016a; Chase et al., 2011). Here
we developed a procedure to test the species-independence assumption.
Our method highlights species pairs that co-occur more or less than
expected under independent colonization-extinction dynamics —the
null hypothesis. These significant pair-wise associations can then be
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Figure 3.3: Network of significant co-occurrences of corallivorous fishes at the
Lakshadweep Archipelago. Pairs of species linked with a red line co-occurred
less than expected, while the green line indicates species that co-occurred more
than expected according to the null expectation provided by the IBT stochastic
model based colonization and extinction rates characterizing each trophic guild.
All species belong to genus Chaetodon, except Cantherhines dumerilii and Amanses
scopas.

used to build a network.
We used the dataset alonso15, which describes community re-

assembly after a coral mass mortality event in the relatively unfished
Lakshadweep Archipelago (Alonso et al., 2015). For simplicity, we
only show results for the guild of corallivores. To obtain co-occurrence
networks, we first calculated empirical colonization and extinction
rates for each island and guild. Second, we simulated presence/absence
matrices for the species in the guild based on previously calculated
rates. Third, we obtained the distribution of expected co-occurrences
given the stochastic colonization-extinction dynamics (computed af-
ter a number of model realizations). Finally, we compared actual
co-occurrences with the distribution of occurrences across replicates
under the null model to determine if observed co-occurrence values
were significantly lower or higher (confidence level 2.5% or 97.5%) than
null model predictions, respectively. The results show that some species
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of corallivores are much more likely to be found together, while others
(like Chaetodon plebius) tend to exclude others in the guild (Figure
3.3). The file tvjo3of3.R provides the code necessary to conduct this
analysis (see Suplementary Materials S2).

3.4 Discussion

Long time series data on multi-species assemblages are rich in infor-
mation but notoriously complex to analyse. Having tools that can
robustly explore these rich datasets is critical to testing and advancing
theories of community dynamics. In this contribution we present an R
package that implements models and maximum-likelihood methods to
analyze community dynamics based on the simplest stochastic model
underlying IBT. The functions developed in island allow for imple-
mentation of colonization-extinction models with and without perfect
detectability.

Most R packages to analyze community data provide metrics based
on statistical approaches, such as diversity indices and ordination
techniques (Oksanen et al., 2016), or indices of functional diversity
(Laliberté et al., 2014) that can be applied over time (May et al.,
2018). Many packages develop methods to specifically deal with and
describe temporal community dynamics (Hallett et al., 2016), but few
of these methods focus on the potential dynamic processes underlying
community assembly over time. Promising recent approaches provide a
clear link between models and basic dynamic ecological theory, which
also use IBT as a point of departure (Cazelles et al., 2016a,b; Gravel
et al., 2011; Massol et al., 2017) —as we have done in island package.
However, they do not develop maximum-likelihood methods for com-
munity time series data analysis in practical settings. More work is
needed in this direction.

Our package complements some of the capabilities of the otherwise
comprehensive unmarked R package (Fiske and Chandler, 2011), which
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implements MacKenzie’s (2003) colonization-extinction dynamic model
(see colext function). However, unlike the unmarked R package, our
basic model parameter estimates are rates (in T−1 units) rather than
dimensionless probabilities (Fiske and Chandler, 2011, 2015; MacKenzie
et al., 2003). As a consequence, methods of island R package work
well with irregular sampling times, helping address the problem of
missing data, which so often constrains the analysis of long-term data
series.

The three case studies showcase the use of our methods and functions
to analyze whole community dynamics monitored for a period of time
across a range of sampling locations (see package vignettes for other ap-
plications and alternative examples). Colonization-extinction models to
analyze single species over a range of sites —a metapopulation— have
been widely used (Hanski, 1994, 1999, 2001; Hanski and Ovaskainen,
2000). By contrast, comprehensive community temporal data sets have
been and still are expensive to obtain and, consequently, methods to
analyze community dynamics have received much less attention. Such
methods are still scarce in spite of an entire body of theory devoted
to the study of metacommunmities (Holyoak et al., 2005). Our exam-
ples analyze data frames that include at least three factors ("species",
"sampling location", and "species guild") that can be studied separately
with standard model selection techniques, and "sampling time", which
is our model dynamic variable. Our model estimates can be considered
effective parameters that provide aggregated information reflecting true
community dynamics. The idea of an effective model has important
theoretical and ecological implications. While all models implemented
in the packages rely on "the species independence assumption", merely
finding good agreement between them and community data does not
imply that between-species interactions are unimportant. The success
of fit implies instead that all the biotic interactions influencing a focal
species can be effectively represented by its average model parameters.
Species dynamics are only effectively decoupled to achieve a mean-field
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description of true community dynamics (Solé et al., 2002). Even if the
overall performance of a given model assuming species independence is
good, our approach can be used to unveil significant pair-wise species
inter-dependencies or associations, as we show in our third case study.

By using a process-based stochastic immigration-birth-death model
to generate synthetic data, we show how effective colonization and
extinction rates can be compared with intrinsic immigration and death
rates (Box 1). In this sense, the parameters calculated by our island
R package provide effective coarse-grain measures of the intrinsic
quantities driving processes affecting individuals and their interactions
to end up determining community dynamics over time.

Our first worked example highlights the importance of accounting
for imperfect detectability in community datasets. We clearly show
that maximum likelihood estimation based on perfect detectability can
yield highly biased estimates unless we work with detectability per
sampling time higher than 0.9. By contrast, models that explicitly
account for imperfect detectability produce reliable estimates when
detectability per transect is just over 0.25. Ideally, we recommend
models that account for imperfect detectability, while recognizing that
we often do not have the luxury of sufficiently replicated data sets,
limiting us to simpler approaches. In these situations, the potential
biases of imperfect detectability should be clearly acknowledged while
interpreting model results. As a rule of thumb, with at least 4 replicates
per sampling time and a detectability over 0.5, it is possible to use
the simpler, more straightforward methods from island to estimate
almost unbiased colonization-extinction parameters.

Our second worked example shows how environmental variables can
be taken into account to better explain community dynamics through
effective colonization and extinction rates. Notice that rates were sim-
ply written as linear combinations of environmental covariates. Since
our methods estimate rates rather than probabilities, we do not need
to make use of the logit link to consider covariates (Fiske and Chandler,
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2011, 2015). In addition, our methods can cope with highly flexible
sampling schemes including non-evenly spaced sampling time intervals.
Simple model selection techniques can be used to emphasize the rela-
tively stronger influence of a small set of environmental covariates on
the dynamics of community-level species richness.

Finally, our third case study uses the community colonization-
extinction model, which is based on species independence, as a null
working hypothesis to assign a level of significance to species pair-wise
co-occurrence. Most robust methods to find when species co-occurrence
is significantly higher or lower than random expectations are based
on static probabilistic models (Barberán et al. 2012; Griffith et al.
2016; Veech 2013, cooccur R package, but see also Cazelles et al.
2016a and Cirtwill and Stouffer 2016). Instead we used a dynamic
community assembly model as a null model, where independent species
extinctions and colonizations occur at the rates previously estimated
from community data. In addition, because we can generate stochastic
replicates with the same sampling structure as the given dataset, we do
not require the stationarity assumption. As a result, as shown in the
resulting co-occurrence network (see Fig. 3.3), where links represent
only significant co-occurrences, we identified a group of species that tend
to occur together, and a species, Chaetodon plebeius, that occurred less
than expected with most species in the guild under the null assumption
of species-independent colonization-extinction dynamics. This clearly
warrants further ecological investigation. This example highlights a
novel procedure to investigate species interactions from community
data over time, which can go easily unnoticed or biased if only static
probabilistic methods are used.

Our understanding of what shapes ecological communities requires
a constant conversation between empirical observations and theory.
Some of the most basic questions of community assembly such as the
stationarity or temporal dynamism of communities have yet to be
resolved (Warren et al., 2015). Questions such as these require real
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world data to test assumptions and predictions of ecological theory.
As valuable multi-species temporal datasets are becoming increasingly
available, having adequate tools to explore them is vital. We hope
that the methods developed in our island R package allow for more
detailed analyses of ecological community temporal datasets and an
advancement of basic ecological theory.

Supplementary materials

Appendix A. An appendix revisiting Island Biogeography Theory,
its fundamental assumptions, its connection to colonization-extintion
models, and the simplest likelihood function of package island.
S1. R file tvjo2of3.R with the code to reproduce worked example
"Environmental variability and community dynamics".
S2. R file tvjo3of3.R with the code to reproduce worked example
"Species co-occurrence networks".
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73 Chapter 4

The characteristic time of
ecological communities

Abstract

The temporal dynamics of ecological communities are key to com-
prehend community assembly and responses to disturbances or improve
conservation measures. Although temporal changes develop at multiple
scales, summarising the dynamics of species richness and community
composition would allow the comparison and understanding of these
patterns across ecological communities. We used the simplest stochastic
model of Island Biogeography to estimate a community characteristic
time, that sets the temporal scale at which a null, non-interacting
model acts. We showed its applicability to classic time-series in ecology
and found its relation to changes in community composition, defining
a characteristic Jaccard Index. More thoroughly sampled communities,
relative to characteristic time, presented more similar composition.
Additionally, we estimated the characteristic time of different microbial
and macroscopic assemblages, with a mix of a priori fast and slow
communities. These results concurred with current knowledge, but
indicate that some habitats have been sampled less frequently than
required. Our work makes evident that it is essential to account for
time in ecology and highlights the usefulness of simple approximations
to the complex dynamics of ecological communities.

A central goal of community ecology is to understand temporal
dynamics in species diversity and composition. Temporal
dynamics are essential to gain a mechanistic comprehension

of the drivers of community assembly, improve conservation and man-
agement measures, monitor the effect of disturbances, forecast the
consequences of climate change or even design and control micro-
bial communities (Fisher et al., 2010; Gonze et al., 2018; Supp and
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Ernest, 2014; Warren et al., 2015). This knowledge is still limited
(Dornelas et al., 2014; Hortal et al., 2015), although its importance
in ecology has been increasingly acknowledged (Dornelas et al., 2013;
Levin, 1992; White et al., 2006). A central issue is to establish the
temporal scale at which communities function. Previous research has
established that temporal changes develop at multiple scales, as biotic
and abiotic drivers of community change interact in different complex,
scale-dependent ways (Levin, 1992). However, community ecologists
still try to describe temporal dynamics with simple measures that
summarize the inherent dynamics of ecological communities. These
measures may help us address pressing questions in ecology, such as the
search for generalities in the dynamics of ecological communities or the
identification of baselines for detecting ecological changes (Sutherland
et al., 2013).

Although the importance of temporal dynamics was hinted already
by Darwin (Magurran, 2008), it can be considered that Preston was
the first to study the temporal scale. Preston introduced the concept of
Species-Time Relationships (Preston, 1960), the relationship between
time and the number of species we find in a sample as time increases.
Other measures of richness or composition change have been used since
then, as species turnover (Diamond and May, 1977; Hallett et al., 2016;
Hillebrand et al., 2018; Russell et al., 1995) or the slope of the Jaccard
index (or other similarity indices) against time (Dornelas et al., 2014).
However, some of these works (Diamond and May, 1977; Dornelas et al.,
2014; Russell et al., 1995) also try to compare turnover or community
similarity with models rooted in the Theory of Island Biogeography
(TIB).

The TIB of MacArthur and Wilson (1967) can be considered as
the first dynamic mechanistic attempt to understand community ecol-
ogy (May, 2010). TIB focus on how a dynamic equilibrium between
colonization and extinction determines both the average number of
species at equilibrium and community temporal turnover even after
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this equilibrium has been attained (Simberloff, 1969). Afterwards,
Diamond and May (1977) built on TIB a species-specific model of
turnover as a function of census interval to overcome the uncertainty
principle associated with the choice of time interval between censuses,
as censuses apart in time might underestimate repeated colonization
and extinction events. Further exploration of a similar community
turnover model indicates that a simple measure of mean turnover is
not enough to allow comparisons among communities (Russell et al.,
1995). Another attempt developed a null model based on random
colonizations and extinctions to compare the observed slopes of the
Jaccard index against time with the ones obtained for that null model
(Dornelas et al., 2014). However, this random null model was not
fitted to the data. Outside of TIB, other dynamic models of diversity
try to understand temporal change in ecological communities, based
on either niche (Chisholm et al., 2014) or neutral (Allen and Savage,
2007; Azaele et al., 2006; Kalyuzhny et al., 2015) community dynamics,
and require variation in species abundances. However, long temporal
data on species abundances across whole communities are expensive
to obtain and maintain (but cf. Condit 1998; Dornelas et al. 2018).
Besides, when we only have accounts of presence and absence, these
methods do not apply.

The main aim of this study is to investigate the potential of a
simple stochastic model (Alonso et al., 2015; Ontiveros et al., 2019) to
characterize temporal scales of species richness change and community
dynamics. We make use of the stochastic formulation of this theory to
define two measures of temporal community change: (1) the community
characteristic time, and (2) the characteristic Jaccard index. Both
measures are based on simple colonization-extinction models that only
need presence-absence data. The first one is a characteristic time
that, in practice, can be used to inform about the optimal frequency at
which communities should be sampled, solving the uncertainty principle.
The second one, which is based on the Jaccard index, is a measure of
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community composition change over time. Therefore, it can be regarded
as an alternative measure of stability or temporal beta diversity. Our
methods allow us to characterize and compare temporal community
dynamics across taxa and habitats. In the following paragraphs, we
define these metrics and examine the ability of the model to recover
community dynamics, richness, and composition temporal patterns,
applying it to different classic datasets. Then, we explore the relation
of the observed patterns with sampling frequency and finish with
estimates of characteristic time for an array of different communities,
including both macroscopic and microbial taxa.

4.1 Materials and Methods

4.1.1 Data samples

For our study, we have selected several datasets spanning from micro- to
macro-organisms, aiming to represent a wide range of communities and
including a priori fast- and slow-changing communities. Among them,
we have included three classic datasets that studied temporal aspects
of ecological communities originally. Preston (1960) used Neotoma
birds to propose the STR, Simberloff and Wilson (1969) validated the
TIB dynamics with island arthropods, and Diamond and May (1977)
studied turnover rates for the Farne Islands birds.For details on the
communities studied, see Table 1.

4.1.2 Community characteristic time

We have applied the simplest stochastic model of TIB (Simberloff,
1969; Simberloff and Wilson, 1969) as a dynamic model that explains
the variation in richness in a study site, estimating the colonization
and extinction processes in that place. It has been shown that it
is possible to calculate colonization and extinction rates for whole
communities easily, assuming the independence and equivalence of
the species (Alonso et al., 2015). These temporal rates give us an
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Table 4.1: Datasets used in this study. Duration expressed in years. Different
sites were considered separately. The two hydroperiods of the shallow saline lakes
were considered separately, as the lagoons dried in Summer, restarting the dynamics.
1 available in GenBank.

Habitat Taxa Location Duration Reference
Deciduous
forest

Birds Neotoma, Ohio,
USA

17 Preston (1960)

Island Birds Farne Islands,
England

28 Diamond and May
(1977)

Marine Bacteria English Channel 6 Gilbert et al. (2012)
Alpine lakes Bacteria Pyrenees, Spain 1 PRJNA5663701

Shallow
saline lakes

Bacteria Monegros desert,
Spain

2 Triadó-Margarit et al.
(2019)

Aeroplankton Bacteria Pyrenees, Spain 7 Cáliz et al. (2018)
Soils Bacteria Switzerland 4 Hartmann et al. (2014)
Islands Arthropods Florida Keys,

USA
1.5 Simberloff and Wilson

(1969)
Sagebrush
steppe

Plants Idaho, USA 50 Zachmann et al. (2010)

Coral reef Fishes Lakshadweep
Archipelago,
India

11 Alonso et al. (2015)

Human Bacteria – 0.5 – 1.5 Caporaso et al. (2011)

approximation to the diversity dynamics in the site. Through these
rates, we can, therefore, define the characteristic time of a community,
a measure that gives us the temporal scale at which species richness and
composition vary in that community (see Box 1 for details). These rates
also allow us to simulate the dynamics of the communities. We have
done so for three classic examples of community dynamics, Neotoma
birds, Farne Islands birds, and Florida Keys arthropods. For Neotoma,
we also studied the STR that our simulations produced. All estimates
have been obtained using the function irregular_single_dataset
of package ’island’ (Ontiveros et al., 2019), which allows calculating
colonization and extinction rates for irregular sampling schemes, and
simulations were performed using function PA_simulation.
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Box 1. Estimating temporal scales with the Theory of Island
Biogeography

Theory of Island Biogeography. In the 60s, MacArthur
and Wilson proposed the Theory of Island Biogeography with
the ultimate goal of explaining the geographical distribution of
diversity (MacArthur and Wilson, 1967). The basic equation
underlying TIB can be expressed as:

dS

dt
= c(SP − S)− eS (4.1)

where S stands for the number of species in a site, SP for the
number of species in the regional pool, and c/e for the coloniza-
tion/extinction rates, which in the original theory were related
to distance to the mainland and area of the island respectively.
The rates represent the proportion of sites where species colonize
or undergo extinction per unit of time, but as we are considering
only one site, the rates indicate the pace at which species enter
or leave the site, or in the specific case of microbial communities,
how the species rise or fall over the detection limit. Estimation
of the rates is detailed in Appendix B, following Alonso et al.
(2015) and Ontiveros et al. (2019).
Characteristic time. The model formulation shows clearly
that its temporal evolution is governed by c + e (see Eq. B.6).
Therefore, we can define a temporal scale at which diversity
changes, that we denominate characteristic time, Tc, and its
confidence interval length, ∆Tc, with the following equations:

Tc = 1
c+ e

(4.2)

∆Tc = |∆c|+ |∆e|2(c+ e)2 , (4.3)

where ∆c (∆e) corresponds to the confidence interval of c (e).
As shown in Alonso et al. (2015), in the case of regular sam-
pling schemes, characteristic time depends directly on the time

78



4.1. Materials and Methods

interval among samples, ∆t, as well as on the colonization and
extinction transition probabilities (see Eq. B.24 in Appendix
B).With all these elements, we define the number of samples in
a characteristic time as νs, the relative sampling frequency (in
units of characteristic time):

νs = Tc
∆t (4.4)

νs can be used as an indicator of how well we are sampling in
order to estimate the dynamics of the community.

4.1.3 Temporal β diversity: characteristic Jaccard index

As a measure of β diversity or compositional change, we used the
Jaccard index, which accounts for richness but is invariant to abundance,
being the perfect match for our measures. We also explored turnover
(Diamond and Marshall, 1976; Russell et al., 1995), as it is an almost
complementary measure to Jaccard’s index. We define both measures
and find approximate expressions for their evolution over time in Box
2. We examined the evolution in time for these measures in the classic
data of the Farne Islands (turnover) and Florida Keys (Jaccard index).

Additionally, we tested how well our measures of temporal scale
related to compositional change. Compositional change not only de-
pends on characteristic time but also on its relationship with the mean
time among samples, i.e., how often we sample, so following Box 1,
we calculated νs, the relative sampling frequency. We calculated the
mean Jaccard index between consecutive samples for each site in two
habitats with enough replicates: arthropod communities in mangrove
islands and shallow saline lakes from the Monegros desert.
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Box 2. Community composition dynamics: Characteristic
Jaccard Index
One of the most used indices to study the change in community
composition is the Jaccard index. This index let us compare sites
using presence-absence data, and it is defined as follows:

Jij = C

A+B + C
(4.5)

where A is the number of species present at time i and not at
time j, B the number of species present at time j and not at
i, and C the number of species present at both times. Now,
let pi be the proportion of species present at time i and ∆t the
interval of time between samples i and j. As shown in Appendix
B, we can approximate the variation of the Jaccard index, for a
relatively high number of species, in terms of colonization and
extinction rates as:

Ji(∆t) ≈
pi [c+ e exp(−(e+ c)∆t)]

pi [e+ c exp(−(e+ c)∆t)] + c [1− exp(−(e+ c)∆t)]
(4.6)

Therefore, the characteristic Jaccard index would correspond to
the value of the expression above when ∆t = Tc.
Eq. 4.6 also hints that the Jaccard index reaches an asymptote
after some time. Therefore, we have defined an asymptotic
Jaccard index, J̃ ?, starting from the occupancy at equilibrium:

J̃ ? = lim
∆t→∞

J ?(∆t) ≈ c

c+ 2e. (4.7)

We calculated bounds of the ratio ∆t
Tc

= 1
νs

for the system to reach
approximately the asymptotic Jaccard index (see Appendix B).
Specifically, for 0.22 ≤ e

c
≤ 2.31, the relative error |J?(∆t) −

J̃ ?|/J̃ ? equals 10−2 if ∆t satisfies the bounds 3.6 ≤ ∆t
Tc
≤ 5.6.

