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A B S T R A C T

This article presents a monitoring strategy based on multilayer principal component analysis (PCA) to detect and
diagnose power system disturbances in large amounts of data collected by intelligent electronic devices in low
voltage smart grids. The PCA models are built on multiple sliding windows, sized (in terms of length and
sampling time) according to the type of phenomena to detect. Abnormalities are detected with use of two
complementary statistical indexes, then diagnosed by computing the individual contributions of each monitored
variable to the constraint violation of those statistics. As a result, its implementation enables an automatic
analysis of multiple phenomena of interest in parallel over time using distinct electrical quantities. Furthermore,
the method is demonstrated within the RESOLVD project with data from the OpenLV project containing mea-
surements of active and reactive power gathered at different low voltage distribution substations.

1. Introduction

Power systems operation shall comply with a series of principles
aimed at ensuring a satisfactory level of quality of supply and efficient
allocation of infrastructure and resources while respecting constraints
related to operational security [1,2]. However, this is becoming an issue
of great complexity due to the increasing demand for electricity along
with the integration of distributed renewable generation and new en-
ergy appliances, particularly at low voltage (LV) distribution level.

In this scenario, the application of digital technology for real-time
observability of LV networks is still impractical due to their inner
complexity – radial topology, heterogeneous lines, high spatial density
of customers, and unbalanced phases. Even when phasor measurement
units (PMU) and/or smart meters (SM) are deployed, either as dedi-
cated devices or as built-in capabilities of intelligent electronic devices
(IED), it is not straightforward to search for relevant information about
abnormal operating conditions [3,4] in huge amounts of data with a
very high temporal resolution (in the case of PMUs) and spatial density
(in the case of SMs). This is particularly challenging when events of
very different durations are considered, as a multiple time-scale re-
solution is necessary to properly identify distinct power system phe-
nomena, as illustrated in Fig. 1. Therefore, a strategy capable of de-
tecting and diagnosing generic power system disturbances and
abnormal behavioral patterns in a standard, coherent, coordinate way

at multiple timescales is necessary as a first step to ensure reliable
operation of LV smart grids.

Current solutions for LV grid monitoring include networks of SMs
installed at customer level and/or at the secondary substation together
with a supervisory control and data acquisition (SCADA) system for
power quality monitoring and state estimation [5–8]; distributed sen-
sors for fault detection and location [9]; condition monitoring in un-
derground LV cables [10]; devices with high sampling frequency for
identification of power quality disturbances [11]; and an advanced
monitoring system based on Geographic Information System (GIS) [12].
Among the solutions relying on data processing for feature extraction
and classification, [11] calculates electrical characteristics of voltage
and current signals and compares them with predefined thresholds. In
[8], a deep learning strategy trained with synthetic power quality dis-
turbances is embedded in SMs such that only information about de-
tected disturbances is sent to the utilities, which reduces the flow (and
enables exchange) of data between utilities and customers.

In comparison to qualitative knowledge-based methods, such as [8],
statistical knowledge-based methods are computationally less ex-
pensive for training and testing. As a matter of a fact, the usage of
statistical indicators for anomaly detection simplifies both training and
testing and comes with a confidence level that ensures good perfor-
mance of the method [13]. In this context, the usage of dimensionality
reduction techniques is promising to overcome the limitations
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concerning exchange of data that still make real-time observability of
LV networks unfeasible while allowing for an automatic identification
of patterns and outliers in short-, medium-, and long-term operation.
Among them, principal component analysis (PCA) is the most popular
and particularly convenient to build a statistical model of the data for
detection of outliers, as it represents the correlation structure by a few
linear combinations of the original variables that depict the main trends
in the data set. In recent years, some PCA-based strategies to identify
different types of abnormal behaviors in power system operation have
been presented in the literature. Notably, [14] used two statistical tests
to identify the variables involved in generic power system disturbances
and their magnitudes. Later, [15] focused on islanding detection with
use of the same statistics, which was extended in [16] to distinguish
islanding events from system-wide disturbances in power systems with
high penetration of distributed generation and further in [17] to detect
and classify islanding, loss-of-load, and loss-of generation. In [17], a
moving window approach was applied, as in [18], to allow for con-
tinuous monitoring with improved situational awareness.

Notably, dimensionality reduction techniques are relevant for
electric power systems with a large number of electrical quantities
gathered over time and centralized monitoring and control, as the
number of variables to be observed may be reduced dramatically. In
this case, the same number of measured quantities is required for
modeling and practical purposes, but not for monitoring, as the original
data are projected onto a lower dimensional subspace. To this extent,
modeling refers to the preparation phase, whereas monitoring refers to
the actual usage with live data. As a result, dimensionality reduction
may simplify the monitoring tasks so that relevant events of interest can
be identified over different lengths of time. This is usually the case of LV
smart grids, but applications of dimensionality reduction techniques in
this domain have not been explored yet.

Fitting into this context, this work extends previous methods de-
voted to detection and diagnosis of multiple power system disturbances
over time with an automatic multilayer PCA methodology focused on
the monitoring of LV smart grids. The methodology consists of an
adaptation of traditional PCA deployed at multiple timescale resolu-
tions for an effective monitoring of LV smart grids with dimensionality

reduction. Additionally, the methodology is demonstrated in a real LV
power distribution network with data from the OpenLV project [19]
recorded at Marshfield Village, South Gloucestershire, United Kingdom,
where single-phase measurements of active and reactive power were
gathered every minute by 4 IEDs with integrated PMU and SM cap-
abilities from July 17, 2018 to June 30, 2019.

