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Abstract—Principal component analysis (PCA) is a dimension-
ality reduction technique often applied to process and detect
events in large amounts of data collected by phasor measurement
units (PMU) at transmission and distribution level. This article
considers five different approaches to select an appropriate
number of principal components, builds the statistical model
of the PMU data online over a sliding window of 10 seconds
and 1 minute, and evaluates the computation times and the
accuracy of correct event detections with use of two statistical
tests in a 1−hour data file from the UT-Austin Independent
Texas Synchrophasor Network with phasor quantities collected
at different PMU substations.

Index Terms—fault detection, phasor measurement units,
power system faults, principal component analysis

I. I NTRODUCTION

T HE increasing digitalisation of electric power systems is
generating vast quantities of data at different locations,

voltage levels, and time intervals. These data include distinct
electrical quantities collected by smart meters and phasor
measurement units (PMU) that can be exploited to characterise
energy behavioural patterns and identify anomalies of different
nature. However, due to the high complexity and massive
amounts of data, it is a difficult task to visualise and identify
patterns, outliers, and abnormal behaviours at relevant scales.

In this scenario, dimensionality reduction techniques are
appealing to reduce a dataset with optimality and minimal
loss of information. Among the dimensionality reduction tech-
niques commonly applied to electric power systems, principal
component analysis (PCA) is one of the most widely used (see,
e.g. [1]–[5]). It builds a data-driven model of observations in
which the covariance structure is described with a reduced
number of dimensions through a few linear combinations of
the original variables that express major trends in the dataset.
Much as the strategies to define an appropriate number of
principal components are well known in literature (see, e.g.
[6], [7]), there is a lack of consensus about how to adjust them
to detect specific events of interest in PMU data. Therefore,
a systematic evaluation of those procedures is necessary to
perform dimensionality reduction and event detection with
PCA effectively.

Fitting into this context, this paper provides an in-depth
comparative analysis of five different approaches to select
an adequate number of principal components that define the
statistical model of a PMU network when it comes to the

accuracy of correct event detections with usage of distinctsta-
tistical tests. To do so, it relies on phasor quantities measured
at multiple PMU substations to build a PCA model of the
network operating conditions in real time, which increasesthe
situational awareness of the analysis, over a sliding window
of distinct lengths of time. The analysis is tested in a1-hour
data file from Texas Synchrophasor Network and applicable
to power transmission and distribution networks with multiple
PMUs installed at different locations without requesting any
information about the network topology and its electrical
parameters.

The text is organized as follows. The theoretical background
is presented in Section II: II-A explains the building of the
PCA model, II-C includes five different calculation methods
to select the number of principal components, II-B describes
event detection in the projection subspace and residual sub-
space. Afterwards, a study case is shown in Section III,
the results and discussion are described in Section IV, and
conclusions are finally presented in Section V.

II. T HEORETICAL BACKGROUND ONPCA

The PCA methodology presented in this article, adapted
from [8], builds a statistical model of the PMU data collected
over a time window of durationτs and detects anomalies with
use of two complementary indicators: the Hotelling’s T2 (T2)
and the square prediction error (SPE) statistics. The former
measures the square distance of the projected data to the centre
of the model, whereas the latter measures the square distance
of the observation to the projection subspace.

Thereby, the method may be divided into three main steps,
as presented in Sections II-A–II-B: building the PCA model
with PMU data, selection of principal components to the
projection subspace, and event detection in the projection
subspace and residual subspace.

A. Building the PCA model with PMU data

Let X be then×m observation matrix displayed in (1) with
n observations – referred to the number of samples of phasor
quantities – andm variables – referred to PMU locations –
supposed to be centered (zero mean) and scaled (unit variance)
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(1)

Then, compute the covariance matrix ofX and apply
eigenvalue decomposition to obtain twom × m matricesV
(whose columns are the eigenvectors and contain the principal
components) andΛ (diagonal matrix whose elements express
the variability in the direction of each principal component or
column ofV) with (2)

VΛV
T =

1

n− 1
X

T
X (2)

Dimensionality reduction in the number of variables can be
performed by retainingr principal components ofV (r <

m) with the largest eigenvalues. Then, them ×m matrix V

becomes anm×r matrixP which defines a projection space of
lower dimension representing ther most significant principal
components. As the choice of an appropriate value ofr is not
straightforward, five different methods to select an appropriate
value of r are presented later in Section II-C and compared
in Section IV.