This means that, for a wide range of extinction to colonization
ratios, the system takes from about 4 to 5 characteristic times to
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reach the asymptotic compositional state starting from an initial
proportion of species pi = c

c+e .
The same reasoning can be extended to turnover, T , as defined
by Diamond and May (1977). Translating this definition to the
same components A, B and C as above, we have that

Tij = A+B

A+B + 2C (4.8)

from which we obtain a similar expression for the evolution of
turnover over time:

Ti(∆t) ≈
[exp(∆t(e+ c))− 1] [(1− pi)c+ pie]

c [exp(∆t(c+ e))(pi + 1) + pi − 1] + pie [exp(∆t(c+ e)) + 1]
(4.9)

The derivation of these and additional metrics can be found in
Appendix B.

4.2 Results

The first question we asked is whether the model can reproduce, at least
qualitatively, the temporal dynamics of ecological communities. To
answer that question, we revisited three classic studies on community
dynamics, namely: arthropod recolonization in island E3 of the Florida
Keys, Farne Island birds, and Neotoma birds. First, we estimated
colonization and extinction rates in the three communities, obtaining
colonization rates of 5.64× 10−3, 2.04× 10−4 and 7.47× 10−4 day−1

, and extinction rates of 1.14× 10−2, 4.10× 10−4, 2.84× 10−4 day−1,
for arthropods, island birds and deciduous forest (Neotoma) birds,
respectively. These rates allowed us to simulate the dynamics of the
communities. In figures 4.1 and B.1, we show that the observed richness
is inside the 95% confidence interval of the simulations in the arthropods
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Figure 4.1: Temporal dynamics of the arthropods community in the
Florida Keys. Shaded areas correspond to the 95% confidence interval in model
simulations, whereas the dashed line corresponds to the median. Green triangles
correspond to the observations. Here the characteristic time is estimated as Tc ≈ 59
days.

community (see Appendix B for the performance of our model for bird
communities).

Now, we turn to richness and community composition patterns.
Figure 4.2 presents the different patterns studied for three classic
datasets. We satisfactorily recovered the STR for Neotoma birds,
turnover over time for the transient species in the Farne Islands, and
the evolution of the Jaccard index over time for island E3 of the
Florida Keys. Only small deviations were found. We also calculated
the characteristic Jaccard index for island E3, that is, the expected
Jaccard index after a characteristic time, yielding a value of 0.406.
Simulations also validate our approach to estimating the variation of
the Jaccard index over time, as can be seen in figure B.2.

In order to show that we can determine an average time scale at
which communities function, we examined the relationship between
characteristic time and community composition (Figure 4.3). We found
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Figure 4.2: Richness and community composition patterns recovered by
a simple stochastic model of island biogeography. A) Species Time Re-
lationship of deciduous forest birds community at Neotoma. B) Turnover rate
of island birds in the Farne Islands. C) Community similarity measured with
the Jaccard index for arthropods in Florida Keys. Grey elements (shaded areas,
boxplots, or circles) correspond to model predictions. Colored elements correspond
to the observed measures.
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Figure 4.3: Variation in community composition for multiple sites and
two habitats. Arthropod communities showed higher values of the mean of
Jaccard indices between consecutive samples than shallow saline lakes, as the
former were sampled more thoroughly.

higher values of the Jaccard index for arthropod communities (0.50 –
0.65) than for Monegros shallow saline lakes (0.05 – 0.45). Additionally,
we found that Jaccard’s index increased with the relative sampling
frequency νs (how often we sampled the community compared to the
characteristic time of the system), as demonstrated by their Spearman’s
ρ (ρ = 0.976, p-value < 0.001 for saline lakes; ρ = 0.486, p-value =
0.3556 for arthropods —statistically not significant because of small
sample sizes).

Finally, we examined the temporal scales of different communities
estimating their colonization/extinction rates and their associated
characteristic times. Among microbial communities, soils had the
slowest dynamics with a characteristic time of above seven months,
while the communities found in humans, especially those on hands,
had a faster characteristic time —about a few days. The macroscopic
communities presented longer characteristic times of years, except
the macroinvertebrates that yielded several weeks as the community
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Figure 4.4: The characteristic time of different communities. We found
that birds and plants had the slowest dynamics, while the fastest habitat is found
in humans, especially in hands. Each point represents a site, and errorbars (gray)
indicate the characteristic time error estimation. Along the dotted lines, the relative
sampling frequency is constant.

characteristic time (Figure 4.4). Among the eleven studied datasets,
five of them (humans, invertebrates, plants, birds) were sampled more
frequently than the characteristic time indicated, while coral reef fishes,
soil microbes and some saline lakes were slightly undersampled (Figure
4.4).

4.3 Discussion

The current study has found that the simplest stochastic model of
Island Biogeography can recover richness and composition patterns
such as the STR, turnover, or Jaccard index. Moreover, we show
that the observed patterns depended on an inherent temporal scale,
that we have called characteristic time. This measure may not only
help us compare compositional change among different communities
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through the characteristic Jaccard index, but it also aids in assessing
whether we are sampling a community frequently enough not to miss
its dynamics, solving the uncertainty principle effectively.

However, we are conscious of exceptions and limitations in our
approach. A note of caution is due in the case of the estimation
of turnover in the Farne Islands. When we considered all species
in the community, our estimates of turnover were higher than the
observed/predicted ones (Diamond and May, 1977). We attribute this
discrepancy to four species that were always present in the community,
whereas the rest of the species were occasional, effectively violating the
assumption of species equivalence. Excluding these species solved this
discrepancy, although it left a small number of species in each sampling,
producing fluctuations that account for the observed deviations. As
a general rule, we advise caution with the model when its two main
assumptions, species equivalence and independence, are violated, and
recommend its application preferentially to horizontal communities
(Loreau, 2010; Vellend, 2010). Mild deviations from these assumptions,
like the ones reported for the arthropod data previously (Cirtwill
and Stouffer, 2016), are unlikely to affect much the estimates as can
be observed here. Thus, the model acts as an effective model that
integrates mild effects of interactions and niche differences in community
dynamics. We have identified two additional issues when estimating
characteristic times. The first one arises when we sample much less
than characteristic times indicate. It might be happening for the less
thoroughly sampled hydroperiods of shallow saline lakes. The second
one evidences that characteristic time and temporal autocorrelation are
associated, and consist in a linear relationship between characteristic
time and mean inter-sample time, that we have observed for bacterial
communities in humans (Caporaso et al., 2011). We have devised
procedures to identify these cases, as detailed in Appendix B.

Our results coincide with previous studies in several ways. First, we
recovered richness and composition patterns, such as Preston’s original
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STR (Preston, 1960), through simulation. Second, our approximation
to turnover is analogous to that found in a previous study (Russell et al.,
1995). Third, our estimates of temporal scales for different communities
coincide with general intuition. For example, we found slower dynamics
for bacterial communities in soil than in aquatic environments, or birds
compared with arthropods. Also, the characteristic time for the marine
microbial community accords with the corresponding estimates in a
previous study (Benincà et al., 2008). However, we also identified a
contrasting result. A previous meta-analysis found that the dynamics
of lacustrine assemblages is faster than the dynamics of marine ones for
macroscopic species (Korhonen et al., 2010), whereas we observed the
contrary in microbial communities. Further work is needed to discern
if characteristic times differentiate microbial communities from those
of larger organisms. In any case, the lack of estimates of timescales in
ecology is outstanding, which may reflect unintentional biases towards
evident natural cycles (i.e., seasonal or annual) or merely the lack
of appropriate information on temporal trends of species richness
(Hortal et al., 2015) due to long-standing institutional disincentives
(Wolfe et al., 1987). This circumstance, applied to organisms that are
inconspicuous but increasingly accessible, such as microorganisms, may
prevent adequate knowledge of the drivers of ecosystem functioning
(Shade and Gilbert, 2015). In this sense, we think that the knowledge
of the temporal dynamics of microbial communities might benefit from
more frequent samplings.

Our study may help to address several aspects of interest. The
most evident of them is the resolution of the uncertainty principle.
The estimation of characteristic times across habitats and taxa might
allow us to study changes in community composition and richness at
appropriate timescales, for which theoretical frameworks are currently
lacking (Hastings, 2010). Although characteristic times can not be
estimated a priori, wide application of the method might help ecologists
to establish rules of thumb derived from our measures. Besides, char-
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acteristic times are intimately associated with patterns of β-diversity.
We propose the characteristic Jaccard index as a measure to compare
horizontal communities (cf. Vellend 2016), in contrast with previous
studies that indicate that single measures are not enough to character-
ize composition dynamics (Russell et al., 1995). At the very least, this
simple stochastic model of TIB can be used as a null model of com-
munity dynamics, estimated from presence–absence data, representing
a baseline for detecting ecological change (Sutherland et al., 2013).
Such a null model, improving previous attempts that do not fit the
parameters to the data (as in Dornelas et al. 2014), is interesting for
monitoring and conservation, as it portraits random drift in community
richness and composition (Hillebrand et al., 2018). Deviations from
it may indicate departures of equivalence, independence, and/or the
influence of abiotic factors on the community. The influence of abiotic
factors can also be modeled as previously demonstrated (Ontiveros
et al., 2019), which potentially could help predict community dynam-
ics under climate change, a much-needed venue of research (Dornelas
et al., 2013; Fisher et al., 2010). Our model may also capture the
effect of disturbances. Defaunation experiments (Simberloff, 1969) and
simulations (not shown) indicate that, roughly after four characteristic
times, a completely defaunated island reached equilibrium in richness
(see Figure 4.1). Concerning community composition, a similar time is
needed to approach the asymptotical baseline of the Jaccard index, as
shown in Box 1 (see also Figures 4.2C and B.2).

Temporal scales in ecology are seldom studied nor characterized.
In this chapter, we have shown the usefulness of a stochastic model
of Island Biogeography and derived measures of timescale and com-
positional change to recover richness and community dynamics. This
theoretical work sheds light on the inherent temporal scales of ecological
communities. Further work is needed to understand the temporal as-
pects of different communities and habitats, and whether our estimates
hold as additional datasets are analyzed. Moreover, we expect that the
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approximations of community compositional change we have developed
would allow us to compare it across habitats and groups, searching for
generalities. We hope that putting the focus into dynamic patterns
of community ecology will aid in improving our understanding of the
processes and forces that drive diversity in any kind of community.

Supplementary material

Additional tables and figures can be found in Appendix B.
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93 Chapter 5

Colonization – persistence
trade-offs in natural microbial
communities

Abstract

Fitness equalizing mechanisms, such as trade-offs, are recognized
as one of the main factors promoting species coexistence in commu-
nity ecology. However, they have rarely been explored in microbial
communities. Although microbial communities are highly diverse,
the coexistence of their multiple taxa is largely attributed to niche
differences and high dispersal rates, following the principle “everything
is everywhere, but the environment selects”. We use a dynamical
stochastic model based on the Theory of Island Biogeography to study
highly diverse microbial communities over time across three different
systems (soils, alpine lakes, and shallow saline lakes). Here we report
for the first time a colonization-persistence trade-off in natural micro-
bial communities. We conclude that this trade-off is mainly driven
by rare taxa, which are occasional and more likely to follow indepen-
dent colonization/extinction dynamics. Our work also emphasizes the
fundamental value of dynamical models for understanding temporal
patterns and processes in highly diverse communities.

Contemporary coexistence theory indicates that there are two
major classes of mechanisms that promote coexistence: stabi-
lizing mechanisms that increase negative frequency-dependent

selection, and equalizing mechanisms that reduce fitness differences
among species (Chesson, 2000). Stabilizing mechanisms comprise re-
source partitioning, disease, or storage effects (HilleRisLambers et al.,
2012), while equalizing mechanisms such as trade-offs are generally
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produced by life-history trait evolution in a context of historical contin-
gency (Hubbell, 2001). Although many examples of trade-offs can be
found in macroscopic communities (e.g., Connell 1961; Siepielski et al.
2010; Werner and McPeek 1994), few have been shown for microbes,
usually in experimental metacommunities (e.g., Cadotte et al. 2006;
Livingston et al. 2012). To the best of our knowledge, equalizing
mechanisms in natural microbial communities have not been carefully
evaluated yet. In this paper, our goal is to examine the role of a colo-
nization – persistence trade-off in promoting coexistence across natural
microbial communities in both terrestrial and aquatic ecosystems.

The coexistence of a high number of species is a recurring theme in
ecology (Hutchinson, 1959). Despite the key insight of Chesson (2000),
ecologists are unable to predict species coexistence in an open area
(Sutherland et al., 2013). Metacommunity ecology (Holyoak et al., 2005;
Leibold and Chase, 2017) tries to understand species coexistence and
biodiversity, recognizing the importance of scale and spatio-temporal
processes. Metacommunity ecology is characterized by four distinct
archetypes: species sorting (SS), which focuses on how local environ-
mental conditions enable some species to coexist; neutral theory (NT),
which centers on dispersal limitation and demographic stochasticity;
patch dynamics (PD), which concentrates on the balance of colonization
and extinction processes in relatively homogeneous patches; and mass
effects (ME), which emphasizes that dispersal may outweigh competi-
tive forces in a set of heterogeneous patches. Adler et al. (2007) relate
SS and NT with stabilizing and equalizing mechanisms, respectively.
SS is related to niche differences, while in NT, dispersal limitation
and stochasticity associated to demographic processes override fitness
differences resulting in equalization. In the PD archetype, species
diversity is maintained by equalizing mechanisms, such as trade-offs in
colonization and competitive ability (Calcagno et al., 2006; Solé et al.,
2004; Tilman, 1994), or survival/fecundity and competition (Chave
et al., 2002; Muller-Landau, 2010).
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Microbial communities are highly diverse, and their dynamics have
been explained traditionally with the principle "everything is every-
where, but the environment selects" (Barberán et al., 2014; Becking,
1934). Consequently, microbial diversity is usually understood ap-
pealing to the formation of highly interacting microbial associations
maintained by niche differences, thus emphasizing that stabilizing
mechanisms underlie microbial coexistence. This interpretation of
the principle neglects the effects of dispersal (Barberán et al., 2014;
Nemergut et al., 2013), a potential equalizing mechanism. Classical mi-
crobial ecology has made almost no mention of coexistence-promoting
mechanisms when analyzing microbial communities. However, mi-
crobial ecologists have recently started to talk in terms of general
theoretical frameworks in ecology, such as community assembly and
metacommunity ecology (Costello et al., 2012; Nemergut et al., 2013).
In fact, there has been considerable debate on whether SS or NT dom-
inates as an assembly mechanism in microbial communities, with a
somewhat inconclusive result (Lee et al., 2013; Van der Gucht et al.,
2007; Woodcock et al., 2007).

Interestingly, it has been conjectured that the relative importance
of assembly mechanisms might differ for distinct components of the
microbial communities (Langenheder and Székely, 2011; Lindström
and Langenheder, 2012). Along similar lines, Hanski (1982) already
proposed the core-satellite hypothesis, framed within the PD archetype,
where stochastic variation in colonization and extinction rates leads to
species falling into two distinct categories: core species, abundant and
persistent, and satellite species, occasional and rare. Magurran and
Henderson (2003) extended the relevance of the core-satellite hypo-
thesis into the temporal domain, finding that core species display a
species abundance distribution compatible with a log-normal distribu-
tion, while satellite species follow a log-series. These differences were
associated with distinct functional roles for these two components. Mi-
crobial ecologists have also identified core and satellite species (van der
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Gast et al., 2011). Thus, the maintenance of species coexistence in
highly dynamic communities, such as the microbial ones, should not
be constrained to a single dominant mechanism.

Here we suggest that equalizing mechanisms of coexistence in
microbial communities are more important than currently acknowl-
edged and that the relative importance of stabilizing vs. equalizing
mechanisms is different in core and satellite taxa. In this article,
we first validate the use of the simplest stochastic model underlying
island biogeography to estimate colonization and extinction rates
from temporal series of microbial metacommunities. Then we report
a novel colonization – persistence trade-off characterizing these
metacommunities coherently at different taxonomical levels. Moreover,
we found that this trade-off is mainly driven by satellite species,
the rare component of the community. The identification of core
and satellite taxa allowed us to conclude that the relative influence
of coexistence promoting mechanisms is different for these two
components. Recognizing the importance of equalizing mechanisms
may render a better understanding of the functioning of highly diverse
microbial communities.

5.1 Materials and Methods

5.1.1 Data samples

We analyzed temporal samples from (i) the water column of four high
altitude lakes in the Spanish Pyrenees, monthly followed during one
year (Auguet et al., 2011, 2012), (ii) 12 shallow saline lakes in the
Spanish Monegros desert plateau, monthly sampled along three years
and covering different dry-wet periods (Triadó-Margarit et al., 2019),
and (iii) two sites in Switzerland, after a soil compaction experiment
lasting four years (Hartmann et al., 2014). Microbial communities were
studied after NGS 16S rRNA amplicons analyses, clustered at 97%
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OTU identity, and transformed to presence-absence data. Sequences
processing and genetic data analyses were carried out as reported
in the original studies where additional ecological and environmental
information are also available. The complete genetic datasets are
available in GenBank under BioProject record IDs PRJNA566370
(Pyrenean lakes), PRJNA429605 (Monegros), and as supplemental
material for the Swiss soils (Hartmann et al., 2014).

5.1.2 Colonization and extinction rates

Throughout this work, we applied the simplest stochastic model under-
lying TIB (Alonso et al., 2015; Simberloff, 1969; Simberloff and Wilson,
1969). This dynamic model explains the average level of richness and
its variation in a study site (or island) in terms of colonization and ex-
tinction processes, on the one hand, and the total number of potentially
colonizing species in the regional pool, or metacommunity richness, on
the other hand. As Hanski (2001) showed, this model can be derived
from an ensemble of single-species models of presence-absence dynamics,
under the assumptions of both species independence and equivalence
(Alonso et al., 2015). So, we can estimate the model parameters for
the dynamics of the whole community from presence-absence temporal
data, and, therefore, we characterize the entire microbial community
by a single colonization-extinction pair. Alternatively, we can subdi-
vide the community in guilds, relaxing the equivalence assumption,
and estimate a distinct and characteristic colonization-extinction pair
for each of them (Alonso et al., 2015; Ontiveros et al., 2019). To
calculate colonization (c) and extinction (e) rates from the observed
presences and absences, as the microbial communities were sampled
following an irregular sampling scheme (samples separated by unequal
time intervals), we used the functions irregular_single_dataset and
irregular_multiple_datasets from R package ‘island’ (Ontiveros
et al., 2019).

As a way to assess the applicability of the method to microbial
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communities, we started estimating colonization-extinction rates for
several independent sites. For the Pyrenees dataset, we compared
three lakes from the same basin (Lakes Llebreta, Llong and Redó
d’Aigüestortes; Auguet et al. 2011) and one in a different basin (Lake
Redon; Auguet et al. 2012). We followed a model selection procedure,
based on the Akaike Information Criterion and the weight of evidence,
wi (Burnham and Anderson, 2002), to develop a series of models with
different sets of partitions of the four lakes, and estimate, for each of
these partitions, a pair of colonization and extinction rates. Besides,
we used data from the Swiss soils to test the precision of the method
when confronted with replicates of the same community. Once we
assessed the correct performance of the method, we subdivided whole
communities into different taxonomic levels, which we considered as
ecologically equivalent guilds, for the three habitats under study. Note
that the estimation of colonization-extinction rates for very labile taxa
might be biased. Therefore, we excluded, from subsequent analyses,
those taxa with an estimated persistence value, defined as the inverse
of the extinction rate (pi ≡ 1/ei), much shorter than the minimal
inter-event sampling time (less than approximately a quarter of this
time).

5.1.3 Core and satellite members of the community

Multiple methods have been applied to distinguish between core and
satellite members of a community. While core species are abundant
and persistent, satellite species usually show up at lower abundances
and are occasional or even accidental. These two components of
ecological communities feature distinct functional characteristics. The
fact that persistent members of the community usually follow a log-
normal abundance distribution, while accidental species follow the
log-series (Magurran and Henderson, 2003), can be potentially used as
a method to sort out the community core from the rest. However, when
processing sequence data from microbial samples, it is common practice
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to discard OTU sequences appearing only once to minimize potential
errors. Therefore, the log-series is difficult or impossible to assess
since it requires to record all real singleton species possibly observed
in the sample. Instead of using abundance distributions directly, we
have applied Chow tests to identify structural breaks in the relation
between logarithmic maximum abundances and occupancy (defined as
the probability that a species appears in the community over time).
The Chow test (Chow, 1960) aims to identify unexpected changes
in the parameters of linear regression models along the range of the
independent variable. We first identified the intermediate breakpoint
with the highest Chow test’s statistic, this leading to two different
slopes in the abundance-occupancy relation. Then we estimated the
mean occupancy between consecutive ends of the two regression lines.
We defined as core members of the community those OTUs with
occupancy values higher than the aforementioned mean occupancy.
OTUs with occupancy values below this threshold were identified as
satellite members of the community. We performed Chow tests using
the R package ‘strucchange’ (Zeileis et al., 2003) and log-normal fits
for the core sub-community using the R package ‘vegan’ (Oksanen
et al., 2019).