2. Methodology

This section presents the multilayer PCA strategy applied for mod-
eling and monitoring the data over different timescales. It is divided in
three main steps presented in Sections 2.1,2.2,2.3: problem setting,
PCA-based modeling and evaluation, and sliding-window PCA.

The overall PCA formulation is based on [13], but focused on the
study of power system disturbances. Each problem of interest requests
different electrical quantities and sampling rates and is arranged hier-
archically in accordance to its timescale. Input data may include vol-
tage, current, impedance, power, or energy measurements acquired by
any monitoring infrastructures or calculated from combinations of
them.

The PCA models are built over a sliding time window to enable
periodic updates reflecting changes in the generation and consumption
patterns. The choice of an adequate length of time considers the trade
off between the expected duration of the events and the elapsed time
between consecutive events of interest.

The PCA models have the ability of separating correlated informa-
tion (main features) from uncorrelated information (noise) into two
orthogonal hyperplanes representing linear combinations of the ob-
served variables. For a set of variables representing the same electrical
quantity in LV grids, these linear relations are assumed to suffice to
represent the steady-state operation of the system and enable detection
of abnormal operating conditions at different layers.

Event detection relies on two complementary statistics: Hotelling’s
T2, which measures the Mahalanobis distance of the projected data to
the center of the model, and the square prediction error (SPE), which
measures the square distance of the observation to the projection sub-
space. Once detected, abnormalities are isolated and diagnosed by
analyzing the individual contributions of each measured variable to the
T2 and/or SPE statistics and selecting the greatest contributors to the
violation of constraints posed by the statistical thresholds.

2.1. Problem setting

The goal of this step is to prepare the data in a matrix structure
suitable for PCA.

2.1.1. Premises
Given mraw original variables (electrical quantities) gathered

by one or multiple IEDs over time at the sampling rate +fraw in
Hertz, define hierarchical levels (layers) in such a way that the
events of interest can be correctly identified and characterized over
different lengths of time (e.g., second, minute, hour, etc.). In ac-
cordance to the System Average Interruption Duration Index (SAIDI)
values in the European Union [20], this analysis considers that ab-
normal phenomena should last no longer than 5% of the total duration
of the analysis. Each layer is characterized by a length of time +k
(total time which the monitoring lasts), an observation period +k
(if applicable), an observation time duration +k (with k k),
and contains nk observations defined by pk samples of
mk variables gathered at the sampling rate fk. Thereby, a single
observation in the kth layer is a ×p mk k-dimensional array gathered in
discrete time domain, hereby denoted by =i i nx ( ), {1, , }kk , forming
an × ×n p m( )k k k observation matrix Xk such that (1) and (2) hold.
Note that a particular case occurs when = = fk k k

1, as the observa-
tions ix ( )k last a single sample and Xk is thereby an ×n mk k observation
matrix. Additionally, consider that n n,k k, , observations are

Fig. 1. Time ranges of distinct phenomena in power systems (adapted from
[2]).
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gathered over k and k respectively.

=nk
k

k (1)

=p fk k k (2)

It is noteworthy that the definition of k allows for investigation of
repetitive patterns lasting k over time (e.g., daily and weekly energy
consumption profiles). Thus, f, , ,k k k k, and mk are defined as design
parameters for =k 1, , depending on the data organization re-
quired. In addition, assume that the layers are concatenated hier-
archically over time such that 1 2 , with

= × =+ j k, {1, , 1}k k1 , for some j Also, consider that
screening is required every k intervals, as long as abnormal behaviors
are detected at the layers of shortest duration.

2.1.2. Data organization
The data gathered by the IEDs might require a previous pre-

processing step to suit to the analysis. To this extent, three different
techniques can be applied and combined as a previous step to the PCA
modeling and monitoring, depending on the relation between fraw and

,k k, and k at the kth layer: (1) time windowing, (2) filtering and re-
sampling, and (3) multiway re-arrangement. For illustration, Fig. 2
draws a comparison between them over the same k , with different
values of = fk k

1 and k chosen arbitrarily for each procedure.

2.1.2.1. Time windowing. This procedure, illustrated in Fig. 2, consists
of defining adequate time settings ,k k, and k for each layer

=k {1, , }. This choice is arbitrary and depends on the phenomena
under evaluation, as shown in Section 3, but made automatically at the
beginning of the analysis according to relevant timescales for humans.
In this context, the following situations may occur: continuous
observations ( =k k) and gapped observations ( >k k) over k.

2.1.2.2. Filtering and re-sampling. This procedure is recommended when
re-sampling is required for the analysis every k time instants to reduce
the number of observations over k, which is achieved by smoothing
and re-sampling the original observations, with low-pass filtering
required to avoid aliasing. It is exemplified in Fig. 2 (2), where the
dark blue dots represent the re-sampled observations over the original
discrete signal in light blue every = fk k

1 time instants over k .