The usage ofP instead ofV to transformX into the prin-
cipal components representation space results in a projection
onto a space of lower dimension in which some information
contained in the original data is lost. As a matter of a fact,
sinceV is a unitary matrix, the inverse operation is carried
out with the transpose, i.e.VV

T = I, but P is not unitary,
thereforePP

T 6= I. The scores and the transformation of
scores into the original data withP can be calculated with (3)

{

t = xP and x̂ = tP
T

T = XP and X̂ = TP
T

(3)

wheret and x̂ denote the score and projection of a single
observationx (top) andT and X̂ denote the score matrix
and projection matrix of the whole datasetX (bottom). The
difference betweenX and X̂ is the residual matrix̃X which
resumes the information contained in them − r components
from the residual space for each observation and can be
calculated with the residual matrix̃C. Thereby, the complete
PCA model can be described as in (4)

X̃ = X− X̂ = X
(

I−PP
T
)

= XC̃ (4)

B. Detection in the projection subspace and residual subspace

Event detection in the projection subspace is evaluated with
the T2 index, which computes a weighted distance of the
projected data to the centre of the model usingλi as a weight
using (5)

T 2
x =

r
∑

i=1

t2i
λi

(5)

For a single observationx whose score vector ist, theT
2
x

index is given by (6)

T 2
x = tΛr
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(7)

The statistical limitT 2
lim is calculated analytically with (8)

T 2
α =

r
(

n2 − 1
)

n (n− r)
Fα (r, n− r) (8)

where α is the confidence level andFα (r, n− r) is the
critical point of the Fischer-Snedecor distribution forr and
n − r degrees of freedom. Any result that surpassesT 2

lim is
tagged as faulty for the T2 statistics.

In turn, event detection in the residual subspace is evaluated
with the SPE index, which evaluates the variation out of
the projection space defined by ther principal components
through the error component̃x. The SPE of an observationx,
Qx is given by (9)

Qx = (x− x̂) (x− x̂)
T
= ‖x̃‖2 (9)

The statistical limitQlim is calculated analytically with (10)

Qα = θ1

[

1 +
h0cα

√
2θ2

θ1
+

h0θ2 (h0 − 1)

θ21

]

1

h0

(10)

with

θk =
m
∑

i=r+1

λk
i , k = {1, 2, 3} and h0 = 1− 2θ1θ3

3θ22
(11)

wherecα is the normal deviation for a confidence levelα.
Any result that surpassesQlim is tagged as faulty for the SPE
statistics.

C. Selection of principal components to the projection sub-
space

Five different methods to select an appropriate value ofr

are taken into consideration, as described in the following
subsections.

1) Kaiser criterion: In this method,r is selected such that
all principal components whose eigenvalues are below the
average variance are dropped from the matrixP, in agreement
with (12). In other words, this criterion consists in retaining
all r principal components whose variance is larger than one,
as X is a scaled matrix. This ensures that every principal
component selected contains at least as many information as
a single original variable in terms of variance.

r := {max j ∈ {1, · · · ,m} | λj ≥
1

m

m
∑

i=1

λi} (12)



2) Automatic scree plot:In this method, the eigenvaluesλi

are plotted decreasingly as a function of their element number
i in the matrixΛ and the chosen value ofr corresponds to
the eigenvalue whose distance to the origin of the coordinate
system is the shortest, in agreement with (13). The idea is
to search for an elbow in the plot, which always displays
a downward curve, from which the eigenvalues are approx-
imately equal.

r := {i ∈ {1, · · · ,m} | min
i

√

λ2
i + i2} (13)

3) Explained variance:In this method, a minimum per-
centage of the total varianceV ar (%) is previously defined
andr is taken as the smallest integer satisfying (14)

r :=
1

m

r
∑

i=1

λi × 100 ≥ V ar (%) (14)

