
 1

The Critical Conditions for Thermal Explosion in a System Heated at a 

Constant Rate. 

 

D. Sánchez-Rodriguez, J. Farjas*, P. Roura. 

University of Girona, Campus Montilivi, Edif. PII, E17071 Girona, Catalonia, Spain 

 

Abstract 

We have analyzed the condition needed for thermal explosion to occur in a solid sample 

when the temperature of the vessel walls is raised at a constant rate. We have developed 

a dimensionless model that allows its direct comparison with an isoperibolic system 

(constant vessel wall temperature). We have obtained an analytical expression for the 

critical condition as a function of the system parameters. Our solution takes into account 

reactant consumption and covers different geometries: thin film, finite and infinite 

cylinder. The critical condition has been validated with numerical simulations and 

experiments. We show that, compared to the isoperibolic system, thermal explosion is a 

little bit more difficult to achieve under constant heating conditions. Besides, we show 

that thermal explosion on submicrometric films is nearly impossible. 
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Nomenclature and Units 

 

A  Pre-exponential constant, s-1 

a Thermal diffusivity, m2/s 

b Heating rate, Eq. (3), K/s 

c Specific heat capacity, J/(kg·K) 

C Geometrical factor of the critical condition, Eq. (15). 

d characteristic linear dimension of Frank-Kamenetskii parameter, Eq. (13), m 

di  Width of the reaction zone, Eq. (9), m 

EA  Activation energy, Eq. (4), J/mol 

H Sample height or film thickness 

m Sample mass, kg 

N coefficient related to the geometry of the diffusion equation, Eq. (10). 

q Specific heat of reaction (positive for exothermic reactions), J/kg 

RG  Universal gas constant, J/(K·mol) 

R  Inner radius of a cylindrical or spherical reaction vessel 

r Radial space coordinate, m 

t Time, s 

tR Reaction time scale, Eq. (5), s 

ti Time scale of the adiabatic induction period, Eq. (8), s 

T Temperature, K 

Tf Temperature of the vessel containing the system, K 

TKis Maximum rate transformation temperature, Eq. (6), K 

V System’s volume, m3 

z  Vertical space coordinate, m 

λ Thermal conductivity, W/(m·K) 

ρ Density, kg/m3 

 

Dimensionless parameters 

α Degree of transformation or conversion fraction 

  Volume averaged degree of transformation, Eq. (14). 

ε Arrhenius parameter, Eq. (13). 

δ Frank-Kamenetskii parameter, Eq. (13). 

ξ Space coordinate, Eq. (7). 



 3

θ Temperature, Eq. (7). 

θT Todes parameter, Eq. (13). 

τ Time, Eq. (7). 

 

Subscripts and superscripts 

cr critical, parameter value at the combustion threshold 

in initial 

fin final 

(1D) 1D model 

(2D) 2D model 

TF 1D vessel geometry in the limit case R >> H (thin film or semi-infinite slab) 

Cyl 1D vessel geometry in the limit case H >> R (infinite cylinder) 

Sph Spherical vessel 

 



 4

1. Introduction 

 

Knowledge of the critical conditions for the occurrence of thermal explosion (sample 

mass, container geometry, activation energy, thermal conductivity, temperature) allows 

to determine: a) the chemical risk associated with the storage and transportation of 

hazardous materials or in running chemical reactors [1–6], b) the conditions for 

pyrotechnic reactions to occur [7–9], c) munitions cookoff temperatures [10] and d) in 

general the ignition condition in chemical engineering processes [11,12].  

Furthermore, the so-called “combustion synthesis” takes advantage of local 

heating related to the heat evolved during the chemical reaction to obtain materials at 

low processing temperature [13,14]. For instance, synthesis of functional metal oxide 

thin-films via combustion synthesis has attracted great attention because it would allow 

the use of low-temperature substrates and it would be a promising route towards the 

development of large-area and low-cost printed electronics [15]. Unfortunately, under 

isothermal conditions or during slow heating ramps, fast heat dissipation to the substrate 

hinders thermal explosion by avoiding the local overheating needed for a thermal 

runaway to occur [16–22]. Several authors have suggested that, during rapid heating 

ramps, combustion may be achieved in thin films [14,16]. So, the conditions leading to 

thermal runaway during heating at a constant rate is of interest for many applications.  

In [23–28] thermal explosion under dynamic conditions is analysed numerically 

and theoretically. The parameter range explored numerically is quite limited. Besides, to 

reduce the original system to an ordinary differential equation (ODE) system, analytical 

approaches neglect the temperature and transformation degree distribution. As we will 

see, this approximation is too crude to provide an accurate description of the critical 

condition. As Boddington et al. [29] noted for the constant heating case: “The 

development of a realistic model for the ignition experiment is a formidable problem.” 

