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Science is a way of life.
Science is a perspective.

Science is the process that takes us from confusion
to understanding in a manner that’s precise,
predictive and reliable - a transformation,
for those lucky enough to experience it,

that is empowering and emotional.

Brian Greene.
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Study of brain complexity using information theory tools

The human brain is a complex network that shares and processes information by
using the structural paths between areas in order to perform a function. Magnetic res-
onance imaging techniques allow the in vivo reconstruction of the structural paths by
using diffusion MRI and the mapping of the active areas by using functional MRI. The
connectome models the brain as a graph where nodes correspond to brain regions and
edges to structural or functional connections. In this thesis, we investigate and provide
new methods to study the brain complexity and improve the understanding of the brain
functioning by using information theory.

Firstly, we focus on brain parcellation, which is a key step to perform brain studies
since determines the regions to be analyzed. We interpret a brain function as a stochas-
tic process where neural impulses are modeled as a random walk by using the connec-
tivity matrix. Using this interpretation, we first present a new hierarchical clustering
method based on the information bottleneck. We describe two versions of the method,
the agglomerative approach that merges elements with a minimum loss of mutual in-
formation, and the divisive approach that divides the elements with a higher gain of
mutual information. The agglomerative version of the method is employed and deeply
evaluated to parcellate the brain. We show that the clustered networks preserve the
structure and properties of the original network but having higher mutual information.

Secondly, we focus on the definition of measures to characterize the complexity of
the brain networks. We propose new global and local measures. Global measures pro-
vide quantitative values for the whole-brain network and include the entropy, the mu-
tual information, and the erasure mutual information, which is a new measure defined
by extending the mutual information. Local measures are based on different decompo-
sitions of the global measures and include the entropic surprise, the mutual surprise, the
mutual predictability and the erasure surprise. These measures show local properties
of the brain regions, such as the uncertainty associated to the node, or the uniqueness
of the path that the node belongs to.

Finally, the consistency of the results across healthy subjects using functional or
structural connectivity data, demonstrates the flexibility and robustness of the proposed
methods.





Estudi de la complexitat cerebral utilitzant eines de teoria de
la informació

El cervell humà és una xarxa complexa que comparteix i processa la informació mit-
jançant els camins estructurals per tal de realitzar una funció. La ressonància magnètica
és una tècnica no invavisa que permet obtenir informació en viu de l’estructura i la com-
posició del cos en forma d’imatges. La reconstrucció en viu dels camins estructurals es
pot obtenir mitjançant l’ús de la ressonància magnètica de difusió, i el mapeig de les
àrees funcionalment actives, es pot obtenir a partir de l’ús de la ressonància magnètica
funcional. El connectoma és una representació del cervell en forma de graf, on els nodes
corresponen a regions del cervell i les arestes a connexions estructurals o funcionals.
En aquesta tesi, s’investiga i es proporcionen nous mètodes per estudiar la complexitat
del cervell i millorar la comprensió del seu funcionament mitjançant l’ús de la teoria de
la informació.

En primer lloc, ens centrem en mètodes de parcel.lació del cervell, el qual és un pas
clau per realitzar estudis de complexitat ja que determina les regions a analitzar. En
aquest treball, interpretem la xarxa cerebral com un procés estocàstic, on els impulsos
neuronals es modelen com un camí aleatori. Fent servir aquesta interpretació, primer
presentem un nou mètode d’agrupació jeràrquica basada en l’algorisme del coll d’am-
polla (bottleneck). Proposem les dues versions del mètode: l’aglomeratiu, que agrupa
els elements amb una pèrdua mínima d’informació mútua, i el divisiu, que divideix els
elements de tal forma que es proporciona un major guany d’informació mútua. El mè-
tode aglomeratiu és utilitzat i profundament avaluat com a nou mètode de parcel.lació
del cervell. Es demostra que les xarxes obtingudes conserven l’estructura i les propietats
de la xarxa original però amb una major informació mútua.

En segon lloc, ens centrem en la definició de mesures per a caracteritzar la comple-
xitat de les xarxes cerebrals. Proposem noves mesures globals i locals. Les mesures glo-
bals proporcionen valors quantitatius per a la xarxa de tot el cervell i inclouen l’entropia
(entropy), la informació mútua (mutual information), i la informació mútua d’esborrat
(erasure mutual information), que és una nova mesura definida mitjançant l’extensió de
la informació mútua. Les mesures locals es basen en diferents descomposicions de les
mesures globals i inclouen la sorpresa entròpica (entropic surprise), la sorpresa mútua
(mutual surprise), la predictabiliat mútua (mutual predictability) i la sorpresa d’esborrat
(erasure surprise). Aquestes mesures mostren propietats locals de les regions del cervell,
com ara la incertesa associada al node, o la singularitat del camí al qual pertany el node.

Finalment, la consistència dels resultats entre els subjectes sans a partir de dades de
connectivitat funcional o estructural, demostra la flexibilitat i robustesa dels mètodes
proposats.





Estudio de la complejidad cerebral utilizando herramientas
de teoría de la información

El cerebro humano es una compleja red neuronal que comparte y procesa la infor-
mación mediante el uso de los caminos estructurales con el fin de realizar una función.
La resonancia magnética es una técnica no invasiva que permite obtener información
en vivo de la estructura y composición del cuerpo en forma de imágenes. La recons-
trucción en vivo de los caminos estructurales se puede obtener mediante el uso de la
resonancia magnética de difusión, y el mapeo de las áreas funcionalmente activas se
puede obtener mediante el uso de la resonancia magnética funcional. La idea de conec-
toma consiste en modelar el cerebro como un grafo donde los nodos corresponden a
regiones y las aristas a conexiones estructurales o funcionales. En esta tesis, se investiga
y se proporcionan nuevos métodos para estudiar la complejidad del cerebro y mejorar
la comprensión de su funcionamiento mediante el uso de la teoría de la información.

En primer lugar, nos centramos en métodos de parcelación del cerebro, paso clave
para realizar estudios de complejidad ya que determina las regiones a analizar. Inter-
pretamos la red cerebral como un proceso estocástico, donde los impulsos neuronales
se modelan como un paseo aleatorio. Usando esta interpretación, primero presenta-
mos un nuevo método de agrupación jerárquica basada en el método del bottleneck.
Se describen dos versiones del método: el aglomerativo, que agrupa los elementos con
una pérdida mínima de información mutua, y el divisivo, que divide los elementos de
tal forma que se proporciona una mayor ganancia de información mutua. El método
aglomerativo es usado y profundamente evaluado como nuevo método de parcelación
del cerebro. Demostramos que las redes resultantes conservan la estructura y las pro-
piedades de la red original, pero con una mayor información mutua.

En segundo lugar, nos centramos en la definición de medidas para caracterizar la
complejidad de las redes cerebrales. Proponemos nuevas medidas globales y locales.
Las medidas globales proporcionan valores cuantitativos para la red de todo el cerebro
e incluyen la entropía (entropy), la información mutua (mutual information), y la in-
formación mutua de borrado (erasure mutual information), que es una nueva medida
definida mediante la extensión de la información mutua. Las medidas locales se basan
en diferentes descomposiciones de las medidas globales e incluyen la sorpresa entrópica
(entropic surprise), la sorpresa mutua (mutual surprise), la previsibilidad mutua (mu-
tual predictability) y la sorpresa de borrado (erasure surprise). Estas medidas muestran
propiedades locales de las regiones del cerebro, tales como la incertidumbre asociada
al nodo, o la singularidad del camino al cual pertenece el nodo.

Por último, la consistencia de los resultados entre los sujetos sanos a partir de da-
tos de conectividad funcional o estructural, demuestra la flexibilidad y robustez de los
métodos propuestos.
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1.1 Motivation

The human brain contains an extraordinary network of roughly one hundred billion
of neurons capable to communicate and process information. These neurons form an
organized and coordinated network where information is shared and transported using
structural paths in order to perform specific functions. Current medical imaging tech-
niques such as diffusion magnetic resonance imaging (dMRI) or functional magnetic
resonance imaging (fMRI) are able to capture non-invasively the brain in vivo informa-
tion required to reconstruct the structural paths as well as map the active areas of the
brain. The brain connectome is the most popular approach to model the brain network
by using a graph representation. In this graph, nodes correspond to brain regions and
edges to structural or functional connections.

Several methods and measures have been proposed to characterize and describe
properties of the brain network, however, the exact functioning of the system is still not
fully understood. There are several issues that need further investigation. On the one
hand, the first step to construct the brain network consists on defining the regions of
interest. This procedure is usually done by a parcellation technique. Several parcellation
methods have been proposed, which mainly differ in the number of regions or scale. The
parcellation approach has to be chosen carefully according to the aim of the analysis,
as the use of an inappropriate method may lead to erroneous conclusions. Although
a large amount of unsupervised parcellation methods can be found in the literature,
there are still some limitations to improve, such as the high computational cost or the
dependency on a fixed number of regions. On the other hand, network measures are
used to characterize brain information. Current brain network measures are able to
associate disruptions with different diseases, but unfortunately, it is unknown which
measures provide the best description of the brain network. Thus, novel measures are
needed in order to better understand the brain functioning.
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Figure 1.1: Representation of the human functional connectome [Böttger 2014]

In this thesis, motivated by the limitations of current brain parcellation techniques
and the need of new brain network measures, brain complexity is investigated by ap-
plying information theory to structural and functional connectivity data. Information
theory provides mathematical methods capable to quantify the uncertainty of the in-
formation in a system. Measures such as mutual information describe the dependence
of the individual components, and the complexity of the system can be obtained by
calculating the average of mutual information between the components and the rest of
the system. Since the brain is a system of individual segregated components (areas),
that integrates and shares the information, information theory measures can be used
to characterize the complexity of the brain network.

1.2 Objectives

The aim of this thesis is to investigate and provide new methods to improve the under-
standing of the human brain complexity by using information theory. To achieve this
aim two main focuses of research have been considered:

• Brain parcellation based on clustering techniques

Clustering techniques organize elements into groups (or clusters) whose mem-
bers are similar and dissimilar to elements belonging to other clusters. These
techniques can be used to create a brain parcellation in order to define the brain
regions to be studied. Since current techniques present some limitations, our pur-
pose is to

– Introduce a new clustering method based on information theory that over-
comes some of the current limitations

– Evaluate the proposed clustering method to parcellate functional and struc-
tural brain connectivity
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– Investigate the properties of the obtained parcellations and the robustness
of the method across different subjects

• Complex brain network measures

Information theory has been used previously to describe properties of complex
systems successfully. However, some measures have never been applied to de-
scribe brain complexity. Because new models and measures are needed to better
understand the brain functioning, our purpose is to

– Evaluate the applicability of existing information theory measures to char-
acterize the brain network complexity by using model networks at different
scales and densities

– Introduce new complexity measures to describe the brain network both at
global and local level

– Evaluate the proposed measures to model networks at different scales and
densities.

– Evaluate the consistency of the proposed measures across subjects by consid-
ering structural and functional networks from different patients at different
scales

– Compare the measures with well known standard measures to show new
network properties that may help to improve the actual description of the
human brain network

1.3 Thesis outline

This thesis is organized in six chapters. Following this introduction, the next five chap-
ters are:

• Chapter 2: Background and Previous Work

This chapter provides relevant background knowledge. First, a brief summary of
the brain anatomy along with a description of the more important non-invasive
magnetic resonance modalities is provided. In the second place, the main steps
needed to create a brain network and measures that can be find in the litera-
ture are explained. Finally, a description of the main concepts and measures of
information theory are introduced.

• Chapter 3: Hierarchical Clustering Based on the Information Bottleneck

In this chapter, a new hierarchical clustering method based on the information
bottleneck method is proposed. Two versions of the algorithm are presented, the
agglomerative, that merges clusters, and the divisive, that subdivides the clusters.
The method is tested by quantifying synthetic, photographic and medical images
by grouping intensity bins of the image histograms. A comparison with the ground
truth and the main clustering methods is provided.
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• Chapter 4: Brain Parcellation Based on Information Theory

In this chapter, the agglomerative clustering method presented in Chapter 3 is
considered to parcellate the anatomical and functional areas of the brain at differ-
ent scales. The description of the method adapted to the brain model is provided.
The results based on synthetic model networks as well as human structural and
functional connectivity data are presented.

• Chapter 5: Complexity Measures Based on Information Theory

This chapter introduces novel brain complexity measures based on information
theory. A brain function is interpreted as a stochastic process where neural im-
pulses are modeled as a random walk. This new interpretation provides a solid
theoretical framework from which we derive global and local measures. Global
measures are used to quantify properties for the whole-brain network, while local
measures quantify properties for the individual nodes. Experiments with synthetic
model networks and human brain networks are presented in order to evaluate the
performance of the measures.

• Chapter 6: Conclusions

This chapter presents the conclusions of this work including a summary of the
related publications and the main contributions. Finally, the future directions of
the work are described.
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The intersection of medical image computing and neuroscience is a cutting-edge
emerging field and a relatively new discipline that studies the structure and the function
of the nervous system by using the most advanced computer science and neuroimaging
techniques. While neuroscience is focused on the study of the nervous system from
the cell level to the whole structure and function, medical image computing develops
computational and mathematical methods that enables to solve problems related to
medical images and their clinical use. Additionally, information theory is a combination
of mathematics and computer science that aims to quantify information regarding its
representation. Since the brain is an organized massive network of neurons sharing
information, information theory can be a suitable tool to study and characterize the
brain functions.
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Figure 2.1: Diagram of the main aspects described in this chapter

This chapter provides relevant background knowledge required for the comprehen-
sion of this thesis. It has been structured as follows. Section 2.1 provides a brief descrip-
tion of the brain anatomy and the different non-invasive techniques that allow us to
acquire in vivo functional and structural information. Section 2.2 provides information
about the study of the brain complexity by constructing a brain network and describing
the properties with complexity measures. Finally, Section 2.3 provides a description of
the most relevant concepts and knowledge of information theory that are relevant for
the understanding of the content in this thesis.