4) Variance reconstruction error:In this method, further
explained in [6], the optimal value ofr is determined by the
minimum variance reconstruction error (VRE), in agreement
with (15), considering a faulty observationxf represented
by anm-dimensional unitary vectorξi multiplied by a fault
magnitudef and the correlation matrix of reconstruction error
R. This procedure results in the best reconstruction of the
variables, as the VRE decreases monotonically in the residual
subspace and increases in the projection subspace with the
number of principal components, and the selection ofr can
be adjusted to detect specific events of interest defined byxf .

r := {j ∈ {1, · · · ,m} | min
j

ξi
T
Rξi} (15)

5) Statistical detectability:In this criterion, based on [8],
r is chosen such that the smallest detectable events can be
detected statistically in the projection subspace and residual
subspace, according to Section II-B, considering thatT 2

x ≥
T 2
lim must hold so that an event can be detected with T2

statistics andQx ≥ Qlim must hold so that an event can be
detected with SPE statistics. For a faulty observationxf , r is
selected such that (16) holds with a single PCA model or (17)
holds with two PCA models built separately for T2 and SPE
statistics, which enables adjustments to detect specific events
of interest defined byxf .

r := {min i ∈ {1, · · · ,m} | T 2
xf

≥ T 2
lim and Qxf

≥ Qlim}
(16)

r :=

{

rT 2 := {min i ∈ {1, · · · ,m} | T 2
xf

≥ T 2
lim}

rQ := {min i ∈ {1, · · · ,m} | Qxf
≥ Qlim} (17)

This criterion considers the worst-case scenario to build one-
size-fits-all PCA models for the overall grid. This choice shall
be able to detect the smallest theoretical values ofT 2

xf
andQxf

computed with each individual variable possibly involved in
the event for 16 or 17 and consequently presents the highest
theoretical statistical detectability without requiringdifferent
PCA models for each set of variables.
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Fig. 1. Map of PMU substations within the Texas Synchrophasor Network

III. C ASE STUDY

The procedures described in Section II-C to select an
appropriate number of principal components and perform
event detection are tested with PMU data from the UT-Austin
Independent Texas Synchrophasor Network available in [9]
(see website). A map of the locations of the PMUs, installed
at distinct transmission and distribution voltage levels within
the Electric Reliability Council of Texas (ERCOT), is shown
in Fig. 1.

Only low-frequency oscillations below15 Hz can be found
in the dataset, as the phasor quantities are gathered atfs =
30 Hz. Thus, this article is concerned about low-frequency
voltage transients which last no more than a few hundred
milliseconds, as highlighted in Fig. 2; the detection of faster
dynamic events is out of the scope of this article, as it requires
a higher sampling frequency of PMUs. The events found in
the dataset, whose types and inner causes are unknown, are
listed in Table I. Overall, they are expected to be isolated
events at a single location (which ensures detection of the
smallest events in the worst-case scenario) and occur once
or less every10 seconds. Their magnitudes are greater than
1 % of the nominal voltage, varying from a few Volts at low
voltage level (substation at Fort Davis) to a few thousand
Volts at high voltage level (substations at Edinburg and Waco).
Duration of disturbances is also heterogeneous, lasting from
a few milliseconds (impulses) to a few hundred milliseconds
(transients).

Relying on voltage magnitudes, the PCA model is built
online over a sliding window. This approach captures the
dynamic time-varying nature of power systems and adapts
the PCA model to the most recent operating conditions.
The five different methods to select the number of principal
components described in Section II-C are considered to build
the PCA model and further tested and compared in terms
of performance of T2 and SPE statistics over a10−second
and 1−minute sliding window, supposedly associated with
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Fig. 2. Time ranges of distinct dynamic phenomena in power systems (adapted
from [10])

TABLE I
TYPES OF EVENTS

# Location Category
1 Edinburg Impulse, multiple
2 Edinburg Transient
3 Fort Davis Impulse, single
4 Edinburg Impulse, multiple
5 Edinburg Transient
6 Fort Davis Impulse, single
7 Fort Davis Impulse, single
8 Waco Transient
9 Edinburg Transient
10 Edinburg Impulse, multiple
11 Edinburg Impulse, multiple
12 Edinburg Impulse, multiple
13 Edinburg Transient
14 Edinburg Transient
15 Fort Davis Impulse, single
16 Edinburg Impulse, multiple

different types of events and intrinsic characteristics. As a
result, 20 different scenarios were produced per detected event
(i.e. 2 statistical tests times5 selection criteria ofr times 2
window lengths).