5.2 Results

5.2.1 A colonization - persistence trade-off

Trade-offs in ecology arise due to multiple mechanisms, such as compe-
tition, perturbations, or physiological constraints. Trade-offs tend to
equalize fitness across species. In the context of colonization-extinction
models, the colonization to extinction ratio can be regarded as a good
measure of species fitness (Solé et al., 2004). In fact, it represents the
number of new colonization events during the average time a species
remains present in the system before extinction. If two species share
this number, they should reach the same importance in the system,
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either measured in terms of average abundance or average presence.
This is true when species follow Levin’s metapopulation dynamics (Solé
et al., 2004), or simple colonization-extinction independent dynamics,
as we used in this paper. Under the assumption of species dynamics
independence, species metacommunity dynamics can be formulated as

dπi
dt

= ci(1− πi)− eiπi, (5.1)

where (ci, ei) stands for the colonization-extinction rate pair for species
i belonging to a pool of size SP (i = 1, 2, . . . , SP ), and πi is the
probability that species i is found in a community (i.e., the occupancy
of that species). Therefore, the probability of species i being present
at equilibrium can be written as

π?i = ki
1 + ki

, (5.2)

where ki = ci/ei is the colonization to extinction ratio. Now
we assume that equalizing mechanisms drive community dynamics,
hence we expect that species fitness tends to equalize among species,
k1 ≈ k2 ≈ · · · ≈ kSp . Therefore, the probability π?i , which is also called
expected occupancy at stationarity, tends to equalize for those species
that share the same dimensionless colonization to extinction ratio, k.
Conversely, if steady-state occupancies π?i are assumed to be roughly
equal across species, then Eq. (5.2) trivially implies that all coloniza-
tion to extinction ratios (ki) will tend to be constant across species.
Henceforth, we defined persistence as the inverse of the extinction rate
(pi ≡ 1/ei). Because the hypothesis of equalizing mechanisms implies
that all ratios ci/ei are approximately constant, ci/ei = cipi ≈ k, we
find the following persistence-colonization fitness-equalizing trade-off:

pi = k c−1
i . (5.3)

A generic colonization – persistence trade-off can be conceptualized as

pi = k cαi , (5.4)
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Figure 5.1: Colonization and extinction rates precisely differentiate dy-
namics. In panel A, we pooled the three consecutive Pyrenean lakes from the
same basin together while a different colonization-extinction pair characterize the
fourth lake from another basin. Lake a, Llebreta, b, Llong, c, Redó d’Aigüestortes,
d, Redó. In panel B, two groups of soil samples cluster together around similar
colonization-extinction values. These groups correspond to replicates from the
same site. Colonization and extinction rates and their error bars were calculated
with function irregular_single_dataset from the ‘island’ R package.

with exponent α < 0. Therefore we conclude that if a community
of equivalent species is close to performing colonization-extinction
independent dynamics, the exponent α of the generic colonization
– persistence trade-off above [Eq. (5.4)] should be -1. This is our
theoretical prediction, the one we have checked across the three different
microbial communities. Throughout this work, we have represented
colonization and persistence axes on a logarithmic scale. This leads
us to conclude that a trade-off between colonization and persistence
compatible with independent colonization-extinction dynamics should
display a slope equal to -1 on a log scale, as it is deduced from the
equation: log pi = K − log ci.

5.2.2 The species equivalence assumption

Under this assumption, all species in the community are described by
the same colonization-extinction pair. This approximation allowed us
to explore whole community dynamics for microbes in lakes of the
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Table 5.1: Model selection procedure for the dynamics of microbial com-
munities in lakes of the Pyrenees. Letters correspond to different lakes, and
the separation by points indicates different models with their specific pair of
colonization and extinction rates.

Model NLL Parameters AIC ∆AIC wi(%)
a.b.c.d 19797.67 8 39611.35 2.65 11.1
abcd 19873.56 2 39751.20 142.50 < 0.1
abc.d 19800.82 4 39609.64 0.94 26.2
ab.c.d 19800.09 6 39612.19 3.49 7.3
ac.b.d 19799.50 6 39610.99 2.29 13.4
a.bc.d 19798.35 6 39608.70 0 41.9

Pyrenees and soils in Switzerland. For the lakes in the Pyrenees (Figure
5.1A), we found that the dynamics of the three lakes in the same basin
were so similar that they accumulated a weight of evidence of 89%
(summing over all models considering at least two of the three lakes as
having the same colonization and extinction), as opposed to the model
with all lakes with different rates, which had only a weight of evidence
of 11% (see Table 5.1). In the case of the soils in Switzerland (Figure
5.1B), the distance among replicas within the same soil type and site
in colonization and extinction rates was smaller than between sites,
showing that the replicas had similar dynamics on each site.

5.2.3 Relaxing the equivalence assumption

Next, we relaxed this assumption and considered the different tax-
onomic groups in these two bacterial communities, plus the meta-
community in saline lagoons in the Monegros desert. We found that
colonization-persistence patterns were coherent as we descended to
lower taxonomic levels. So, the distances of genera and families within
phyla, classes, or orders (intra-group) were lower than distances between
different higher taxonomic levels (inter-group) in the three communities
(Kruskal-Wallis test, all p-values < 0.1 in the Pyrenees and < 0.01 in
saline lagoons and soils). Moreover, our estimates of colonization and
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Table 5.2: The logarithms of colonization and persistence in the three
communities studied are related. p-values refer to Spearman’s ρ.

Community Level Slope Lower C.I. Upper C.I. Spearman’s ρ p-value n

Pyrenees

Phylum -3.455 -5.288 -1.623 -0.736 0.0058 13
Class -2.156 -3.778 -0.533 -0.643 0.0016 22
Order -1.906 -3.109 -0.702 -0.548 0.0010 34
Family -1.636 -2.678 -0.593 -0.507 0.0008 41
Genera -1.619 -2.687 -0.552 -0.516 0.0007 41

Soils

Phylum -1.402 -2.192 -0.611 -0.468 0.0148 27
Class -1.088 -1.582 -0.593 -0.411 0.0009 63
Order -1.023 -1.377 -0.669 -0.427 1e-05 100
Family -0.815 -1.102 -0.528 -0.441 3e-07 127
Genera -0.807 -1.087 -0.527 -0.424 4e-07 136

Monegros

Phylum -1.072 -1.445 -0.700 -0.709 5e-05 27
Class -0.989 -1.300 -0.678 -0.609 3e-06 52
Order -0.929 -1.199 -0.660 -0.557 8e-09 95
Family -0.907 -1.142 -0.673 -0.480 2e-10 160
Genera -0.820 -1.038 -0.602 -0.437 1e-10 202

persistence were negatively related conforming to a generic trade-off.
An increase in colonization rates led to decreases in persistence, and
this relation was maintained across taxonomic levels for the three com-
munities (Table 5.2). Also, the slope of the linear models relating the
logarithms of colonization and persistence was close to -1. We recall
here that a slope of -1 would correspond to a colonization–persistence
trade-off resulting from fitness equalization between different taxonomic
groups, under the assumption of colonization-extinction independent
dynamics.

However, the assumptions underlying a colonization – persistence
trade-off with exponent -1 might be too severe to apply to whole
communities. It is well-known that core members of a community
may display different dynamics from the satellite components of it
(Magurran and Henderson, 2003). Satellite species tend to be rare
and accidental. Sometimes they are observed, sometimes they are not.
These species may be good candidates to show a kind of behavior
consistent with colonization-extinction independent dynamics, and,

103



Chapter 5: Colonization – persistence trade-offs

therefore, the satellite subcommunity should tend to show, accordingly,
a colonization – persistence trade-off with exponent -1. Instead, the core
members of the community tend to be more abundant, and therefore
the relative strength of niche processes, such as interactions and niche
segregation, would be higher than in the case of satellite species. Then,
core species would not necessarily show a trade-off with exponent -1 if
they show any at all.

To test this hypothesis, we first identified the core and the satel-
lite members of our communities. As abundance enhances occupancy,
following a similar argument as in Magurran and Henderson (2003),
we represented the linear relation among maximum abundance and
occupancy at the Genus level. However, we used a Chow test analysis
instead to separate the core from the satellite members of the com-
munity by identifying structural changes in the linear relation among
maximum abundance and occupancy. Figure 5.2 shows the structural
changes found in the three studied communities. The point with the
biggest statistic allowed us to infer an occupancy threshold that sep-
arated the core from the satellite members of the community. As
reported for macroscopic communities, the abundance distribution of
the core of the communities followed a log-normal distribution closely.

In sum, the distinction between core and satellite members of the
community allowed us to examine the relationship between colonization
and persistence separately for these two components, as shown at the
family taxonomic level (Figure 5.3). These two components presented
significantly different slopes, as shown by testing the hypothesis that
satellite and core species share the same slope of the linear model
(in logarithmic axes) relating colonization and persistence.Moreover,
the satellite component of the communities showed slopes very close
to -1, while slopes were lower for the community core, except in the
case of soils, where both core and satellite sub-communities showed
exponents close to -1 (see Table 5.3). These results were maintained
across taxonomic levels, up to the lowest one, the Genus. However,
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Figure 5.2: The core members of the community follow a log-normal
distribution. A) Lakes in the Pyrenees, B) Soils, C) Shallow saline lakes in
Monegros. Left, blue dashed lines represent the linear relationship between the
highest abundance and occupancy at the genus level, which presents structural
changes, determined by a Chow test with maximum values for the statistic in
the grey shaded area. We have considered as core genus (squares) those that
presented values of occupancy higher than the mean occupancy of the point with
maximum structural change, while those with a lesser occupancy were considered
satellite members (circles). Right, the core members of the communities present a
log-normal distribution (solid blue line). Pyrenees deviance = 1.063; soils deviance
= 0.666; Monegros deviance = 4.042. Log-normal distributions were fitted using
function rad.lognormal of the R package ‘vegan’.
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Figure 5.3: Microbial communities show a colonization–persistence trade-
off at the family level. Three different habitats, alpine lakes (A), soils (B), and
shallow saline lakes (C), display a linear relationship close to the theoretical
expectation under a perfect colonization–persistence trade-off (not shown). The
trade-off is maintained throughout the phylogeny, from Phylum to Genus. However,
core (squares) and satellite (circles) members of the community show different
relationships between persistence and colonization, being the satellite members
closer to the theoretical expectation. The two legs indicate the -1 slope.
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Table 5.3: Core and satellite sub-communities show differential relation-
ships for colonization and persistence. A slope of -1 would correspond to a
perfect trade-off between colonization and persistence. We have tested the hypothe-
sis that the slope of the linear model for satellite taxa is equal to the slope obtained
for core species (Student’s t-test), which was rejected in all cases. Associated
p-values and t-scores are shown. Additionally, we report data for fitted slopes and
their 95% confidence interval. ns, p-value higher than 0.1, ∗∗∗, p-value lower than
0.001.

Community Tax. p-value t-score Component Slope Lower C.I. Upper C.I. n

Pyrenees
Family 8e-05 -5.513 Core -0.168ns -1.651 1.315 25

Satellite -1.149∗∗∗ -1.531 -0.767 16

Genera 3e-05 -5.913 Core -0.103ns -1.637 1.430 25
Satellite -1.148∗∗∗ -1.527 -0.769 16

Soils
Family 0.0012 3.366 Core -1.038∗∗∗ -1.314 -0.762 49

Satellite -0.688∗∗∗ -0.895 -0.482 78

Genera 0.0004 3.697 Core -1.056∗∗∗ -1.319 -0.792 51
Satellite -0.683∗∗∗ -0.883 -0.482 85

Monegros
Family 2e-05 -4.432 Core -0.621∗∗∗ -0.905 -0.336 60

Satellite -1.081∗∗∗ -1.288 -0.875 100

Genera 0.0001 -4.032 Core -0.662∗∗∗ -0.938 -0.385 79
Satellite -1.038∗∗∗ -1.223 -0.853 123

as we go up in the taxonomy, losses in statistical power blur these
relationships.

5.3 Discussion

In this study, we have shown that occasional and persistent taxa in
microbial communities are characterized by colonization – persistence
trade-offs. Across the three systems analyzed, we found that microbial
taxa conform to an almost perfect colonization – persistence trade-off,
especially for the occasional members of the community. The existence
of this trade-off is consistent with the satellite component following, in
a close approximation, colonization-extinction independent dynamics
near to a steady-state. This trade-off also implies the existence of
fitness equalization, which may be more important than previously
recognized in microbial communities, particularly for the functioning
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Figure 5.4: Relationship among colonization and persistence. The relative
importance of coexistence promoting mechanisms allows us to distinguish several
components in microbial communities. The dotted line indicates a perfect per-
sistence – colonization trade-off, where equalizing mechanisms such as trade-offs
lead to similar fitness among groups. Any attempt of the satellite taxa to increase
their performance would likely result in a corresponding decrease due to life-history
constraints. However, in core taxa stabilizing mechanisms dominate and niche
differences are high, due to e.g. resource partitioning. Hutchinsonian "demons"
would represent very persistent species with great colonization abilities, that would
outcompete all other taxa, which is unlikely in microbial communities. Evolutionary
"losers" stand for species with low fitness and low colonization abilities that would
likely represent accidental dispersers not adapted to the environmental conditions
of the community.

of the satellite sub-community. Satellite members would remain in the
community by either evolving higher colonization rates but persisting
shorter periods or developing the ability to stay longer in the community
along with lower colonization rates. Examples of life-history trade-offs
can be found easily among macroorganisms and experimental settings
of microbes (Jessup and Bohannan, 2008), but, to the best of our
knowledge, this is the first time that such a trade-off is reported in
highly diverse natural microbial communities.
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We have conceptualized the relationship between persistence and
colonization in Figure 5.4. This pattern is reminiscent of the one
reported by Cadotte et al. (2006). However, the main difference with
figure 1 from Cadotte et al. (2006) is that here we identify core and
satellite taxa. The identification of core and satellite species is not
new in microbial ecology (van der Gast et al., 2011), although similar
terms have arisen to refer to the less abundant component, such as
the rare biosphere (Lynch and Neufeld, 2015), or conditionally rare
taxa (Shade and Gilbert, 2015; Shade et al., 2014). While satellite
taxa would follow the trade-off as a result of fitness equalizing mecha-
nisms, core taxa would be driven by stabilizing mechanisms tending to
maintain similar persistence across them, but higher than for satellite
taxa. Conversely, within the satellite sub-community, in the presence
of equalizing mechanisms, any increase in colonization (or persistence)
ability would be followed by decreases in persistence (or colonization)
ability. Moreover, core taxa are common, abundant species following a
log-normal abundance distribution (Magurran and Henderson, 2003).
As Cadotte et al. (2006) pointed out, in principle, other kinds of taxa
could potentially exist: Hutchinsonian "demons", that would compet-
itively exclude other taxa, and evolutionary "losers", that would not
colonize nor persist in the community. The microbial communities we
have analyzed appear to be compatible with this conceptual view. The
three studied communities showed a log-normal abundance distribution
for the core component, as expected, and our observation of ecologi-
cal coherence in colonization and persistence within taxonomic levels
might well indicate niche differences (Philippot et al., 2010) produced
by stabilizing mechanisms. Besides, the satellite component of the
aquatic communities under study showed a slope of approximately -1
compatible with a colonization – persistence trade-off under species
colonization-extinction independent dynamics. Conversely, the soil
community showed a similar trade-off (with a slope close to -1) for
both core and satellite taxa. This might be due to the way a soil
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compaction experiment affected this microbial community. While the
microbial aquatic communities might be considered at a seasonally-
driven steady state, the soil community was intentionally poised out
from its natural steady state. For instance, soil compaction may have
led to increased anaerobiosis driving the community out of and far
away from a previous natural colonization-extinction equilibrium. Fur-
thermore, the relaxation time to the new steady-state in response to
this disturbance may have also differed for the different treatments
(Hartmann et al., 2014).

In the context of metacommunities, stabilizing forces have been
associated with SS, while equalizing forces to NT (Adler et al., 2007).
SS and NT have been proposed alternatively as the major mechanisms
controlling microbial community assembly. In fact, the importance of
SS has been evaluated against other metacommunity archetypes as NT
(Langenheder and Székely, 2011; Lee et al., 2013) or mass effects (ME)
(Souffreau et al., 2014; Van der Gucht et al., 2007) with contrasting
results. Also, NT has been tested and proposed as the dominant force
structuring communities (Ofiteru et al., 2010; Woodcock et al., 2007).
The dichotomies niche – neutral (Dumbrell et al., 2010; Ferrenberg
et al., 2013) or stochastic – deterministic (Caruso et al., 2011; Wang
et al., 2013; Zhou and Ning, 2017) are similar to the SS – NT divide,
and are often used as synonyms. The most accepted view seems to
be that initial steps in community assembly are dominated by neutral
processes, while SS characterizes later stages, but this view is rarely
put in the context of coexistence mechanisms. Our work adds to
this discussion the fact that are precisely satellite species the ones
governed by fitness equalization. In the light of our findings, this
important component of natural communities would be integrated by
ecologically equivalent, rare species, at the lower end of the abundance
spectrum, undergoing a type of temporal dynamics consistent with
simple colonization-extinction independent dynamics.

Equalizing mechanisms can evolve in species-rich communities with
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strong dispersal and recruitment limitation (Hubbell, 2006), although
microbial communities are unlikely affected by these limitations. How-
ever, experimental settings have repeatedly shown that microbial trade-
offs evolve easily in controlled, species-poor microbial experiments
(Huang et al., 2017; Yawata et al., 2014), and might be key in mi-
crobial communities (Litchman et al., 2015). A potential equalizing
mechanism might be horizontal gene transfer, as it has been proposed
that it produces highly flexible gene pools associated with specific
habitats (Polz et al., 2013), that would equalize fitness and increase
niche overlap. Also, nonlinear responses to fluctuating environments
can act as equalizing or stabilizing mechanisms (Chesson, 2000). Sta-
bilizing mechanisms are widespread in microbial communities, e.g.,
resource partitioning, dormancy (Jones and Lennon, 2010), or cross-
feeding (Goldford et al., 2018), although the processes underlying these
mechanisms are rarely studied or understood at trait or biochemical
levels. The strength of these stabilizing mechanisms may well allow
the satellite members of the community to coexist in the presence of
the core component.

The purpose of this study was to examine the importance of equal-
izing mechanisms for microbial coexistence. Our results rely on a
dynamic stochastic model, rooted in classic ecological theory. Al-
though its assumptions are drastically simplifying (species equivalence
and species independence), it should be viewed as an approximation
to the actual underlying dynamics of the community or its compo-
nents (when relaxing the equivalence assumption). We used this model
to estimate extinction and colonization rates from temporal datasets
(Alonso et al., 2015; Ontiveros et al., 2019). However, the accuracy of
these estimates should be assessed carefully. First, very rare species
may be there, but under detectability levels (MacKenzie et al., 2003;
Ontiveros et al., 2019; ?). Second, when persistence times are too short
compared to inter-sampling times, these estimates may not be reliable.
If taxa go in and out from the system too rapidly, their estimated
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rates may be biased (see Appendix B). This possible bias is the reason
why some labile taxa (less than 13 % in all cases) were removed from
our analyses. The exclusion of these taxa did not change the overall
patterns reported in this study.

The relevance of equalizing mechanisms for coexistence might have
been overlooked in natural microbial communities. However, they
may be relevant in highly diverse ecosystems, especially acting on
occasional taxa, as previously suggested (Langenheder and Székely,
2011). Here we argue that, as a result of fitness equalization, occasional
taxa should show a persistence–colonization trade-off with slope -
1 in logarithmic axes. For satellite species, this pattern may well
hold beyond the microbial world, which would be worth exploring in
the future. Long-term temporal studies are needed to improve our
knowledge of coexistence mechanisms. We hope that framing this
discussion in the context of equalizing vs. stabilizing mechanisms
would add clarity to current knowledge on the forces maintaining high
microbial diversity on Earth ecosystems.
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115 Chapter 6

General decline in the diversity of
the airborne microbiome under
future climatic scenarios

Abstract

Microorganisms have a profound impact on global functioning and
huge dispersal potential. Many of them move attached to aerosols,
where they can travel long distances, survive and even have metabolic
activity. The fate of airborne microbes is influenced by environmental
and climatic variables that are predicted to change, with unknown
consequences. Using a 7 yr. temporal monitoring of airborne microbes
collected in the Central Pyrenees (LTER node Aigüestortes), we have
developed a new predictive method, firmly rooted in the Theory of
Island Biogeography, that addresses the temporal evolution of biodi-
versity dynamically in response to associated environmental covariates
linked to future climatic scenarios. In the worst-case scenario, general
declines in bacterial richness, idiosyncratic responses for the eukaryal
component, and changes in seasonality are expected, motivated by
contrasting importances of the environmental filtering of the atmo-
sphere and the origin of the aerosols. Also, we predicted lower richness
of two major eukaryotic putative pathogen groups related to plant
and human pathogens. Our results highlight the need for new the-
oretical and predictive tools, coupled with high-quality information
collected by long-term monitoring, to predict and understand the
complex consequences of future climatic scenarios.