2.1 Brain imaging

Brain imaging allows the visualization of the internal structure of the brain. In this
section, we review the main anatomic parts and functions of the brain as well as the
different non-invasive in vivo imaging methodologies that have been considered in this
thesis.

2.1.1 Brief overview of the human brain anatomy

The brain is the most complex organ in the human’s body and, being part of the nervous
system, is in charge of the central control over the other organs. First brain images
were obtained in the Renaissance era [Papo 2014], where, at that time, the brain was
represented just as a symmetrical pair of wrinkle walnut-like lobes connected to each
other (see Figure 2.2).

Fortunately, thanks to science advances, more accurate and precise descriptions of
brain anatomy have been provided. For instance, we know that the cerebrum is the
superior and largest part of the brain, divided in two hemispheres connected by the
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Figure 2.2: Historical image from the Renaissance with one of the first representations of
the brain [Versalius 1564] [https://www.nlm.nih.gov/exhibition/historicalanatomies/
vesalius_home.html]

corpus callosum, and includes the cerebral cortex, the hippocampus and the basal gan-
glia. The cerebrum is in charge of the sensory processing, the olfactory system, the
language, communication and the movement. The brainstem is the posterior part, un-
derneath the cerebrum, that allows a bidirectional communication between the spinal
cord and other parts of brain. Behind the brainstem, there is the cerebellum, which is
in charge of the motor control.

The cerebral cortex, which is the outer thick layer of neural tissue (gray matter) of
the cerebrum, can be divided in four main regions (lobes) (see Figure 2.3):

• Frontal lobe: Located at the front of the brain. It is in charge of actions such as
project the consequences of current actions or distinguish between good and bad
actions

https://www.nlm.nih.gov/exhibition/historicalanatomies/vesalius_home.html
https://www.nlm.nih.gov/exhibition/historicalanatomies/vesalius_home.html
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Figure 2.3: Representation of the four lobes of the cerebral cortex [https://commons.
wikimedia.org/wiki/File:LobesCapts.png]

• Occipital lobe: Located at the back of the brain. It is the visual processing center

• Parietal lobe: Located between the temporal lobe and the occipital lobe. The main
function is to integrate sensory information

• Temporal lobe: Located beneath the frontal and parietal lobes. It is involved in
retaining visual memories, language comprehension and emotion association

An important anatomical segmentation of the brain was proposed by Korbinian
Broadman, a german anatomist, in 1909 [Brodmann 1909]. The cortex was divided
in 44 different areas based on the cytoarchitectural organization, which is still nowa-
days a popular method to segment the cortex based on the anatomy. Recently, it has
been demonstrated that the original proposed anatomical partitions are also related
with functional areas.

At a microscopic level, these areas contain glial cells, neurons and blood vessels.
Neurons are cells able to send electrical and chemical signals (information) by using
the axons (see Figure 2.4).

The brain can be studied at different scales as follows:

• Micro-scale: Study of the connections at the neuron level

• Meso-scale: Study of the connections of groups of neurons

• Macro-scale: Study of the connections between brain regions

In this work, we focus on anatomical and functional whole-brain connectivity at the
macro-scale level, which is the appropriate level in order to study the complexity since
we are interested in the connections between anatomical brain areas.

2.1.2 Magnetic resonance imaging

Magnetic Resonance Imaging (MRI) is a popular non-invasive technology to image the
body. It uses magnetic fields and radio waves to produce high quality images of the

https://commons.wikimedia.org/wiki/File:LobesCapts.png
https://commons.wikimedia.org/wiki/File:LobesCapts.png
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Figure 2.4: Complete neuron cell diagram [https://commons.wikimedia.org/wiki/File:
Complete_neuron_cell_diagram_en.svg]

(a) (b)

Figure 2.5: Example of fiber tracts obtained using diffusion MRI (a) [Berres 2012] and
a brain activation using functional MRI (b) [Smith 2013]

body without the use of x-rays or radioactive tracers. The main advantage of using MRI
is the good tissue contrast, that, depending on the mode, specific tissues can be seen
better than others. For instance, T1-weighted images provide a good quality in visualiz-
ing normal anatomy, showing the fluid in dark color, while in T2-weighted images, the
liquid is shown in light color and the white matter in dark color, which is useful for the
diagnostic of some pathologies. There exist different MRI techniques such as diffusion
MRI, angiography, spectroscopy, and functional MRI among others.

In this thesis, we focus on the diffusion MRI which allows the reconstruction of the
structural fiber tracts (connections) across brain areas (see Figure 2.5 (a)), and the
functional MRI which allows to find the temporal connections between activated areas
(see Figure 2.5 (b)).

https://commons.wikimedia.org/wiki/File:Complete_neuron_cell_diagram_en.svg
https://commons.wikimedia.org/wiki/File:Complete_neuron_cell_diagram_en.svg
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2.1.3 Diffusion MRI

Diffusion MRI (dMRI), also referred as diffusion tensor imaging (DTI), and the more
recent variant diffusion spectrum imaging (DSI), are non-invasive magnetic resonance
methods that allow the in vivo mapping of the white matter of the body. In contrast to
MRI, dMRI delineates the axons within the white matter in different scanning directions
to characterize the water diffusion in tissue, whereas gray matter remains equal in all
directions. The different scanning directions (from six to hundreds) allow the creation
of a second order symmetric positive diffusion tensor on a voxel level. By following the
main direction of this tensor, it is possible to map the orientation of the fibers. The main
challenge of this technique is the development of strategies to extract and visualize the
acquired information in a comprehensive way.

The diffusion tensor D is described by a 3 × 3 symmetric matrix where Di j is the
diffusion coefficient measured in the ijth scanning direction.

D =





Dx x Dx y Dzx

Dy x Dy y Dxz

Dzx Dz y Dzz



 (2.1)

The diagonalization of Equation 2.1 provides three eigenvalues, λ1,λ2, and λ3 and
three eigenvectors e1,e2 and e3 that define the directions of main, medium, and mini-
mum diffusivity, respectively [Basser 1994].

Based on λ1, λ2, and λ3, different measures to quantify the diffusion tensor prop-
erties have been proposed [Basser 1996, Westin 1997, Peled 1998, Conturo 1996].
We highlight the volume ratio (VR), the relative anisotropy (RA), and the fractional
anisotropy (FA), which reduce the tensor information to a simple 1D scalar. This simpli-
fication allows the representation of the tensor using grey-scale maps. In addition, dif-
ferent geometrical diffusion measures, such as linear anisotropy (Cl), planar anisotropy
(Cp), and spherical anisotropy (Cs) have been proposed.

An important property of these measures is that are scale and rotationally invariant.
The scale invariant property ensures that are not affected by the scale of the diffusion
magnitude. That is, they only deal with the shape of the diffusion tensor and hence
are independent of the orientation of tissue structure and image scan plane. The most
popular method to analyze these maps are the grey scale and RGB color-coded maps,
which are generated by mapping the measure values as intensities (see Figure 2.6 (a)
and (b)). Although the visualizations represent only a little part of the tensor infor-
mation, the images can be easily interpreted enabling the identification of normal and
pathological brain tissue. The main limitation, due to the matrix values reduction to a
scalar value, is that the directional information of the tensor is lost.

To overcome the drawbacks of scalar visualizations, glyph based techniques have
been introduced. With these techniques, the D tensor is described as a 3D ellipsoid (or
cuboid) where the principal axes correspond to the eigenvector directions, and the size,
correspond to the eigenvalues [Westin 1994]. According to the diffusion type described,
the shape of the 3D ellipsoid can be divided into three basic cases: (i) linear, when the
diffusion is only along one direction (Figure 2.7 (b)), i.e., (λ1� λ2) ≈ λ3, (ii) planar,
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Figure 2.6: DTI tensor representations [Margulies 2013]

(a) (b) (c)

Figure 2.7: Diffusion tensor shapes: (a) spherical, (b) linear and (c) planar [Kindlmann
2004]

when the diffusion is restricted to the plane defined by the two equal eigenvalues (Fig-
ure 2.7 (c)), i.e., (λ1 ≈ λ2) � λ3, and (iii) spherical, when the diffusion is isotropic
(Figure 2.7 (a)), i.e., (λ1 ≈ λ2) ≈ λ3. Figure 2.6 (c) (d) and (e) show an example
of this method applied to a dMRI image. These techniques are good in illustrating di-
rectional information at a voxel level, but fail on representing the connection between
neighboring voxels.

With the introduction of the DSI, which is more sensitive in diffusion directions
caused by crossing fibers, is possible to map more accurately the fiber trajectories [We-
deen 2008]. This technique has motivated the introduction of more advanced 2D visu-
alizations methods such as spherical plots (orientation distribution function) or maxima
enhancement (spherical harmonics) (see Figure 2.6 (f) and (g)).

All these representations are suitable for representing the information contained
in a single slice. However, we are interested in the connections between areas, where
these strategies fail. To overcome these limitations, techniques to reproduce the brain
fibers have been proposed. These techniques are known as fiber tracking techniques
(tractography) and are presented in the next section.

2.1.4 Tractography

Fiber tracking, or tractography, aims to reconstruct in vivo structural fiber tracts of the
human brain (white matter pathways) from dMRI sequences. It is an emerging focus
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Figure 2.8: Associative fibers [Mori 2001]

Figure 2.9: Commissural fibers [Mori 2001]

of research and the basis of current brain complexity studies, since it is the only that
provides structural information that allows the definition of the structural connectivity.
The fiber tracts do not show the actual axons, it is just a representation of the estimated
trajectories.

The human brain fibers can be divided in three main groups as follows:

• Associative fibers: Connect brain regions from the same hemisphere and can be
divided in two groups: short association fibers (connect adjacent areas), and long
association fibers (connect more distant and non-adjacent areas) (see Figure 2.8)

• Commissural fibers: Connect the two hemispheres of the brain (see Figure 2.9)

• Projective fibers: Connect the cortex with lower parts of the brain or with the spinal
cord (see Figure 2.10)

Figure 2.10: Projective fibers [Mori 2001]
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Figure 2.11: Steps on the calculation of the fibers using streamline tractography

To calculate the tracts, the directional information encoded in the diffusion tensor
is used to infer patterns of continuity in the diffusion tensor field. It is assumed that the
eigenvectors of the diffusion tensor give us a good estimation of the fiber orientation.
Thus, the fiber path is created by following the main direction of the tensor. The main
steps of a tracking algorithm include:

1. Definition of the seeds. The seeds are defined by a region of interest (ROI), by an
atlas segmentation or by the user. Starting from each seed, and considering both
ways, the tract is reconstructed

2. Selection of an integration strategy. A numerical integration strategy to solve the
tensor function is required. Schemes such as Euler forward or second or fourth
order Runge-Kutta can be used

3. Definition of a stopping criteria. A stopping criteria is defined in order to avoid
calculations in areas where the vector field is not robustly defined, for example,
areas with isotropic or planar diffusion. The stopping criteria is usually defined by
the user and are commonly based on the anisotropy indices value or the curvature
of the streamline

Several algorithms have been proposed to reconstruct global or local white matter
fiber tracts in diffusion tensor fields either by using deterministic, probabilistic or global
methods [Pujol 2015, Qi 2015]. These three main methods are described in more detail
the next subsections.

2.1.4.1 Streamline tractography

Streamline tractography is the most commonly used method. It is based on a 3D stream-
line that starts at a seed points, and, in each step, the streamline follows the main direc-
tion of the diffusion tensor eigenvector [Conturo 1996, Mori 1999] (see Figure 2.11).

The main drawback of this approach arises with the stopping criteria, when the
tensor has not a strong directional component. Image noise [Lazar 2003a], partial
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volume effects [Alexander 2001], and crossing, branching or merging fiber configu-
rations [Jbabdi 2011] (see Figure 2.12) also make difficult the computation of the fiber
direction. To overcome these limitations, among others, fiber-tracking algorithms based
on high angular resolution acquisitions [Tuch 2002], regularization [Björnemo 2002],
tensor deflection [Lazar 2003b], and stochasticity [Björnemo 2002, Hagmann 2003]
have been proposed.

Figure 2.12: Merging, crossing, and branching fiber configurations [Berenschot 2003]

The seed points selection is also a problem of these methods. Not always is ob-
vious where to place the seeds and, hence, important structures can be lost. On the
other hand, a large number of seeds generates a large number of fibers, leading to a
difficult interpretation (see Figure 2.13). To overcome these problems, techniques such
as clustering that groups bundles of fibers using a similarity measure have been ap-
plied [Prados 2012].

2.1.4.2 Probabilistic tractography

As said previously, the main problem with the streamline tractography method, is the
stopping criteria, that may lead to errors. Probabilistic tractography, instead of defining
a stopping criteria, defines the uncertainty associated to the tracts allowing to cross
areas with high uncertainty [Behrens 2007, Behrens 2014]. At every voxel, the fiber
orientations are estimated to the most probable direction using an orientation density
function (ODF). Then, several fibers are generated using slightly different directions.
As a result, the probability of the tract is defined by measuring the percentage of fibers
connecting the different areas of the brain. Figure 2.14 shows an example of the results
using this method.