2.1.2.3. Multiway re-arrangement. This procedure is recommended

when repetitive patterns lasting k are expected to occur (e.g., daily,
weekly) during specific periodic intervals defined by k, as it enables to
exploit possible correlations between time instants within k. In this
case, >p 1k samples acquired over k (between i( 1) k and

+ i( 1)k k) are concatenated to form a single observation
=i i nx ( ), {1, , }kk . As a result, ix ( )k is a ×p mk k matrix with as

many rows as samples over k and as many columns as variables, as
illustrated in Fig. 2 (3).

2.2. PCA-based modeling and monitoring

The PCA algorithm presented in this article is executed at layer level
over time, as long as new data are available, and can be divided in the
following processes: building of the statistical model, detection of ab-
normalities in the projection subspace and residual subspace, and iso-
lation and diagnosis of abnormalities in the projection subspace and
residual subspace, as explained in Sections 2.2.1,2.2.2,2.2.3. It is no-
teworthy that the statistical models are trained and tested with the
same measurement sets to improve the situational awareness of the
model, insofar as the operating conditions of the grid are time-varying
[17].

2.2.1. Building the PCA model
This section describes the PCA algorithm applied to train and test

the statistical model of the data at each layer =k 1, , . It is note-
worthy that the statistical models are trained and tested with the same
measurement sets to improve the situational awareness of the model,
insofar as the operating conditions of the grid are time-varying and
might not be represented appropriately in a static reference model
[17,18].

First, let Xk be an × ×n p m( )k k k observation matrix (assumed to be
centered and scaled in the PCA algorithm) of all selected IEDs at the kth

layer with nk observations and ×p m( )k k sampled variables referred to
distinct electrical quantities gathered at fk such that (1) and (2) hold
over k.

Next, two matrices Vk and k × × ×p m p m( ) ( )k k k k are obtained by
computing the covariance matrix Sk from Xk in (3) and applying ei-
genvalue decomposition. Columns in Vk contain the principal compo-
nents, which represent orthonormal vectors whose directions express
the major variability of the data and the relative weights (or loadings)
of the original variables, whereas k is a diagonal matrix whose ele-
ments = ×i p m, 1, , ( )i k k k, express variability in the direction of
each principal component.

= =
n

S X X V V1
1k

k
k
T

k k k k
T

(3)

Dimensionality reduction in the number of variables can be performed
by retaining the rk principal components ( < ×r p m( )k k k ) with the rk
largest eigenvalues. As a result, the × × ×p m p m( ) ( )k k k k matrix Vk
becomes an × ×p m r( )k k k matrix Pk which defines a projection space of
lower dimension represented by the rk most important components. In
this article, the Variance Reconstruction Error (VRE) criterion (further
described in [21]) is applied to define an appropriate value of rk, as this
ensures the best reconstruction of the variable.

Transformation of Xk into the principal components representation
space can be realized without loss of information by multiplying it by
Vk. However, using Pk instead of V X,k k is projected onto a space of
lower dimension in which some information contained in the original
data is lost, as shown in (4), where Tk is the transformation score ma-
trix.

=T X Pk k k (4)

Since Vk is a unitary matrix, there holds that =V V Ik k
T and the inverse

operation is carried out with the transpose matrix (T operator), but
P P Ik k

T , since Pk is not a unitary matrix. As a result, transformation
of Tk into Xk with Pk does not produce equivalent results and is

Fig. 2. Comparison between distinct data organization procedures over k: (1)
time windowing with original measurements: x i( )k single observations,

=i n{1, , }k , (2) re-sampling: x i( )k k single observations, =i n{1, , }k , and
(3) multiway re-arrangement: a single observation x i( )k obtained between
i( 1) k and + =i i n( 1) , {1, , }k k k .
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represented by Xk in (5).

=X T Pk k k
T (5)

The difference between Xk and Xk is the residual matrix Xk which re-
sumes the information contained in the m rk k components from the
residual space for each observation. Thereby, the complete PCA model
at the kth layer can be described as in (6).

= +X X Xk k k (6)

2.2.2. Detection of abnormalities
Detection of abnormal operating conditions in the projection sub-

space is realized with T2 statistics. First, it computes a weighted dis-
tance of the projected data to the center of the model with (7), where ti k,
denotes the score component of a single observation xk of Xk calculated
with the ith principal component, =i r{1, , }k .

=
=

T
t

x
i

r
i k

i k

2

1

,
2

,

k

(7)

Then, the statistical threshold Tthresh
2 is calculated analytically with (8):

=T r n
n n r

F r n r( 1)
( )

( , )thresh
k k

k k k
k k k

2
2

(8)

where is the confidence level obtained from the 2 distribution for rk
degrees of freedom and F r n r( , )k k k is the critical point of the Fischer-
Snedecor distribution for rk and n rk k degrees of freedom. Finally, any
projection xk that surpasses Tthresh

2 at the kth layer is tagged as faulty (or
abnormal) according to the T2 statistics.

In turn, detection of abnormal operating conditions in the residual
subspace is realized with SPE statistics. First, it computes the variation
out of the projection space defined by the rk principal components
through the error component xk of Xk with (9).