The aim of the present work is to provide a thermal runaway condition for a 

system that is heated uniformly at a constant rate. To be more precise, the reactant is 

placed in a vessel whose walls are kept at a temperature, Tf, that is raised at a constant 

rate. We consider a homogeneous solid sample where heat dissipation occurs mainly 

through heat diffusion towards the vessel walls. We will show that this model correctly 

describes the observed behavior of one metalorganic precursor. We will use a new 

dimensionless system of equations that is equivalent to that introduced by Frank-

Kamenetskii for an isoperibolic system (a system where Tf remains constant with time) 
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[30,31]. Thus, our approach allows to determine whether thermal runaway during 

constant heating is easier or not than during an isothermal temperature program. We 

will obtain a combustion condition that covers different geometries and a wide 

parameter range that accounts for most practical cases. Finally, we will analyze the 

possibility of combustion in thin films. 

 

2. The model 

 

The model is based on the classical theory for ignition and front propagation in solid 

samples [11,21,30,32–35]. The heat balance is the result of two opposite effects: heat 

generation by chemical reaction and heat removal through thermal conduction. We 

neglect the effect of reactive gas depletion or the evolution of the system parameters 

during the reaction. These are reasonable approximations to predict the development of 

a thermal runaway but are not sufficient to accurately describe the whole reaction 

course. We also assume a homogeneous medium. The last assumption is also valid for 

heterogeneous systems provided that the time of heat exchange is much shorter than that 

of the chemical reaction [36]. For a cylindrical vessel, the evolution of the temperature 

is described by a two dimensional (2D) partial differential equation (PDE): 
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where ρ is density, c is heat capacity, q is the reaction specific heat and λ is thermal 

conductivity; T is temperature, t is time, z and r are the axial and radial coordinates, 

respectively (see Fig. 1), and α(r,z,t) is the transformation degree (α = 0 untransformed, 

α = 1 totally transformed).  

We assume that the initial sample temperature, Tin, is uniform and low enough to 

ensure that the degree of transformation is zero throughout the sample. The boundary 

conditions are: 
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where H is the sample height, R is the vessel’s inner radius and Tf is the vessel 

temperature, that is raised at a constant rate b: 

btTT inf  . (3)
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The last boundary condition states that the heat flux is null at the top of the sample. 

Actually, if the vessel temperature is below 600ºC, the heat lost by radiation is 

negligible when compared to the heat dissipated by conduction through the crucible 

walls. As for the heat evolved from the released gases, it is nearly compensated by the 

loss of heat capacity; so, it has a negligible effect on the heat balance [37]. Finally, due 

to symmetry, this boundary condition also describes a closed vessel full of reactant 

provided that H is the vessel half height.  

Concerning the reaction, we assume first-order reaction kinetics to account for 

the reactant consumption and an Arrhenian temperature dependence [38,39]: 

)1(/ 



  TRE GAAe

t
, (4)

where A and EA are the pre-exponential constant and the activation energy of the 

reaction rate constant, respectively, and RG is the universal gas constant. 

 

2.1 Dimensionless system 

 

The analysis of the system becomes much simpler by introducing suitable 

dimensionless parameters. Previous analytical studies have based their dimensionless 

model on the critical temperature of the isoperibolic system (static conditions) [24–27]. 

To derive a model that is formally similar to the isoperibolic system [21], we have 

looked for a different normalization.  

The only difference with respect to the isoperibolic system is the second and 

third boundary equations: in the isoperibolic system the vessel temperature remains 

constant while in the present case it increases steadily at rate b. If overheating due to the 

reaction is negligible, the reaction time, tR, is determined by the vessel temperature; it is 

inversely proportional to the rate constant. Under constant heating conditions, it has 

been shown that the reaction time has the same functional dependence but on TKis 

[40,41], 

  1 KisGA TRE
R Aet , (5) 

where TKis is the temperature at which the reaction rate is at its maximum, and is given 

by Kissinger’s equation [42,43]: 
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Since the role played by the Kissinger temperature, TKis, for constant heating rate 

is similar to the constant vessel temperature for the isoperibolic system, it seems natural 

to use the same dimensionless temperature, θ, time, τ, and space coordinate, ξ, already 

defined for the isoperibolic system [30,31] but replacing Tf by TKis. For the particular 1D 

case of a thin film we thus define: 
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The length and time scales di and ti have a precise meaning for the isoperibolic system: 

di is the width of the zone were the reaction rate is significant [30,31] and ti is the time 

elapsed before the thermal runaway [44]. With the above dimensionless variables, 

Eqs.(1) and (4) become for a thin film: 
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where N = 0 with the boundary conditions: 
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where we have set t = 0 when TKis is reached. We have taken Tin = 0 K so that the 

condition that initially the transformation rate is null is fulfilled. 