Humanity is failing to solve ecological challenges as the emis-
sion of greenhouse gases, deforestation, and loss of species
(Ripple et al., 2017), and approaches a mass extinction event

(Barnosky et al., 2011). Loss of species is likely to accelerate further
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(Johnson et al., 2017), while climate change already has effects on
plants and animals in aquatic and terrestrial ecosystems (Parmesan,
2006). Hence, ecological forecasting is imperative in order to revert,
avoid, or mitigate the effects of climate change (Clark et al., 2001).
Throughout the history of Earth, microbes have changed the climate,
and climate has changed the microbes (Cavalier-Smith et al., 2006;
Hutchins et al., 2019). Microorganisms can modify ecosystem processes
or biogeochemistry on a global scale, and we start to understand their
role and potential involvement in changing the climate (Singh et al.,
2010). However, the effects of climate change on microbial communities
(i.e., diversity, dynamics, or distribution) are rarely addressed (see Cav-
icchioli et al. 2019). The development of microbial communities with
climate change is central to identify and understand climate-ecosystem
feedbacks.

During the last century, microorganisms are being moved at un-
precedented scales changing species distributions due to waste disposal,
tourism, and global transport (Zhu et al., 2017). Physical forces such as
air mass circulations and oceanic water currents disperse vast amounts
of microorganisms and interconnect remote environments. The origin
of air masses from marine or terrestrial environments, as well as from
anthropogenic-impacted systems, mainly shapes the atmospheric air
microbiome (Cáliz et al., 2018). Airborne microorganisms can travel
and survive between continents (Creamean et al., 2013), settle on
remote environments, and create geographic patterns (Barberán et al.,
2015). The circulation of atmospheric microorganisms contributes
to global health and ecological concerns such as the dispersion of
pathogens (Brown and Hovmøller, 2002; Kellogg and Griffin, 2006)
and antibiotic resistances (Mazar et al., 2016), cloud formation and
precipitation (Creamean et al., 2013), and colonization of pristine envi-
ronments (Hervàs et al., 2009; Hervas and Casamayor, 2009). Airborne
microorganisms also play a role in the formation of the phyllosphere,
which is one of the vastest habitats of the earth’s surface (Griffin and
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Carson, 2015; Vorholt, 2012) involved in nutrient cycling (Guerrieri
et al., 2019; Nadkarni et al., 2011). Microbial mass movements can
change the geographic distribution of microorganisms on a global scale,
and therefore have ecological and socioeconomic consequences (Pecl
et al., 2017).

Revisiting the aforementioned study (Cáliz et al., 2018), we have
examined the effects of climatic variables and the source of aerosols
(indicated by the chemical composition of depositions) on the diversity
of atmospheric microbial communities. Airborne samples were fort-
nightly collected on a remote high-altitude mountain in the Central
Pyrenees (Long Term Ecological Research site Aigüestortes, NE Spain)
over seven years. We collected washed out aerosols in wet deposition
that has recently been proven to be a proper method for monitoring
the long-term intercontinental exchange of high-atmosphere airborne
microorganisms (Triadó-Margarit et al., 2019). The dataset is unique
to explore the temporal dynamics of the long-range dispersal of air-
borne bacteria, fungi, and protists. Based on the identification of the
main drivers that determine the diversity of airborne microorganisms,
we have simulated possible future responses for these communities
according to three commonly used climatic scenarios. We anticipate
here that simulations indicate general declines in bacterial richness
and changes in seasonality for both eukaryal and bacterial compo-
nents. Our results highlight the use of ecological theory to understand
long-distance airborne dispersal of microbial taxa.

6.1 Material&Methods

6.1.1 Data

Briefly, aeroplankton samples were collected twice monthly at the
LTER-AT node site, within the protected area of the Aigüestortes i
Estany de Sant Maurici National Park (42◦33’N 0◦53’E; the Pyrenees,
northeastern Spain). DNA was extracted using the Mobio PowerSoil
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DNA Isolation Kit (Mobio Laboratories). PCR and high-speed multi-
plexed SSU rRNA gene Illumina MiSeq sequencing were carried out for
16S and 18S rRNA genes. Raw rRNA gene sequences were processed
using the UPARSE pipeline, and OTUs (97% identity) were taxonomi-
cally assigned with SILVA_119. The entire genetic dataset is available
in the National Center for Biotechnology Information Sequence Read
Archive under accession no. PRJEB14358. Airflow trajectories, cou-
pled with the chemical characterization of rain/snow samples, indicate
that air mass origin drives the seasonality of aeroplankton and affects
long-range dispersal of airborne microbes. For more details on the
environmental metadata used, please see below and Cáliz et al. 2018.

The identification of potentially pathogenic microbes was conducted
in the same way as previously done by air samples indoors (Triadó-
Margarit et al., 2017) and biofilm and water samples (Auguet et al.,
2017; Subirats et al., 2017). Briefly, BLAST analyses (Altschul et al.,
1990) were used to examine representative OTU sequences against
an in-house database of obligate and opportunistic pathogens. Only
those OTUs having sequence identity values above 98% and highest
BLAST alignment coverage values (threshold set at 90%) to invento-
ried pathogens were considered for downstream analysis. As stated
earlier (Subirats et al., 2017; Triadó-Margarit et al., 2017), the re-
sults presented here should be regarded only as indicative of putative
pathogenic microbes, as additional confirmation steps would be needed
to corroborate the pathogenic capacity of the matched OTUs fully.

6.1.2 Estimation of colonization-extinction dynamics

We have followed Alonso et al. 2015 in order to estimate the air
microbiome dynamics. Briefly, our methodology is based on the simplest
stochastic model of Island Biogeography (Simberloff, 1969). This
dynamic model indicates that the change in richness in a site follows
equation 1.3:

dS

dt
= c(SP − S)− eS
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where S corresponds to the OTU-richness in the site, SP to the number
of species in the regional pool (i.e., all OTUs identified) and c and e
correspond to colonization and extinction rates, respectively. Alonso
et al. (2015) show that it is possible to estimate these colonization and
extinction rates from temporal community data. Additionally, these
colonization and extinction rates might not be constant and could vary
alongside several environmental variables. The easiest way to model
this dependency is:

ct = c0 +
F∑
i=1

αiYit; et = e0 +
F∑
i=1

βiYit

where Yit represents the value of the environmental variable Yi at time t.
These coefficients αi and βi can be estimated with a greedy algorithm
included in R Package island (Ontiveros et al., 2019), using function
greedy_environmental_fit .

Model selection procedure

We started estimating the colonization and extinction rates of the
simplest stochastic model of island biogeography (named as model
S). This model can be considered as a null model in which all OTUs
share the same dynamics, assuming equivalence and independence
among them. We examined another model that relaxes the equivalence
assumption (model P), based on the estimation of both rates for each
group of OTUs ascribed to high taxonomic ranks (37 and 12 groups
for bacteria and eukarya, respectively). A similar model (model A)
to the previous one considered separately those groups of abundant
taxonomic ranks as in Cáliz et al. 2018 (>1% relative abundance; 12
and 13 groups for bacteria and eukarya, respectively), while the rest
of ranks (<1% relative abundance) were included in the same group
named as "other" bacteria or eukarya. We also devised a model that
examined the influence of environmental covariates in the dynamics of
the whole community, assuming equivalence among the OTUs (model
E). Finally, we combined the model A and E in the last model A * E

119



Chapter 6: Airborne microbiome dynamics

to consider the influence of the environmental variables within each
group. For the subset of OTUs identified as pathogens, we separated
them based on their putative host instead of the taxonomic ranks, in
a model that relaxes the equivalence assumption (model G). We also
combined models G and E in the last model, G * E, to consider the
influence of the environmental variables within each host.

Sampling effort was considered in the models that included envi-
ronmental effects, and was treated as another environmental covariate.

Validation of the model

We have used R2 as a means for validation. R2 is defined as 1 − ε2

ε20

where ε2 represents the mean quadratic error of a simulated model and
ε20 the mean quadratic error of a null model of choice. We have selected
the mean observed richness as our null model. Given so, our R2 would
represent the relative performance of our dynamic simulations against
the static estimator that is the mean value. We have also checked
the ability of our models to predict unencountered data, estimating
them with three-quarters of the temporal series, and simulating the
remaining one.

6.1.3 Prediction of microbial responses to climate change

We downloaded regional climate models from EURO-CORDEX. We
selected the simulations with monthly mean, maximum, and mini-
mum temperatures that were bias-corrected and had predictions for
three different Representative Concentration Pathways (RCP), RCP2.6,
RCP4.5, and RCP8.5, for the European domain at a resolution of 0.11
degrees. The different RCP scenarios are named after their relative
radiative forcing against the baseline of 1750. RCP2.6 represents a
forcing of 2.6 W/m2, a scenario with intense mitigation with future
negative emissions, RCP4.5 corresponds to stabilization at 4.5 W/m2,
and RCP8.5 is the high emissions scenario, with radiative forcing 8.5
W/m2 increasing even after 2100.
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Our search gave, as a result, the models MPI-M-MPI-ESM-LR-MPI-
CSC-REMO2009 (with two replicates that were averaged) and ICHEC-
EC-EARTH-SMHI-RCA4. We selected only the prediction at the cell
of the grid that corresponded to our study site, obtaining said temper-
atures. We obtained an ensemble model by averaging the two models,
ranging from 2001 to 2100.

Future temperatures

In order to simulate future temperatures, we first obtained data of
daily mean, maximum, and minimum temperatures (together with
humidity and irradiance) for the years studied, 2007 – 2013, from the
nearest meteorological station, corresponding to Boi (2535 m.a.s.l.). We
obtained monthly averages, and we estimated the mean and standard
deviation of the monthly averages. Then, we calibrated the ensemble
temperatures for the same period (2007 – 2013), equalizing the mean
and standard deviation of these temperatures with the observed ones,
using the equation yi = x̄2+xi−x̄1 · σ2

σ1
, where x̄1 and x̄2 are respectively

the means of the ensemble and observed temperatures and σ1 and σ2

their standard deviations. Future temperatures were then transformed
accordingly for the period 2021 – 2100.

Future environment

To obtain simulations of the future conditions of the Pyrenees, we
first identified which variables correlated with any of the temperature
variables, finding that pH, ANC, Cond., Cl, SO4, NO3, Na, K, Ca, Mg,
DIC, DOC, TN, Hum., Irr. and Samp. Eff. did, while Rain and TP
did not and were subsequently excluded from the following steps. Next,
we found the generalized linear model of Tmax, Tmed, Tmin, and
their interactions that best explained (lower AIC) each environmental
covariate. Using these models and the previously predicted future
temperatures, we obtained predicted values for the environmental
covariates to which we added a random residual, chosen via a random
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uniform number in the [0, 1] that represented a quantile of the observed
distribution of residuals.

In the case of the two excluded environmental covariates, the future
values of the environmental covariates were chosen as the value given
by the quantile associated with a uniform random number, taking into
account seasonality for TP, as we did not detect seasonality for Total
Rain. The results of this procedure were then the future values for the
environmental variables. This procedure was repeated 100 times in
order to obtain more reliable estimates and avoid unwanted biases in
the prediction of future environmental conditions.

Prediction under future regimes

We predicted species richness for each group fortnightly during the
period 2021 – 2100, with the previously estimated expressions for colo-
nization and extinction and the future environmental conditions, using
functions rates_calculator, cetotrans, and data_generation of R
Package ’island’. We repeated this procedure 100 times for each of
the replicates of the future environmental conditions.

6.1.4 Statistical analyses

We have calculated Pielou’s evenness to measure how equal bacterial
and eukaryal communities are. As we are dealing with species richness
but not abundances, we have used a richness-based Shannon Index for
each predicted sample, with S equal to the number of groups in the
best model, and pi being the proportion of OTUs of group i within the
total number of OTUs in the sample.

6.2 Results

The model selection procedure indicated that the model A * E, which
considered the most abundant high-rank taxonomic groups and the
environmental variables, was the model with lowest AIC among all
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examined for both bacteria and eukarya (Table C.1). Moreover, we
used an estimation of R2 to validate the fit of this model C.1), which
included each considered group in the best model (Figures C.2, C.3).
For the whole temporal series, we found an R2 of 0.323 (0.303) for the
bacterial (eukaryal) model estimated with the whole dataset, while
these values descended to 0.324 (0.233) for the model estimated with
three-quarters of the temporal series. For the last quarter of the data,
R2 was 0.229 (0.304) for the bacterial (eukaryal) models estimated
with the whole series, while the validation model performance was as
good as the static null model that was the mean (R2 0.003 for Bacteria
and 0.058 for eukarya).

The dynamics of bacteria were strongly related to climatic factors
such as temperature, irradiance, and humidity (Figure 6.1). Overall,
bacterial dynamics reacted coherently to changes in minimum and
mean temperatures. Moreover, the colonization of the richest bacterial
groups (i.e., Alphaproteobacteria and Bacteroidetes) increased with
DOC enriched depositions. Nitrogen compounds slightly influenced
the dynamics of most bacteria. In contrast, the origin of aerosols,
suggested by the chemical composition of depositions, determined
the dynamics of the most abundant and richest eukarya (Figure 6.1);
ANC, conductivity, Ca, and Cl strongly influenced the colonization
of Basidiomycota and Ascomycota. The temperature fluctuations
also determined the dynamics of other abundant eukarya such as
Chytridiomycota and Rhizaria. The humidity and irradiance slightly
influenced the dynamics of most eukarya. Model parameters and
richness for each group are shown in tables C.2 and C.3.

We have found that temperature is the key driver of the dynamic
of aeroplanktonic communities, either directly (Figure 6.1) or through
its relation with the rest of the environmental variables considered in
this study. The temperature in the study site is expected to steadily
increase up to 5oC by the end of this century in the worst-case scenario
and to have slight increases in the other two scenarios, as shown by the
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6.2. Results

Figure 6.2: Trends in richness and evenness for the period 2021 – 2100, for
projections of three Representative Concentration Pathways (RCPs), corresponding
to emissions decline, stabilization or increase scenarios (2.6, 4.5, 8.5 respectively).
A) Relative change from 2020 levels of bacterial OTU richness. B) Evenness for
bacterial groups. C) Relative change from 2020 levels of bacterial OTU richness.
D) Evenness for eukaryal groups.

ensemble of downscaled RCMs for the maximum, mean and minimum
temperatures (Figure C.4). This increase in temperature is expected to
influence the richness of microbial communities greatly, with a larger
impact as the temperature anomaly gets higher (Figure 6.2A-C). In the
worst-case scenario, RCP8.5, we found that bacterial richness would
decrease more than 15%, while eukaryal richness would be stable until
2060 and decrease slightly then. These changes in richness would be
accompanied by almost no change in bacterial evenness and an increase
in eukaryal evenness (Figure 6.2B-D), meaning that the changes in
bacteria would be uniformly distributed. In contrast, the changes in
eukarya would affect mainly the richest groups. In the worst-case

125



Chapter 6: Airborne microbiome dynamics

Figure 6.3: Change in seasonality for the period 2081 – 2100 in the three
different scenarios. Upper left, bacterial OTU richness. Upper right, bacterial
evenness. Bottom left, eukaryal OTU richness. Bottom right, eukaryal evenness.
The boxes are delimited by quartiles Q1 and Q3, and whiskers correspond to 1.5
interquartile ranges from the corresponding quartile.

scenario, the majority of bacterial groups would decrease (Figure C.5),
while eukarya would show opposite tendencies between the different
groups (Figure C.6), producing stable levels of richness due to replace-
ment. For example, Alphaproteobacteria and Actinobacteria richness
would decrease over 15%, with a lesser decrease in Bacteroidetes and
stability in Betaproteobacteria, while for eukaryal groups we predict
more than 30% increase for Alveolata, stability for Chytridiomycota
and decreases for Basidiomycota and Ascomycota. The intermediate
scenario, RCP4.5, shows only small changes for Bacteria, and almost
no change for Eukarya, both for the whole communities and the specific
groups.

The changes in richness were not equally distributed seasonally
and got amplified towards the end of our predictions, as Figures C.7
and C.8 suggest, so we show them for the period 2081 – 2100 (Fig-
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ure 6.3). For Bacteria, the richness loss in winter and summer is
more pronounced, even in the RCP4.5 scenario, also for the abundant
groups Actinobacteria, Alphaproteobacteria, and Bacteroidetes, while
for Betaproteobacteria we predict slight summer increases (Figure
C.9). Evenness highlights again that these losses are almost equally
distributed. In the case of Eukarya, winter and summer displayed
more richness loss, while Spring and Autumn remained at the same
levels in the worst-case scenario, a tendency in part determined by
the richest groups, Ascomycota and Basidiomycota. At the same time,
Alveolata tends to increase and Chytridiomycota to be somewhat stable
(Figure C.10). The evenness for the eukaryal community shows that
the richest groups are the most affected in this scenario, RCP8.5. In
the intermediate scenario, the changes are negligible. We expect a more
marked seasonality for both Bacteria and Eukarya if the worst-case
scenario is confirmed.

We repeated the same procedure applied to the aeroplankton com-
munities over bacterial and eukaryal putative pathogens. We found
that the best models included the influence of the environment over
pathogen groups (Table C.4). We focused on the specific case of plant
and human eukaryal pathogens, as those are among the most studied
and interesting groups for health concerns (Figure 6.4 and Table C.5).
Putative eukaryal plant pathogens, contrary to the typical eukaryal
OTU, are more affected by climate than by their origin. The main
drivers of the dynamics of this group are minimum and maximum
temperatures, SO4, and Cl. We expect that the richness of this group
might decrease up to a 15% in the worst-case scenario and about a 5%
in the intermediate scenario, with no decrease in the RCP2.6 scenario.
These losses are higher in summer and winter. In the case of putative
human pathogens, the drivers of their dynamics were TP, minimum
temperature, K, TN, and Mg. We would expect a slight decrease in the
richness of this group in the worst-case scenario, especially in summer,
while in more benign scenarios, almost no differences are expected.
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Figure 6.4: Richness trends and seasonal predictions for plant and human
putative eukaryal pathogens. A) Variation in richness for plant pathogens. B)
Seasonal prediction for plant pathogens in 2081 – 2100. C) Variation in richness
for human pathogens. D) Seasonal prediction for human pathogens in 2081 – 2100.

6.3 Discussion

In this work, we have used a simple approach based on ecological theory
to predict species richness dynamics of airborne microbial communi-
ties under three different climate change scenarios (RCP2.6, RCP4.5,
RCP8.5), finding richness and composition changes for the most abun-
dant groups. As far as we know, this is the first prediction on the fate
of aeroplanktonic communities under climate change. In the follow-
ing paragraphs, we discuss the main findings of this work, and next,
we examine the possible consequences for related communities and
ecosystem processes.

We have found that bacterial and eukaryotic communities are dif-
ferently affected by climatic and chemical variables associated with the
origin of the aeroplankton. Bacteria were more affected by climatic
variables than by origin, while Eukarya depended more on the origin
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than on climate. This result confirms previous research (Cáliz et al.,
2018), and reflects the susceptibility of bacterial cells to atmospheric
conditions (Chudobova et al., 2015; Smith et al., 2011) while eukaryotic
cells may mainly correspond to resistance forms. Bacterial richness
decreased whereas evenness remained stable. Conversely, eukaryal
richness barely changed while eukaryal evenness increased, which in-
dicates that the richest groups would be proportionally more affected
than species-poor groups. Ascomycota and Basidiomycota are among
the most affected groups, although some of them are classified as
black-yeasts, which are known to be highly resistant against different
environmental stresses. These two groups are known to discharge
their ascospores and basidiospores under humid conditions (Elbert
et al., 2007). Hence, the model may reflect reductions in spore dis-
charge, or, changes in the origin of the aeroplankton due to altered air
mass circulation patterns. The considerable decrease in eukaryal plant
pathogens also points to this interpretation. Besides, it is interesting
that SAR - Alveolata were expected to increase, as they include en-
cysting groups that dominate arid and semi-arid regions (Bates et al.,
2013), a circumstance that would support changes in the source.