= =SPE x x x x x( ^ )( ^ ) ~
x k k k k

T
k

2 (9)

Then, the statistical threshold SPEthresh is calculated analytically with
(10):

= + +Q z
h c z

z
h z h

z
1

2 ( 1)
lim

h
1

0 2

1

0 2 0

1
2

1
0

(10)

with

= = =
= +

×

z j h z z
z

, {1, 2, 3} and 1 2
3j

i r

p m

i
j

1

( )

0
1 3

2
2

k

k k

(11)

where c is the normal deviation for (1 ). Finally, any observation xk
whose residual xk surpasses SPEthresh is tagged as faulty (or abnormal)
according to the SPE statistics.

2.2.3. Isolation and diagnosis of abnormalities
Isolation of abnormal operating conditions is performed with con-

tribution analysis of T2 statistics in the projection subspace and SPE
statistics in the residual subspace. Thus, it is necessary to compute the
influence of each variable = ×x j p m, {1, , ( )}j k k k, of xk in the calcu-
lated values of Tx

2 and SPEx that exceed Tlim
2 and SPEthresh, respectively,

to identify those responsible for the abnormal behavior, as well as the
individual thresholds of each variable with T2 and SPE statistics.

Considering each score ti k, in (7) as the contribution of the original
variables weighted by the corresponding components of the ith principal
component, the total contribution of xj k, to T contr x, ( )x T j k

2
,x

2 , is given by
the sum of its individual contributions to =t i r, {1, , }i k k, in (12),
whereas the individual thresholds thre x( )T j k,x

2 are given by the average
plus three times the standard deviation of the calculated values of
contr x( )T j k,x

2 over k.

= =
= =

contr x contr t x
t x P

( ) ( , )T j k
i

r

i k j k
i

r
i k j k j i k

i k
,

1
, ,

1

, , , ,

,x

k k
2

(12)

If thre x( )T j k,x
2 is surpassed with T2 statistics, i.e.,

>contr x thre x( ) ( )T j k T j k, ,x x
2 2 , then xj k, is identified as a probable cause of

the abnormal behavior detected with T2 statistics.
In turn, from (9), the contribution of xj k, to SPE contr x, ( )x SPE j k,x , is

given by (13), whereas the individual thresholds thre x( )SPE j k,x are given
by the average plus three times the standard deviation of the calculated
values of contr x( )SPE j k,x over k.

= =contr x x x x( ) ( ^ ) ~
SPE j k j k j k j k, , ,

2
,

2
x (13)

If the thresholds calculated analytically for each variable xj k, are sur-
passed, i.e., >contr x thre x( ) ( )SPE j k SPE j k, ,x x , then xj k, is identified as a
probable cause of the abnormal behavior detected with SPE statistics.
Eventually, diagnosis of abnormal operating conditions is realized with
knowledge of the network topology and energy appliances covered by
each IED.

2.3. Sliding-window PCA

2.3.1. Description and flowchart
The introduction of a sliding window framework implies that the

PCA monitoring described in the previous section is run on the fly every
k time instants. This approach increases the situational awareness of
the analysis, as it allows for simultaneous modeling and monitoring
over k. Fig. 3 provides an overview of the PCA-based modeling and
monitoring method presented in Section 2.2 for a generic layer k. This
procedure shall be executed for =k {1, , }. Assuming that the data
are preprocessed and ready for evaluation, the algorithm starts with the
creation of a time window of duration k at the kth layer, once there are
enough observations acquired over k. Then, an × ×n p m( )k k k ob-
servation matrix is arranged and the PCA model is computed over k. If
an abnormal observation is detected, the algorithm proceeds with di-
agnosis and continues to evaluate related occurrences up to the layer
k 1 and the analysis proceeds with the creation of a new time window

k in the kth layer, as long as new data are received.

2.3.2. Example
This subsection provides an example of sliding-window PCA within

a multilayer implementation. The PCA is aimed at detecting hourly and
daily variations in power consumption patterns. Input data consist of
single-phase active power measurements gathered every minute (i.e.,

=f 1raw min−1) by a single IED (i.e., =m 3raw in a three-phase system).
For illustration, a single-phase active power profile is plotted in Fig. 4
over distinct lengths of time (solid yellow lines). In the next paragraphs,
consider that the layers =k {1, 2} refer to hourly and daily variations in
power consumption patterns displayed in the bottom and top graphs of
Fig. 4, respectively.

In this scenario, consider the introduction of two time windows
= 11 day and = 912 days enabling a PCA-based monitoring every day

and over a season, respectively. As a result, in a season, 1 would be run
91 times on a sliding-time basis and 2, just once.

Without data organization, however, anomalies can only be de-
tected at specific minutes, as =f 1raw min−1. This choice results in

=n 131, 0402 observations (solid yellow line at the top graph of Fig. 4)
and = × =n 24 60 14401 observations (solid yellow line at the bottom
graph of Fig. 4). To prevent this, observations can be filtered and re-
sampled (solid blue line in the bottom graph of Fig. 4)) and/or re-ar-
ranged multiway (pink boxes in the top and middle graphs of Fig. 4). In

=k 1, re-sampling of average values over an hour with =f 11 h−1 and
= = 11 1 h results in =p 11 from (2) and = =n 241

24
1 observations

from (1). In =k 2, multiway re-arrangement to evaluate a specific day
of the week with = 72 days, = 12 day, and =f 12 h−1 results in

= × =p 24 1 242 from (2) and = =n 132
91
7 from (1). As a result, X1 is a
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×24 3 matrix, whereas X2 is a × ×13 (24 3) matrix.
Additionally, in a multilayer implementation of PCA-based mod-

eling and monitoring, 1 and 2 can be concatenated such that the
anomalies detected with PCA-based monitoring over the shortest
lengths of time ( 1) can be related to those detected over the longest
lengths of time ( 2). This is performed as a bottom-up procedure, as
schematized in Fig. 3, from +k 1 to .