Eqs. (10)-(13) reveal that the 1D system is fully described by three 

dimensionless parameters: 

A

KisG

E
TR , 

c
q

TR
E

KisG

A
T 2 , 

2

2
2 












i

TR

E

KisG

A

d
d

Aed
TR

Eq
KisG

A


  (13) 



 8

where d for a thin film is the height (d = H). We will call these parameters the Ahrrenius 

(ε), Todes (θT) and Frank-Kamenetskii (δ) parameters to keep the same nomenclature 

than for the isoperibolic system. 

Generalization of the above equations is straightforward for other 1D 

geometries: for a sphere (N = 2 and d = R) and for an infinite cylinder (N = 1, d = R). 

The derivation of the 2D system is straightforward from Eqs. (1)-(4) and (7) but, for the 

sake of simplicity, in the analysis of the critical condition we have preferred to write 

down only the 1D model. Nevertheless, the 2D simulations presented below for a 

cylinder or radius R and height H have been obtained from the numerical solution of the 

dimensionless model. In this case: 
RHd
111

  [21]. 

 

3. Experimental and numerical results  

 

To assess the ability of the numerical model to describe real situations, we have 

analyzed numerically and experimentally the decomposition of barium trifluoroacetate, 

Ba(CF3COO)2 [Ba(TFA)2]. Preparation details are given in ref. [45]. The evolution of 

the reaction with the temperature is monitored by thermogravimetry (TG). TG measures 

the evolution of the mass of a sample when it is submitted to a controlled temperature 

program. The conversion fraction at any time can be easily calculated as [46]: 

finin

tin

V mm

mm
dV

V
t




   1
)( . (14)

where V is the system’s volume, min is the initial sample mass, mt is the mass at time t 

and mfin is the final mass. 

 TG analysis was performed with a Mettler Toledo model TGA851eLF 

thermobalance. Samples were placed inside uncovered alumina crucibles. The internal 

and external radii of the crucible were 2.4 and 3 mm, respectively. Measurements were 

corrected with a blank experiment carried out under identical conditions. Inside the 

furnace a gas flow rate of 50 mL/min was controlled by mass flow meters. High purity 

synthetic air was used. Water-saturated air was obtained by bubbling the carrier gas in 

water at standard temperature and pressure (25ºC, 1 atm). Thermal analysis experiments 

were performed at 20 K/min. The parameters used to simulate the thermal 

decomposition Ba(TFA)2 are summarized in Table 1. All have been measured and the 

details are given in ref. [47].  
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We can see in Fig. 2 an abrupt step in the evolution of   for min = 16 mg that 

reveals the occurrence of a thermal runaway [17,22,47,29,48]. Movie 1 shows the 

evolution of α. Vertical and horizontal axes correspond to the z and r coordinates, 

respectively (see Fig. 1); so, the top left corner corresponds to the top center point in the 

sample. Given that, when a thermal runaway occurs, the decomposition rate increases 

enormously, frames are taken at constant degree of transformation intervals; otherwise, 

decomposition would be like a flash in the movie. From Movie 1, we can realize that a 

front is initiated at the top center. The reason is that the vessel walls are a thermal sink 

that allows rapid heat dissipation thus preventing local overheating and, consequently, 

the development of a thermal runaway there. A thermal runaway occurs when the 

sample size is greater than a critical value. Consequently, for sample sizes near the 

critical value, the thermal runaway is always initiated at the farthest location from the 

vessel walls, i.e., the top center of the sample, and propagates towards the vessel walls. 

For large samples, the thermal runaway is initiated next to the vessel walls at a distance 

of the order of di and propagates towards the center of the sample. This behavior is 

illustrated in Movie 2. Therefore, for large chemical reactors, the front begins very close 

to the reactor walls and propagates from the reactor walls to the center of the sample. 

For intermediate sizes (see Movie 3) two fronts propagate in opposite directions. This 

displacement of the ignition point from the center of the sample to the walls as the 

width of the sample increases was also reported by Merzhanov et al. [31] in a 

isoperibolic system. 