One of the features of airborne microbial communities is their
seasonality (Bowers et al., 2013; Cáliz et al., 2018; Franzetti et al.,
2011). Our baseline (RCP2.6) predictions of richness show matches
and mismatches with the previous analysis of this temporal series
(Cáliz et al., 2018). The seasonal pattern of bacterial richness is
confirmed in this study, and we report significantly higher richness in
autumn for Eukarya, that were not found to be significant previously.
For the analysis based on indicator values, which take into account
abundance and occurrence, we found that groups as Acidobacteria,
Planctomycetes, Alphaproteobacteria, or Gammaproteobacteria for the
bacterial component of the community, and Amoebozoa, Chlorophyta
and Alveolata matched their previously reported seasonal trends. In
contrast, groups as Ascomycota, Bacteroidetes, Deinococcus-Thermus,
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or Deltaproteobacteria do not match the patterns showcased by the
indicator values. Other studies also indicate the seasonality of airborne
microbes and they are confirmed in our baseline predictions, as the
dominance of Actinobacteria in winter (Franzetti et al., 2011) or the
dominance of Firmicutes in autumn or Gammaproteobacteria and
Bacteroidetes in winter and spring (Bowers et al., 2012). However,
the reported dominance of Alphaproteobacteria in summer for both
studies was not met in our predictions. In the worst-case scenario
(RCP8.5), many of the seasonal trends found would change, e.g., spring
would be the richest season for Bacteria or winter and summer would
present the lowest eukaryal richness. These changes would tend to
affect equally all bacterial groups, which reflects again their increased
susceptibility to the environmental filter that represents for them the
atmosphere (Chudobova et al., 2015; Delort et al., 2017), whereas they
would hit harder the richest eukaryal groups throughout all seasons,
probably reflecting the change in origin and air circulation patterns that
increased temperatures suggest. The consequences of these seasonal
changes may risk diversity as complex underlying associations might
be altered (Tonkin et al., 2017).

Many predictions of climate change for ecological communities im-
ply loss or interchange of species. The effects on other communities
and ecosystem processes of these richness losses are complex to predict,
especially in the field of bioaerosols, where knowledge gaps are still wide
(Fröhlich-Nowoisky et al., 2016). Now, we will outline some possible
consequences of the richness losses predicted by our models. We will
cover themes as pathogen dispersal, sentinel environments, or cloud
formation. Remote alpine lakes are especially suited for ecological
research and act as sentinel environments (Catalan et al., 2006). Air-
borne microbes have the potential of colonizing these pristine lakes.
However, the importance of these invasions may change as increased
temperatures are expected to decrease microbial richness (this study)
and affect composition (Bowers et al., 2012) in airborne communi-
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ties. Moreover, microbial abundance is expected to decrease due to
increased temperatures in alpine lakes (Jiang et al., 2019). Additional
elements may influence those communities, as expected increases in
aridity and temperatures that reduce soil microbial abundance and
diversity (Maestre et al., 2015), increasing dust loads in the atmo-
sphere, changes in soil community composition (Matulich et al., 2015),
or concentrated dust depositions in snow (Weil et al., 2017). We might
end up with different microbial communities than the current ones, and
these changes may percolate and alter the riverine ecosystems after
the lakes, due to priority effects, as has been shown in the evolution of
a freshwater network (Ortiz-Álvarez et al., 2019; Ruiz-Gonzalez et al.,
2015). Bacteria have been shown to help form clouds, although it is un-
clear whether species identities and status influence their action (Delort
et al., 2017). Increased dust loads may compensate partially or totally
the possible effect on cloud formation of a less diverse aeroplankton,
as we predict.

The phyllosphere is one of the vastest habitats in the Earth (Griffin
and Carson, 2015; Vorholt, 2012) and may exert a great influence ex-
change processes of matter and energy with the atmosphere (Nadkarni
et al., 2011), such as nitrification (Guerrieri et al., 2019). It is unclear
the importance of airborne microbes on leaf community composition
(Griffin and Carson, 2015), although the influence of airborne com-
munities has been shown experimentally (Maignien et al., 2014), so
the predicted changes may influence the phyllosphere at local scales.
However, the role of airborne microbes as plant pathogens is widely
recognized (Brown and Hovmøller, 2002). Our prediction for putative
eukaryal plant pathogens indicates a sharp decline in richness for the
RCP8.5 scenario, particularly in winter and summer, probably due
to the influence of temperature. However, previous studies suggest
that the importance of aeroplankton, including airborne bacterial food
pathogens, may increase due to higher dust activity and faster winds as-
sociated with heavy storms or cyclones (DeLeon-Rodriguez et al., 2013;
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Hellberg and Chu, 2015). For putative eukaryal human pathogens,
expected decreases are much more limited. In this case, a previous
study shows reduced concentrations of airborne pathogens (van Leuken
et al., 2016). Nevertheless, further mechanistic approaches are needed
to improve predictions of the fate of airborne pathogens under global
change (Fröhlich-Nowoisky et al., 2016).

Overall, this pioneering study set out to investigate the dynamics
of airborne microbial communities in relation with the environmental
variables that affect them, and subsequently, the effect of climate
warming on those. Our simulations have shown apparent modifications
of the aeroplanktonic communities for three future scenarios that might
serve as new hypotheses/warnings to be tested in future research. The
most important limitation of this study lies in the fact of being centered
in a single but comprehensive temporal dataset, being our findings
related to general atmospheric circulation patterns. Notwithstanding
the exploratory nature of our study, in the current state of climate
’emergency’, it is our imperative as scientists to warn, advise and build
predictive tools to help prevent, mitigate or revert the consequences
of human actions. The development of mechanistic models based on
ecological theory, together with high-quality, comprehensive datasets
and transdisciplinary work, may provide us with the ability to cope
with some of the ecological challenges that lie ahead at the dawn of
the twenty-first century.

Supplementary material

Additional tables and figures can be found in Appendix C.
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Individualistic and organismic
phytoplankton communities in the
reoligotrophication process of a
lake

Abstract

Freshwater ecosystems are threatened by biological invasions, pol-
lution, climate change, and modifications in land use. In Western
countries, after decades of increased nutrient loads, freshwater ecosys-
tems have been undergoing the reverse process, reoligotrophication.
This process is known to produce critical transitions and alternative
stable states, which are difficult to predict and manage. In the context
of community ecology, it has been theorized recently that an environ-
mental gradient would reveal the nature of ecological communities,
either organismic sensu Clements or individualistic sensu Gleason.
Organismic communities emphasize the role of biotic interactions and
positive feedback loops, while the individualistic ones stress the impor-
tance of species adaptations to local environments. We have devised a
four-step approach to identify individualistic versus organismic com-
munities in a long time-series of phytoplankton in lake Zürich, a deep
perialpine lake undergoing reoligotrophication. The four steps are i)
characterization of the environmental change as abrupt or gradual,
ii) identification of abrupt compositional changes, iii) modelization
of species responses, and iv) search for positive feedback loops. Our
results show that the divide between winter and summer communities
seems properly individualistic, while there are winter communities that
respond abruptly to a gradual environmental trend showing evidence
of positive feedback loops, characteristic of organismic communities.
This raises the debate about the relevance of critical transitions and
alternative stable states in phytoplankton communities and highlights
the importance of long-term studies to advance our understanding of
community dynamics.
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General discussion

Throughout this thesis, I have developed theoretical aspects of
TIB for the exploration and quantification of the temporal dy-
namics of ecological communities, with a particular emphasis

on microbial communities. The companion R package ’island’ has
been presented thoroughly (Chapter 3), and it has been useful in a
wide range of issues, such as temporal dynamics (Chapter 4), coex-
istence (Chapter 5), niche estimation (Chapters 6, 7), global change
(Chapters 6, 7) or alternative stable states (Chapter 7). In general,
this stochastic model of island biogeography helps to evaluate three
of the high-level processes affecting ecological communities (Vellend,
2010, 2016), drift, dispersal, and selection, in an effective way. The
remaining high-level process, speciation, lies outside of the scope of
this thesis, although models linking colonization and extinction with
speciation exist (Valente et al., 2015).

Here, first, I will revisit the concept of effective models, such as the
ones I have developed throughout my work based on the stochastic
dynamic model of island biogeography. Then I will cover three partic-
ular central topics in ecological research, with an especial emphasis on
microbial communities and taxa: i) the relative importance of dispersal
and selection, ii) the concept of niche, and iii) the role of stochasticity.
After that, I will briefly examine the limitations and some implications
for conservation of the model. Finally, as future work and perspectives,
I will outline extensions of the basic stochastic model. Two of those
can be equally used as a point of departure for likelihood-based data
analysis. First, models that include a reservoir, which can account for
inactive/dormant/resistant forms of taxa in, for instance, seed banks
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in the soils or sediments, and second, model extensions that consider
explicitly the spatial distribution of sampling sites linked by migration.

8.1 An effective dynamic model

The importance of TIB in ecology is paramount. Although recently re-
visited (Losos and Ricklefs, 2010), TIB is still an active field of research.
The incorporation of trophic requirements (Cirtwill and Stouffer, 2016;
Gravel et al., 2011; Massol et al., 2017), biotic interactions and envi-
ronmental constraints (Cazelles et al., 2016b) has been accomplished
more recently. Additionally, the derivation of the likelihood of the
TIB colonization/extinction processes (Alonso et al., 2015) for generic
sampling time schemes paved the way to the research applications
and further theoretical developments in this thesis. However, specific
questions in island biogeography remain elusive (Santos et al., 2016;
Warren et al., 2015). Are communities close to a stationary state? How
predictable is community assembly? I have explicitly addressed the first
question in chapter 4, along with the temporal evolution of patterns
of β-diversity, and the very topic of prediction has been thoroughly
addressed throughout this thesis.

Despite the success of TIB, something has been overlooked. The
stochastic theory of island biogeography can be used as an effective
theory. In science, an effective theory is a scientific theory to describe
a particular set of observations, but explicitly, without claiming or
involving that the assumptions and mechanisms employed in the theory
have a direct counterpart in the actual causes of the observed phenom-
ena that the theory seeks to explain. The assumptions of our models
are ideal or non-realistic, and, therefore, we are not claiming they are
precisely true in nature. While it is straightforward to relax the species
equivalence assumption (see Chapters 4, 5, 6, and 7), the assumption of
species independence cannot be relaxed within this framework. Despite
this limitation, our approach can be even used to look for potential
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species interactions, as we have shown in Chapters 3 and 7. We charac-
terized each focal species independently by its associated parameters,
assuming that they represent the average influence of the whole range
of other potentially interacting species. If we drew a parallel with
physics, each species would be embedded in the mean field that the
other species create. To some extent, our models are effective, as mean
field theories are in other sciences. Future work might examine the
influence of the violation of the equivalence assumption over parameter
estimation.

8.2 Dispersal and selection in microbial
communities

Selection refers to the set of ecological processes that drive differential
species growth and death, determining differential overall species fitness
and potentially controlling species assembly in distinct communities
(Vellend, 2010, 2016). Selection, specifically environmental filtering, has
been deemed the main process that structures microbial communities
(Lozupone and Knight, 2007; Nemergut et al., 2013), that is, "the
environment selects". However, Baas Becking (1934) consideration of
"everything is everywhere" has been disputed (Martiny et al., 2006).
Microbial taxa show biogeographical patterns (Bahl et al., 2011; Bates
et al., 2013), endemic species (Barberán and Casamayor, 2011; Whitaker
et al., 2003), and distance – decay relationships (Reche et al., 2005;
Soininen et al., 2011). I interpret these pieces of evidence as microbial
communities being poised close to a balance between selection and
dispersal. Coming back to metacommunity archetypes, where dispersal
is related to NT (PD and ME too) and selection to SS, I discuss
this balance in the light of the dichotomy NT – SS, where the subtle
balance between the intensity of these two processes (usually favoring
SS) determines community assembly.

The results of Chapter 5 pointed to the existence of two distinct
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components in the studied communities, core and satellite taxa. Core
taxa are characterized by their abundance and persistence, and their
coexistence is determined by stabilizing mechanisms, which tend to
decrease niche overlap. On the contrary, satellite taxa are rare and
subject to equalizing mechanisms, which tend to decrease fitness dif-
ferences. In my opinion, our ability to detect the two components
might be determined by the balance between selection and dispersal.
In highly selective environments, an SS scenario, fitness differences
among core and satellite taxa might decimate the latter, diminishing
the relative importance of the satellite component in favor of the core
component that may become stronger and richer in species. However,
since rare taxa always outnumber core ones, in highly dispersal-driven
environments, a ME scenario, dispersers would dominate, leaving only
a few core species, if any, around, which would make very difficult to
sort them out from satellite species. As a consequence, this would give
rise to a common colonization – persistence signature for all species. A
similar framework has been proposed in consumer-resource competition
models (Leibold et al., 2017), that identifies i) competitively dominant
species, with the lowest R* (SS), ii) poorly competitive species, only
maintained by high dispersal (ME), and iii) subdominant species, tran-
sient and probably subjected to trade-offs (PD) (Leibold and Chase,
2017).

Several examples suggest that the balance between selection and
dispersal determines community assembly in aquatic microbial com-
munities. Composition of microbial taxa in arctic freshwaters changes
directionally from soil waters to lakes, through streams, being struc-
tured by initial inoculation and subsequent dispersal and species sorting
downslope (Crump et al., 2012). A similar situation is found in boreal
freshwater networks (Niño-García et al., 2016; Ruiz-Gonzalez et al.,
2015) and lakes in the Pyrenees (Ortiz-Álvarez et al., 2019). The
importance of nearby habitats to seed microbial communities seems
clear, potentially determining taxa distribution. Sadly, these examples
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do not take into account community dynamics, so direct translation to
colonization and persistence plots is not possible. In any case, the phy-
logenetic clustering in colonization and persistence found in Chapter 5
is indicative of niche differences, which may correspond to micro-niches
with specific requirements. Thus, both dispersal and selection play an
important role and have to be acknowledged in microbial communities.

8.3 Estimating niches

Microbial habitats harbor multiple microhabitats enabling different
metabolic niches (Louca et al., 2018), which are just part of the funda-
mental niches of the different taxa (Muller, 2019). These fundamental
niches may change due to horizontal gene transfer between closely
related taxa (Fraser et al., 2009, 2007) in ecological time. However,
it seems clear that competition- and tolerance-related traits are phy-
logenetically clustered (Goberna et al., 2014a,b). We are far from
fully understanding the genotype-phenotype map, even in microbes.
Therefore, our understanding of microbial metabolism and how it is
genetically coded and regulated would be a fruitful avenue in the future
and will benefit a lot from computational tools. Still, simple approxi-
mations to taxa responses to the environment might help define their
niches (Lozupone and Knight, 2007) or even make evident fundamental
niches and species interactions (Lima-Mendez et al., 2015). But it
can not be overlooked that species occupancy and distribution vary
over time. This is one of the strengths of my work. Models presented
throughout this thesis are dynamic as they consider temporal depen-
dencies explicitly, which sheds new light on the causal explanations of
our observations, at least, in an effective manner.

So, results in Chapter 5 suggested that the core sub-community
had low niche overlap pointing to the validity of the niche concept in
microbes. Then, Chapter 6 showed that models for the most abundant
airborne microbes grouping their responses to the environment per-
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formed significantly better than community models responding or not
to the environment. These models inform about the relative influence
of origin or climatic variables over airborne community dynamics and
permit to simulate the effects of future climate change. Finally, in the
case of phytoplankton (Chapter 7), we accurately modeled phytoplank-
ton responses in a species-specific way. The majority of most likely
responses were non-linear, which should be expected as non-linear phe-
nomena control phytoplankton dynamics at different levels; for instance,
Michaelis-Menten dynamics are usually considered to depict resource
acquisition accurately by single cells (Tilman, 1977). Nevertheless,
I would like to stress that the resulting models can be regarded as
approximations to the actual species responses to the environment. As
previously discussed (see also Chapter 2), our approach uses effective
models. As such, we can only identify the effective species response
to the environment, which will be closer to reality the closer species
conform to the species-independent assumption.

One could ask: do microorganisms respond consistently to the
environment? This question can be answered in a Bayesian framework
(Hilborn and Mangel, 1997) based on our model selection procedure.
Say that we are studying the environmental response of a microbial
taxon with a temporal data set. For instance, we could fit models,
which each of them can be assimilated to different hypotheses:

A. Simple colonization – extinction dynamics, with c and e rates.

B. Linear responses to an environmental covariate, as seen in Eq.
3.1.

C. Non-linear responses to an environmental covariate, as in Eq. 7.1.

The data, given hypotheses A, B, and C, would have likelihoods L(data |
HA), L(data | HB) and L(data | HC). Also, each hypothesis may have
a prior probability, {Hi}, that might be the same for all hypotheses.
However, in science, we use data to gather evidence supporting a
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particular hypothesis in front of alternative ones. Mathematically, we
are interested in the probability or plausibility of a given hypothesis
given the data at hand. Therefore, we would have to use Bayes’
theorem:

Pr{Hi | data} = L{data | Hi}Prior(Hi)∑
j L{data | Hj}Prior(Hj)

(8.1)

We would update this probability, using Pr{Hi | data} as our new
prior probability, when we fit the corresponding models for other
observations, to obtain thus a new posterior probability. After several
iterations, we might find the hypothesis with a higher probability, or
maybe find that our specific organism does not respond consistently to
the environment.

As an alternative to the Bayesian approach, one would substitute
the likelihoods by the weights of evidence, more in line with the
model selection procedures proposed in package ’island’, obtaining
the following equation:

Evidence{Hi | data} = wiPrior(Hi)∑
j wjPrior(Hj)

(8.2)

This expression would take into account the different number of para-
meters of the models. Obtaining high values in these evaluations would
provide a strong foundation for the prediction of future outcomes of
global change, as knowledge about microbial taxa responses to the
environment improves (Cavicchioli et al., 2019; Hutchins et al., 2019).
In the light of current biodiversity redistribution (Pecl et al., 2017),
knowledge about the consistency of responses to the environment is
necessary. It might inform about realized and fundamental niches of
the species, or even about their intraspecific variability, irrespective of
their taxonomic filiation.

8.4 Stochastic models of microbial communities

In this section, I will discuss the suitability of simple stochastic models
to understand microbial communities. Already in the late 70s stochastic
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models of bacterial growth in chemostats existed (Crump and O’Young,
1979). More recently, the advent of the Unified Neutral Theory of
Hubbell (2001) gave rise to models that could be applied to microbial
communities. Sloan and colleagues (Ofiteru et al., 2010; Sloan et al.,
2006, 2007) developed a model converting Hubbell’s neutral theory to
a continuous diffusion equation with immigration, reproduction, and
death processes, with selective advantages or disadvantages that may
depend on environmental variables. Completely neutral approaches
have also been used (Lee et al., 2013). Zhou & Ning (2017) reviewed
the role of stochasticity in microbial community assembly. They call
attention to the stochastic nature of drift, dispersal, and diversification,
while selection is deterministic. This appreciation alone should con-
vince us to examine, at least, the relative importance of stochastic and
deterministic drivers of the communities. These authors also point us
to three ways to study stochasticity in microbial communities: multi-
variate analyses, neutral stochastic models (also recognized by Widder
et al. 2016), and null model analyses. The simplest stochastic model
studied in this thesis would correspond to the neutral model fashion.
As explained, it should be considered as a "mean-field" model in the
sense that colonization and extinction rates include the average effects
of biotic and abiotic drivers over the whole community. Therefore,
being deeply rooted in ecological theory, and capable of acting as a
null model for richness and compositional change, the simple stochastic
model is suited to describe the dynamics of microbial communities.
Specifically, it has been useful for the understanding of the differential
nature of core and satellite taxa (chapter 5), detecting alternative
stable states in phytoplankton communities (chapter 7), or predicting
the effects of environmental change in microbial communities (chapter
6).

Relaxing the equivalence assumption usually improves the likelihood
of the estimators producing more accurate descriptions of the dynamics
of the different taxa. It is so in the case of airborne microbes and,
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particularly, for the core and satellite communities studied in Chapter
5. The distinction of transient, rare, and persistent taxa in microbial
communities has been revisited elsewhere (Shade and Gilbert, 2015;
Shade et al., 2014). The core – satellite subcommunity distinction
aims to provide an ecological interpretation to a continuous pattern,
establishing a link between coexistence theory (Chesson, 2000) and
early metapopulation theory (Hanski, 1982). By using spatially realistic
metacommunity models (see section 8.6.4 and Hanski 2001), further
work on the spatio-temporal dynamics of microbial communities may
help elucidate to what extent the relative balance of dispersal and
selection underlies these rarity patterns.

Alternative stable states have been detected in the gut (Lahti
et al., 2014) and vaginal microbiota (Gajer et al., 2012). For free-
living microbes, there is evidence of alternative stable states in nectar
microbes (Tucker and Fukami, 2014). Nevertheless, it is expected to
find more examples of alternative stable states, as time-series studies
are extended (Shade et al., 2012). The procedure indicated in Chapter
7 has helped check recent theoretical predictions relating the presence
of alternative stable states to the structure of the competition matrix
and the organismic nature of microbial communities.

Microbial ecology needs predictive modeling (Prosser et al., 2007).
However, the required level of understanding to predict the dynamics
and function of microbial communities has not been achieved (Widder
et al., 2016). Several approaches have been proposed to overcome this
limitation, e.g., the search for principles instead of laws in microbial
ecology (Konopka et al., 2015), the use of synthetic microbial commu-
nities as model systems to understand taxa interactions (Großkopf and
Soyer, 2014), or the development of synthetic ecosystems to control and
reduce factors that influence community composition (De Roy et al.,
2013). My thesis adds a complementary approach to this research pro-
gram, which is based on effective dynamic models. Chapter 6 proposes
to predict the responses of microbial taxa using linear relationships
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with the observed environment, obtaining good fits. Chapter 7 shows
non-linear responses in phytoplankton. I believe that, given sufficiently
long time-series, predictions would be accurate enough to produce
reasonable approximations. The degree of departure from species inde-
pendence and the suitability of the estimated species responses to the
environment would determine how accurate model predictions are and
to what extent the outcome of this simulation exercises holds.