2.3.3. Example of combined analysis
A practical example is provided in Fig. 4 for a single-phase power

profile. Consider that the layers =k {1, 2, 3} refer to hourly, weekly,
and seasonal variations in power consumption patterns displayed in the
bottom, middle, and top graphs, respectively with =m 1raw and =f 1raw
min−1. The goal of identifying daily profile changes over the season
(with = 913 days for exact integer calculations) with =f fraw3 and

= = 13 3 min results in =n 131, 0403 observations (solid yellow line
at the top graph of Fig. 4), which would not be adequate for the task. As
an option, the observations could be re-arranged multiway to evaluate
the data from specific weekdays (e.g pink box in the second graph of
Fig. 4) without re-sampling, which provides =f 12 min−1, = 12 day,

= × = = = = × = =n m m m24 60 1440, 1, 1 1440 1440, 91raw2 2 2 2

days, = 72 days, =f2
1
7 day−1, and = =n 132

91
7 , or averaged every

hour over a day with re-sapmpling for a joint evaluation of the data
gathered at specific hours of the day (e.g., solid blue line at the bottom
graph of Fig. 4) with = 11 day, which provides = 601 min, =f1

1
60

min−1, = 601 min, and = =n 241
1440

60 . As a result, X1 is a ×131, 040 1
matrix, X2 is a ×1440 13 matrix, and X3 is a ×24 1 matrix.

3. Case study

This section presents an overview of the monitoring network in
Section 3.1, the main objectives and analysis description in Section 3.2,
and results in Section 3.3.

3.1. Network

The presented strategy was tested in MATLAB using data from the
OpenLV project at Marshfield Village, South Gloucestershire, United
Kingdom. For more information about the OpenLV project and the
chosen area, see [19].

A map of the approximate locations of the IEDs in this network
(OpenLV substations 43, 44, 69, and 70) is displayed in Fig. 5. They are
installed at LV distribution level ( V415 ) in different areas of a three-
phase unbalanced network, where single-phase solar PV panels are also
installed, and record average values of phase voltage and line current
magnitudes and active and reactive power and energy every minute
(i.e., =f 1raw min−1). Therefore, = × × =m 4 3 6 72raw in total. The
measurements aggregate energy consumption from distinct households

Fig. 3. Flowchart of the strategy in a generic layer k.

Fig. 4. Example of data organization over power profiles: original data re-
presented by solid yellow lines, multiway re-arrangement represented by pink
dashed boxes, and re-sampling with average values represented by the solid
blue line. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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and buildings and energy production from solar PV panels whose rated
power and connection points are known.

3.2. Main objectives and analysis description

Considering the time ranges displayed in Fig. 1, fraw and mraw, and
the records of OpenLV data from July 17, 2018 to June 30, 2019, the
multilayer PCA strategy is aimed at identifying and characterizing
distinct abnormal behavioral patterns associated with electricity pro-
duction and consumption over time, from fast load behavioral changes
at minute resolution (which can be seen in the reactive power Q
changing from/to inductive to/from capacitive) to slow profile changes
at day resolution (which can be seen in the active power P). The layers
and problems of interest are defined accordingly in Table 1, together
with their corresponding f , , ,k k k k, and the input data set. However,
only events that last a few minutes or longer are visible in the data,
since =f 1raw min−1. In the input data, P stands for active power
measurements, whereas Q stands for reactive power measurements. All
data are single phase quantities acquired separately at the three phases
of each substation.

It is noteworthy that not all measured quantities are required for the
evaluation of a specific problem of interest. For instance, phase voltage
and line current magnitudes are better indicators of power quality
problems, whereas active and reactive power and energy are better
indicators of energy behavioral patterns. To some extent, the power and
energy measurements contain redundant information, as the energy
quantities derive from their corresponding power quantities. Based on
the measurement-based techniques summarized in [22], and con-
sidering that power is a better indicator of average behaviors over time
than energy, by definition, the usage of active and reactive power is
adopted for the problems of interest defined in Table 1. Additionally,
the active and reactive power measurements are further adjusted to the
timescales schematized in the temporal hierarchy of decisions of Fig. 1.

Layer 1 does not require a priori re-sampling or multiway re-ar-
rangement due to its short duration; in contrast, layers 2 and 3 do, for
their long duration. Thereby, in layers 2 and 3, the IED data are aver-
aged (over an hour in layer 2 and over a day in layer 3) to represent a
single measurement with a lower sampling rate, and further re-ar-
ranged multiway in layer 3 to evaluate repetitive patterns on a specific
day of the week. This previous data organization is necessary whenever
the data have to be adjusted within a specific problem of interest.