 Since Ba(TFA)2 decomposition is governed by the superposition of two different 

mechanisms [45], the assumption that the reaction is ruled by a first order reaction is 

quite inaccurate. Thus, we would expect our numerical model to provide a rather poor 

prediction of the time evolution of  . In Fig. 2 we have plotted simulated and 

experimental Ba(TFA)2 transformation curves when the sample is heated at 20 K/min 

for different sample masses. Although our model fails to predict   accurately, it does 

provide a rather good description of the first stages of the reaction, which is sufficient 

for our purpose of establishing the required conditions for a thermal runaway to 

develop. In the following, we will predict the critical condition for a thermal runaway to 

occur. 

 

4. Critical condition. 
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As already stated in Section 2, the dimensionless set of equations describing the 

evolution of a 1D system, Eqs. (10)-(12), depends only on three parameters; namely ε, 

θT and δ, Eq. (13). They collect all the physical parameters concerning the chemical 

reaction, heat transport, size (through d) and heating rate (implicitly through TKis). 

Depending on the particular ε, θT and δ values, the system will undergo thermal 

explosion or not. Our aim is to find the boundary of the ε, θT and δ region where 

combustion occurs. This boundary is described by a so called “critical condition” 

relating these three parameters. In the limit of very exothermic transformations and high 

activation energies ( T  and 0 ), the critical condition states that δcr (δ in the 

boundary) equals a constant value that depends on geometry. 

 Two general analytical approaches are used to simplify the system. In the quasi-

stationary approach, the subcritical regime is related to the existence of a quasi-

stationary solution where the temperature evolution closely follows the heating rate. 

The quasi-stationary solution allows deriving the spatial dependence of α and T in the 

subcritical regime. Conversely, in the non-stationary approach, the PDE is reduced to an 

ODE system. The resulting ODE system allows calculating the time evolution of the 

averaged α and T. Both approaches have been applied to the isoperibolic case in our 

former paper [21] and are applied here to the constant heating case. The technical 

developments are detailed in Appendices A and B. 

 

4.1 Exact solution 

 

We have numerically integrated the exact model, Eqs. (10)-(12), for the particular case 

of a thin film. We have calculated the evolution of the heat released by the reaction and 

the heat dissipated by thermal conduction towards the substrate. Their ratio is a good 

criterion to determine whether thermal runaway develops or not [21]. We have used this 

criterion because it can be applied to both the exact model and the non-stationary 

approach. In particular, for a given set of parameters θT and ε, we look for the value of δ 

at the threshold of thermal runaway. The result is shown in Fig. 3 where the value of δcr 

is plotted as a function of θT for several values of ε.  

 We should emphasize that the range of parameters in Fig. 3 (10 < θT < 104, 0 < ε 

< 0.1) covers most practical situations. Most bond energies are between 50 and 500 
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kJ/mol (bond energies bellow 50 kJ/mol are characteristic of weak interactions such as 

Van der Waals bonding). Assuming TKis = 600 K, a variation of EA between 50 and 500 

kJ/mol results in a variation of ε between 0.01 and 0.1. As for θT the quotient q/c 

corresponds to the adiabatic temperature rise. The adiabatic temperature rise is typically 

around 1000 K [13,49]. However, in the case of metalorganic precursors, combustion 

has been observed in powders for q/c values of few hundred Kelvins [17,45,50,51]. If 

we assume that the adiabatic temperature rise is at least of the same magnitude than TKis 

we obtain a lower bound for θT of 10 (for a maximum value of ε = 0.1). 

 

4.2 Non-stationary approach 

 

The base of the existing analytical solutions is the set of ODE obtained after neglecting 

the temperature distribution in the system’s volume [23,24,26]. Using this approach, in 

Appendix B we derive the ODE system, 
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where C is a constant that depends on the system’s geometry: 32.3)1( D
SpheC  for a 

spherical vessel [52], 0.2)1( D
CylC  for an infinite cylinder [30,53,54], 878.0)1( D

TFC  for a 

thin film [30,53,54]. The initial conditions are those of Eq. (12). 

 In Fig. 3 we compare the critical value of Frank-Kamenetskii parameter, δcr, 

obtained from the numerical integration of the exact model, Eqs. (10)-(12), with the 

value obtained from the ODE system, Eq. (15). From Fig. 3 it is apparent that the ODE 

system correctly describes the functional dependence of δcr on θT and ε but, in contrast 

with the isoperibolic case [21], it fails to deliver an accurate prediction of the δcr value. 

This is because, in the dynamic case, neglecting the temperature and degree 

transformation distribution is an approximation to rough to obtain an accurate prediction 

of the combustion threshold. Since the quasi-stationary model (Appendix A) takes into 

account the temperature distribution, we derive the critical condition combining 

analytical results of the stationary model with numerical results.  