8.5 Limitations and implications of the
stochastic dynamic model of island
biogeography

In several meetings, I have been asked whether the approach presented
here can be used for spatial samplings of communities. Sadly, the answer
was no. But, as Hanski (2001) realized (see also Gotelli and Kelley
1993), TIB and Classic Metapopulation Theory can be unified within
the same framework. Hanski even took a step further, introducing
spatially realistic metapopulations (see section 8.6.4 below).

Perhaps, the question that I have heard most, whenever I have
presented scientific results from my work here, was:

Does the model use abundances?

Again, the answer was no. Colonization and extinction rates should be
regarded as coarse-grained approximations of individual events such as
immigration, birth, and death (IBD) affecting populations. Chapter 3
shows how an empirical dependence among colonization and extinc-
tion constraints compatible values of intrinsic IBD population rates,
and thus informs about compatible population dynamics under the
assumption of species independence (see Box 1). In a similar line of
inquiry, Fung et al. (2020) estimate species abundance distributions
at equilibrium for Hubbell’s spatially implicit neutral model, and they
also approximate colonization and extinction rates from the elemental
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parameters of the model. Although there is not a full correspondence
between colonization/extinction rates and abundance-based IBD pop-
ulation dynamics, the relation between the two approaches can be
accurately studied. In any case, it is important to recall that the as-
sumptions of equivalence and independence are not met in the majority
of ecological communities. The effective models presented through-
out this work are only ideal representations of nature that help think
about the causal relationships determining community assembly and
structure.

Species richness in local communities is usually found to be in a
dynamic equilibrium (see Brown et al. 2001; Dornelas et al. 2014; Vel-
lend et al. 2013). Although many dynamic models can be considered
to explain this pattern (Chave et al., 2002; Hubbell, 2001; O’Dwyer
and Chisholm, 2014), the conceptual simplicity of the stochastic model
of island biogeography is still appealing as a first approximation to
the true dynamics of ecological communities. In this sense, many of
its assumptions may be wrong. Even its emphasis on locally bounded
communities and regional species pools might render difficult its appli-
cation on continuous habitats. However, most of the challenges that
global change imposes have to be studied and managed at a community
level (Simberloff, 2004). Thus, a null model of local dynamics is needed.
Next, I outline some implications for conservation derived from my
work in this thesis.

8.5.1 Implications for conservation, management, and
restoration

Chapter 4 deals with the temporal dynamics of ecological communities
and provides most of the intuitions that follow. First, this work can
fill the need for a null model on compositional change, establishing a
baseline to compare with (Hillebrand et al., 2018; Supp and Ernest,
2014). This baseline would allow for the early detection of community
changes in monitoring schemes. We could identify peaks of community
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dissimilarity exceeding expectations. Disturbance studies may also
benefit from the null model approach, which provides an expectation
of change in community composition (Murphy and Romanuk, 2014).
The null model quantifies the temporal scale at which recovery should
be evident, about 4-5 times the characteristic time of the community.
It is usually recognized that community responses to disturbance seem
to be compensated by colonization-extinction dynamics (Elmendorf
and Harrison, 2011; Supp and Ernest, 2014), although species traits
might be important in some settings affecting reassembly dynamics
(Holt et al., 2017). Species with low colonization rates might need
actions to reach a community again in the event of disturbances.

Close examination of colonization and extinction rates might pro-
duce further insights. On the one hand, very dynamic species, those
with high colonization and extinction rates, might be affected to a
greater extent by reductions on the connectivity of the community. On
the other hand, very stable species, those with low colonization and
extinction rates, might need active conservation measures, and being
more prone to extinction debt.

Additionally, characteristic times would help solve the uncertainty
principle associated with the choice of the time interval between cen-
suses (Diamond and May, 1977). A few quick suggestions are manda-
tory. Ecologists should make sure that they sample at appropriate
temporal scales, and the estimation of characteristic times might help
assess it. Another suggestion comes from Chapter 3; try to take
replicates to assess the detectability of the different species.

Conservation strategies very often require the use of specific models
adapted to a particular focal species or community. In this sense,
our methods can be used as species distribution models. Further
enhancements are possible, and the addition of spatial structure should
be a crucial ingredient, as I will discuss in the next section, together
with other extensions.
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8.6 Extensions and perspectives

Many extensions of TIB have been developed over the years. Since
there is a comprehensive review of those extensions and associated
predictions (Losos and Ricklefs, 2010), now I briefly review those ex-
tensions that appeared more recently, including speciation, trophic
structure, interactions, environmental constraints, a balance between
neutral and niche processes, and functional trait composition. Spe-
ciation has been included explicitly in island biogeography, whether
through an individual-based model (Rosindell and Phillimore, 2011) or
through likelihood methods that account for branching times obtained
from dated phylogenies (Valente et al., 2015). The trophic theory of
island biogeography (Gravel et al., 2011; Massol et al., 2017) tries to
retain the simplicity of classic TIB assuming that consumer species
can be present in a community only if one of their preys is present.
Interactions and environmental constraints can be included in TIB
through a probabilistic framework (Cazelles et al., 2016b) in discrete
time, to the contrary to the continuous-time approach of this thesis.
The balance between neutral and niche processes can be studied with a
presence-absence model with a general immigration rate and extinction
rate depending on the local site carrying capacity, noise and compe-
tition, and a simple scaling relation can be drawn between the niche
and neutral phases (Dickens et al., 2016; Fisher and Mehta, 2014).
The niche phase is favored at high carrying capacity and interaction
strength, whereas the neutral phase is favored at low carrying capacity,
low interaction diversity, and high stochasticity. Finally, a model has
been developed relating the distribution of a trait in a regional com-
munity to that of local assemblages, linking trait value, and occupancy
(Jacquet et al., 2017). A special mention has to be made; topics related
to the relaxation of the assumption of species independence are of great
interest. Future directions should aim to understand the effects on
colonization and extinction dynamics of species interactions, multiple
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trophic levels, and even disease.
In addition to all these extensions that already represent work

of impressive quality, I still believe that there is room for further
development of models based in TIB. Island biogeography theory would
be further advanced by including phenology, traits and the estimation of
their effect on colonization-extinction dynamics, dormancy, or realistic
depictions of space in metacommunities. With these additions, I aim
to make connections with other conceptual domains and advance in the
mechanistic depiction of colonization and extinction processes, while
retaining the conceptual clarity of TIB. I outline these perspectives in
the following subsections.

8.6.1 Phenology

Besides the uses presented throughout my work, our model can also be
applied to phenology. It will not be difficult to predict the probability of
the daily arrival of bird species, for instance. Our modeling approach
might be used for any dichotomic state of a species in a site, e.g.,
present – absent, masting – non-masting, flowering – non-flowering (see
Satake et al. 2013 for a similar model).

8.6.2 Trait extensions

As we have seen earlier, continuous traits can be included in TIB
(Jacquet et al., 2017). However, I will present here the most simple sit-
uation. Many microbial traits are binary, for instance, spore formation
or tolerance to desiccation. The easiest way to take into account one of
these traits would be relaxing the equivalence assumption and estimate
their rates separately. This approach would obviate differences in the
rates due to other factors. Thus, we could model the occupancy of a
species explicitly depending on a trait as:

dpi
dt

= c(1− pi)− e′pi where e′ = e0 +
∑

ejψij (8.3)
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where ej is the effect of the trait over extinction, where ψij is a boolean
indicating the absence/presence of trait j for species i. It can be
easily shown that the occupancy at equilibrium would correspond
to pi∗ = c

c+e0+
∑

ejψij
. This approach can be extended to multiple

independent species and multiple independent traits. It should not
be difficult to estimate the influence of each trait. For continuous
traits, we will need a function ej(Ψj) that translates the effect of the
trait to extinction. This function can even depend on environmental
variables, making more mechanistic assumptions and improving the
results found in Chapters 6 and 7. More complicated situations have
yet to be explored.

8.6.3 Dormancy

Dormancy may play an essential role in microbial communities and
has been modeled previously in an environmental gradient without
dispersal (Jones and Lennon, 2010). I was inspired by Locey (2010),
that develops a graphic model addressing the influence of dormancy in
an extension of TIB. To the best of my knowledge, no mathematical
model has been developed that explicitly considers the dynamics of
two states, dormant–not and active–not, in an island biogeography
setting, like the following scheme:
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(0, 0): Absent (0, 1): Active

(1, 1): Both(1, 0): Dormant

c1

µ1 µ2 σc1 + c2

µ1

µ2

This system is easily translated to the following master equation:

d~P

dt
=


−c1 µ1 µ2 0
c1 −(σ + µ1) 0 µ2

0 0 −(c1 + c2 + µ2) µ1

0 σ c1 + c2 −(µ1 + µ2)

 ~P (8.4)

Gladly, the stationary state of the system can be found:
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P (0, 0)∗ =
µ1µ2(c1 + c2 + µ1 + µ2 + σ)

µ2(c1 + µ1)(c1 + c2 + µ1 + µ2) + c1σ(c1 + c2 + µ1) + µ2σ(c1 + µ1) ;

P (0, 1)∗ =
c1µ2(c1 + c2 + µ1 + µ2)

µ2(c1 + µ1)(c1 + c2 + µ1 + µ2) + c1σ(c1 + c2 + µ1) + µ2σ(c1 + µ1) ;

P (1, 0)∗ =
c1σµ1

µ2(c1 + µ1)(c1 + c2 + µ1 + µ2) + c1σ(c1 + c2 + µ1) + µ2σ(c1 + µ1) ;

P (1, 1)∗ =
c1σ(c1 + c2 + µ2)

µ2(c1 + µ1)(c1 + c2 + µ1 + µ2) + c1σ(c1 + c2 + µ1) + µ2σ(c1 + µ1)

The temporal solution of the system is known to exist and corre-
sponds to P(t) = etM ·P0, where M is the matrix in Eq. 8.4. However,
its exact expression is cumbersome, but numerical methods help write
a close solution for the temporal evolution of this probability, which
allows for the development of a likelihood approach. We know that this
likelihood should be well behaved, so there is no major complication
in the full development of this pursuit. The explicit calculation of
the likelihood given some data will always depend on whether or not
observations allow us to define the configuration of the system fully at
any time. For instance, a direct application of this model would allow a
paleological extension of TIB with the study of a species community in
a lake where a sediment compartment records the presence of resistant
egg cells. This can be studied by merely dating a sediment core. It
this case, for every species, four configurations are possible: (1) absent
from the water column and sediment, (2) present in water, (3) present
in the sediment, or (4) present in both.

Further work is needed to grasp the implications that dormancy
may have on biogeographical patterns fully.
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8.6.4 Open spatially realistic metacommunities

Cornerstones of ecology, TIB and CMT flourished independently (Han-
ski and Simberloff, 1997). However, these two separate foundations
would be united when Hanski presented its spatially realistic theory
of metapopulation ecology (Hanski 2001, see also Gotelli and Kelley
1993). Hanski developed a model that under certain assumptions can
be reduced to the dynamics of either TIB or CMT, and, in addition, it
takes into account the spatial location of the patches and its quality,
which has been traditionally expressed as area. Hanski put the focus
on the structure of the landscape and patch area, but the model was
still centered in a single species and, unlike TIB, rarely in communities
(but see Holyoak et al. 2005), neglecting migration from outside the
system or even an explicit mainland.

Hanski’s framework with its versatility can allow us to examine these
patterns once we change the focus from a species to the community,
as TIB already did by assuming independent and equivalent species,
that is, species that do not interact with each other and respond in
the same fashion to their environment. Therefore, shifting the focus
from metapopulations to metacommunities, we can deduct expected
patterns from a range of models that goes from MacArthur and Wilson
to Levins’ using the common framework of Hanski. The model can
deal with different kinds of complexities, namely landscape structure,
dispersal kernels, or patch quality (see Grilli et al. 2015). I summarized
in Fig. 8.1 the structural complexity of the model, where the horizontal
axis corresponds to the intensity of colonization from the mainland,
and the vertical axis refers to the proportion of other patches that a
species can reach, on average, from a patch, that is, the mean number
of patches connected in relation to the total number of patches.

Below I review Levins, MacArthur&Wilson and Hanski models in
the same notation. Moreover, I derive a procedure to estimate the
stationary state in the joint model with an implicit mainland and an
approximation to the mean patch occupancy. A basic model of TIB
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Figure 8.1: A general spatially explicit model. Relation among dynamical
models emerging from Eq. 8.7, based on patch connectivity, that is, the number of
effectively connected patches, Ne, over the total number of patches, N , and the
intensity of colonization from the mainland over the total colonization in the system.
CMT would correspond to the left-top corner, TIB to the right-bottom corner, the
traditional Hanski model would be on the left side, and an open spatially realistic
metapopulation model would be in the center-right.

can be formulated as follows:
dS

dt
= c(SP − S)− eS (8.5)

where SP accounts for the number of species in the pool, S the number
of species present in a site, and c and e correspond respectively to
colonization and extinction rates. The classical metapopulation model
can be described as follows:

dP

dt
= cP (N − P )− eP (8.6)

where P is the fraction of occupied patches, and N the total number
of patches. And the Hanski model can be expressed as follows:

dpi
dt

= ci(1− pi)− eipi (8.7)

where pi is the probability of patch i being occupied and ci and ei are
patch-specific colonization and extinction rates. Note that Eq. 8.5 can
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be obtained from Eq. 8.7 assuming a mainland pool of identical species
SP that colonize a patch with independent dynamics, and Eq. 8.6
can be obtained from Eq. 8.7 assuming a set of identical and equally
connected patches (Hanski, 2001).

Now, I will follow Alonso and McKane (2002) in their rendering of
Hanski’s spatially realistic model. They explicitly treat space, assuming
a set of patches with known areas. This circumstance allows for the
parametrization of the model in a way that maintains its ability to
undergo mainland-island and metapopulation dynamics at the same
time. Thus, we can construct a model with an equation for each patch
giving its occupancy probability:

dpi
dt

= (cM + c0
∑
i6=j

exp(−αdij)Ajpj)(1− pi)− pie/Ai (8.8)

where cM corresponds to the colonization rate from the mainland, c0 is
the colonization rate per fully connected patch of unitary area, 1/α is
the average migration distance, dij is the distance between patches, pj
the occupancy of the other patches and A corresponds to the area of
each patch, that can be considered as a measure of its quality. Alonso
and McKane (2002) only studied extinction dynamics for this model.
In the following paragraphs, I devised new approaches to study the
stationary state and mean patch occupancy of the model, simulate its
dynamics, and estimate its parameters.

Stationary state

Although it is not possible to derive a fully analytic solution for the
stationary state, one can devise an iterative process that converges to
the vector ~p of occupancy probabilities of each patch. Before sketching
the procedure, I am going to rewrite Eq. 8.8 in a more convenient
form:

d~p

dt
= (cM + c0M~p)� (1− ~p)− ~p� (e� ~A) (8.9)
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where ~p is the vector of occupancy probabilities, ~A is the vector of
areas and M is a matrix with diagonal 0, mij = exp(−αdij)Aj, and �
(�) corresponds to the Hadamard product (division), the element-wise
product (division) of two vectors. As we know that the occupancy
probabilities will not change in the stationary state by definition, we
can find the following relation after a bit of algebra:

~p∗ = (c0M ~p∗ + cM)� (c0M ~p∗ + cM + e� ~A) (8.10)

being ~p∗ the vector of occupancy probabilities in the equilibrium. Notice
that assuming ~A = 1, if we set c0 = 0, we automatically have the
stationary state for a single species in the TIB and setting cM = 0,
we can recover after some algebra an expression equivalent to Eq. 8.6.
Also, this expression allows us to recover the approximations to the
stationary state in the spatially realistic model of Hanski showed by
Grilli et al. (2015).

Now we can easily devise an iterative procedure to estimate the
vector of patch occupancies in the stationary state, ~p∗:

1. Obtain an eigenvector λp of the leading eigenvalue of Mij . Use it
as an initial guess for patch occupancies.

2. In Eq. 8.10, substitute ~p by λp and obtain a new vector of patch
occupancies, ~p ′.

3. Using Eq. 8.10 iteratively, find a ~p ′ that changes less than a
threshold δ when compared to the previous ~p.

Approximation to the mean patch occupancy p̄ in the
equilibrium

Knowing that the dynamics of the model is well described with a
one-dimensional approach Hanski (2001), we can assume that the mean
patch occupancy p̄ will behave as the vector of occupancy probabilities,
just receiving the effect of the mean of the sums of the rows in M , Ne,
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so we will have the following expression:

p̄ ≈ c0Nep̄+ cM

c0Nep̄+ cM + e/Ā
(8.11)

Again, this equation complies with the homologous expression in TIB.
However, Hanski followed a slightly different approach, from the equa-
tion equivalent to 8.9 he multiplied both sides by ~A. Assuming that the
dynamics is given by the leading eigenvalue λD of matrix M̂ (M made
symmetric when we multiplied by ~A), that the mean patch occupancy
p̄ is the mean of ~p∗, and Ā is the mean of the areas, we have the
expression:

0 = Ā
dp̄

dt
= (cM Ā+ c0λDp̄)(1− p̄)− ep̄ (8.12)

Solving this quadratic equation, we have that

p̄ =
c0λD − e− ĀcM +

√
(c0λD − e− ĀcM)2 + 4c0λDcM Ā

2c0λD
(8.13)

which reduces to the expression derived by Ovaskainen and Hanski
(2001), p̄ = 1− e

c0λD
, when cM = 0.

Simulation and parameter estimation

The dynamics of the model can be simulated using a direct Gillespie
algorithm, which relies on the list of possible events and their individual
rates, and on its total rate, R, which would follow the next equation:

R =
∑
i

(
(cM + c0

∑
i6=j

exp(−αdij)Ajpj) (1− pi) + pie/Ai
)

(8.14)

Parameter estimation for this general model is another issue that
deserves further research. It has been thoroughly studied in the case of
populations without a mainland (as reviewed in Etienne et al. 2004),
but despite that interest, no exact likelihood methods have been de-
vised to estimate these parameters. However, I believe that an exact
likelihood is possible, which would make model parameter estimation
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perfectly feasible also for spatio-temporal data by using a likelihood-
based procedure, as the general one in package ’island’. As species
are considered equivalent and independent, one would just have to
follow a heuristic optimization method of the likelihood to obtain the
maximum likelihood estimates of model parameters.

Some general considerations

The procedures delineated above, the iterative and the metapopulation
capacity approaches, allows us to estimate the mean patch occupancy
accurately for the whole metacommunity at the dynamic equilibrium,
without simulating the actual dynamics. However, metapopulation
capacity is just an approximation that may fail if the first eigenvalue
of the landscape matrix is close to the second eigenvalue, which means
that we may have at least two disconnected metacommunities. This
problem has been addressed in the field of epidemics, as susceptible-
infected-susceptible models are analogous to metapopulation theory.
Mieghem and Cator (2012) devised a method to correct the first-order
approximation given by the leading eigenvalue.

However, simulations will be needed to study β-diversity patterns,
an approach that has been proven useful with other models (Muneepeer-
akul et al., 2008). Interestingly, there are approximations to the spatial
correlation among patches (i.e., Ovaskainen and Cornell 2006), which
could help derive β-diversity and distance-decay patterns in metacom-
munities.

The importance of describing general patterns in ecology is
paramount, and models like the one outlined here will help us to
know the range of variation that specific processes can generate under
different sets of parameters. Deductive reasoning through analyti-
cal, numerical, and in silico approaches, such as the ones presented
throughout this thesis, allows us to gain new insights into how ecological
communities work.
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General conclusions

� We developed an R package, ’island’, to analyze temporal pat-
terns in community ecology. The package aims to make easy the
application of the Theory of Island Biogeography, from simple
models to more complex ones. These models are effective, as they
are simple approximations to complex temporal dynamics. Now,
we can estimate detectability, the influence of environmental vari-
ables, and co-occurrence networks in a dynamic temporal setting
(Chapter 3).

� The simplest stochastic model of island biogeography studied in
this thesis has a temporal scale, called here characteristic time,
inversely related to its colonization and extinction rates, that
can be estimated from the temporal dynamics of ecological com-
munities and solve the so-called uncertainty principle (Chapter
4).

� The characteristic time is also related to compositional change,
either measured via STRs, turnover, or the Jaccard Index. Our
model can be used as a baseline for richness and compositional
change, under the assumptions of equivalent and independent
species, although its effective character includes the average effects
of the possible deviations from the assumptions (Chapter 4).

� Colonization/extinction simple models can be applied to micro-
bial communities. These models show parameters coherent with
environmental knowledge and present adequate accuracy when
confronted with replicated samplings (Chapters 4, 5, 6).