The PCA models are built on the fly, as soon as new data are ready

for analysis over k at the k layers described in Table 1. The analysis
relies on measurements collected from July 17,2018 to June 30, 2019.
Moreover, power system operation over a day is further divided in two
periods, before noon and after noon, as a typical day presents two
different load peaks, one in the morning and the other in the afternoon
(see Fig. 6). This choice is made to catch these two daily load peaks in
separate within the statistical models, such that one peak does not in-
terfere with the other. This is taken into consideration in layers 2 and 3,
which contain half the number of observations of the whole day.

A confidence level = 0.95 is chosen for the whole analysis, as it
results in a few observations surpassing the thresholds calculated ana-
lytically with (8) and (10). This means that the conclusion reached by
the experiment will actually be wrong (that is, result in false positives
or negatives) in 5% of the tests. Further investigation is required to
discard false positives and negatives (i.e., wrong event detections and
missed event detections). For instance, in layer =k 1, there are =n 601
observations, of which 3 are expected to be wrongly classified; in =k 2,
there are =n 842 observations, of which at least 4 are expected to be
wrongly classified; and in =k 3, there are =n 263 observations, of
which at least 1 is expected to be wrongly classified.

3.3. Results

This section presents examples of detection and diagnosis of ab-
normal power consumption patterns using the multilayer PCA strategy
presented in Section 2, the scenarios described in Section 3, and
OpenLV data recorded on November 02, 2018. The computation time of
all layers is of a few milliseconds, which enables an online im-
plementation of the methodology. The active power profiles displayed
in Fig. 6 contain the abnormal behaviors under evaluation in layers 2
and 3 of Table 1, further averaged and separated in before noon and
after noon. In addition, the multiway re-arrangement introduced in
layer 3 allows for a comparative evaluation of weeks.

For layers 1 to 3 of Table 1, event detection results are displayed in
Figs. 7–9, whereas contributions in terms of T2 and SPE statistics for the
specific events highlighted in Figs. 7–9 are illustrated graphically in
Figs. 10–12 in the projection subspace (top chart) and residual subspace
(bottom chart), respectively. Although there are a few points outside
the square area in Figs. 7–9, this section focuses on the occurrences
highlighted in Figs. 7–9 to illustrate the methodology. All graphs dis-
play the statistical thresholds calculated individually for each substa-
tion variable (i.e., active power P or reactive power Q at phases 1, 2,
and 3 of substations 43, 44, 69, and 70), represented by the solid black
line, together with the contributions of each substation variable to the
calculated values of T2 and SPE, represented by the column charts.
Although there are more abnormal observations in Figs. 7–9 than those
highlighted, the analysis focuses on those points in particular.

In these examples, the individual contributions that violate the
statistical thresholds of T2 indicate that the reactive power variables
Q Q Q, ,43,1 43,3 44,1, and Q69,1 are the main involved in the statistically ab-
normal behavior in Fig. 10 from 07:05 PM to 07:10 PM; and that the
active power variables P P,69,1 69,2, and P69,3 are involved in the abnormal
behavior in Fig. 11 and that none of the IEDs is involved in Fig. 12.
Further evaluation of the network topology suggests that constraint
violations with T2 statistics are probably due to the solar PV panels

Fig. 5. Map of IED locations within the Marshfield network.

Table 1
Layers and problems of interest.

k Problem of interest Time lengths Input

fk k k k data nk mk pk

1 Load behavior 1 min−1 1 min 1 min 1 h Q only 60 12 1
2 Hourly power changes 1 h−1 1 h 1 h 1 week P only 84 12 1
3 Daily power changes 1 day−1 1 week 1 week 6 months P only 26 12 7
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connected to the feeders of the substations involved in the occurrence
followed by an increase in electricity consumption. In fact, the presence
of inverter-based generation changes the behavior of the network from
inductive to capacitive over a few minutes (Fig. 10) while increasing
the injection of active power in the network (Fig. 11), whereas an in-
crease in electricity consumption, reflected in the active power demand,
is related to changes in the standard operation of the grid over longer
intervals. In turn, the individual contributions that violate the statistical
thresholds of SPE indicate that the reactive power variables Q Q,43,1 70,1,
and Q70,3 are the main involved in the abnormal behavior in Fig. 10
from 07:05 PM to 07:10 PM; that the active power variable P69,3 is

involved in the abnormal behavior in Fig. 11; and that the active power
variables P P,69,1 69,2, and P69,3 gathered on November 02, 2018 are in-
volved in the abnormal behavior in Fig. 12. Further evaluation of the
network topology shows that constraint violations with SPE statistics
are due to a high energy consumption within the coverage area of the
IEDs involved in the occurrence.

4. Discussion

It can be noticed from Section 3.3 that the multilayer PCA strategy
presented in this article allows for detection and isolation of different

Fig. 6. Single-phase daily active power profiles recorded at substations 43, 44, 69, and 70 on November 02, 2018.

Fig. 7. SPE vs. T2 results at layer 1: minutes between 07:00 PM and 07:59 PM
on November 02, 2018.

Fig. 8. SPE vs. T2 results at layer 2: hours from October 29, 2018 to November
04, 2018.

Fig. 9. SPE vs. T2 results at layer 3: afternoons of the weeks in the 2018 Autumn
term.