 

4.3 The critical condition 
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To simplify the fitting procedure, we take advantage of the results delivered by the 

quasi-stationary approach (See Appendix A) and the fact that, for any value of ε, δcr 

tends to a constant value in the limit T . These asymptotic values have been fitted 

to δ = 4.392/(1+2ε), see inset of Fig. 3. The proportionality constant is the value of δ 

deduced for ε = 0 in Appendix A: 

),0(392.45  TTFcr C  . (16)

Eq. (16) and the critical condition for an isoperibolic system [21,30] are nearly 

identical, the main difference is a factor 5 that is related to reactant consumption prior to 

thermal runaway. At the threshold, thermal runaway develops when the transformation 

rate at the top center of the sample reaches its maximum value, and this occurs for the 

Kissinger temperature. Due to the thermal gradient between the center and the vessel 

walls, the thermal runaway is achieved for a furnace temperature below the Kissinger 

one (see Appendix A): 

)1(,  Kiscrf TT . (17)

Since in most real system ε<<1, the furnace critical temperature approaches the 

Kissinger one. Besides, the initial reactant consumption makes thermal explosion a little 

bit more difficult to achieve under constant heating conditions for a given temperature 

(Tf for the static case or TKis for the dynamic case).  

The shape of the δ(θT) curves can be fitted to the functional dependence 

  1/)(1  Tcr f   where f(ε) has been expanded up to ε2 term. The best fit to δcr for a 

thin film has been obtained with f(ε) = 2(2+ε+30ε2), see Fig. 4.a. Finally, the particular 

critical condition for the thin film can be generalized to the other geometries by 

replacing CTF by the corresponding C: 

  C
crT

5
2

3021)21( 2 











 . (18)

This generalization is reasonable because it has been shown, from the non-stationary 

analysis of an isoperibolic system, that the contribution of geometry can be separated 

from the rest of parameters [21]. In the present case, the non-stationary analysis agrees 

approximately with the exact dependence of δcr on θT and ε; so, we consider that 

geometry can also be separated. 
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To check the accuracy of the critical condition, the prediction of δcr delivered by 

Eq. (18) has been compared to the exact value obtained by numerical integration of the 

PDE system for two 1D geometries: thin film, Fig. 4a, and infinite cylinder, Fig. 4b. In 

all these cases, the prediction (dashed lines) departs less than 2% from the exact value.  

For the isoperibolic system, the critical condition is also valid for the 2D 

geometry of a finite cylinder [21]. In that case, C must be simply replaced by: 

2

22
2

)(

2878.0

RH

HR
C D

cyl 


 . (19)

To test that this assumption works under constant heating conditions, the exact 

2D model for finite cylinder, Eqs. (1)-(4), has been numerically solved and the left-hand 

side of Eq. (18) has been calculated for the ε, θT and δ values at the combustion 

boundary. The results are plotted as symbols in Fig. 5 and compared with )2( D
CylC  of Eq. 

(19). The agreement is excellent. 

 

4.4 Critical mass for a finite size cylindrical vessel.  

 

Combining Eqs. (18), (19) and the definition of δ, Eq. (13), one can determine the 

sample critical mass: 
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where a is thermal diffusivity ( ca  ) and tR is the reaction time, Eq. (5). Eq. (20) 

has been obtained assuming that the vessel containing the sample is not covered by a 

lid. The case of a sample that fills a closed vessel is also described by Eq. (20) but with 

H being half the sample height and multiplying the right hand side of Eq. (20) by a 

factor of 2. 

The predicted critical sample mass for Ba(TFA)2 can be calculated as follows. 

Eq. (20) can be solved for H if we substitute mcr by: 

HRm 2  (21)

and calculate the physical parameters from those of table 1, R = 2.4 mm and b = 20 

K/min. The obtained critical height (0.501 mm) corresponds to a critical mass of 13.3 

mg. In Fig. 3, the experimental curve for min = 16 mg exhibits the abrupt mass loss step 

characteristic of a thermal runaway while for min = 11 mg this is not observed. A similar 
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prediction is obtained by the exact numerical integration of the PDE system: the 

transition from a smooth to a sharp evolution takes place between 13 and 16 mg. So, we 

have achieved nice agreement between experiments, numerical simulations and the 

critical condition, Eq. (20).  