General conclusions

� There is a colonization-persistence trade-off in natural microbial
communities, first reported here. This trade-off is largely driven
by rare taxa that may be subjected preferentially to fitness –
equalizing mechanisms (Chapter 5).

� The importance of the environmental filter for airborne bacterial
communities is higher than for airborne eukaryal communities.
In contrast, aerosol origin has higher importance for airborne
eukaryal communities than for airborne bacterial communities
(Chapter 6).

� Regional climate predictions would result in general airborne
bacterial richness declines, idiosyncratic responses for the eukaryal
component, changes in seasonality, and declines in the richness of
two major eukaryotic pathogen groups in the worst-case scenario.
The intensity of these changes would be related to the extent of
climate change (Chapter 6).

� Individualistic and organismic communities can be teased apart
in a four-step approach, involving the identification of gradual
environmental change, abrupt changes in community composition,
modelization of species responses, and characterization of positive
feedback loops. Phytoplankton in lake Zürich presents both
types of communities, with evidence of alternative stable states
(Chapter 7).
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213 Appendix A

Colonization and Extinction Rates
estimated from Temporal
Dynamics of Ecological
Communities: The island R
Package

A.1 Revisiting Island Biogeography Theory

The research program that grew around IBT (MacArthur and Wilson,
1967) has influenced a range of ecological sub-disciplines including
conservation biology, biodiversity research, and biogeography (Cassey
et al., 2006; Losos and Ricklefs, 2010; Warren et al., 2015). It inspired
Stephen Hubbell to develop the unified neutral theory of biodiver-
sity and biogeography (Hubbell, 2001), a formal framework to derive
several community assembly patterns from immigration, birth and
death processes affecting individuals. More recently, some authors have
successfully extended IBT to deal with trophic interactions (Gravel
et al., 2011; Massol et al., 2017). However, such extensions are mainly
intended to study the stationary end point of community assembly,
and/or focus on rather conceptual and theoretical questions. Despite
half of century of sustained interest in IBT, our ability to explore
dynamic patterns as communities assemble through time is still rather
limited. Mature mathematical tools to test the temporal predictions
of IBT and confront these models with data should promote critical
theoretical progress (Losos and Ricklefs, 2010).



Appendix A: The island R Package

The seminal presentation of MacArthur and Wilson’s theory is
formulated as an equilibrium theory (MacArthur and Wilson, 1963),
introduced as the Equilibrium Theory of Island Biogeography (ETIB)
(Simberloff, 1974). The theory is used to explain the link between
species diversity across islands and islands characteristics mainly their
degree of isolation and size. The number of species in an island results
from a dynamic equilibrium between colonizations from a mainland
and local extinctions. This number corresponds to the the stationary
point of the famous equation:

dS

dt
= c (1− S

SP
)S − e S (A.1)

where S is the number of species in an island at a given time, SP
is the potential number of colonizer species, that is, the richness on
the mainland (or species pool), and c and e are species colonization
and extinction rates, respectively. As time progresses, the number of
species in the island stabilizes around S?:

S? = SP
c

c+ e
(A.2)

As a consequence, species richness on an island at stationarity may
decrease as colonization decreases due to greater distances from the
mainland, or increase in larger islands because they harbor larger
populations that, in turn, have lower extinction risks. An initial
emphasis on this dynamic equilibrium may be the reason why the
theory was first called the ETIB (Simberloff, 1974) even though the
temporal dynamic aspects of the theory were clearly inherent to it from
the very beginning (Losos and Ricklefs, 2010; Simberloff, 1969).

The two fundamental assumptions of the theory can be summarized
as follows:

Species independence Species undergo colonization and extinction
dynamics independently of each other.
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Species equivalence Colonization and extinction rates are the same
for all species within the regional species pool.

Given these two radical assumptions, Hanski (2001) showed that the
ETIB can be derived from a more general framework that considers
the occupancy probability of a species in the island whose temporal
evolution is given by:

dp

dt
= c (1− p)− e p (A.3)

where p is the probability of a given species being present at time t.
This is so because the expected number of independent species on a
given island is given by the sum of probabilities, or occupancies, of
different potential species occurring on the island. In addition, for a
given initial condition, Eq. (A.3) can be solved exactly, For instance,
if the species is absent at time zero, then the solution for the species
occupancy probability at time t reads:

p(t) = c

e+ c
(1− exp(−(e+ c)t)) (A.4)

This solution is the probability of a species being present in the
community after some time t, given that the species was initially
absent. Therefore, it can be interpreted as a transition probability of
a Markov chain model where time has been discretized at equal time
intervals of size t (see Eqs (A.5) and (A.6)). This is the central idea of
package island. Because island functions estimate colonization and
extinction rates rather than probabilities per time step, they can deal
with either regular or very sparse, uneven sampling schemes with the
same ease. As a consequence, unlike typical Markov chain models, such
as those developed using similar approaches (Cazelles et al., 2016b;
Fiske and Chandler, 2011), island package methods do not rely on
equal time steps as a necessary requirement for parameter maximum-
likelihood estimation and model selection. In addition, if we consider a
species pool of SP species each characterized by a pair of colonization
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and extinction rates, and governed independently by Eq. (A.3), we
obtain a community-level model that can be considered the simplest
stochastic formulation of the colonization-extinction model underlying
IBT (Alonso et al., 2015; Simberloff, 1969; Simberloff and Wilson, 1969;
Wilson and Simberloff, 1969), which represents an entire, and arguably,
the simplest Gleasonian view of community assembly.

To sum up, under the assumption of species independence, the
description of community dynamics reduces to a simple one-dimensional
model (Alonso et al., 2015). Package island implements the stochastic
discrete-time version of the model and gives the temporal evolution of
the occupancy probability, p, over discrete time steps: 1− p

p


t+∆t

=
 T00 T01

T10 T11

 1− p
p


t

, (A.5)

where ∆t is usually chosen to be 1 in suitable time units. We can
consistently derive all four entries of the transition matrix in terms of
the colonization and extinction rates, c and e, of a particular species
(see Eq. (A.4) and Alonso et al. (2015)): T10(∆t|c, e) = c

e+c(1− exp(−(e+ c)∆t)),
T01(∆t|c, e) = e

e+c(1− exp(−(e+ c)∆t)),
(A.6)

T10 (T01) being the probability of (not) finding certain species at time t
given that it was absent (present) at time t = 0. In addition, conditional
probabilities T00 and T11 satisfy T00 = 1 − T10 and T11 = 1 − T01,
respectively. Notice that these transition probabilities are all functions
of ∆t and model parameters rates, c and e.

Data should be provided as an R data frame where columns repre-
sent community configurations at increasing (not necessarily equally-
spaced) time values and each row describes the temporal evolution of
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the presence/absence state of a given species in the system:

M =



t1 t2 t3 t4 t5 . . . tN

1 : 1 0 1 1 1 · · · 0
2 : 1 1 1 0 1 · · · 1
... ... ... ... ... ... ...

SP : 0 1 0 1 1 · · · 0


, (A.7)

where SP is the total number of potential species (”species pool”
richness).

The central point in likelihood estimation is the ability to calculate
the probability of observing a set of data under given model assump-
tions and parameter values. If we assume that the data matrix above
has been generated by random colonization-extinction processes under
the species independence assumption, it is easy to calculate the likeli-
hood of observing the actual temporal evolution of each of the rows.
For instance, if species i is characterized by a colonization-extinction
pair (ci, ei) and a presence/absence vector ni = (ni(t1), . . . , ni(tN))
from times t1 to tN , then the probability of observing the temporal
presence/absence sequence in the i-th row of matrix (A.7) is

P (ni|ci, ei) =
N−1∏
j=1

Tni(tj+1),ni(tj)(tj+1 − tj|ci, ei), (A.8)

and the likelihood for the whole data matrix, M , is

P (M | {(ci, ei), i = 1 . . . , SP}) =
SP∏
i=1

P (ni|ci, ei). (A.9)

Under the species equivalence assumption, the last likelihood func-
tion depends only on two model parameters, the same colonization-
extinction pair for all species in the system. Eq. (A.9) is central in
package island for perfect detectability. The package also implements
a similar expression accounting for imperfect detectability, which de-
pends, instead, on four model parameters (MacKenzie et al., 2003).
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The characteristic time of
ecological communities

B.1 Estimation of colonization and extinction
rates

Alonso et al. (2015) showed that the fundamental equation of Island
Biogeography Theory (TIB), assuming species equivalence and species
independence, can be solved for a single species. Species independence
means that the presence or absence of a species is not influenced by the
presence or absence of the other species, and species equivalence means
that all the species studied have the same response to the different
factors affecting their state, which is probable in what it is traditionally
called horizontal communities. Species equivalence implies that all
species in TIB are described by aggregated colonization and extinction
rates, c and e, which take uniform values for any species. Under
these assumptions, the fundamental equation of TIB can be written as
follows: let T10(t|c, e) denote the probability that a particular species
is present in the community at time t given that it was initially absent,
given the colonization and extinction rates. Therefore T10 satisfies the
probability balance differential equation

dT10

dt
= cT00 − eT10, (B.1)

where T00(t|c, e) is defined as the probability that the species was
initially absent and remains so at time t. Note that, because of
normalization, T00 + T10 = 1, hence the equation can be fully solved to
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yield
T10(t|c, e) = c

c+ e
[1− exp(−(e+ c)t)] ,

T00(t|c, e) = 1− c

c+ e
[1− exp(−(e+ c)t)] .

(B.2)

Similarly, the probability T01(t) that a species initially present is not
observed at time t, together with the probability T11(t) that a species
initially present remains in the community at time t, can be expressed
as

T01(t|c, e) = e

c+ e
[1− exp(−(e+ c)t)] ,

T11(t|c, e) = 1− e

c+ e
[1− exp(−(e+ c)t)] .

(B.3)

These probabilities actually define a two-state (0 for absent and
1 for present) discrete-time Markov chain for each species that
can be used to predict the community configuration vector n(t) =
(n1(t), n2(t), . . . , nSP (t)) of the community after a time t has elapsed,
where ni ∈ {0, 1}. With these probabilities, we can to estimate the
likelihood of observing a sequence of presences and absences for a single
species. Conversely, given a presence-absence matrix M obtained by
sampling the community at uniformly spaced times (i.e., a species
× samples matrix), thanks to species independence we can estimate
community colonization and extinction rates by means of the following
likelihood function:

P (M |c, e) = TN00
00 TN10

10 TN01
01 TN11

11 , (B.4)

N01 representing the number of times that we have observed species
changing from state 1 (present) to state 0 (absent), and so on.

We used different methods to find the maximum likelihood estima-
tors (m.l.e.) for colonization and extinction rates. If we are dealing with
regular sampling schemes, i.e. equally spaced temporal samples, ∆t be-
ing the time separation between samples, we used an analytically exact
method that is based on the maximum likelihood estimators for transi-
tion probabilities, T10 = N10/(N10 +N00) and T01 = N01/(N01 +N11),
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as in Alonso et al. (2015): in this reference, it is shown that m.l.e.
estimators for c and e can be calculated in terms of Nij and ∆t by
solving the system

e

c
= N01(N10 +N00)
N10(N01 +N11) ,

e+ c = − 1
∆t log

(
N00N11 −N01N10

(N10 +N00)(N01 +N11)

)
.

(B.5)

However, if communities are sampled at not equally-spaced times
(i.e., we have irregular sampling schemes), the likelihood function is a
bit more complicated —but amenable for some analytical treatment,
however. Let t0, t1, . . . , tτ be the irregularly-sampled times, so the
species × times presence-absence matrix M is an SP × (τ + 1) matrix.
Now focus on an arbitrary species i (1 ≤ i ≤ SP ). Let T (ni(tj+1) ←
ni(tj)|c, e) denote the transition probability from state ni(tj) at time
tj to state ni(tj+1) at time tj+1 for that species, given the rates c, e. As
for the regular sampling schemes, the probabilities can be expressed as

T00(∆tj|c, e) = 1− c

c+ e
[1− exp(−(e+ c)∆tj)] ,

T10(∆tj|c, e) = c

c+ e
[1− exp(−(e+ c)∆tj)] ,

T01(∆tj|c, e) = e

c+ e
[1− exp(−(e+ c)∆tj)] ,

T11(∆tj|c, e) = 1− e

c+ e
[1− exp(−(e+ c)∆tj)] ,

(B.6)

where ∆tj = tj+1 − tj. Note here that the temporal evolution of the
model is determined by c+ e. The likelihood of the configurations for
species i across sampling times can be written as

P (ni(t0), . . . , ni(tτ )|c, e) =
τ−1∏
j=0

T (ni(tj+1)← ni(tj)|c, e), (B.7)

and, because of species independence, the likelihood of matrix M is

P (M |c, e) =
SP∏
i=1

τ−1∏
j=0

T (ni(tj+1)← ni(tj)|c, e). (B.8)

221



Appendix B: The characteristic time of ecological communities

We aim to optimize this likelihood in order to obtain estimates for
colonization and extinction rates c and e. For this purpose, we have
devised two methods, a heuristic search or a semianalytical method
based on the gradient of the likelihood function. Once we have obtained
our estimates, we can also find their confidence intervals using two
different methods: a stepwise procedure and a Hessian-based binary
search. Both procedures find the values at which the likelihood function
varies 1.96 units for each of the rates.

The semianalytical method to find m.l.e. for colonization and
extinction rates is based on the gradient of the log-likelihood function.
It can be expressed in a compact form as follows:

logP (M |c, e) =
τ−1∑
j=0

[
N j

00 log T00(∆tj|c, e) +N j
10 log T10(∆tj|c, e)

+ N j
01 log T01(∆tj|c, e) +N j

11 log T11(∆tj|c, e)
]
, (B.9)

where N j
00 was defined as the number of 0← 0 transitions, across all

species, when tj+1 ← tj , and likewise for N j
10, N j

01 and N j
11. These four

numbers, as well as the τ time intervals ∆tj , are known from the data.
We simply calculated the critical points solving the nonlinear equations
obtained by equating to zero the gradient of the log-likelihood. We
reproduce here the two partial derivatives,

∂ logP
∂c

= − 1
e+ c

τ−1∑
j=0

{(
N j

00

T j00
− N j

10

T j10

) [
cλj∆tj + e

e+ c
(1− λj)

]

+
(
N j

11

T j11
− N j

01

T j01

) [
eλj∆tj −

e

e+ c
(1− λj)

]}
, (B.10)

and

∂ logP
∂e

= − 1
e+ c

τ−1∑
j=0

{(
N j

00

T j00
− N j

10

T j10

) [
cλj∆tj −

c

e+ c
(1− λj)

]

+
(
N j

11

T j11
− N j

01

T j01

) [
eλj∆tj + c

e+ c
(1− λj)

]}
. (B.11)
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In these two expressions above we have defined λj = exp(−(e+ c)∆tj)
and denoted T j00 = T00(∆tj|c, e), and so on. For each dataset (matrix
M), we found the roots of the gradient using function multiroot of the
R package rootSolve. These are the critical points of the likelihood
function. Thus, we can encounter a local maximum, local minimum,
or a saddle point, and in the case of a local maximum, these values
are the m.l.e. of colonization and extinction rates, c and e.

To obtain confidence intervals for the estimates of c and e, we
developed two methods, a stepwise procedure and a Hessian-based
binary search. We defined the confidence intervals as the values of
c or e at which the likelihood function varies 1.96 log-units. The
stepwise procedure starts at the m.l.e. for each rate and proceeds step-
wise, adding (or subtracting) a small, user-defined quantity to them.
When the likelihood function reaches a difference of 1.96 log-units,
the algorithm has found the confidence interval. The Hessian-based
procedure uses that, for a multivariate Gaussian random vector, the
Hessian of the log-likelihood exactly coincides with minus the inverse
of the covariance matrix, so the amplitudes of the confidence intervals
(standard deviations) can be calculated as the square roots of the diag-
onal elements of the inverse negative Hessian matrix. In general (for
arbitrarily distributed random variables), standard deviations for each
m.l.e. can be approximated this way and yield good approximations to
true deviations when their values are small. We used the standard de-
viations so estimated as an initial guess, and then refined the estimates
with a binary search to find the exact value at which the likelihood
function has a difference with the m.l.e. of 1.96 log-units. Explicit
expressions for the entries of the Hessian matrix can be computed in
terms of the number of transitions N j of each class, the time intervals
∆tj , the transition probabilities T j , and the rates c and c. Expressions
are too convoluted to be reproduced here, in any case.

We end this section showing the simulated species richness as a
function of time for two classic datasets, namely: Farne Island birds
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and Neotoma deciduous forest birds, see Figure B.1. As we found
for the Florida keys arthropods community, the observed richness lies
within the 95% confidence interval of the simulations (see Figure 4.1).

B.2 Community composition patterns

Jaccard index allowed us to compare sites using presence-absence data,
and it is defined as follows:

Jij = C

A+B + C
, (B.12)

where A is the number of species present at time i and not at time
j, B the number of species present at time j and not at i, and C the
number of species present at both times. Jaccard’s index also lets us
compare the same site at different times, and its expected value can
be estimated with our colonization and extinction dynamics and its
associated Markov chain.

Then, if we considered i and j different samples taken at the same
site at times ti = 0 and tj = t, the expected number of species present
at both times, C, can be calculated as the product of T11, the transition
probability for a species being present in both i and j, SP , the number
of species in the pool, and pi, the proportion of species present at ti.
Besides, the average number of species present at time i but absent
at time j, A, can be obtained as the product of T01, the transition
probability for species being present in i and not j, SP and pi, whereas
B can be estimated as the product of T10, the transition probability
of a species being absent from i and present in j, and SP minus the
product of SP and pi. If the random variables C and A + B + C

were independent, we could calculate the expected value of the ratio
C/(A+B + C) as

E
[

C

A+B + C

]
= E[C]E

[ 1
A+B + C

]
. (B.13)

Ignoring correlations and approximating E
[

1
A+B+C

]
≈

E [A+B + C]−1 —which is not necessarily true in general— we obtain
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the following approximation for the Jaccard index in terms of pi and
transition probabilities,

Ji(t) ≈
piT11

piT01 + (1− pi)T10 + piT11
. (B.14)

Using that T11 + T01 = 1, Eq. (B.14) can be expressed as

Ji(t) ≈
piT11

pi + (1− pi)T10
. (B.15)

However, note that (B.14) is not the expectation of the Jaccard index,
as such expected value would imply summing over all values of the
Jaccard index given the probability of each possible configuration of
the community. However, the law of large numbers probably reduce
that hypothetical expression to equation (B.14) and substituting the
rates (B.2) and (B.3) leads into the expressions for Ji(t) reproduced
in the main text (Box 2). If we compare any given community with
the same community when time goes to infinity, we can calculate the
Jaccard Index as follows:

J̃i = lim
∆t→∞

Ji ≈
pic

pie+ c
. (B.16)

If the initial proportion of species coincides with that of equilibrium,
pi = c

e+c , our approximation for the Jaccard index simplifies to

J ?(t) ≈ c+ e exp(−(e+ c)t)
c+ 2e− e exp(−(e+ c)t) , (B.17)

which converges to J̃ ? = c
c+2e as t→∞. We now estimate the time t,

in units of the characteristic time Tc = 1
c+e , that takes the system to

reach the asymptotic Jaccard index value. Let t = ξTc = ξ
c+e and let

us fix the relative error |J ?(t)− J̃ ?|/J̃ ? equal to a certain amount χ.
From

|J ?(t)− J̃ ?|
J̃ ?

= χ (B.18)

we can solve for x = exp(−(e+ c)t) = e−ξ to get

e−ξ = c(c+ 2e)χ
2e(c+ e) + ceχ

≈ χ(1 + 2z)
2z(1 + z) (B.19)
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where we used that χ� 1 and defined z = e/c. Taking logarithms at
both sides, we get

ξ = − logχ− log 1 + 2z
2z(1 + z) = 4.61− log 1 + 2z

2z(1 + z) (B.20)

for a small relative error χ = 0.01. Now we solve for the values of
z that yield log 1+2z

2z(1+z) = ±1, which are z = 0.217 and z = 2.31,
respectively. This means that, if 0.22 ≤ e

c
≤ 2.31, then the ratio t

Tc
is

bounded by 3.61 and 5.61. Therefore, for a wide range of extinction to
colonization ratios, we expect that the time t the system takes to reach
the asymptotic Jaccard index is about 4 or 5 characteristic times, as
stated in the main text.

We have defined an alternative measure to the characteristic time
Tc, the half-relaxation time, which corresponds to the time that takes
the system to have a decrease in similarity, measured with the Jaccard
index, that is half the decrease that it encounters as time tends to
infinity. To find an expression for the half-relaxation time, we have to
solve for ∆t = Tr in the following equation:

1
2

(
1− pic

pie+ c︸ ︷︷ ︸
limt→∞ Ji(t)

)
= pi [c+ e exp(−(e+ c)Tr)]
pi [e+ c exp(−(e+ c)Tr)] + c [1− exp(−(e+ c)Tr)]︸ ︷︷ ︸

Ji(Tr)

.