Fig. 10. Contribution analysis of T2 (top) and SPE (bottom) at layer 1: load
behavior.
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types of abnormalities in energy production and consumption patterns
in parallel, taking into consideration the time ranges of distinct phe-
nomena or problems of interest while respecting the temporal hierarchy
of decisions. As an outcome, multilayer PCA is more flexible and scal-
able than traditional multiway PCA when it comes to the timescales,
variables, and layers of interest.

The data organization enables to apply the same data set to identify
different types of abnormal behaviors more effectively. This procedure
provides a more appropriate sampling rate so that a specific set of
variables can be used over the length of time associated with a given
problem of interest. As a result, this procedure ensures good perfor-
mance with an adequate scaling of the data at different layer levels in
the next steps of the strategy. On the top of this, the results obtained
with data organization show that it is of paramount importance to se-
lect an appropriate sampling according to the length of time of the layer
so that different types of abnormal behaviors can be detected with an
adequate representation over time. If this procedure was not used, the
results detected at the longest layers would contain redundant in-
formation, which is not desired.

In the case study described in Section 3, variations in the normal
operating conditions are attributed to the uncertain, intermittent nature
of the electricity production from solar PV panels, whereas other per-
turbations are attributed to abnormal energy consumption patterns.
Consequently, events detected with T2 statistics are related to the en-
ergy generated by the solar PV panels, as it measures the distance of the
projected data to the center of the model and is expected to present
larger values associated with variations in the normal operating con-
ditions, whereas events detected with SPE statistics are related to the
energy consumption, as it measures the distance of the observation to

the projection subspace and is expected to present larger values asso-
ciated with changes in the correlation structure of the observations.

Moreover, it is recommended to proceed with a further investiga-
tion of any results detected with any of the T2 or SPE statistics, as they
produce violation of constraints related to major concerns about power
system operation in different ways. As a matter of a fact, events de-
tected with T2 statistics are associated with deviations from the average
standard operating conditions, whereas events detected with SPE sta-
tistics reflect changes in the correlation structure of the observations. As
a result, this comprehensive analysis prevents the neglect of abnormal
behaviors at distinct layer levels with the data set in use.

However, it is noteworthy that any types of abnormal behaviors can
be identified only if they produce changes in the measured quantities
that last enough to be recorded. This principle applies to parts of the
grid that are directly or indirectly monitored by IEDs.

The results presented in Section 3.3 also show that it is possible to
zoom in and out of abnormal energy production and consumption
patterns through this multilayer PCA and thereby associate distinct
problems of interest over time whenever they are identified at different
layers. In addition, it can be noticed that, the shorter duration of the
layer and the higher sampling rate of the data, the more principal
components are needed to express the same information. It shows that
the previous data preprocessing step is effective to address problems of
interest over distinct timescales with adequate data. As a matter of a
fact, for the case study presented in Section 3, the analysis requested

=r 31 hourly, =r 22 weekly, and =r 13 biannually.
Furthermore, the procedure of isolation enables to identify the most

probable substations, lines, and electrical quantities responsible for the
abnormal behavior, as it computes the influence of each variable –
referred to an electrical quantity of a substation – in the calculated
values of the T2 and SPE statistics. Consequently, information about the
network topology and its electrical parameters and energy appliances
are helpful for the correct identification of the most probable locations
and causes of the abnormal behavior.

5. Conclusion

This paper presented a strategy to identify abnormal operating
conditions in power system data gathered by IEDs based on a multilayer
implementation of PCA with use of T2 and SPE statistics. The metho-
dology is able to detect and diagnose occurrences of different nature
and time spans with significant dimensionality reduction, which is
advantageous to process large amounts of data collected by many IEDs
installed at different locations. Moreover, this multilayer PCA enables
to tackle distinct problems of interest in parallel over time, re-arranging
the data to fit the scale and purpose of the analysis when required. The
presented methodology was tested with OpenLV data in a case study
focused on the detection, isolation, and diagnosis of abnormal energy
production and consumption patterns at different timescales. The re-
sults indicate that the presented method is accurate and efficient, as
long as an adequate data set is used to build the PCA model at each
individual layer.

Declaration of Competing Interest

None.

Acknowledgments

The authors would like to thank the OpenLV project for providing
network data. OpenLV is part funded by Ofgem’s Network Innovation
Competition funding, Western Power Distribution as the host
Distribution Network Operator, and EA Technology through in kind
contribution. This work has been supported by the European Union’s
Horizon 2020 research and innovation framework under the auspices of

Fig. 11. Contribution analysis of T2 (top) and SPE (bottom) at layer 2: hourly
power changes.

Fig. 12. Contribution analysis of T2 (top) and SPE (bottom) at layer 3: daily
power changes.

L. Souto, et al. Electrical Power and Energy Systems 125 (2021) 106471

8



the project Renewable penetration levered by Efficient Low Voltage
Distribution grids, grant agreement number 773715, and University of
Girona scholarship.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.ijepes.2020.106471.

References

[1] Stott B, Alsac O, Monticelli AJ. Security analysis and optimization. Proc IEEE
1987;75:1623–44.