2.1.4.3 Global tractography

The previous methods described define the fibers orientation taking into account only
local diffusion information (voxel level). The idea of global tractography is to estimate
the fiber orientation by taking into account the orientation of the neighbors. This new
representation leads to more accurate models, and hence, improves the confidence of
the connectivity.

Figure 2.15 shows a comparison of the results that can be obtained by using the
three methods described. On the left, the fibers were generated with a streamline ap-
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Figure 2.13: Whole-brain tractography reconstruction where colors indicate direc-
tion [Behrens 2014]

Figure 2.14: Probabilistic tractography [Campbell 2014]
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Figure 2.15: Streamline tractography (left), probabilistic tractography (center) and
global tractography (right)

proach, in the middle with a probabilistic method and finally, on the right, with a global
tractography method.

2.1.5 Functional MRI

Functional MRI (fMRI) is a non-invasive magnetic resonance method capable to deter-
mine the brain large-scale activity by measuring the in vivo blood flow changes [Ogawa
1990]. Functional MRI is the most used technique for mapping the activity in the brain.
The procedure is similar to MRI principles, but in this case, fMRI uses the change in
magnetization between oxygen-rich and oxygen-poor. Since blood flow and neuronal
activity are robustly related, this technique allows to find the brain areas that are in use
at a specific time.

The most popular method is the blood-oxygen-level dependent (BOLD), which can
only detect differences between two states. Since the brain is always active, a new
method called resting state fMRI (rfMRI) has been created to evaluate the brain activ-
ity when the subject is not doing any task. Thus, this new method allows to find the
difference between a subject who is not performing any task, and the same subject per-
forming a specific task. On the other hand, rfMRI can be used also to find anomalies in
neurological or psychiatric diseases. Results are usually visualized by color-coding the
activation strength for a specific time period (no more than a few seconds).

Unfortunately, the fMRI raw data is a stochastic sum of different signals including
artifact noise [Kiviniemi 2003] such as respiratory fluctuations or cardiovascular cycles.
Thus, is very important to filter the data before is interpreted in order to avoid wrong
conclusions. Usually, the filter of the data is done by statistical procedures. In this case,
the most extended method to extract the activation data is the independent component
analysis (ICA) which is explained in the next section in detail, however, other methods
using regions of interest, clustering and graph theory have been also presented.
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2.1.6 Independent component analysis

The most common method to obtain the voxels representing active regions of the brain
is the independent component analysis (ICA) [McKeown 1998]. ICA is a computational
method based on statistics that separates a signal into non-overlaping spatial and time
components, and allows the filtering of noise. It is assumed that the subcomponents
are statistically independent non-Gaussian signals, and the number of subcomponents
are be less or equal to the original number of signals (variables). This method finds the
independent components by maximizing the statistical independence of the subcom-
ponents, such that the variables are independent, or in other words, that the mutual
information is 0, and the mutual information between the original variables and the
independent variables is as higher as possible. This approach uses the Kullback-Leiber
divergence and maximum entropy explained in Section 2.3.3. After applying ICA to the
data, the voxels that are activated when performing a task are identified.

2.2 The human connectome

The roughly one hundred billion of neurons in the brain constitute a complex network
where information is shared and transported by using the structural paths in order to
perform a function. The first representation of the complex brain network was by Felle-
man et al. that represented the connections between areas by defining a connectivity
matrix [Felleman 1991]. Later, it was introduced the idea of the connectome [Hagmann
2005, Sporns 2005] that characterizes the brain network using connectivity matrices
and graph theory at different scales from dMRI, rfMRI or considering both techniques
together [Hagmann 2007, Hagmann 2010, Sporns 2013]. The introduction of the brain
connectome has lead to an increasingly interest in the study of the brain complexity.

In this section, we first explain the concept of complex brain network, afterwards we
provide a detailed description on the brain network construction from structural and
functional connectivity data, and finally, the main graph theory measures to describe
networks are provided.

2.2.1 Brain complexity

The brain network is a complex system that acts as a group of efficient integrated (non-
connected regions sharing information) and segregated (small group of highly con-
nected regions that perform a specific function) areas [Sporns 2005]. Thus, it can not
be studied as a group of independent elements. Although the big amount of promising
methods and discoveries, the mapping of the structure and the functionality of the brain
network is still far to be clear.

Focusing on macro-scale studies there are three main aspects to be considered:

• Structural connectivity: Physical connections between regions by finding the white
matter fibers (tracts) using dMRI (see 2.16 (a))
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(a) (b) (c)

Figure 2.16: (a) Structural connectivity [Hagmann 2008] (b) functional connectiv-
ity [Achard 2006] (b) effective connectivity [McIntosh 1994]

• Functional connectivity: Temporal connections between brain regions, often by
finding statistical correlation using fMRI (see 2.16 (b))

• Effective connectivity: Combination of anatomical and functional connectivity
that shows the influence of a neural system over another as a network of di-
rectional effects (see 2.16 (c))

However, the strong relation between the structural and functional systems [Hag-
mann 2008, Damoiseaux 2009, Caspers 2013] suggests that future advances in under-
standing the functioning of the brain should focus on the study of both aspects together.

The first requirement in order to create the brain network is the definition of the
nodes. This procedure involves a segmentation of the brain (parcellation) into non-
overlaped areas. Once the nodes are defined, the next step is to estimate the connections
(edges) between the nodes by using functional or structural information. Next section
provides details on the definition of the nodes and Section 2.2.3 explains how to create
the different brain networks from dMRI or fMRI.

2.2.2 Brain parcellation

Brain parcellation consists in subdividing the brain into different subregions, according
to a predefined criteria (i.e., anatomy, structure, function...), in order to define the
nodes of the brain network. This parcellation can be done at different scales.

Originally, brain parcellations were created by using ex-vivo architectonic charac-
teristics leading to the creation of anatomical atlas (see Section 2.1.1). Broadmann’s
atlas [Brodmann 1909] is the most popular so far, and not taking into account any
structural of functional connectivity information, is still today one of the most in use.
Nowadays, there exist several methods and techniques (see Figure 2.17). They mainly
differ in scale and number of regions. However there is no unanimity in which par-
cellation use, and the most suitable method will depend on the aim of the study. In
Section 4.2 a literature review of parcellation methods is provided.
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Figure 2.17: Different parcellations of the brain. First four rows correspond to anatomi-
cal parcellations, and the two bottom rows correspond to functional parcellations [Crad-
dock 2013]
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2.2.3 Brain graph

By computing the connections (functional or structural) between all possible pair of
regions defined by the parcellation method (see Section 2.2.2), the connectivity matrix
can be computed. It is a symmetric matrix where rows and columns represent brain
regions, and values represent the number of connections. From this matrix, is straight-
forward to construct the graph, which simplifies and helps the understanding of the
network by using graph theory. In this case, the nodes of the graph represent brain
regions, and the edges the binary or weighted connections [Bullmore 2011, Sporns
2011, Wu 2013]. Thus, the comparison between subjects using the same parcellation,
is straightforward since is just a matrix comparison [Nakagawa 2013, Horn 2014]. Note
that, the fact of having a functional-based parcellation, does not restrict the possibility
of defining the edges with structural information, or inversely.

As it has been mentioned before, the structure (from dMRI) and the functional-
ity (from fMRI) of the brain are very close related [Damoiseaux 2009]. On the one
hand, structural connections may predict functional connections [Honey 2007, Hag-
mann 2008]. On the other hand, if no structure exists, is not possible to be functionally
connected. For this reason, a key element in the future studies of the brain network will
be to understand how the functional network is using the structural network. In the
next subsections we provide a brief summary of both connectivity systems.

2.2.3.1 Structural network

White matter tracts obtained from the dMRI are the representation of the paths that
enable the transport of the information in the brain. This information allows the study
of structural connections between brain areas predefined by a parcellation method. The
connectivity matrix or graph, is created by calculating the fiber tracts that connect all
possible pairs of regions. Binary graphs (undirected and unweighted edges) are the
most popular [Bullmore 2011] but weighted graphs (i.e., taking the amount fibers con-
necting areas as a strength) and directed graphs (i.e., taking the influence of one region
in another) can also be obtained. Figure 2.18 shows the whole-brain structural net-
works represented as a weighted undirected graph. Figure 2.19 shows a connectogram,
a circular representation of the connectome [van Horn 2012].

The consistency of the structural network across subjects and scales allows the study
of global properties of the brain. For instance, the study of the brain network using graph
theory, has discovered that the brain network is a small-world, which means that most
of the nodes are not neighbors but it is possible to go from one node to all the other
ones efficiently (with a short path length). A part from the global structure, there are
two main aspects to study: the segregation and the integration. Segregation refers to
the organization of specialized groups of neurons to perform specific tasks (communi-
ties). This is shown by having groups of highly efficient and locally connected nodes
with a high clustering (number of triangles), which lows the random error. On the other
hand, integration refers to the coordination of the shared information between the dif-
ferent segregated groups of specialized neurons. It is demonstrated with the average
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Figure 2.18: Whole-brain structural network represented as a weighted undirected
graph. Nodes represent anatomical areas [Hagmann 2008]

short path length that allows a global efficient distributed processing. This integration
is possible due to a main core of nodes with a high strength and betweennees that are
highly connected with the modular communities. All these properties are mandatory in
order to integrate and segregate all the information. Random networks are efficient but
not able to process information. Figure 2.20 shows a representation of the structural
modules and the main hubs for the human brain.

Synthetic model networks can be used to study specific characteristics. For example,
lattice networks are suitable to study the wiring cost properties and random networks
are suitable to study the efficiency. However, small-world networks are the better syn-
thetic approximation having a balance between wiring cost and efficiency.

2.2.3.2 Functional network

Functional connectivity is an increasing field in neuroimaging that studies the temporal
dependence between active brain regions. This dependence is measured statistically by
finding the fluctuations using the fMRI BOLD series in resting state (see Section 2.1.5).
Similar to the structural network, the matrix that defines the functional connections can
be also defined as a graph, where nodes represent brain areas (defined by a parcellation
method) and the edges the temporal functional connection between the regions.

In order to find the functional edges, the average time series associated to each node
are used to estimate the edges between nodes, usually by finding the pairs of nodes
with similar time series. Since the average time series has negative values, frequently,
the matrix is thresholded in order to build the graph. The threshold can be found by
applying a statistical significance test to each edge (i.e., t-test).

Some connectivity patterns have been found in functional networks. For instance,
it has been shown that it has a hierarchical organization [Zhou 2006] with small-world
properties, a mean path length similar to random networks and a much higher clus-
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Figure 2.19: Connectogram. The connectome is represented as a ring where values of
different measures and the connections between areas are displayed in the center [van
Horn 2012]
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Figure 2.20: Modules (gray circles) and hubs (yellow nodes) of the whole-brain [Hag-
mann 2008]
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tering coefficient [Achard 2006]. Other studies have reported a pattern of highly con-
nected anatomical separated areas during rest, which form the resting state network
and is consistent across subjects and scales [Beckmann 2005, Damoiseaux 2009].

Although most of the functional connections have an equivalent structural connec-
tion, there are functional connections with no direct path, which means that the func-
tional connections use a third region in order to communicate and transfer information.

2.2.4 Graph theory measures

Graph theory is a key element in the study of the topology of the brain network by
using complexity measures, regardless the information that has been used to construct
the network (functional or structural). Graph theory measures can describe local prop-
erties (node level) or global properties (network level) and do not take into account
the anatomy.

It is still unknown which are the measures that describe best the brain network.
Additionally, the results obtained strongly depend on the quality of the connectivity
matrices and the parcellation method, which are not final but are the best approxima-
tion [Kennedy 2013, Stephan 2013]. However, it has been shown that it is possible to as-
sociate network disruptions with different diseases using complexity measures [van den
Heuvel 2010, Meskaldji 2013, Sato 2013, Sporns 2013, Crossley 2014]. Thus, novel
measures showing new properties are needed in order to better understand the func-
tioning of the brain network [Papo 2014].

In the next subsections, we describe some relevant measures. Although the most
popular connectivity matrices are binary, most of the measures have the binary and
undirected version and the weighted directed and undirected versions.

2.2.4.1 Local measures

Local measures describe properties of the nodes such as the pattern of connections of
the node or the way the node is connected (topology) [Stam 2007, Rubinov 2010, Kaiser
2011]. Is of interest to describe the node’s properties given that it helps to characterize
the brain network architecture and organization.

The most well known local measures include:

• Degree or degree centrality: Number of connections of a node [Bullmore 2009]. It
provides information about how highly connected is the node

• Strength: Similar to the degree but considering the node weights. It provides in-
formation about how strongly connected is the node

• Density: Percentage of the number of connections among all possible connections.
Thus, the higher the density, the lower the variability

• Betweenness centrality: Percentage of short paths that include the node (the short-
est path length is the minimum distance or steps between two nodes). It is related
with the efficiency, since efficient networks require a short path length (nodes



2.2. The human connectome 25

Figure 2.21: Schematic graph diagram showing the most relevant properties and mea-
sures described

with high betweenneess centrality). It is also used to find hub nodes, as the main
characteristic of the hubs nodes is the short path length

The diagram in Figure 2.21 provides an schematic representation of some of these
measures and properties.

Collectively, these measures can describe networks more globally, by showing spe-
cific properties, such as small-world, scale-free or hierarchical structures. A good sum-
mary, including more measures and the respectively formulas can be found in [Rubinov
2010, Papo 2014].

2.2.4.2 Global measures

The aim of global measures is to describe the overall network structure of the brain.
These measures are mainly quantitative and help to find global differences otherwise
not identified. Global measures can be divided in two main groups, those that describe
integration, and those that describe segregation.