(B.21)
After some algebra, it reduces to the following expressions, starting or
not with an initial pi equal to that of the equilibrium:

Tr ≈ Tc log c+ (c+ 2e)pi
c+ epi

, (B.22)

T ?r ≈ Tc log 2c+ 3e
c+ 2e . (B.23)

In Figure B.2, we simulated colonization and extinction dynamics
for a hundred simulations of a model with Tc = 20 and occupancy at
equilibrium equal to 0.1. Starting from an initial occupancy of 0.5, we
have calculated the Jaccard index over a hundred timesteps for each of
these realizations. Besides, we calculated our theoretical approximation
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(blue line) for the expected Jaccard index [cf. Eq. (B.15)], and the
half-saturation time for this set of model parameters.

Finally, we have simulated a sequence of models with Tc ranging
from 10 to 100 and three different occupancies at the equilibrium, 0.1,
0.5, and 0.9. For each of these models, we obtained 200 realizations
and averaged their evolution for the Jaccard index with time. We
show in Figure B.3 the relation between Tc and half-relaxation time,
that we found theoretically [colored lines, Eqs. (B.22) and (B.23)] and
empirically (black points) the half-relaxation time from the averaged
dynamics for each of these models.

B.3 Properties of c, e, and Tc as estimators

The main properties that determine a good estimator are bias, consis-
tency, and efficiency. Bias is the difference between the true parameter
and the mean of the distribution of the estimator. An estimator with
no difference is considered unbiased. Consistency is the property of
an estimator of being near the value of the parameter as sample size
increases. Finally, efficiency refers to the size of the distribution of the
estimator, being efficient an estimator with small support.

To study bias, we simulated a 1000 species × 1001 samples dataset
with equal colonization and extinction rates (c = e = 0.1) and a char-
acteristic time Tc = 5. From this matrix, we obtained true colonization
and extinction rates, because these can vary from true ones as it is
a stochastic process. We subsampled 1000 times this matrix to have
only 100 transitions each time and recalculated colonization and ex-
tinction rates. We used differences of true and estimated c, e, and Tc
to quantify bias using skewness and the D’Agostino test, which yielded
non-significant biases for each of the estimators (c skew = 0.0270,
p-value n.s.; e skew = −0.0101, p-value n.s.; Tc skew = 0.0642, p-value
n.s.). Following the same procedure for unbalanced values of the rates
(c = 0.02, e = 0.18 or c = 0.18, e = 0.02) yielded the same absence of
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bias.
We also studied the consistency of the estimators. We simulated

1000 replicates of a 1000 species × 1001 samples matrix following
a specified colonization and extinction dynamics with Tc = 5. We
calculated the true parameters for each one, and then we subsampled
them to obtain 10, 20, 50, 100, 200, and 500 transitions and estimate
c, e, and Tc. Then we calculated the bias between true and estimated
parameters along this sequence. Figure B.4 shows that, as we increase
the number of transitions, which can be interpreted as increasing the
sample size, the estimated parameters get closer to the true values,
decreasing their dispersion. This is also a sign of an increased efficiency.

B.4 Sources of error in Tc

We have identified three possible sources of error when estimating c,
e, and Tc. The first one and probably the most evident is the lack
of conformity of the studied communities to the assumptions of the
model, namely, independence and equivalence. However, we want to
stress that our model should be regarded as a null model, acting as a
mean-field approximation to the actual dynamics (that may include
many other processes).

The second one is related to how thoroughly we have sampled our
community. We have found that the estimates may not be precise
when the relative sampling frequency is below ∼ 0.3. Figure B.5 shows
the effect of low sampling frequencies on Tc. We simulated 30 different
matrices of 1000 species × 1000 samples, each one with a different
pair of colonization and extinction but a characteristic time of 10, and
we subsampled to achieve relative sampling frequencies from 0.1 to
10. From the subsampled matrices we estimated their characteristic
time, that seemed to vary wildly under a relative sampling frequency
νs ≈ 0.3. A procedure to discern if our estimates are reliable would
be to undersample our data to recalculate the estimates; if those are
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consistent with the previous estimates, these may be acceptable. If the
estimates change, we might be sampling below Tc.

The last possible source of error that we have identified occurs when
we subsample our initial data, and we find a linear relationship between
mean sampling time and Tc. As can be shown trivially from (B.2)
and (B.3), in the regular sampling scheme Tc depends on the transition
probabilities T01 and T10. Together they determine the degree of lag-1
autocorrelation, ρ, in our data (following Tuljapurkar 1997):

Tc = 1
c+ e

= − ∆t
log(1− T01 − T10) = − ∆t

log ρ. (B.24)

Thus, in order to find a linear relationship between sampling time
and Tc we need a ρ constant at different sampling times. We have
examined data from the left hand of individual M3 (Caporaso et al.,
2011). We found an estimate of Tc = 2.05 days, with a mean ∆t
of 1.23 days. In order to examine the robustness of the estimates,
we subsampled the data, increasing ∆t to 1.5, 1.8, and 2.5. Lag-1
autocorrelation was measured row by row, adopting the convention of
considering the correlation of a series formed only by ones or zeros as
having a value of 1. We found that autocorrelation remained constant,
thus making Tc to follow a linear relationship with ∆t. Also, we
explored the autocorrelation of random strings of ones and zeros and
the sequences produced by stochastic realizations of the dynamics
corresponding to the estimated parameters for that dataset (Figure
B.6). The same procedure was followed to examine data of island
E1 from the arthropods dataset (Simberloff and Wilson, 1969). The
subsampled data showed less autocorrelation than the original data,
and the model simulations were congruent with it. The difference
between the observed autocorrelation and the stochastic realizations
allow us to conclude that when this difference is high, the estimates
should be considered with caution. The reason behind this mismatch
may correspond to the subsampled data being close to a random matrix
with the proportion of presence/absence of the original data, and it
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might indicate that we need to sample more to find correct estimates
of the dynamics.
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B.5 Supplementary figures

Figure B.1: Temporal dynamics of two classic communities. A) Deciduous
forest birds at Neotoma, B) island birds in the Farne Islands. Shaded areas
correspond to the 95% confidence interval obtained from model simulations, whereas
the dashed line refers to the median of the simulations.
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Figure B.2: Evolution of the Jaccard index with time under simulations.
The blue line shows the expected value for the Jaccard index using our theoretical
approximation. The magenta diamond indicates the characteristic Jaccard index,
that is, the value of the Jaccard index between the initial community and the one
present after a characteristic time (20 units in this case). Approximately after four
times TC , the Jaccard index stabilizes.
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Figure B.3: Relation of the Tr with Tc. For the same characteristic time, the
systems that have a higher occupancy at the equilibrium had a lower half-relaxation
time, while the systems with a lower occupancy took the most to reach it. As we
can see, there is a linear relation between Tc and Tr for equal levels of occupancy.
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Figure B.4: Properties of c, e, and TC as estimators. We found no bias.
Consistency and efficiency increased as sample size (i.e., the number of transitions)
increased.
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Figure B.5: Influence of sampling frequency over estimates of character-
istic time. When we sample under a relative sampling frequency of ≈ 0.3, we can
observe that the estimates of the characteristic time, Tc, start to deviate from the
true value, in this case, Tc = 10. Subsampling is needed in those cases to increase
certainty.
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Figure B.6: Autocorrelation is associated with characteristic time estima-
tion. Autocorrelation in the case of the data of the left hand of individual M3 seems
stable after subsampling, and close to the autocorrelation of random sequences of
0s and 1s. However, in the case of the arthropods of island E1, each subsampling
decreased autocorrelation, thus maintaining the estimate of characteristic time. In
this last case, we also see that our simulations closely resemble the autocorrelation
found for the original data.
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General decline in the diversity of
the airborne microbiome under
future climatic scenarios

C.1 Supplementary tables

Table C.1: Model selection procedure for bacterial and eukaryal OTUs.
S – single pair of colonization and extinction rates, P – a pair of rates for each
phylum, A – a pair of rates for the most abundant groups, E – a pair of rates plus
several coefficients indicating the influence of environmental variables, A*E – same
but for each of the most abundant groups.

Model NLL Pars AIC ∆AIC AICw

Bacteria
S 83682.44 2 167368.9 10230.0 0
P 81519.03 74 163186.1 6047.2 0
A 80215.60 26 160457.2 3318.3 0
E 82859.32 9 165736.6 8597.7 0

A * E 78413.47 156 157138.9 0 1

Eukarya
S 222073.5 2 444151.0 20715.4 0
P 217973.6 24 435995.2 12559.6 0
A 217182.9 28 434421.8 10986.2 0
E 220856.8 8 441725.6 18290.0 0

A * E 211528.8 189 423435.6 0 1



Appendix C: Airborne microbiome dynamics

Table C.2: Models and OTU richness for bacterial groups. Columns rep-
resent the model for each group. Values indicate the coefficient that multiplies
the corresponding environmental variable. ANC: acid-neutralizing capacity, Cond.:
conductivity, DIC: dissolved inorganic carbon, DOC: dissolved organic carbon,
Hum.: humidity, Irr.: irradiance, Samp. Eff.: sampling effort, Tmax: maximum
temperature, Tmed: mean temperature, Tmin: minimum temperature, c0: colo-
nization independent term, e0: extinction independent term. Richness indicates
OTU richness for each group, and it is not a coefficient included in the model.
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Colonization
ANC – 0.00177 – – – – – – -0.00117 – – -0.00002 –
Cond. – – – – – – – – 0.00639 – – – –
DIC – -0.00199 – – – – – – – -0.00058 – – –
DOC 0.00047 – 0.00127 0.00113 – 0.00216 – – – – 0.00092 – –
Hum. – – -0.00056 – – – – – -0.00043 -0.00015 – -0.00233 –
Irr. – – -0.00046 – -0.00094 -0.00109 – -0.00084 -0.00061 -0.00066 -0.00036 -0.00086 –
K – – – – – – 0.00068 – -0.00026 – – – –

Mg – – – -0.00049 – – – – -0.00335 – – – –
Na – – – – – – – – – – – – 0.1222

NO3 – – – – – -0.00030 – – -0.00090 0.00095 – – –
pH – – – – – – – – – 0.00019 – – –

Samp. Eff. – -0.00067 – -0.00067 -0.00108 – -0.00129 – – -0.00044 -0.00026 – –
SO4 – – -0.00040 – – – – – – – -0.00044 – –

Tmax – – – – -0.00292 -0.00140 – – – – – – –
Tmed – 0.00418 0.00059 0.00293 0.01182 – -0.00161 0.00430 – – – – –
Tmin -0.00164 -0.00458 -0.00263 -0.00374 -0.00989 – – -0.00539 – – -0.00081 -0.00134 –
TN – -0.00063 -0.00098 – -0.00085 – – – – -0.00054 – – –

Rain – – – – – 0.00102 – – – – – – –
TP – – 0.00039 – 0.00103 – 0.00288 – – – – – –
c0 0.00449 0.00513 0.00640 0.00447 0.00730 0.00546 0.00595 0.00362 0.00399 0.00324 0.00282 0.00551 0.06843

Extinction
ANC – -0.03670 – – – – – – – – – – –

Ca – – 0.00574 – – – – – -0.05831 – – – –
DIC 0.02118 0.04848 0.00680 – 0.00709 – – – 0.07247 – – – –
DOC – – – – – – – -0.01873 – -0.00482 – – –
Hum. 0.00709 – -0.00698 -0.01137 – – – – – – – -0.0702 –
Irr. 0.02858 – – – -0.00449 – – – – – – 0.1350 0.88336
K – – – – – – – – 0.02321 0.01518 – – –

Mg – 0.00653 – 0.00207 – 0.07650 0.01047 – – – 0.03158 – –
Na – -0.00534 – – – – – – – – – – 6.21016

NO3 – – 0.00429 – 0.00476 -0.02878 – – – – – – –
pH – – -0.00660 – -0.00629 – – – 0.01427 – – 0.0870 –

Samp. Eff. 0.01161 – 0.00318 – – – – – – -0.01269 – – –
SO4 – – – 0.01197 – – – 0.01166 – – – – –

Tmax – – 0.01404 – – – -0.02148 -0.02513 – -0.01680 0.04954 -0.2450 -1.09316
Tmed – – -0.05201 -0.05976 -0.00512 – – – – – -0.06120 0.2000 –
Tmin – – 0.03011 0.04896 – – – -0.04544 – 0.01089 – 0.0599 1.06673
TN -0.00665 -0.00870 -0.00731 – -0.00471 – – – -0.00244 -0.00685 -0.01052 – –

Rain – – – 0.00044 – – – – – – – – –
TP – – – – – – 0.01163 – – – – – –
e0 0.09834 0.06555 0.03869 0.07206 0.02869 0.21179 0.05324 0.17452 0.11938 0.06517 0.12126 0.45600 3.96541

Richness 214 330 741 701 100 74 25 201 129 318 519 172 106
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C.1. Supplementary tables

Table C.3: Models and OTU richness for eukaryal groups. Columns rep-
resent the model for each group. Values indicate the coefficient that multiplies
the corresponding environmental variable. ANC: acid-neutralizing capacity, Cond.:
conductivity, DIC: dissolved inorganic carbon, DOC: dissolved organic carbon,
Hum.: humidity, Irr.: irradiance, Samp. Eff.: sampling effort, Tmax: maximum
temperature, Tmed: mean temperature, Tmin: minimum temperature, c0: colo-
nization independent term, e0: extinction independent term. Richness indicates
OTU richness for each group, and it is not a coefficient included in the model.
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Colonization
ANC – – -0.00210 -0.00776 – – -0.00451 – – – – – – –

Ca 0.00093 – -0.00767 -0.00627 – – – – – – – – – –
Cl – – -0.00863 -0.00842 – 0.00041 – 0.00402 – – – – – –

Cond. – 0.00131 0.01890 0.01820 – – – – – – – – – 0.00007
DIC – – 0.00107 0.00298 – – 0.00441 – – – 0.00150 – – –
DOC 0.00090 – -0.00085 -0.00254 – -0.00055 – -0.00259 – – – – – –
Hum. 0.00095 – – – – 0.00106 0.00058 – – 0.00046 0.00136 – 0.00111 –
Irr. 0.00065 – -0.00194 -0.00202 – 0.00092 0.00196 -0.00224 0.00223 0.00047 0.00084 – – –
K 0.00215 0.00094 0.00217 0.00201 – 0.00067 – 0.00448 – – – 0.00085 0.00119 –

Mg -0.00133 – – – – – – – – – -0.00114 – – –
Na – – – – – – – -0.00377 – 0.00054 – -0.00020 – 0.00051

NO3 -0.00153 – -0.00111 0.00009 – – – – – – – – – –
pH – – 0.00127 0.00298 – – 0.00073 – – 0.00155 -0.00093 0.00105 – 0.00117
SO4 – -0.00071 -0.00365 -0.00381 – -0.00017 – – – – – – – –

Tmax – – – – – – – – – – – – – 0.00183
Tmed 0.00142 – -0.00226 – – – -0.00533 – – – – – – –
Tmin – – -0.00005 – – -0.00058 0.00293 – – -0.00122 – -0.00057 – -0.00381
TN – – -0.00119 – – – – -0.00083 – 0.00100 – – – –

Rain – – – – – – – – – -0.00039 – – – -0.00057
TP – – -0.00185 -0.00244 – – 0.00305 -0.00211 – – – – – –
c0 0.00547 0.00392 0.01150 0.01010 0.43845 0.00443 0.00809 0.00989 0.00511 0.00692 0.00569 0.00312 0.00565 0.00425

Extinction
ANC – – -0.01390 – – -0.00826 – -0.01757 – – – – – –

Ca – – 0.02820 – – 0.03728 – 0.03900 – 0.01133 – – – –
DOC – – 0.01060 – – – – 0.01761 – – – – -0.01170 –
Hum. – -0.02822 0.00624 – – 0.01158 -0.00699 0.01119 – -0.00509 0.00769 – – –
Irr. -0.01550 -0.02898 0.01130 – – 0.01936 -0.01031 0.02149 -0.01780 -0.00780 – -0.01504 – –
K – – -0.00590 – 7.92365 – – 0.00332 -0.01387 -0.00591 -0.01193 – – –

Mg – – – – – – -0.00668 – – – – – 0.01915 –
Na – – 0.00193 – – – – – – – – – – –

NO3 – – -0.01700 – – -0.00948 0.00732 -0.03476 – – – – – –
pH – – – – -36.74749 -0.01690 – – – – -0.01184 – -0.01049 –
SO4 – – – – – -0.00182 – – – – – – – –

Tmax – -0.01876 – 0.00076 – – -0.03287 – 0.21520 – – – – –
Tmed – – – – – – 0.05888 – -0.23696 – – – -0.07541 0.00488
Tmin – – – – – – -0.02160 – – – – – 0.07546 –
TN – – -0.00752 – – -0.00634 -0.00699 -0.00715 – – – – – -0.01260

Rain – – – 0.00858 – – – – – – – – 0.00443 –
TP – – 0.01040 – – 0.00605 – – 0.02637 – 0.00843 – – –
e0 0.06807 0.12609 0.05410 0.05590 61.25877 0.04805 0.04301 0.06212 0.10836 0.06662 0.06219 0.07068 0.06909 0.09310

Richness 530 288 1746 1800 5 195 204 110 36 204 53 228 247 168
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Appendix C: Airborne microbiome dynamics

Table C.4: Model selection procedure for bacterial and eukaryal
pathogens. S – single pair of colonization and extinction rates, G – a pair
of rates for some predefined groups, E – a pair of rates plus several coefficients
indicating the influence of environmental variables, G*E – same but for each of the
predefined groups.

Model NLL Pars AIC ∆AIC AICw

Bacteria
S 3585.02 2 7174.05 109.26 0
G 3555.97 8 7127.94 63.15 0
E 3541.14 8 7098.27 33.48 0

G * E 3512.40 20 7064.79 0 1

Eukarya
S 12824.24 2 25652.48 332.02 0
G 12806.25 10 25632.50 312.04 0
E 12665.62 8 25347.24 26.78 0

G * E 12624.23 36 25320.46 0 1

Table C.5: Models and OTU richness for two pathogen groups.

Group Colonization Extinction N
Humans -2.64e-3 * TP + -4.28e-3 *

Tmin + 2.523e-2
-8.47e-3 * K + 4.86e-3 * TP +
-3.78e-3 * TN + 3.15e-3 * Mg
+ 3.116e-2

32

Plants -4.8e-4 * Tmax + -5.51e-3 *
Tmin + -3.90e-3 * Rain +
3.77e-3 * Samp. Eff. + -1.19e-
3 * SO4 + 3.537e-2

-3.64e-3 * Cl + 3.537e-2 120
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C.2. Supplementary figures

C.2 Supplementary figures

Figure C.1: Fits for Bacteria and Eukarya. A) Fit produced with parameters
estimated for the whole bacterial data. B) Same but for eukarial data. C) Fit
produced with parameters estimated for the first three-quarters of bacterial data.
D) Same but for Eukarya. The black line indicates the observed OTU richness,
while the red band indicates 95% of the simulations of model A*E. The grey shaded
area is the area used for validating the prediction.
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Appendix C: Airborne microbiome dynamics

Figure C.2: Fit for bacterial groups. The black line indicates the observed
OTU richness, while the red band indicates 95% of the simulations.
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C.2. Supplementary figures

Figure C.3: Fit for eukaryal groups. The black line indicates the observed OTU
richness, while the red band indicates 95% of the simulations.
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Appendix C: Airborne microbiome dynamics

Figure C.4: Predicted increase in temperatures by the ensemble model
in the period 2021 – 2100.
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C.2. Supplementary figures

Figure C.5: Prediction for bacterial groups.

245



Appendix C: Airborne microbiome dynamics

Figure C.6: Prediction for eukaryal groups.
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C.2. Supplementary figures

Figure C.7: Decadal prediction for seasonal bacterial OTU richness. Each
panel corresponds to ten years, i.e., 2020 shows to the period from 2021 to 2030. We
have considered seasons as groups of three months; for example, Winter comprises
the months of January, February, and March.
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Appendix C: Airborne microbiome dynamics

Figure C.8: Decadal prediction for seasonal eukaryal OTU richness. Each
panel corresponds to ten years, i.e., 2020 shows to the period from 2021 to 2030. We
have considered seasons as groups of three months; for example, Winter comprises
the months of January, February, and March.
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C.2. Supplementary figures

Figure C.9: Bacterial groups prediction of seasonal OTU richness in the
period 2081 – 2100. We have considered seasons as groups of three months; for
example, Winter comprises the months of January, February, and March.
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Appendix C: Airborne microbiome dynamics

Figure C.10: Eukaryal groups prediction of seasonal OTU richness in the
period 2081 – 2100. We have considered seasons as groups of three months; for
example, Winter comprises the months of January, February, and March.
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