 

5. Combustion in thin films  

 

Despite the claim that metal organic precursor films can be transformed into oxide films 

at low processing temperatures thanks to thermal explosion [15], we have been unable 

to reproduce these results so far [17]. In fact, experiments carried out at moderate 

heating rates (10-20 K/min) or at isothermal conditions for a number of oxide 

precursors have always shown that their thin films do not experience combustion 

despite their powders do [18–20]. Furthermore, our theoretical analysis of the 

isoperibolic case delivered a lower bound for the critical thickness around 400 μm [21]. 

To overcome this limitation, several authors [14,16] have suggested that combustion 

may be easier to achieve when a substrate with its precursor film is put on a hot plate set 

at the processing temperature, i.e., the critical thickness is thought to be lower at very 

high heating rates. Now we are able to solve this question. 

 Consider that combustion of a precursor powder is observed by TG when it is 

heated at a moderate heating rate b inside a crucible where it reaches height H. The 

onset of combustion will be close to the Kissinger temperature, TKis. The critical 

thickness of a thin film can be obtained from Eq. (13): 

R
T

cr
cr taH




 . (22) 

Substitution of θT and tR by their definitions, Eqs. (5) and (13), and application of 

Kissinger’s equation, Eq. (6), leads to: 

bq
ca

E
TR

H cr
A

KisG
cr

12

 . (23)

Since cr will be the same within a factor of the order of 1 (see the evolution of )2( D
CylC  

in Fig. 5) when passing from a finite cylinder (powder inside a crucible) to a thin film, 

we can write the following relationship: 
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2

'
'

' 









Kis

Kis

T
T

b
b

H
H

. (24)

Besides, TKis scales as the logarithm of the heating rate [55,56],  

'
ln1

' b
b

E
TR

T
T

A

KisG

Kis

Kis  . (25)

Combining Eqs. (24) and (25) we obtain, 

b
b

b
b

E
TR

H
H

A

KisG '
'

ln1
'

2









 . (26)

Suppose that a powder undergoes thermal explosion at, say, b = 10 K/min and H 

= 500 μm. For this heating rate, typical values of KisGA TRE /  are around 30 (this 

corresponds to TKis = 600 K for an activation energy of 150 kJ/mol). Thus, a thin film of 

H’ = 1 μm will undergo a thermal runaway at a substrate temperature around 1222 K 

when heated at a rate as high as 4 107 K/min. Therefore, low temperature synthesis of 

thin films is virtually impossible, even when films are heated at very high heating rates. 

 

6. Conclusions 

 

The partial differential equations (PDE) system describing heat transport during an 

exothermic reaction has been solved for 1D (infinite cylinder and thin film) and for 2D 

(finite cylinder) geometries when the vessel walls or substrate are heated at a constant 

rate.  

It has been shown that, for large and small systems, ignition is produced close to 

its walls and at the center of the reactant volume, respectively, and that, when the 

reactant mass is small enough, no combustion occurs.  

A systematic search of the critical condition of combustion has been undertaken 

for a very broad range of the three adimensional parameters (Ahrrenius, ε, Todes, θT, 

and Frank-Kamenetskii, δ) that describe the system dynamics. The exact condition, 

δcr(ε,θT), has been fitted to an analytical functional dependence that is valid for virtually 

all experimental situations. It has been shown that, in the limit of large activation energy 

(ε → 0) and high adiabatic temperature rise (θT → ∞), the combustion critical condition 

is formally the same as that obtained for an isoperibolic system except for a factor 5 that 

indicates that, during constant heating conditions, a thermal runaway is more difficult to 

develop. 
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This analytical condition has allowed us to derive a formula giving the critical 

mass for a cylindrical reactor of finite height. This formula agrees with the exact 

solution of the PDE system and with experimental results carried out with Ba(TFA)2.  

In the case of thin films, it has been shown that extremely high heating rates are 

necessary to achieve combustion. Under this high heating rates, combustion occurs 

when the substrate reaches a high temperature, so low temperature thermal explosion is 

virtually impossible in thin films. 

  

Appendix A. Quasi-stationary approach. 

 

To derive the quasi-stationary and non-stationary models, we define a new variable that 

is the difference between the sample and the furnace temperatures, 

T
  ),(),( , (A.1)

The evolution of ϑ is obtained by substituting Eq. (A.1) into Eqs. (10)-(12). 