Measures that describe integration include:

• Characteristic path length: Average shortest path length [Watts 1998]. It describes
how close on average a node is connected to all the other ones. Random networks
have a short characteristic path length, which means that are efficient networks
in terms of sharing and integrating information
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• Global efficiency: Average inverse shortest path length [Latora 2001]. It describes
how efficiently the network shares information. Unlike the characteristic path
length, this measure is useful when computed on disconnected networks

On the other hand, measures that describe segregation include:

• Clustering coefficient: Number of neighbors of a node that are also connected to
each other forming a triangle [Watts 1998]

• Transitivity: Normalized clustering coefficient [Newman 2003b]

• Modularity or community: Group of nodes highly interconnected but poorly con-
nected to other groups of nodes [Newman 2003a]

In addition, other properties of the networks are described by the following con-
cepts:

• Core: Group of highly and mutually interconnected nodes where all the possible
connections exist

• k-core: Subnetwork containing only the nodes with a degree greater than a thresh-
old k

• Hubs: Nodes that connect communities, usually with a high degree, short average
path length and high centrality

• Rich-club: Set of nodes with a high degree more densely connected than the av-
erage of the network

• Hierarchical modularity: Multiscale structure within a community

The diagram in Figure 2.21 provides an schematic representation of some of these
measures and properties.

Studies such as [Kennedy 2013] suggests that the information distribution and
integration in the brain is governed by a structurally and functionally central circuit
with different areas acting as a hub. These hubs are densely interconnected forming
a rich-club [Colizza 2006, Harriger 2012, van den Heuvel 2012]. Watts et al. studied
the anatomical connectivity of the nervous system of C. elegans showing an evidence of
small-world properties [Watts 1998]. Later, other studies demonstrated that the human
brain’s network has also small-world properties [Sporns 2004]. These networks are
highly clustered like lattice networks and with small path lengths like random graphs,
having a balanced segregation and integration.

2.3 Information theory: the basics

In 1948, Claude Shannon published “A mathematical theory of communication” [Shan-
non 1948] which marks the beginning of information theory. In this paper, he defined
measures such as entropy and mutual information, and introduced the fundamental
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laws of data compression and transmission. Information theory deals with the trans-
mission, storage, and processing of information, and is used in fields such as physics,
computer science, mathematics, statistics, economics, biology, linguistics, neurology,
learning, image processing, and computer graphics.

In this section, we present some basic concepts of information theory. Good refer-
ences on information theory can be found in the books written by Cover and Thomas [Co-
ver 1991], and Yeung [Yeung 2002].

2.3.1 Entropy

Let X be a discrete random variable with alphabetX and probability distribution {p(x)},
where p(x) = Pr{X = x} and x ∈ X , the Shannon entropy H(X ) of a discrete random
variable X with values in the set X = {x1, x2, . . . , xn} is defined by

H(X ) = −
∑

x∈X
p(x) log p(x), (2.2)

where p(x) = Pr[X = x], the logarithms are taken in base 2 (entropy is expressed in
bits), and we use the convention that 0 log 0= 0, which is justified by continuity. In this
thesis, {p(x)} will be also denoted by p(X ) or simply p. This notation will be extended
to two or more random variables.

We can use interchangeably the notation H(X ) or H(p) for the entropy, where p
is the probability distribution {p1, p2, . . . , pn}. As − log p(x) represents the information
associated with the result x , the entropy gives us the average information or uncertainty
of a random variable. Uncertainty and information can be seen as opposite sides of
the same coin. While entropy quantifies the uncertainty that we have before an event,
information is a measure of the uncertainty reduction after the event.

Some other relevant properties of the entropy are [Shannon 1948]:

1. 0≤ H(X )≤ log n

• H(X ) = 0 if and only if all the probabilities except one are zero, this one
having the unit value, i.e., when we are certain of the outcome.

• H(X ) = log n when all the probabilities are equal. This is the most uncertain
situation.

2. If we equalize the probabilities, entropy increases.

When n= 2, the binary entropy (Figure 2.22) is given by

H(X ) = −p log p− (1− p) log(1− p), (2.3)

where the variable X is defined by

X =

�

1 with probability p
0 with probability 1− p.
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Figure 2.22: Plot of binary entropy

If we consider another random variable Y with probability distribution p(y) cor-
responding to values in the set Y = {y1, y2, . . . , ym}, the joint entropy of X and Y is
defined as

H(X , Y ) = −
∑

x∈X

∑

y∈Y
p(x , y) log p(x , y), (2.4)

where p(x , y) = Pr[X = x , Y = y] is the joint probability.
The conditional entropy H(Y |X ) of a random variable Y given a random variable X

is defined by

H(Y |X ) =
∑

x∈X
p(x)H(Y |x) (2.5)

=
∑

x∈X
p(x)

 

−
∑

y∈Y
p(y|x) log p(y|x)

!

(2.6)

= −
∑

x∈X

∑

y∈Y
p(x , y) log p(y|x), (2.7)

where p(y|x) = Pr[Y = y|X = x] is the conditional probability of y given x and
H(Y |x) is the entropy of Y given x .

The Bayes theorem expresses the relation between the different probabilities:

p(x , y) = p(x)p(y|x) = p(y)p(x |y). (2.8)

If X and Y are independent, then p(x , y) = p(x)p(y).
In other words, the conditional entropy can be described as a channel that the in-

put is the random variable X and the output is the random variable Y . Then, H(X |Y )
corresponds to the uncertainty of the channel’s input from the receiver’s point of view,
and vice versa for H(Y |X ). Note that in general H(X |Y ) 6= H(Y |X ).

The following properties are also fulfilled:

1. H(X , Y )≤ H(X ) +H(Y )

2. H(X , Y ) = H(X ) +H(Y |X ) = H(Y ) +H(X |Y )

3. H(X )≥ H(X |Y )≥ 0
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2.3.2 Mutual information

The mutual information I(X ; Y ) between two random variables X and Y is defined by

I(X ; Y ) = H(X )−H(X |Y ) (2.9)

= H(Y )−H(Y |X ) (2.10)

= −
∑

x∈X
p(x) log p(x) +

∑

y∈Y

∑

x∈X
p(x , y) log p(x |y) (2.11)

=
∑

x∈X
p(x)

∑

y∈Y
p(y|x) log

p(y|x)
p(y)

(2.12)

=
∑

x∈X

∑

y∈Y
p(x , y) log

p(x , y)
p(x)p(y)

. (2.13)

Mutual information represents the amount of information that one random variable, the
output of the channel, tells about a second random variable, the input of the channel,
and vice versa, i.e., how much the knowledge of X decreases the uncertainty of Y and
vice versa. Therefore, I(X ; Y ) is a measure of the shared information between X and Y .

Mutual information I(X ; Y ) has the following properties:

1. I(X ; Y )≥ 0 with equality if, and only if, X and Y are independent.

2. I(X ; Y ) = I(Y ; X )

3. I(X ; Y ) = H(X ) +H(Y )−H(X , Y )

4. I(X ; Y )≤ H(X )

The relationship of all the measures explained above can be expressed by the Venn
diagram, as shown in Figure 2.23.

Figure 2.23: Venn diagram of a discrete channel
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2.3.3 Kullback-Leibler distance

The relative entropy or Kullback-Leibler distance DK L(p, q) between two probability dis-
tributions p and q [Cover 1991, Yeung 2002], that are defined over the alphabet X , is
given by

DK L(p, q) =
∑

x∈X
p(x) log

p(x)
q(x)

, (2.14)

where, from continuity, we use the convention that 0 log 0 = 0, a log a
0 =∞ if a > 0,

and 0 log 0
0 = 0.

The relative entropy is “a measure of the inefficiency of assuming that the distribu-
tion is q when the true distribution is p” [Cover 1991].

The relative entropy satisfies the information inequality DK L(p, q)≥ 0, with equality
only if p = q. The relative entropy is also called discrimination and it is not strictly a
distance, since it is not symmetric and does not satisfy the triangle inequality. Moreover,
we have to emphasize that the mutual information can be expressed as

I(X ; Y ) = DK L(p(x , y), p(x)p(y)). (2.15)

2.3.4 Decomposition of mutual information

Given a communication channel X → Y , mutual information can be decomposed in
different ways to obtain the information associated with a value (or symbol) in X or
Y . Next, we present different definitions of information that have been proposed in
the field of neural systems to investigate the significance associated to stimuli and re-
sponses [DeWeese 1999, Butts 2003].

For random variables S and R, representing an ensemble of stimuli S and a set
of responses R , respectively, the mutual information (see Equations 2.10 and 2.12) is
given by

I(S; R) = H(R)−H(R|S) (2.16)

= H(R)−
∑

s∈S
p(s)H(R|s) (2.17)

=
∑

s∈S
p(s)

∑

r∈R
p(r|s) log

p(r|s)
p(r)

, (2.18)

where p(r|s) is the conditional probability of value r given a known value s, and p(S) =
{p(s)} and p(R) = {p(r)} are the marginal probability distributions of the input and
output variables of the channel, respectively.

To quantify the information associated to each stimulus or response, I(S; R) can be
decomposed as

I(S; R) =
∑

s∈S
p(s)I(s; R) (2.19)

=
∑

r∈R
p(r)I(S; r), (2.20)
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where I(s; R) and I(S; r) represent, respectively, the information associated to stimu-
lus s and response r. Thus, I(S; R) can be seen as a weighted average over individual
contributions from particular stimuli or particular responses. The definition of the con-
tribution I(s; R) or I(S; r) can be performed in multiple ways, but we present here the
three most basic definitions denoted by I1, I2 [DeWeese 1999], and I3 [Butts 2003].

Given a stimulus s, three specific information measures that fulfill Equation 2.19
are defined:

• The surprise I1 can be directly derived from Equation 2.18, taking the contribution
of a single stimulus to I(S; R):

I1(s; R) =
∑

r∈R
p(r|s) log

p(r|s)
p(r)

. (2.21)

This measure expresses the surprise about R from observing s. It can be shown that
I1 is the only positive decomposition of I(S; R) [DeWeese 1999]. This positivity
can be shown by observing that I1(s; R) is the Kullback-Leibler distance [Cover
1991] between the conditional probability p(R|s) and the marginal distribution
p(R).

• The specific information I2 [DeWeese 1999] can be derived from Equation 2.17,
taking the contribution of a single stimulus s to I(S; R):

I2(s; R) = H(R)−H(R|s) (2.22)

= −
∑

r∈R
p(r) log p(r) +

∑

r∈R
p(r|s) log p(r|s).

The specific information I2 of a particular response is defined as the reduction
uncertainty in the stimulus gained by the observation of that response [Butts
2003]. Thus, this measure expresses the change in uncertainty about R when s is
observed. Note that I2 can take negative values. This means that certain observa-
tions s do increase our uncertainty about the state of the variable R.

• The stimulus-specific information I3 [Butts 2003] is defined by

I3(s; R) =
∑

r∈R
p(r|s)I2(S; r) (2.23)

and also fulfills Equation 2.19 (for a proof, see [Butts 2003]). The most informa-
tive (or significant) stimuli are those that cause the most informative responses.
Thus, a large value of I3(s; R)means that the states of R associated with s are very
informative in the sense of I2(S; r) (i.e., the specific information associated with
response r). That is, the most informative input values s are those that are related
to the most informative output values r. Observe that I1(s; R) and I2(s; R) are ob-
tained from both distributions p(R) and p(R|s), while I3(s; R) is a weighted sum
of the measure I2(S; r), which is obtained from distributions p(S) and p(S|r).
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Note that, similar to the above definitions for a stimulus s, the information associ-
ated to a response r can be defined. The properties of positivity and additivity of these
measures have been studied in [DeWeese 1999, Butts 2003]. A measure is additive
when the information obtained about S from two observations, r1 ∈ R1 and r2 ∈ R2,
is equal to that obtained from r1 plus that obtained from r2 when r1 is known. While
I1 is always positive and non-additive, I2 can take negative values but is additive, and
I3 can take negative values and is non-additive. On the one hand, because of the ad-
ditivity property, DeWeese and Meister [DeWeese 1999] prefer I2 against I1 since they
consider that additivity is a fundamental property of any information measure. On the
other hand, Butts [Butts 2003] proposes some examples that show how I3 identifies the
most significant stimuli.

2.3.5 Jensen’s inequality

Some important properties of information measures can be deduced from the Jensen’s
inequality [Cover 1991].

A function f (x) is convex over an interval (a, b) (the graph of the function lies below
any chord) if for every x1, x2 ∈ (a, b) and 0≤ λ≤ 1,

f (λx1 + (1−λ)x2)≤ λ f (x1) + (1−λ) f (x2). (2.24)

A function is strictly convex if equality holds only if λ = 0 or λ = 1. A function f (x) is
concave (the graph of the function lies above any chord) if − f (x) is convex.

For instance, x log x for x ≥ 0 is a strictly convex function, and log x for x ≥ 0 is a
strictly concave function [Cover 1991].

Jensen’s inequality: If f is convex on the range of a random variable X , then

f (E[X ])≤ E[ f (X )], (2.25)

where E denotes expectation. Moreover, if f (x) is strictly convex, the equality implies
that X = E[X ]with probability 1, i.e., X is a deterministic random variable with Pr[X =
x0] = 1 for some x0.

One of the most important consequences of Jensen’s inequality is the information
inequality DK L(p‖q) ≥ 0. Other previous properties can also be derived from this in-
equality.

Observe that if f (x) = x2 (convex function), then E[X 2] − (E[X ])2 ≥ 0. So, the
variance is invariably positive.