IV. RESULTS AND DISCUSSION

This section presents the results of event detection for the
scenarios described in Section III, comparing the accuracyof
the methods described in Section II-C to select the number
of principal componentsr for the events shown in Table I.
Tables II and III display the event detection results and
the correspondingr obtained for each selection method and
time window, considering a10−second and1−minute sliding
window to build the PCA models, respectively. A confidence
level α = 0.95 is chosen to calculate T2 and SPE for all
selection methods because it does not result in missed detec-
tions in this dataset with the statistical detectability criterion
over a 10−second sliding window. The locations and event
magnitudes listed in Table I are considered to compute the
statistical detectability and the VRE. In addition, the explained
variance criterion is computed with an explained variance of

TABLE II
EVENT DETECTION RESULTS(YES/NO) OVER A 10−S WINDOW

Kaiser Scree plot Variance VRE Detectability
# r T2 Q r T2 Q r T2 Q r T2 Q r T2 r Q
1 3 Y Y 4 Y Y 3 Y Y 3 Y Y 2 Y 2 Y
2 2 N Y 3 N Y 3 N Y 1 N Y 4 Y 1 Y
3 2 Y Y 2 Y Y 3 N Y 2 Y Y 4 Y 1 Y
4 2 Y Y 2 Y Y 3 Y Y 1 Y Y 2 Y 2 Y
5 3 Y N 3 Y N 3 Y N 2 Y Y 3 Y 1 Y
6 2 Y Y 2 Y Y 3 Y Y 1 N Y 2 N 2 Y
7 2 N Y 3 N Y 3 N Y 2 N Y 2 N 2 Y
8 2 N Y 3 Y N 2 N Y 2 N Y 3 Y 3 N
9 3 Y Y 2 N Y 3 Y Y 1 N Y 3 Y 1 Y
10 2 Y Y 2 Y Y 2 Y Y 1 N Y 2 Y 2 Y
11 2 Y Y 5 Y Y 3 Y Y 1 N Y 2 Y 2 Y
12 2 Y Y 2 Y Y 3 Y Y 1 N Y 2 Y 2 Y
13 2 Y Y 3 Y N 3 Y N 2 Y Y 3 Y 1 Y
14 2 Y Y 2 Y Y 3 Y Y 1 Y Y 2 Y 2 Y
15 2 Y Y 2 Y Y 3 Y Y 1 N Y 2 Y 2 Y
16 2 Y Y 2 Y Y 2 Y Y 1 N Y 2 Y 2 Y

TABLE III
EVENT DETECTION RESULTS(YES/NO) OVER A 1−MIN WINDOW

Kaiser Scree plot Variance VRE Detectability
# r T2 Q r T2 Q r T2 Q r T2 Q r T2 r Q
1 3 Y Y 4 Y N 3 Y Y 2 Y Y 2 Y 2 Y
2 2 Y Y 5 Y Y 3 Y Y 1 N Y 2 Y 2 Y
3 2 Y Y 5 Y N 3 Y Y 1 Y Y 2 Y 2 Y
4 2 Y Y 2 Y Y 3 Y Y 1 Y Y 2 Y 2 Y
5 2 Y Y 2 Y Y 3 Y Y 1 N Y 2 Y 2 Y
6 2 Y N 2 Y N 3 Y N 1 N Y 2 Y 1 Y
7 2 Y Y 3 Y Y 3 Y Y 2 Y Y 4 Y 1 Y
8 2 N N 3 N N 3 N N 1 N N 2 N 2 N
9 3 Y Y 2 N Y 3 Y Y 1 N Y 3 Y 3 Y
10 2 N Y 2 N Y 3 Y Y 1 N Y 3 Y 3 Y
11 2 Y Y 3 Y Y 3 Y Y 1 N Y 2 Y 2 Y
12 3 Y Y 5 Y Y 3 Y Y 1 N Y 3 Y 3 Y
13 2 N Y 2 N Y 3 Y N 2 N Y 3 Y 1 Y
14 2 Y Y 3 Y Y 2 Y Y 2 Y Y 2 Y 2 Y
15 2 Y Y 3 Y Y 3 Y Y 1 N Y 2 Y 2 Y
16 2 Y Y 3 Y Y 3 Y Y 1 N Y 2 Y 2 Y