[2] Sauer PW, Pai MA. Power system dynamics and stability. Prentice-Hall; 1998.
[3] IEEE, IEEE recommended practice for monitoring electric power quality, IEEE Std

1159-2009 (Revision of IEEE Std 1159-1995); 2009. p. 1–94.
[4] IEEE, IEEE guide for collecting, categorizing, and utilizing information related to

electric power distribution interruption events, IEEE Std 1782-2014; 2014. p. 1–98.
[5] Löf A, Repo S, Pikkarainen M, Lu S, Pöhö T. Low voltage network monitoring in rtds

environment 2013:1–5.
[6] Dedé A, Della Giustina D, Rinaldi S, Ferrari P, Flammini A, Vezzoli A. Smart meters

as part of a sensor network for monitoring the low voltage grid 2015:1–6.
[7] Barbato A, Dedé A, Giustina DD, Massa G, Angioni A, Lipari G, et al. Lessons learnt

from real-time monitoring of the low voltage distribution network. Sustain Energy,
Grids and Networks 2018;15: 76–85. Technologies and Methodologies in Modern
Distribution Grid Automation.

[8] Junior WLR, Borges FA, Veloso AF da S, Rabêlo R de AL, Rodrigues JJ. Low voltage
smart meter for monitoring of power quality disturbances applied in smart grid.
Measurement 2019;147:106890.

[9] Silva N, Basadre F, Rodrigues P, Nunes MS, Grilo A, Casaca A, Melo F, Gaspar L.
Fault detection and location in low voltage grids based on distributed monitoring
2016:1–6.

[10] van Deursen A, Wouters P, Steennis F. Corrosion in low-voltage distribution net-
works and perspectives for online condition monitoring. IEEE Trans Power Deliv
2019;34:1423–31.

[11] Maaß H, Cakmak HK, Bach F, Mikut R, Harrabi A, Süß W, et al. Data processing of
high-rate low-voltage distribution grid recordings for smart grid monitoring and
analysis. EURASIP J Adv Signal Process 2015;2015:14.

[12] Stefan M, Lopez JG, Olsen RL. Exploring the potential of modern advanced metering
infrastructure in low-voltage grid monitoring systems 2018:3543–8.

[13] Russell E, Chiang L, Braatz R. Data-driven Methods for Fault Detection and
Diagnosis in Chemical Processes. Advances in Industrial Control. London: Springer;
2000.

[14] Barocio E, Pal BC, Fabozzi D, Thornhill NF. Detection and visualization of power
system disturbances using principal component analysis. In: 2013 IREP Symposium
Bulk Power System Dynamics and Control - IX Optimization, Security and Control
of the Emerging Power Grid; 2013. p. 1–10. doi:10.1109/IREP.2013.6629374.

[15] Liu X, Laverty DM, Best R, Li K, McLoone S. Principal component analysis of wide
area phasor measurements for islanding detection - a geometric view. IEEE Trans
Power Deliv 2015;30:976–85.

[16] Guo Y, Li K, Laverty DM, Xue Y. Synchrophasor-based islanding detection for dis-
tributed generation systems using systematic principal component analysis ap-
proaches. IEEE Trans Power Deliv 2015;30:2544–52.

[17] Rafferty M, Liu X, Laverty DM, McLoone S. Real-time multiple event detection and
classification using moving window PCA. IEEE Trans Smart Grid 2016;7:2537–48.

[18] Ayech N, Chakour C, Harkat MF. New adaptive moving window pca for process
monitoring, IFAC Proceedings Volumes 2012;45: 606–11. 8th IFAC Symposium on
Fault Detection, Supervision and Safety of Technical Processes.

[19] E. Technology, OpenLV – the groundbreaking project that’s making local electricity
data openly available; 2017. URL: http://openlv.net.

[20] C. of European Energy Regulators, Ceer benchmarking report 6.1 on the continuity
of electricity and gas supply; 2018.

[21] Qin SJ, Dunia R. Determining the number of principal components for best re-
construction. J Process Control 2000;10:245–50.

[22] Arif A, Wang Z, Wang J, Mather B, Bashualdo H, Zhao D. Load modeling–a review.
IEEE Trans Smart Grid 2018;9:5986–99.

L. Souto, et al. Electrical Power and Energy Systems 125 (2021) 106471

9

https://doi.org/10.1016/j.ijepes.2020.106471
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0005
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0005
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0010
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0025
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0025
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0030
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0030
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0040
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0040
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0040
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0045
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0045
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0045
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0050
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0050
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0050
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0055
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0055
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0055
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0060
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0060
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0065
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0065
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0065
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0075
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0075
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0075
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0080
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0080
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0080
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0085
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0085
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0105
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0105
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0110
http://refhub.elsevier.com/S0142-0615(20)30119-8/h0110

	Monitoring of low voltage grids with multilayer principal component analysis
	1 Introduction
	2 Methodology
	2.1 Problem setting
	2.1.1 Premises
	2.1.2 Data organization
	2.1.2.1 Time windowing
	2.1.2.2 Filtering and re-sampling
	2.1.2.3 Multiway re-arrangement

	2.2 PCA-based modeling and monitoring
	2.2.1 Building the PCA model
	2.2.2 Detection of abnormalities
	2.2.3 Isolation and diagnosis of abnormalities

	2.3 Sliding-window PCA
	2.3.1 Description and flowchart
	2.3.2 Example
	2.3.3 Example of combined analysis


	3 Case study
	3.1 Network
	3.2 Main objectives and analysis description
	3.3 Results

	4 Discussion
	5 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Supplementary material
	References