If f is substituted by the Shannon entropy, which is a concave function, we obtain
the Jensen-Shannon inequality [Burbea 1982]:

JS(π1,π2, . . . ,πn; p1, p2, . . . , pn)≡ H

� n
∑

i=1

πi pi

�

−
n
∑

i=1

πiH(pi)≥ 0, (2.26)

where JS(π1,π2, . . . ,πn; p1, p2, . . . , pn) is the Jensen-Shannon divergence of probabil-
ity distributions p1, p2, . . . , pn with prior probabilities or weights π1,π2, . . . ,πn, fulfill-
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ing
∑n

i=1πi = 1. The JS-divergence measures how ‘far’ are the probabilities pi from
their likely joint source

∑n
i=1πi pi and equals zero if and only if all the pi are equal.

It is important to note that the JS-divergence is identical to I(X ; Y ) when πi = p(x i)
and pi = p(Y |x i) for each x i ∈ X , where p(X ) = {p(x i)} is the input distribution,
p(Y |x i) = {p(y1|x i), p(y2|x i), . . . , p(ym|x i)}, n = |X |, and m = |Y | [Burbea 1982,
Slonim 2000b].

2.3.6 Markov process

A Markov process [Cover 1991], or Markov chain, is a discrete stochastic process defined
over a set of states X = {x1, x2, . . . , xn} which is described by a transition probability
matrix P. In each step, the process makes a transition from its current state i to a new
state j with transition probability Pi j . The transition probabilities only depend on the
current state. A Markov process can also be seen as a sequence of random variables
Xk, k = 0 . . .∞, in which each Xk, k ≥ 1, depends only on the previous Xk−1 and not
on the ones before. Thus, Pi j = p(xk

j |x
k−1
i ) = Pr[Xk = x j|Xk−1 = x i].

For a stationary Markov process, the probabilities of finding the particle in each state
i converge to a stationary distribution w = {w1, . . . , wn} after a number of steps. The
stationary or equilibrium probabilities wi fulfill the relation wi =

∑n
j=1 w j Pji and also

the reciprocity relation wi Pi j = w j Pji .
In particular, a Markov process can be considered as a chain of random variables

complying with

H(X t |X1, X2, . . . , X t−1) = H(X t |X t−1) (2.27)

An important result is the following theorem: For a stationary Markov chain, with sta-
tionary distribution wi , the entropy rate or information content is given by

h = lim
t→∞

1
t

H(X1, X2, . . . , X t)

= lim
t→∞

H(X t |X t−1)

= H(X2|X1) = −
t
∑

i=1

wi

t
∑

j=1

Pi j log Pi j (2.28)

where wi is the equilibrium distribution and Pi j is the transition probability from state
i to state j. Entropy rate represents the average information content per output symbol
1 [Cover 1991]. It is the “uncertainty associated with a given symbol if all the preced-
ing symbols are known” and can be viewed as “the intrinsic unpredictability” or “the
irreducible randomness” associated with the chain [Feldman 1998].

Finally, the excess entropy or effective measure complexity [Crutchfield 1983, Shaw
1984, Grassberger 1986, Szépfalusy 1986] of an infinite chain is defined by

E = lim
t→∞

(H(X1, X2, . . . , X t)− th) (2.29)

1At least, h exists for all stationary stochastic processes.
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where h is the entropy rate of the chain and t is the length of this chain. The excess
entropy can be interpreted as the mutual information between two semi-infinite halves
of the chain. Another way of viewing this, is that excess entropy is the cost of amnesia
– the excess entropy measures how much more random the system would become if
we suddenly forgot all information about the left half of the string [Feldman 1997].
For a stationary Markov process, excess entropy coincides with mutual information,
and, hence, in this context, mutual information can be seen as a measure of the system
structure.
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3.1 Introduction

Clustering techniques organize elements into groups (or clusters) whose members are
similar and dissimilar to elements belonging to other clusters. The core issue in cluster-
ing is the similarity estimation. Once a similarity measure is chosen, clustering is formu-
lated as an optimization problem [Xu 2005]. More details about distance metrics can
be found in [Yu 2012]. Clustering is used in many different fields, such as engineering,
computer sciences, life and medical sciences, earth sciences, social sciences [Hartigan
1975, Everitt 2001] and, more recently, in cartoon animation [Yu 2011, Yu 2013]. This
technique has been extensively investigated and it is still an active area of research.
Some reference papers on the topic are [Hansen 1997, Jain 1988, Jain 1999, Duda
2001, Xu 2005, Lam 2014].

Clustering techniques can be grouped into two main categories: partition-based
methods that iteratively divide the dataset by minimizing a pre-defined distance func-
tion [MacQueen 1967] and hierarchy-based methods that organize data in a hierarchy
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of clusters [Nagpal 2013]. These last can be classified as divisive or agglomerative [Jain
1988, Kaufman 1990, Jain 1999, Everitt 2001]. Divisive methods split up the dataset
into smaller clusters in a top-down process until each cluster contains only one element
or a pre-defined number of clusters is reached. Agglomerative methods follow a bottom-
up procedure that starts with n singleton clusters and form a hierarchy by successively
merging the clusters until a desired number of clusters is obtained. Recently, new hi-
erarchical clustering techniques have been proposed to deal with large-scale datasets
in data mining and other fields [Zhao 2005, Hsu 2007, Tao 2007, Kersting 2010, Cai
2014].

The information bottleneck method provides a different view of the clustering prob-
lem [Tishby 1999, Slonim 2006, Xu 2014]. The method considers that each variable X
that takes values from an alphabetX occurs together with a corresponding variable Y ,
which takes values from an alphabet Y , where X represents the data and Y is a control
variable that holds some correlation with X , and it requires the control variable Y to be
different from the variable to be clustered X . Clustering is performed in the variable X
to compress the description of the elements while preserving as much information as
possible about Y . From this statement, there is no need to explicitly define a similarity
measure, since the similarity of the elements is defined from the optimization principle
itself.

A stochastic Markov process, X, is an indexed sequence of random variables, {X0, X1,
. . . , X t , X t+1, . . .}, which take values from an alphabet X . Inspired by the hierarchical
clustering and the information bottleneck method, we propose a new method to cluster
the states of a stationary Markov process preserving the maximum mutual information
between consecutive variables, X t and X t+1, which extends the applicability of the in-
formation bottleneck-based methods. Note that, in this case, X t and X t+1 take values
over the same alphabet X , and, for this reason, the standard information bottleneck
method cannot be applied, since the states of both variables X t and X t+1 are simultane-
ously clustered. The agglomerative and divisive versions of the proposed hierarchical
clustering technique are presented and applied to image quantization (see Figure 3.1).

This chapter has been structured as follows. Section 3.2, we present an overview
of previous work on information theory, the information bottleneck method, and the
Markov processes. In Section 3.3, we introduce the mathematical basis of our frame-
work. In Section 3.4, we present the agglomerative and divisive versions of the proposed
hierarchical clustering approach. In Section 3.5, we describe the application of the pro-
posed algorithms to image quantization and, in Section 3.6, we discuss the obtained
results. Finally, in Section 3.7, we present conclusions and future work.

3.2 Background

3.2.1 Information bottleneck method

The information bottleneck method, introduced by Tishby et al. [Tishby 1999], extracts
a compact representation of the random variable X , denoted by bX , with minimal loss
of MI with respect to an additional or relevant random variable Y . In this framework,
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Figure 3.1: Diagram of the main aspects described in this chapter

X represents the dataset to be clustered, x i ∈ X is the i-th element of this dataset, and
bX represents the set of data clusters and bxk ∈ cX is the k-th cluster. It is also assumed
that Y represents a feature set that has a certain degree of correlation with respect
to the dataset X , so that the clustering of X is guided by the maximal preservation of
this correlation, i.e., by the maximization of the mutual information between bX and Y .
In this thesis, the variable Y is also called control variable as it controls the clustering
process of X .

Soft [Tishby 1999] and hard [Slonim 2000a] partitions of X can be adopted. In
the first case, every value x ∈ X can be assigned to every cluster x̂ ∈ cX with some
conditional probability p( x̂ |x) (soft clustering). In the second case, every value x ∈ X
is assigned to only one cluster x̂ ∈ cX (hard clustering).

We focus our attention on the agglomerative information bottleneck method [Slonim
2000a]which is a hard clustering technique. Given a cluster x̂ defined by x̂ = {x1, . . . , x l},
where l is the number of elements of the cluster and xk ∈ X (∀k ∈ [1..l]), and given
probability distributions p( x̂) and p(y| x̂) defined by

p( x̂) =
l
∑

k=1

p(xk), (3.1)

p(y| x̂) =
1

p( x̂)

l
∑

k=1

p(xk, y) ∀y ∈ Y , (3.2)

the following properties are fulfilled:

• The decrease in the mutual information from I(X ; Y ) to I(bX ; Y ) due to the clus-
tering of x1, . . . , x l is given by

δI x̂ = p( x̂)JS(π1, . . . ,πl ; p(Y |x1), . . . , p(Y |x l))≥ 0, (3.3)
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Figure 3.2: Diagram of standard agglomerative information bottleneck method

where πk =
p(xk)
p( x̂) . An optimal clustering algorithm has to minimize δI x̂ .

• A clustering of l components can be obtained by l − 1 consecutive clustering of
pairs of components.

When considering the clustering of two states x i and x j into a cluster x̂ , such that

p( x̂) = p(x i) + p(x j) (3.4)

and

p(y| x̂) =
p(x i)p(y|x i) + p(x j)p(y|x j)

p( x̂)
, (3.5)

Equation 3.3 is simplified in the following form:

δI x̂ = I(X ; Y )− I(bX ; Y )

= p( x̂)JS
�

πi ,π j; p(Y |x i), p(Y |x j)
�

, (3.6)

where πi =
p(x i)
p( x̂) and π j =

p(x j)
p( x̂) . The JS-divergence JS

�

πi ,π j; p(Y |x i), p(Y |x j)
�

be-
tween two states can be interpreted as a measure of dissimilarity between them with
respect to the output variable. In Figure 3.2, the evolution of the transition matrix (i.e.
the matrix that each row corresponds to p(Y |x i)) for the different iterations of the al-
gorithm is shown. In the first iteration, the states 1 and 2 (those that minimize the
information loss) are grouped, which results in the merging of rows 1 and 2. The loop
is repeated until the desired final number of states is reached.

Dhillon et al. [Dhillon 2003] presented a co-clustering algorithm applied to word-
document clustering that simultaneously clusters X and Y into disjoint or hard clusters.
An optimal co-clustering algorithm has to minimize the difference I(X , Y )− I(bX , bY ). In
this case, the loss in mutual information is given by

δI x̂; ŷ = I(X , Y )− I(bX ; bY )

= DK L(p(X , Y ), q(X , Y )), (3.7)
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where q(X , Y ) is a distribution of the form

q(x , y) = p( x̂ , ŷ)p(x | x̂)p(y| ŷ), x ∈ x̂ , y ∈ ŷ .

Dhillon et al. [Dhillon 2003] used this method to simultaneously cluster words, repre-
sented by the variable X , and documents, represented by the variable Y . Note that X
and Y take values in different alphabets. Thus, joining two states in X does not directly
imply which states are joined in Y , and vice versa.

Slonim et al. [Slonim 2006] generalized the information bottleneck to multivariate
variables and introduced different variations of the information bottleneck algorithm. In
particular, the authors proposed a symmetric information bottleneck framework where
both input and output variables are simultaneously merged. In this approach, each
random variable is clustered using different partitions, obtaining the clustering of the
variable X that maximally preserves the mutual information with Y and the clustering
of the variable Y that maximally preserves the mutual information with X . Recently,
the information bottleneck has also been extended by multi-view features and has been
applied in classification and recognition tasks [Xu 2014].

Other related works are inspired by the non-negative matrix factorization (NMF)
that decomposes a non-negative matrix by approximating a product of two non-negative
factor matrices. NMF was proposed by Paatero and Tapper [Paatero 1994] and it has
been demonstrated that the NMF method can be applied in image clustering and seg-
mentation [Guan 2012a, Wang 2013b]. Several methods have been proposed for NMF [Wang
2013b], although each approach has advantages and disadvantages and the method of
choice is often application dependent [Pauca 2004]. Recently, some efficient solvers
have been proposed to improve the NMF method, such as NeNMF [Guan 2012b] that
sequentially optimizes one matrix factor with another fixed by using Nesterov’s method,
MahNMF [Guan 2012a] that minimizes the Manhattan distance between the data ma-
trix and its low-rank approximation and is more robust than the traditional NMF, or
using Procrustes rotations [Huang 2014].

3.3 Mathematical framework

In this section, we present the mathematical framework of our clustering approach.
We assume that we have a stationary Markov process, X = {X0, X1, . . . , X t , X t+1, . . .},
defined over the alphabet X . This alphabet is given by {1, 2, . . . , N} and represents
1D scalar values or high-dimensional data. From now on, we will consider that the
stationary distribution of X is represented as p(xk) = Pr[X t = k], where k ∈ X . A
summary of the notation used in this section is shown in Table 3.1.

As we have previously mentioned, our clustering criterion is to obtain the minimum
loss of mutual information between consecutive states of the Markov process X.