)1(
1

1

)/(1

/

2

2


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











































T

T

e

N

T

T
T

. 
(A.2)

with boundary conditions,  

0and0)(
0






 . (A.3)

and initial conditions 


 T

inin  and0 , 
(A.4)

In the absence of a significant local overheating, the sample temperature will follow 

steadily the time dependence fixed by the furnace walls, i.e. btT  / , and, 

consequently: 

0
1















T

. (A.5)

Under this assumption and in the limit of 0  and T  Eq. (A.2) becomes 

0)1( /
2

2















Tee
N 







. 
(A.6)



 17

To derive an analytical solution, we replace the actual value α for its average over the 

system volume, Eq. (14), i.e., we assume that   . We define a new space coordinate 

as   Te /)1(  . If we substitute ξ by ζ in Eq. (A.6) we obtain 

02

2














 







e
N

. 
(A.7)

with boundary conditions 

  0and0)1(
0

/ 








 Te . (A.8)

Eqs. (A.7) and (A.8) and the stationary equation for the isoperibolic system [21,30,52–

54] are nearly identical. The only difference lays in the first boundary condition where 

instead of Frank-Kamenetskii parameter, δ, we have Te  /)1(  . 

 Thus, in our case the temperature profiles coincide with those of the isoperibolic 

system. For instance, for N=0 (thin-film) the solution of Eqs. (A.7) and (A.8) is [21,53] 















 

2
sechln2

k
k . 

(A.9)

where k is an integration constant that is determined from the first boundary condition, 

   
2

// arcosh
1

2)1(0)1( 





 k

k
ee TT   . 

(A.10)

For an infinite long cylinder (N=1) the solution of Eqs. (A.7) and (A.8) is 

[21,53] 












222

4
ln2




k

k
. 

(A.11)

 To check the accuracy of the quasi-stationary solution, in Fig. A.1 we compare 

the temperature profiles calculated numerically with those delivered by the analytical 

solution, Eqs. (A.9) and (A.10), for a thin-film geometry. From Fig. A.1 it is clear that, 

at the first stages, the quasi-stationary solution provides an accurate description of the 

temperature profiles. However, near the onset of a thermal runaway ( 44.0 ), the 

deviations of the analytical solution are more apparent; when local overheating becomes 

significant, the assumption that α does not depend on position no longer holds.  

 Thermal explosion occurs when there is no solution for the quasi-stationary 

state, i.e., when Eq. (A.10) has no solution. Eq. (A.10) coincides with that of the static 

case but replacing δ by Te  /)1(  (Eq. (A.3) in [21]). Thus, in the limit 0  and 
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T , the critical condition under dynamic conditions is that of the static case [30], 

but replacing δ by Te  /)1(  : 

Ce
cr

T   /)1( . 
(A.12)

where subscript cr stands for the parameter value at the threshold of ignition, and 

C=0.878 and 2, and kcr=1.81 and 1 for a thin film and an infinite cylinder, respectively 

[21]. 

 At the threshold, the thermal runaway will develop when the transformation rate 

at the center of the sample is at its maximum, i.e., when the center of the sample reaches 

the Kissinger temperature: 

   
T

crcr 
  000 . (A.13)

From the critical value of k and from Eqs. (A.9), (A.11) and (A.13) we have determined 

the critical value of τ/θT: 18.1/ 
crT  for a thin film and 38.1/ 

crT  for an 

infinite cylinder. We have numerically calculated the values of cr  and 
crT /  for the 

two extreme values of ε (0 and 0.1); the results are plotted in Fig. A.2. From Fig. A.2 it 

is apparent that in the limit T , 1/ 
crT . The same value is obtained 

irrespectively of the two geometries analyzed (thin film and infinite cylinder). The 

discrepancy between the analytical result and the numerical simulation is related to the 

fact that in the analytical analysis we have assumed    while α is not constant along 

the sample.  

Once we know 
crT / , we can determine the critical furnace temperature in the 

limit T : 

 1,crf )1(,  Kiscrf TT . 
(A.14)

Notice from Fig A.2 that, even for moderate values of θT, 1/ 
crT . Also, 

1/ 
crT  for ε = 0.1. Indeed the numerical simulations show that for all the ε values 

analyzed 1/ 
crT . Thus Eq. (A.14) holds in a wide parameter range. 

 If we assume that 1/ 
crT , from Eqs. (A.9) and (A.13) we obtain ek  . If 

we substitute the value of k in (A.9) we obtain the temperature distribution at the 

threshold, 
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e
sechln2 . 

(A.15)

From the definition of ζ and Eq. (A.12) we obtain that C when   , thus ζ 

ranges from 0 to C . 

From Eq. (10) and assuming Eq. (A.5) one can calculate α: 





  eee 



1)1( . 
(A.16) 

Thus, once we know the temperature distribution we can determine the α 

distribution at the threshold: 

Ccr 











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


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
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2

e
sechexp1 2 . 

(A.17) 

Finally, to stablish the critical condition in the limit 0  and T , Eq. 