75 % because of the average residual subspace defined by the
other criteria.

On the whole, considering the correct detections with both
T2 and SPE statistics, the best method to select the number
of principal components is the statistical detectability criterion,
which detects more events than the other criteria for all lengths
of time evaluated. Nevertheless, it is noteworthy that all events
of interest are detected with at least one of the T2 or SPE
statistics when a10−second window is used to build the PCA
model, and that the event number8 is always missed with a
1−minute window, regardless of the method chosen to define
an appropriate number of principal components. Additionally,
it can be noticed that the combined use of T2 and SPE statistics
leads to a higher number of correct event detections, reduces
the number of missed detections, and consequently increases
the detection capability of the PCA model.

In general, the SPE is expected to detect variations asso-
ciated with changes in the correlation structure and presents
small values, whereas the T2 is expected to detect deviations



from the average normal operating conditions and presents
larger values. As a consequence, the SPE is more sensitive than
the T2 and tends to be a better indicator of abnormalities, since
changes in the correlation structure of faulty observations are
expected to be observed in the residual matrix. In particular,
the SPE is expected to present the best performance when
the VRE criterion is applied to selectr, as it is aimed at
minimizing the variance reconstruction error associated with
the residual subspace to ensure detection of specific eventsof
interest.

In most cases, the highest number of correct event detections
occurs when a10-second window is applied to build the PCA
model with both T2 and SPE statistics. It happens because the
PCA models built over this length of time are more sensitive
to the dynamics of the system and consequently are more
suitable to detect the events of interest, which last no more
than a few hundred milliseconds. Therefore, it is expected that
a higher number of missed detections will occur with longer
window sizes, which are associated with different phenomena
and/or a static representation of the operating conditions
of the grid. This explains why the results obtained with a
1−minute window are slightly worse than those obtained with
a 10−second window in most cases.

Furthermore, a comparative analysis of the five approaches
presented in Section II-C to select an adequate value ofr

over time evinces that the Kaiser criterion, the automatic
scree plot, and the explained variance are quantitative and
arbitrary, whereas the statistical detectability and the VRE are
qualitative. As a matter of a fact, the former criteria rely on
the variance of the data and do not allow for adjustments that
ensure the detection of specific events of interest, whereasthe
latter criteria can be adjusted to detect events defined by spe-
cific magnitudesf and direction vectorsξ. This explains why
the results obtained with the statistical detectability criterion
with both T2 and SPE statistics are the most accurate, which
implies that the detectability in the projection subspace and the
residual subspace is the best indicator to select an adequate
number of principal components and detect distinct events of
interest.

V. CONCLUSION

This paper presents a PCA-based strategy for PMU data
event detection with usage of T2 and SPE statistics, consid-
ering five different methods to select an appropriate number
of principal components which are compared in terms of
correct event detections. The results indicate that the PCA
methodology is able to identify different types of events, re-
gardless of the approach used to select the number of principal
components, and that the results calculated with T2 and SPE
statistics are complementary in some cases, which enhances
the detection capability of the PCA model. Nonetheless, the
results obtained when the statistical detectability criterion
is used to define the number of principal components are
the most accurate with both T2 and SPE statistics, which
implies that the detectability in the projection subspace and
the residual subspace is the best indicator to select an adequate

number of principal components. Moreover, the window size
applied to build the PCA model also contributes to the task
and shall be adjusted according to the events of interest.
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