Proposition 1. The total MI loss when merging the states i and j of a stationary Markov
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Table 3.1: Summary of the notation used in this thesis

X Markov process
X Alphabet where the Markov process takes values
bX clustered Markov process

X t state of the Markov process at time t
bX t state of the clustered Markov process at time t
eX t variable at time t that only considers the states

that participate in the merging keeping their
relative probabilities

p(X t) probability density function of the Markov process
at time t

p(x i) = Pr[X t = i] probability of the state i at time t of the stationary
distribution of the Markov process

p(x i , x j) = Pr[X t = i, X t+1 = j] joint probability of the state i at time t and
the state j at time t + 1 of the Markov process

p(X t+1|x t
i ) probability density function of the Markov process

at time t + 1 conditioned on X t takes the value i
p(x t+1

j |x
t
i ) probability of the state j at time t + 1

conditioned on the state i at time t

process X is given by

δI
Òi j(X) = I(X t ; X t+1)− I(bX t ; bX t+1)

= p( x̂)JS
�

πi ,π j; p(X t+1|x t
i ), p(X t+1|x t

j )
�

+p( x̂)JS
�

πi ,π j; p(X t |x t+1
i ), p(X t |x t+1

j )
�

−p( x̂ , x̂)I(eX t ; eX t+1). (3.8)

where p( x̂) = p(x i)+ p(x j), p( x̂ , x̂) =
∑

s=i, j

∑

t=i, j p(xs, x t) (i.e., the probability to stay

in the same clustered state Òi j during two consecutive states, X t and X t+1), π j =
p(x j)
p( x̂) , and

I(eX t ; eX t+1) represents the mutual information between the variables X t and X t+1 when
only the states that participate in the merging are considered, that is,

I(eX t ; eX t+1) =
∑

s=i, j

∑

t=i, j

p( x̃s, x̃ t) log
p( x̃s, x̃ t)

p( x̃s)p( x̃ t)
, (3.9)

where p( x̃s, x̃ t) =
p(xs ,x t )
p( x̂ , x̂) , p( x̃s) =

∑

t=i, j p(xs ,x t )
p( x̂ , x̂) , and p( x̃ t) =

∑

s=i, j p(xs ,x t )
p( x̂ , x̂) .

Proof. The MI loss when two states i and j are merged to obtain the fused state Òi j can
be seen as a two-step clustering. In the first step, we consider the MI loss of the variable
X t , which is given by

δI1
Òi j
(bX t ; X t+1) = I(X t ; X t+1)− I(bX t ; X t+1)
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= p( x̂)JS
�

πi ,π j; p(X t+1|x t
i ), p(X t+1|x t

j )
�

, (3.10)

where p( x̂) = p(x i) + p(x j) and πi =
p(x i)
p( x̂) , π j =

p(x j)
p( x̂) . This process coincides with

the standard agglomerative bottleneck method. Thus, the loss of mutual information is
given by Equation 3.6.

In the second step, we consider the MI loss when merging the same states i and j
of the variable X t+1, once the same states of the variable X t have already been merged.
This information loss is given by

δI2
Òi j
(bX t ; bX t+1) = I(bX t ; X t+1)− I(bX t ; bX t+1)

= p( x̂)JS
�

π′i ,π
′
j; p(bX t |x t+1

i ), p(bX t |x t+1
j )

�

= p( x̂)JS
�

π′i ,π
′
j; p(X t |x t+1

i ), p(X t |x t+1
j )

�

−p( x̂ , x̂)I(eX t ; eX t+1), (3.11)

where π′i =
p(x i)
p( x̂) , π

′
j =

p(x j)
p( x̂) , and I(eX t ; eX t+1) represents the mutual information be-

tween the variables X t and X t+1 when only the states that participate in the merging, i
and j, are considered (see Equation 3.9).

The previous result can be proved as follows:

δI2
Òi j
(bX t ; bX t+1) = I(bX t ; X t+1)− I(bX t ; bX t+1)

= p( x̂)JS
�

(π′i ,π
′
j; p(bX t |x t+1

i ), p(bX t |x t+1
j )

�

= p( x̂)JS(π′i ,π
′
j; p(X t |x t+1

i ), p(X t |x t+1
j ))

+p( x̂)(−p( x̂ t | x̂ t+1) log p( x̂ t | x̂ t+1) + p(x t
i | x̂

t+1) log p(x t
i | x̂

t+1)

+p(x t
j | x̂

t+1) log p(x t
j | x̂

t+1))

−p( x̂)π′i((−p( x̂ t |x t+1
i ) log p( x̂ t |x t+1

i ) + p(x t
i |x

t+1
i ) log p(x t

i |x
t+1
i )

+p(x t
j |x

t+1
i ) log p(x t

j |x
t+1
i ))

−p( x̂)π′j((−p( x̂ t |x t+1
j ) log p( x̂ t |x t+1

j ) + p(x t
i |x

t+1
j ) log p(x t

i |x
t+1
j )

+p(x t
j |x

t+1
j ) log p(x t

j |x
t+1
j ))

= p( x̂)JS
�

π′i ,π
′
j; p(X t |x t+1

i ), p(X t |x t+1
j )

�

−p( x̂ , x̂) log p( x̂ , x̂) +
∑

k=i, j

p(xk, x̂) log p(xk, x̂)

+
∑

l=i, j

p( x̂ , x l) log p( x̂ , x l)−
∑

k=i, j

∑

l=i, j

p(xk, x l) log (p(xk, x l))

= p( x̂)JS
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π′i ,π
′
j; p(X t |x t+1

i ), p(X t |x t+1
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−
∑
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∑
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p(xk, x l) log (p(xk, x l)) + p( x̂ , x̂) log (p( x̂ , x̂))
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+
∑

k=i, j

∑

l=i, j

p(xk, x l) log
�

p(x t
k| x̂

t , x̂ t+1)
�

+
∑

k=i, j

∑

l=i, j

p(xk, x l) log
�

p(x t+1
k | x̂ t , x̂ t+1)

�

= p( x̂)JS
�

π′i ,π
′
j; p(X t |x t+1

i ), p(X t |x t+1
j ))

�

− p( x̂ , x̂)I(eX t ; eX t+1)

Equation 3.8 can be obtained by adding the results of Equation 3.10 and Equa-
tion 3.11.

In conclusion, three different terms contribute to the MI loss. The two first terms
are given by the Jensen-Shannon divergence between the conditional probabilities be-
tween the states to be merged in the past to future direction and future to past direction,
respectively. These terms have to be minimized to obtain the minimal MI loss and rep-
resent how the states are related to the other states. Observe that these terms coincide
with the MI loss in the standard agglomerative information bottleneck algorithm. The
third term is given by the mutual information between the merged states. This term
has to be maximized and is related to how the merged states interact between them.
Note that this term does not have an equivalent term in the standard agglomerative
information bottleneck method.

3.3.1 Variation of the MI loss

One of the main drawbacks of this method compared to the original agglomerative
information bottleneck algorithm is that the MI loss between any pair of states has to
be recomputed when two other states are clustered. Fortunately, the computation of the
variation of the MI loss can be computed in constant time for each pair of states to be
clustered from the following result.

Proposition 2. The variation of the MI loss associated with the states k and l when the
states i and j have been merged is given by

∆δI
Òi j
Òkl
(bX) = δI

Òkl(bXÒi j)−δI
Òkl(bX)

= −p( x̂
Òkl , x̂

Òi j)I(eX
Òkl
t ; eX

Òi j
t+1)− p( x̂

Òi j , x̂
Òkl)I(eX

Òi j
t ; eX

Òkl
t+1), (3.12)

where bX represent the clustered variable by merging the states k and l before the merging
of the states i and j, bX

Òi j represent the clustered variable after the merging of i and j,

p( x̂
Òkl , x̂

Òi j) =
∑

s=k,l

∑

t=i, j p(s, t), and I(eX Òkl
t ; eX

Òi j
t+1) is defined as

I(eX Òkl
t ; eX

Òi j
t+1) =

∑

s=k,l

∑

t=i, j

p( x̃s, x̃ t) log
p( x̃s, x̃ t)

p( x̃s)p( x̃ t)
(3.13)

and represents the mutual information when only i, j for X t and k, l for X t+1 are consid-
ered.
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Proof. The previous result can be proved as follows:
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3.3.2 Reversible Markov process

A stationary Markov process is said to be reversible if p(x i , x j) = p(x j , x i),∀i, j ∈ X .
In this situation, the two latter propositions can be simplified as follows. The MI loss
when merging the states i and j is given by

δI
Òi j(X) = I(X t ; X t+1)− I(bX t ; bX t+1)

= 2p( x̂)JS
�

πi ,π j; p(X t+1|x t
i ), p(X t+1|x t

j )
�

−p( x̂ , x̂)I(eX t ; eX t+1), (3.14)
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Figure 3.3: Diagram of the proposed agglomerative information bottleneck method

where I(eX t ; eX t+1) has been defined in Equation 3.9. The variation of MI loss between
the states k and l when the states i and j are merged is given by

∆δI
Òi j
Òkl
(bX) = −2p( x̂

Òkl , x̂
Òi j)I(eX

Òkl
t ; eX

Òi j
t+1), (3.15)

where I(eX Òkl
t ; eX

Òi j
t+1) has been defined in Equation 3.13.

3.4 Hierarchical clustering algorithms

In this section, we describe two different greedy algorithms based on the theoretical
framework presented in the previous section. The first method is based on an agglomer-
ative bottom-up strategy, while the second one is based on a divisive top-down strategy.

3.4.1 Agglomerative algorithm

Inspired by the agglomerative information bottleneck method applied to a single vari-
able [Slonim 2000a], we propose a new clustering algorithm, the key idea of which is
shown in Figure 3.3. The procedure requires as input the joint probability distribution
between the two consecutive states of the Markov process, X t and X t+1, and the num-
ber of final clusters k. Initially, this algorithm assigns each state of the alphabet to a
different cluster and, then, it greedily merges the pair of clusters that minimizes the
loss of mutual information between these consecutive states. This last step is repeated
until a pseudo-optimal partition in k clusters is obtained. Observe that this partition is
not the global optimal partition, since a sequence of locally optimal merges does not
guarantee a globally optimal result.

The proposed algorithm is described in Figure 3.4. First, the MI loss δI
Òi j(X) due to

the merging of each pair of states is computed and stored in a matrix. Then, the main
loop begins by searching the minimum value of this matrix and, thus, finding the states
m and n such that their merging causes the minimum loss of mutual information. Once
s and t are identified, the MI loss associated to the states i and j, such that neither i nor
j correspond to s or t, are recomputed according to Equation 3.12. Subsequently, the
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Input

Joint probability distribution: p(X t , X t+1)
Number of clusters: k ∈ {1..n}

Output

A partition of X into k clusters
Computation

bX ← X
∀i, j ∈ {1..n}.compute(δI

Òi j(X)) (see Eq. (3.8))

while |bX |> k do

s, t ←mini, j(δI
Òi j(bX))

Update, using Eq. (3.12), δIÒst
Òi j
(bX) ∀i, j ∈ {1..n}|i, j 6= s, t

x̂ ← merge(xs, x t)
bX ← (bX − {xs, x t})

⋃

{ x̂}
Update δI

bx̂j(bX) ∀ j ∈ {1..n}
Update δI

bjx̂(bX) ∀ j ∈ {1..n}
end while

return bX

Figure 3.4: The agglomerative clustering algorithm

states s and t are merged and the MI loss between this new merged state and each one
of the other states is computed. The main loop is repeated until the desired number of
clusters is reached.

Additionally to the number of clusters, our procedure can also be stopped when a
mutual information ratio (MIR) is achieved, where MIR is defined by

M IR(X) =
I(bX t ; bX t+1)
I(X t ; X t+1)

. (3.16)

In this case, the number of clusters will depend on how fast the mutual information
channel loses information throughout the agglomerative algorithm. Note that the final
number of clusters will change between different Markov processes.

Observe that the main loop is repeated n− k times and the computational cost of
the loop is O(n2). Thus, the global computational cost is given by O(n3), where n is the
number of states of the process X and it is considered that n� k. This cost is achieved
thanks to the fact that the computational cost of Equation 3.12 is constant. Note that
if the recomputation of the information loss for each pair of states was computed with
the original Equation 3.8, with cost O(n), the final cost would be given by O(n4). Let
us note that some optimization strategies, such as the use of a heap structure instead
of a distance matrix [Virmajoki 2004], would not reduce the computational complexity
O(n3), since the computational complexity bottleneck is not only given by the minimum
distance search (as in the pairwise nearest neighbour agglomerative method) but also
by the distance computation.

To illustrate how the algorithm proceeds, this has been applied to a random walk
on the weighted graph represented in Figure 3.5 (a). The nodes of this graph are la-
belled with a number and the edges have a positive weight Wi j , where i and j in-
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(a) (b)

Figure 3.5: (a) Simple weighted graph and (b) the corresponding clustering hierarchy

dicate the nodes that are connected by the edge. For a random walk on a weighted
graph, the probabilities of the stationary distribution are given by p(x i) =

Wi
2W , where

Wi =
∑

k Wik is the sum of the weights that emanate from the node i, and W is the total
sum of weights [Cover 1991]. The conditional probability is given by the expression
p(x t+1

j |x
t
i ) =

Wi j
Wi

, that is, the weight of the edge between the nodes i and j divided by
the sum of the edges that emanate from i. Figure 3.5 (b) shows, for each iteration, the
nodes that have been clustered. In this case, the process performs eight iterations and
returns two clusters: the first is composed of nodes 1, 4, 6, and 10, and the second by
nodes 3, 5, 7, 8, 2, and 9.

3.4.2 Divisive algorithm

For some alphabets, each state represents the quantization of a scalar value that can be
sorted in a certain order. In this case, a good strategy to hierarchically cluster this kind
of variables consists in a top-down divisive clustering. To better illustrate the algorithm,
we describe in Figure 3.6 how it proceeds. The method begins with an alphabet with a
unique state and at each iteration a state is divided into two parts following a certain
dissimilarity criterion. Since the states follow a given order, the partition can be simply
given by a threshold value that splits one state into two different states. Note that, if the
states represent categories, this strategy cannot be applied since the number of possible
configurations at each step is a combinatorial value. In our approach, the criterion to
decide the threshold value is given by the maximization of the mutual information gain.