(A.12), it is necessary to determine cr : 

47.0
1

0
 

C
cr d

C
 . 

(A.18) 

This result agrees with the value that we have obtained from the integration of the PDE 

system, 44.0cr . Finally, from the values of cr  and 
crT / , we obtain 

5/1)1( / 
cr

Te  , and the critical condition under constant heating in the limit 0  

and T  reduces to: 

Ccr 5 . 
(A.19)

 

Appendix B. Non-stationary approach 

 

In Appendix A we have stated that the temperature profiles under isoperibolic 

conditions and under constant heating conditions are similar. Therefore, like in the 

isoperibolic case, we can approximate the Laplacian term to  /B : 

T
T d

dB

d

d





 1

 . (B.1) 

where B is a geometrical factor [21], 

CeB  . (B.2)

Finally, if we substitute ϑ by θ we obtain the non-stationary ODE system, 
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With initial conditions, 





 T

inin  and
1

. 
(B.4) 
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Table 1. Physical parameters of the metal organic powder analyzed. 

 Ba(TFA)2 

Thermal conductivity, λ , W/(m·K) 0.08 

Specific heat capacity, c ,J/(kg·K) 2230 

Density, ρ, kg/m3 1463 

Specific heat of reaction, q, J/kg 1.0×106 

Activation energy, EA, J/mol 1.75×105 

Pre-exponential constant, A, s-1 4.5×1013 

 

 

Table 2. Physical parameters of the alumina crucibles. 

 Al2O3 

Thermal conductivity, λ, W/(m·K) 39 

Specific heat capacity, c, J/(kg·K) 775 

Density, ρ, kg/m3 3980 

Thermal diffusivity, m2/s 1.3×10-5 
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Figure captions 
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Figure 1. Geometry analyzed. The sample is placed inside a cylindrical vessel without a 

cover. 
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Figure 2. Experimental (symbols) and numerical evolution of the thermal evolution of 

Ba(TFA)2 powder inside a cylindrical alumina crucible (internal and external radii of 

2.4 and 3 mm, respectively). Experimental data corresponds to TG measurements. The 

furnace temperature is raised from 293 at a rate of 20 K/min in wet synthetic air. 
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Figure 3 Values of cr  determined numerically assuming thin film geometry for 

different values of the dimensionless parameters θT and ε. Solid line: obtained from the 

exact model, Eqs. (10)-(12). Dashed line: obtained from the ODE system, Eq. (15). The 

horizontal line corresponds to the limit value for ε = 0 and T  predicted by the 

quasi-stationary approach, Eq. (16). Inset: fitted dependence on ε for T . 
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Figure 4. Values of cr  determined numerically assuming thin film (a) and infinite 

cylinder (b) geometries. Solid line: integration of the exact model, Eqs. (10)-(12). 

Dashed line: prediction of the critical condition, Eq. (18). 
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Figure 5. Geometrical factor, )2( D
CylC , for a cylinder of radius R and height H, determined 

from an isoperibolic system, Eq. (19), (solid line) and determined from Eq. (18) 

(symbols) for given values of δ, ε, and θT at the threshold of thermal runaway. The 

values of δ, ε, and θT at the threshold of thermal runaway have been determined from 

the numerical integration of the exact 2D model. 
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Figure A1. Evolution of the temperature profiles near the threshold of thermal 

explosion ( 44.0 ) for a film. Symbols: numerical integration of Eqs. (10)-(12) for 

δ=4.365, θT=8·105 and ε = 0. Solid line: analytical solution, Eqs (A.9) and (A.11). 
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Figure A2. . Values of cr  (circles) and 
crT /  (crosses) determined numerically from 

the integration of the exact model for a film, Eqs. (10)-(12) for ε = 0 (black) and ε = 0.1 

(red). 
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Movie 1. Evolution of the reaction for Ba(TFA)2 powders inside an alumina crucible. 

The physical parameters are those of Fig. 2 (internal and external radii of 2.4 and 3 mm, 

respectively, min = 16 mg).  

 

 

Movie 2. Evolution of the reaction for Ba(TFA)2 powders inside an alumina crucible. 

Simulation parameters coincide with those of Figure 2 except for the dimensions of the 

system: H = R = 7 mm and the vessel wall thickness is 0.6 mm. 
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Movie 3. Evolution of the reaction for Ba(TFA)2 powders inside an alumina crucible. 

Simulation parameters coincide with those of Figure 2 except for the dimensions of the 

system: H = R = 2.4 mm and the vessel wall thickness is 0.6 mm. 