This algorithm is described in Figure 3.7. First, the variable bX is initialized with a
unique state x̂ . Then, the information gain that would be achieved if bX was divided ac-
cording to the threshold i is computed. At this initial step, the partition at the threshold
i divides bX into two symbols x̂1 and x̂2, where x̂1 and x̂2 are composed of the values
in the partitions {1..i} and {i+1..n} of the original alphabetX , respectively. Then, the
main loop begins by searching the threshold that obtains a maximum gain of informa-
tion and dividing the variable bX according to this threshold. Afterwards, the information
gain associated with the splitting of x̂ in the states x̂ i and x̂ j has to be computed us-
ing Equation 3.8, while the variation of the information gain associated with the other
states has to be updated according to Equation 3.12. This main loop is repeated until
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Figure 3.6: Diagram of the proposed divisive information bottleneck method

the final number of clusters, k, is reached. As in the agglomerative algorithm, the MIR
(Equation 3.16) can be used as stopping criterion.

For this algorithm, the computational cost of the main loop, which is done k times, is
given by O(n2). Thus, the final computational cost is given by O(kn2). Since in general
n� k, this divisive algorithm will be faster than the agglomerative one. Unfortunately,
the divisive algorithm can only be applied when the states of the random variable take
sorted values and this reduces its application to a limited number of clustering prob-
lems. For instance, the divisive algorithm cannot be applied to the example shown in
Figure 3.5.

In Figure 3.8, we illustrate how the divisive approach proceeds when it is used to
segment the Lena image (Figure 3.8 (a)) using the stationary Markov process given by
a random walk in the image (see Section 3.5.1 for more details). Figure 3.8 (b-e) shows
the gain of mutual information according to the selected threshold value for the first
four iterations of the method. In the first iteration, the algorithm computes the gain of
mutual information of the channel for each threshold value (Figure 3.8 (b)). Then, the
threshold that maximizes the mutual information is selected (in this case, the threshold
is equal to 127) and the gains corresponding to the other thresholds are recomputed
according to Equation 3.8, since, at the first iteration, all values belong to the cluster
that has been split (Figure 3.8 (c)). Then, the threshold with maximum gain of mutual
information is selected as the new threshold (in this case, the threshold is equal to 79).
Note that the information gains of the thresholds greater than 127 (the first threshold)
are updated according to Equation 3.12, since they do not belong to the cluster that
has been split, while the information gains for the other thresholds are recomputed
according to Equation 3.8 (Figure 3.8 (d)). This process is repeated for each iteration
until the desired number of clusters is reached (Figure 3.8 (e)).

3.5 Results

To evaluate the proposed methods, we have applied the agglomerative and divisive
methods to synthetic and photographic images. Image quantization consists in the re-
duction of the image intensities. This technique may be used to efficiently compress
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Input

Joint probability distribution: p(X t , X t+1)
Number of clusters: k ∈ {1..n}

Output

A partition of X into k clusters
Computation

bX ← U
for a = 1 to n− 1

i← {1..a}.
j← {a+ 1..n}.
compute(δIi j(bX) (see Eq. (3.8))

end for

while |bX |< k do

s←maxa(δIi j(bX))
{xs, xs+1} ← divide( x̂ , s)
bX ← (bX − x̂)

⋃

{{xs, xs+1}}
Update δI s

i j(bX) ∀i, j ∈ {1..n}|i, j 6= s (see Eq. (3.12))

Update δI(bX) for xs and xs+1
end while

return bX

Figure 3.7: The divisive clustering algorithm

images and also to display images on devices that support a limited number of colors.
During the quantization process, it is important to preserve the main structures or ob-
jects in the image. Quantization can be seen as a clustering problem, since the original
intensity values are grouped into a short number of intensity bins. We propose to use the
Markov process given by a random walk on the clustered image as the control process of
the proposed algorithm. In this case, the method attempts to obtain a quantization with
approximately equal area for each final intensity (to maximize the information content)
and to get a high degree of correlation between neighbouring pixels (to maximize the
mutual information of the channel). Both features are reasonable for a general image
quantization scheme.

3.5.1 Application

To apply the proposed approach to image quantification, we need to establish how
to compute the joint probability matrix of a random walk on an image. With this
purpose, for each pixel at spatial coordinates (a, b) with intensity value specified by
f (a, b), we have considered its nearest four neighbour pixels at locations (a − 1, b),
(a + 1, b), (a, b − 1) and (a, b + 1), that is, the 4-adjacency (see the book of Gonzalez
and Woods [Gonzalez 2002]). After processing all pixels, we obtain the joint probability
p(x i , x j) as the number of pairs of adjacent pixels with intensity values i and j, respec-
tively, divided by twice the total number of pixel pairs, since each pixel pair is counted
twice. Note the symmetry of the joint probability matrix as p(x i , x j) = p(x j , x i). From
p(x i , x j), the marginal probability is given by p(x i) =

∑

j∈X p(x i , x j) and the condi-
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(a) Lena image

(b) iteration 1 (c) iteration 2 (d) iteration 3 (e) iteration 4

Figure 3.8: Clustering of Lena image using the divisive technique. The plots represent,
for the first four iterations of the method, the gain of mutual information (y-axis) ac-
cording to the threshold value (x-axis)

tional probability is given by p(x t+1
j |x

t
i ) =

p(x i ,x j)
p(x i)

. Both versions of the proposed ap-
proach, the agglomerative and divisive algorithms, can be used for image quantization
since the image intensities follow a pre-defined order and, hence, a single threshold can
separate the intensity values in clusters. These clusters preserve the correlation between
neighbour intensity values and, thus, the spatial coherence of the resulting segmented
image. Moreover, we assume that the intensities of a same object are more likely in
neighbouring positions. In our approach, contrary to the method proposed by Bardera
et al. [Bardera 2009], both variables X and Y of the information channel represent the
image intensities. To carry out the tests, we have considered synthetic, photographic,
and medical images.

3.5.2 Experiments

To show the effectiveness of the method, we have created a synthetic image (see Fig-
ure 3.9 (a)) with two regions, the left one with pixels between 0 and 199 and the right
one between 200 and 255. The image was generated according to the histogram in Fig-
ure 3.9 (b) composed of two Gaussian distributions, one with mean 100, std. deviation
30 and weight 0.3 and another with mean 200, std. deviation 30 and weight 0.7. The
dark grey area corresponds to the left side pixels, while the light grey area to the right
side ones. Figure 3.9 shows, for the synthetic image of Figure 3.9 (a), the results and
the MI value obtained with the agglomerative and the divisive methods considering 2
clusters. For comparison purposes, we show in Figure 3.9 (e) the results obtained with
the classic Otsu’s method [Otsu 1979] and in Figure 3.9 (f) with the classic k-means
method [MacQueen 1967], both reporting the final MI value.

To compare our method with classic ones, we consider a first set of photographic im-



50 Chapter 3. Hierarchical Clustering Based on the Information Bottleneck

(a) Original (b) Histogram
MI=1.0669

(c) Agglomerative (d) Divisive (e) Otsu (f) k-means
MI=0.84004 MI=0.84004 MI=0.0485 MI=0.0503

Figure 3.9: From left to right, the original synthetic image, the proposed agglomerative
and divisive clustering strategies, and other segmenation methods, Otsu and k-means,
applied to the original synthetic image

ages comprising the well-known baboon, Lena, and peppers images. All of these have a
resolution of 512×512 pixels. Figure 3.10 shows the original Lena image and the clus-
tered images obtained with the proposed agglomerative and divisive, and the Otsu’s
method, considering 20, 10, 8, and 4 clusters. For each image we show the correspond-
ing MI value. Additionally, as explained in Section 3.4.1, the proposed method can also
be stopped when an MIR ratio is achieved. We use the same set of images to illustrate in
Figure 3.11 the results with the divisive method considering an MIR value of 0.7, 0.8,
and 0.9, respectively. The number of clusters and the MI are reported for each image.

For the tests, we consider a second set of photographic images from the Berkeley
Segmentation Dataset and Benchmark [Martin 2001]. The BSDS500 dataset contains
200 test images with a total of 1063 different hand labelled clustered images. We seg-
ment the images using the agglomerative and divisive methods and compare the result
with the 1063 ground-truth images. As stopping criterion, we consider the number of
clusters of the corresponding ground-truth image.

In addition, we compare the result with the hierarchical clustering method avail-
able in the Matlab Statistics ToolboxTM [Mat 2013] using the Euclidean distance option.
We also test with Non-negative Matrix Factorization methods (NMF) [Paatero 1994], in-
cluding the recent implementations NeNMF [Guan 2012b] and MahNMF [Guan 2012a],
that has been reported to surpass classic methods as k-means [Wang 2013b]. These
methods require as input the histogram of the probabilities for each image bin and the
number of clusters and return a cluster for each bin. Using these clusters, the final image
is obtained.



3.5. Results 51

Original

(agg, MI=2.355) (agg, MI=2.047) (agg, MI=1.915) (agg, MI=1.364)

(div, MI=2.355) (div, MI=2.066) (div, MI=1.956) (div, MI=1.422)

(Otsu, MI=2.312) (Otsu, MI=2.054) (Otsu, MI=1.948) (Otsu, MI=1.39)
(a) 20 clusters (b) 10 clusters (c) 8 clusters (d) 4 clusters

Figure 3.10: The original Lena image and, from top to bottom, the clustering obtained
with the agglomerative (agg), divisive (div), and Otsu’s methods considering, from left
to right, 20, 10, 8, and 4 clusters, respectively. For each image we also report the MI
value
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(7, MI=1.852) (11, MI=2.117) (21, MI=2.373)

(8, MI=1.944) (11, MI=2.146) (20, MI=2.409)

(5, MI=0.690) (8, MI=0.798) (14, MI=0.878)
(a) Original (b) MIR=0.7 (d) MIR=0.8 (e) MIR=0.9

Figure 3.11: The original test images (Lena, peppers, and baboon) and the clustering
obtained with the divisive method considering, from left to right, MIR values of 0.7,
0.8, and 0.9, respectively. We report the number of clusters and the MI value
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Table 3.2: Average MI and Normalized Variation of Information values using the pro-
posed methods on the BSDS500 Berkeley dataset, compared with the hierarchical clus-
tering using Euclidean distance, NMF, NeNMF and MahNMF methods

Method MI NVI
Agglomerative 1.83 0.89

Divisive 1.68 0.88
Hierarchical 1.82 0.93

NMF 1.62 0.89
NeNMF 0.77 0.94

MahNMF 1.05 0.91

The variation of information (VI) was proposed as a measure to calculate the dis-
tance between two clustered images using the sum of conditional entropies [Meila
2005]. This measure is defined as

V I(X , Y ) = H(X ) +H(Y )− 2I(X ; Y ) = H(X |Y ) +H(Y |X ). (3.17)

The segmented images in the Berkeley dataset differ in the number of clusters lead-
ing to a wide range of image entropy values. Since VI is an absolute measure that
strongly depends on the original entropy values of the clustered images, we propose
using a normalized measure to get a more accurate comparison. The normalized vari-
ation of information (NVI) is defined by

NV I(X , Y ) =
H(X |Y ) +H(Y |X )

H(X , Y )
= 1−

I(X ; Y )
H(X , Y )

. (3.18)

This measure takes values between 0 (when images are equal) and 1 (when images are
independent).

Table 3.2 shows the averages of MI and NVI for all tested methods on the BSDS500
dataset.

The last set of images used for testing is composed of a computed tomography (CT)
brain medical image (see Figure 3.12) of 420×420 pixels and a synthetic magnetic res-
onance (MR) brain image of 181×217 pixels from the Brainweb database. Figure 3.12
shows, for the CT and MR images, the obtained results considering 6, 4, and 3 clusters
using both agglomerative and divisive methods with the corresponding MI.

To illustrate the MI variation in each partition, Figure 3.13 (a) presents the MI value
with respect to the number of partitions for the agglomerative and divisive methods and
Figure 3.13 (b) the difference between MI value of these methods.

Finally, Table 3.3 collects the agglomerative and divisive computation time using
Lena image. Both approaches have been implemented using Matlab on a PC equipped
with an Intel XEON E5 CPU and 16 GB of RAM.
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(agg, MI=1.492) (agg, MI=1.308) (agg, MI=1.069)

(div, MI=1.478) (div, MI=1.333) (div, MI=1.064)

(agg, MI=1.663) (agg, MI=1.447) (agg, MI=1.255)

(div, MI=1.683) (div, MI=1.470) (div, MI=1.261)
(a) Original (b) 6 clusters (c) 4 clusters (d) 3 clusters

Figure 3.12: The proposed agglomerative (agg) and divisive (div) clustering strategies
applied to segment (first and second rows) a synthetic MR brain image and (third and
fourth rows) a CT brain. From left to right, the original images and the final clustering
considering 6, 4, and 3 clusters, respectively. For each image we also report the gain of
MI

Table 3.3: Computation time in seconds

Num. of clusters Agglomerative Divisive
20 25.27 5.5
10 25.36 2.80
8 25.47 2.37
4 25.61 1.32
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(a) (b)

Figure 3.13: (a) Mutual information value (y-axis) with respect to the number of par-
titions (x-axis) for the agglomerative and divisive methods and (b) difference between
agglomerative and divisive mutual information values.

3.6 Discussion

In this chapter, we have proposed a new hierarchical clustering method by extending
the applicability of the agglomerative information bottleneck algorithm. The main fea-
ture of our approach is that instead of adopting a control variable, the different states
of a stationary Markov process are clustered by maximally preserving the mutual infor-
mation between two consecutive states of this process.

The proposed approach has been used to image quantization and has been tested
on synthetic, photographic and medical images, including a benchmark dataset. It has
also been compared with other methods in the literature. With the synthetic image we
have seen that on maximizing MI, the obtained result is more representative than the
ones obtained with other methods such as Otsu and k-means (see Figure 3.9). Note
that the Markov process that leads the clustering algorithm is based on a random walk
on the quantized image. From the fact that mutual information is the marginal entropy
minus the conditional entropy (see Equation 2.12), by maximizing mutual information,
we would expect a final clustered image with a similar amount of pixels for each cluster
(high marginal entropy) and with a high correlation between neighboring pixels (low
conditional entropy). Notice that the original image has two big different parts (dark
blue and blue) and the result with the proposed method differentiates these two parts
and only few pixels are misclassified. On the contrary, the Otsu’s and k-means methods
only cluster the intensities of the image depending on the histogram and, in this case,
the results are not satisfactory. Notice that Otsu’s and k-means methods do not take
into account the neighboring information.

When it is applied to photographic images (see Figure 3.10), the higher the MI the
better is the clustering since it will be closer to the optimal MI. We also observe that
the highest MI values are achieved with the divisive method. Note the good separation
between skin, hat, and hair, and the homogeneity of the spatial regions. When the re-
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sults of the proposed approaches are compared with the Otsu results, we observe that,
in general, the obtained MI values are higher with our approaches. This is the expected
behavior since our approaches maximize the MI value, while the Otsu’s approach opti-
mizes other measures (minimize the intra-class variance and, consequently, maximize
inter-class variance).

An interesting feature of our method is the stopping criterion of MIR. In this case,
the algorithm is not stopped when a certain number of clusters is reached, but when
a certain ratio of mutual information is obtained. This gives us a criterion that uses
an adaptive number of clusters. In Figure 3.11, if we compare the number of clusters
and the MI value for the different MIR, we observe that peppers and Lena images have
a similar behaviour while the baboon image is decomposed into a lower number of
clusters. This is due to the features of the original images. In the case of peppers and
Lena images, illumination effects cause soft intensity variations with gradual transitions
which are difficult to represent with a low number of clusters. In the baboon image,
there are low-intensity variations due to illumination and, although there are highly-
textured regions, it is easier to achieve a given MIR value with less number of clusters.

Testing with hand-labelled images and methods such as hierarchical clustering us-
ing Euclidean distance, NMF, NeMF and ManhNMF, on the Berkeley segmented dataset,
we observe that the resulting images have significantly higher MI with the proposed
methods. This behavior is expected since MI is the optimization criterion of the pro-
posed hierarchical clustering methods. We also notice that the agglomerative MI value
is slightly higher than the divisive MI, that indicates that the agglomerative strategy
leads to a better measure optimization. With regard to the normalized variation of in-
formation measure, it can be seen that the proposed methods obtain the lowest values,
i.e. there is more similarity between the manually labelled images and the resulting
ones. The difference of NVI between the agglomerative and the divisive version is not
significant.

When it is applied to medical images, we observe that both methods perfectly sepa-
rate foreground from background in the case of MR images (see first and second rows of
Figure 3.12). This fact is of special interest in many applications since it can enhance the
interpretation process giving insights for diagnosis. In the case of six clusters, both meth-
ods perfectly delineate the main structures of the brain including: skull, white matter,
grey matter, ventricles, and cerebrospinal fluids. With four clusters, background, skull,
white matter and grey matter, and cerebrospinal fluid are very well separated. With
3 clusters, background, soft tissue and cerebrospinal fluids are easily distinguished. If
we compare both agglomerative and divisive methods, the divisive one leads to better
results. For instance, using the agglomerative method, pixels corresponding to other
clusters can be observed in the white matter area. This kind of problem is not observed
using the divisive method. In the case of CT images (third and fourth rows in Fig-
ure 3.12), we observe that the brain structures are not as well delineated as in the MR
images. This is due to the features of the original images, as MR captures better soft
tissues than CT and this affects the final clustering. However, observe how the dam-
aged area is very well detected in all the cases. Note that with six clusters, bone and
lesion are in different clusters although they have high intensity values. Comparing the
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agglomerative and divisive results, we observe that similar results are achieved in all
the cases, except with three clusters. In this case, the divisive approach presents better
results since soft tissue, cerebrospinal fluid and bone are well delineated, while with the
agglomerative approach misclassified pixels corresponding to bone or lesions appear in
the soft tissue cluster.

If we evaluate the MI value with respect to the number of partitions for the agglom-
erative and divisive methods (see Figure 3.13), both methods behave similarly although
the divisive method reaches higher values for few partitions than the agglomerative
one. From the difference between the MI value of the agglomerative and divisive meth-
ods, the negative values of the MI difference denote the better behavior of the divisive
method.

With respect to computation time (see Table 3.3), although a more efficient GPU-
based implementation could be designed, we observe that the agglomerative algorithm
spends a lot of time in the first iterations, due to the huge size of the joint probability
matrix, while in the last iterations the cost is minimal. On the contrary, in the divisive
algorithm, while the cost of the first iterations is low, the computation time increases
very quickly according to the number of clusters.

3.7 Conclusions

The agglomerative and divisive versions of a new hierarchical clustering approach that
extends the information bottleneck method by substituting the control variable by a
stationary Markov process that controls the clustering have been proposed. These algo-
rithms extend the application fields of information bottleneck-based methods. In par-
ticular, a framework for image quantization based on a random walk on the image has
been introduced. This application has been tested on different datasets and compared
with other methods such as k-means, Otsu, hierarchical clustering, and NMF. The ob-
tained results demonstrate the good performance of the method considering different
quality measures. The experimental results are just a demonstration of the advantages
of the proposed method and its applications.

The immediate future work is to perform an extensive evaluation of the agglom-
erative approach as a brain parcellation method, which is described in the following
chapter. Other future work will be focused on an extensive evaluation of the proposed
method on other possible application fields. We will also investigate the application
of other clustering strategies similar to the sequential information bottleneck cluster-
ing [Slonim 2002] to the proposed approach. In addition, to improve the agglomerative
algorithm performance, we will investigate some methods introduced to speed-up the
pairwise nearest neighbor method [Fränti 2000, Virmajoki 2004].
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4.1 Introduction

The connectome models the brain as a graph, where nodes represent brain areas and
edges represent structural or functional connections. The first requirement in order to
create this graph consists in applying a parcellation method to subdivide the brain cortex
into different subregions according to a predefined criteria (i.e., anatomical, structure,
function...) (see Section 2.2.2). The main motivation for creating a brain parcellation
method is the strong restriction that the structural paths reflect in the brain functional
localization. Originally, brain parcellations were created by using ex-vivo architectonic
characteristics leading to the creation of anatomical atlas. Broadmann’s atlas [Brod-
mann 1909] is the most popular so far, although it does not takes into account any
structural or functional connectivity information.

In this chapter, we consider the agglomerative hierarchical method presented in
Chapter 3 to parcellate the brain. Our approach models the brain functions as a random
walk on the connectome network by using the connectivity matrix. This interpretation
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5.1 Introduction

Complexity measures are relevant for the analysis of the brain network, specially to
describe topological features of the brain structure that may help to improve the un-
derstanding of the functionality of the system. Several measures have been proposed
and showed successfully that are capable to associate disruptions with different dis-
eases [van den Heuvel 2010, Meskaldji 2013, Sporns 2013, Crossley 2014]. However,
it is still unknown which are the measures that describe best the brain network. For this
reason, novel network measures are needed in order to better understand the brain
structure and functioning [Papo 2014].

In this chapter, we present novel measures based on information theory to char-
acterize weighted brain networks. Instead of measuring correlations between subsets
to study the centrality and segregation (see section 2.2.3), as it has been done pre-
viously, we define the brain network as a stochastic process where neuronal impulses
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The human brain is a complex system formed by a massive network of neurons
sharing information, whose behavior is challenging to characterize. The study of the
brain network, also denoted as a connectome, is a growing research field which aims
to understand the structure and the function of this fascinating organ. Although the
large amount of methods, measures and ongoing projects studying the connectome,
the complete understanding of the brain functioning is still far to be clear.

In this thesis, we have centered our interest on two main focus of research. First,
on brain parcellation, which is a key step to perform brain studies since defines the
regions to be analyzed. Second, on the definition of complex brain measures to better
characterize brain properties. Below, a detailed description of the main contributions
of this thesis as well as the publications related to each contribution are given.

6.1 Contributions

The aim of this work has been to investigate and provide new methods to improve the
understanding of the human brain complexity at different scales by using information
theory.

This aim has been achieved with the following proposals:

• New clustering method based on the information bottleneck

Clustering techniques organize elements into groups (or clusters) whose members
are similar and dissimilar to elements belonging to other clusters. A key element
of these techniques is the definition of a similarity measure. The information bot-
tleneck method provides a full solution of the clustering problem with no need to
define a similarity measure. We have exploited this advantage to propose a new
hierarchical clustering method. The main feature of our approach is that, instead
of adopting a control variable, the different states of a stationary Markov pro-
cess are clustered by maximally preserving the mutual information between two
consecutive states of this process. We have presented both versions of the algo-
rithm, the agglomerative and the divisive. The agglomerative approach, at each
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step, merges the pair of elements with a minimum loss of mutual information
until the number of predefined clusters is reached. The divisive approach, at each
step, divides the pair of elements with a higher gain of mutual information. These
algorithms extend the application of the information bottleneck-based methods.
The main advantage of this method is that by maximizing the MI, the obtained
result is more representative than using other methods. An interesting feature
of our method is the stopping criteria when a certain ratio of mutual informa-
tion is obtained, which eliminates the requirement of defining a specific number
of clusters a priori. This method has been tested on synthetic, photographic and
medical images. The well-performance of the approach encouraged us to further
investigate the method as a new brain parcellation technique.

This work has lead to the publication titled Hierarchical clustering based on the
information bottleneck method using a control process, which has been published
in Pattern Analysis and Applications, vol. 17, no. 3, pages 619-637, March 2015
[Bonmati 2015].

• New brain parcellation technique based on the information bottleneck clustering
approach

Brain parcellation is a fundamental procedure that consists in dividing the brain
into smaller meaningful areas to define the regions of study. This procedure is usu-
ally done by an unsupervised clustering method or by registering with an atlas.
In this thesis, we have considered the agglomerative clustering approach based
on the information bottleneck to propose a new method to parcellate the brain
connectome at different scales. We have proposed a brain model that allows the
applicability of the clustering method by interpreting the brain as a stochastic
process. The method is capable to cluster the brain regions while preserving the
maximum information about the connectivity structure. Our approach takes into
account the global connectivity pattern of the regions instead of similarity be-
tween fiber tracts as has been done previously. Using these approach, there is no
need to define the number of clusters in advance. The method has been tested
on synthetic model networks, functional and anatomical brain connectivity data
considering different scales. The obtained parcellation preserves the main prop-
erties of the original network, with a higher value of mutual information and
a lower clustering coefficient. The consistency across subjects demonstrates the
robustness and the well-performance of our proposal.

This work has lead to the publication titled Brain parcellation based on information
theory, which has been submitted to the journal Computer Methods and Programs
in Biomedicine.

• Novel complexity measures based on information theory

Classical approaches model the brain network as a graph at which different in-
formation theory measures can be applied. In this work, we have considered the
brain network as a stochastic process where neuronal impulses have been mod-
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eled as a random walk. Such a new interpretation has provided us a solid theoret-
ical framework from which global and local measures have been derived. Global
measures provide quantitative values for the whole-brain network characteriza-
tion while local measures quantify the informativeness associated to each node.
The proposed measures have been evaluated and compared with standard mea-
sures considering synthetic, structural and functional human networks at differ-
ent scales. The obtained results have shown the uncertainty in predicting the next
node, and how unique is the path that a node belongs to. The consistency across
healthy subjects has demonstrated the robustness of the proposed measures.

This work, titled Novel brain complexity measures based on information theory, has
been submitted to the Medical Image Analysis journal.

6.2 Future work

The work presented in this thesis can be extended and further investigated in different
directions. With respect to the proposed clustering approach, the current implemen-
tation can be improved by speeding up the pairwise nearest neighbor method [Fränti
2000, Virmajoki 2004]. Additionally, it is worth mentioning that the method can be po-
tentially used and applied in other fields such as medical imaging or feature extraction.

Referring to the actual approach of the parcellation method, future work will be
focus on evaluating the benefits of clustering the regions with the same minimum loss
of information at the same step, or adding new restrictions such as neighborhood infor-
mation in the merging stage. On the other hand, we aim to further investigate the brain
parcellation method by using different atlas to evaluate the consistency. An interesting
aspect consist in extending the applicability at a voxel level, in this case, the aim would
be to offer a novel hierarchical atlas that may improve the study of brain complexity by
taking into account the pattern of the connections.

Regarding to the complexity measures, the human brain connectome can be further
analyzed to detect specific disruptions due to a particular diseases using the proposed
measures. In this case, measures could be used as a biomarkers, which is an ambitious
application that would require the help of neurologists. In this work, we have focus on
the whole-brain complexity, however, it would be interesting to focus the analysis on
specific structures. Finally, these measures can be used to improve the visualization of
the brain highlighting the properties presented.
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