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Abstract 
 
A new method is developed to obtain the kinetic parameters of polymer crystallization from 

measurements of the transformation rate usually done at (but not restricted to) constant 

heating or cooling rates. It can be considered a generalization of the Fiedman’s 

isoconversional method to deal with the Hoffman-Lauritzen temperature dependence. Apart 

from delivering the U* and Kg parameters as a function of the transformed fraction, this 

method allows to predict the crystallization course for an arbitrary thermal history. It has 

been applied to the crystallization of PET and PA6 samples, monitored by differential 

scanning calorimetry (DSC). 
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I. Introduction 

Polymer crystallization is a structural transformation that has an enormous influence on the 

quality of moulded thermoplastic components. Several critical properties such as optical 

transparency or yield strength [1] depend on the crystalline fraction, XC. Furthermore, 

volumetric shrinking during crystallization has to be taken into account to ensure dimensional 

accuracy, and to avoid warpage when, as usual, processing involves highly non-homogeneous 

cooling conditions [2]. Consequently, reliable experimental methods to characterize 

crystallization kinetics as well as theoretical methods to analyze them and to apply the results 

to real processing conditions are needed.  

 Since the crystallization rate depends on temperature, isothermal experiments 

constitute the most straightforward approach to the phenomenon. Optical microscopy 

equipped with a hot stage is, probably, the technique that delivers the most accurate 

description because the nucleation, 


N , and growth, G, rates of crystallites can be quantified 

independently [3]. Similar information can be obtained by light scattering [2,4,5]. From the 



N and G dependence on temperature, T, the evolution of the crystalline fraction can be 

predicted for isothermal and non-isothermal conditions. To this aim, a particular reaction 

model based on Avrami’s equation is usually assumed [1, 2,3,6]. In any case, prediction of 

XC evolution with time or temperature must be tested by a technique that, like differential 

scanning calorimetry (DSC), can directly quantify this evolution. Despite that deviations 

from the assumed kinetic model are usually encountered  [1,6], predictions are satisfactory. 

 If one is interested in the evolution of crystallinity, it seems more reasonable to 

directly rely on DSC experiments for characterizing the crystallization kinetics. However, 

although isothermal DSC experiments can be done [1,6,7], this technique is more suitable for 

experiments performed at a constant rate of heating or cooling because these conditions allow 

exploring a much broader temperature range [2,8]. Experiments are much easier and faster to 

perform but their analysis requires application of specific kinetic methods. Among them, 

“isoconversional methods” are those that can be adapted to the broadest variety of structural 

transformations [9,10,11]. Most of them can be considered a generalization of the seminal 

Kissinger method [12]. They assume a number of restricting hypotheses. First of all, the 

“isoconversional principle” is assumed [13]; i.e. the reaction rate is taken as a function of 

temperature and transformed fraction, , irrespectively of the thermal history: 
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Second, an Arrhenian temperature dependence of the reaction rate is assumed: 
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and g() is characteristic of the “reaction model”. In Eq.(3) E is the activation energy, R, the 

gas constant and k0 the pre-exponential constant. 

 For E and k0 independent of , and constant heating rate 
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dT
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Eq.(2) has been integrated for many particular reaction models leading to analytic functions 

describing the peak shape of the transformation rate, )(T


 [14,15]. However, many solid 

state reactions are no so simple and their description requires allowing for the dependence of 

E and k0 on  [16].  

The variation of E with  is usually associated with complex reactions where the rate-

controlling step switches from a low to a high activation energy step or vice versa (e.g. in 

crosslinking reactions [17] or in reactions that can be accomplished through two independent 

mechanisms acting in parallel [16]. Consequently, E and g() (in fact, k0α·g()) must be 

considered as phenomenological functions of α that allow to predict the reaction course for 

arbitrary thermal histories [18]. Under these circumstances E is referred as effective or 

apparent activation energy. 

 In general, description of the reaction rate by an Arrhenian dependence means that the 

process is limited by an energy barrier and, consequently, it goes faster at high temperature. 

However, when the equilibrium temperature, T0, between the initial and final states is 

approached, an opposite temperature dependence appears because the reaction stops at T0. 

Sometimes, like in solute precipitation from solid [19] or liquid [20] solutions or in 

solidification of pharmaceutical mixtures [21], an additional exponential term describes this 

dependence, e.g.:  
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where f(T) is a function that varies slowly around T0. In Eq.(5), we have also considered the 

possibility of null molecular transport below T∞. 



 Polymer crystallization follows this kind of temperature dependence. The growth rate 

of spherulites, G, is usually described by the Hoffman-Lauritzen (H-L) equation [22]: 

 




















 fTT

Kg

TT

U
kTkHL ··

·exp
*

exp)( 0       (6) 

where TTT m  0  ( 0
mT , equilibrium melting temperature), 

0

2

mTT

T
f


  and 30 gTT  (Tg, 

glass temperature). In Eq.(6), U* is the activation energy for chain diffusion and Kg is called 

the “nucleation constant”. Although the H-L theory describes the growth rate, many authors 

assume the same dependency for the crystallization rate, kcryst. However, in general, they will 

be different because kcryst also depends on 


N . For 3D spherulitic growth [23]: 
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and, thanks to the larger contribution of G on kcryst, the Kg and U* values obtained from kcryst 

will be usually close to those of G. 

 Despite the great difference between the Arrhenian and the H-L dependencies, some 

authors have taken advantage of the flexibility of the isoconversional methods to deduce U* 

and Kg from a fictitious dependence of the activation energy (Eq.(3)) on temperature [17,24]. 

Since its proposal in 2004 by Vyazovkin and Sbirrazzuoli [24], this particular method has 

been applied by many authors to study the crystallization of a broad range of polymer 

materials such as pure polymers (e.g. refs.[25,26]), polymer blends (e.g. refs.[27,28]) and 

nanocomposites (e.g. refs. [29,30]) (a more complete review can be found in ref.[31]). This 

method assumes that the kinetic constants (U* and Kg) are independent of α. Consequently, 

the great advantage of the isoconversional methods to give full description of non-ideal 

processes (i.e. those whose parameters depend on α) is lost and prediction of the 

crystallization course is not possible.  

 Finally, many authors (see for instance refs.[1,6,27,32,33]) fit to Eq.(6) the 

temperature dependence of the time elapsed to reach α = 0.5 after the incubation period under 

isothermal conditions. This procedure is much simpler than that of Vyazovkin but it also 

assumes that Kg and U* are independent of α. 

 The present paper describes the crystallization course of polymers assuming the 

dependence on α of Eq.(1) but without the need to suppose that the reaction rate constant has 

an Arrhenian dependence on temperature (Eq.(3)). After a brief description of the 

experiments (Section II), the proposed method of analysis will be explained (Section III) and 



tested against crystallization experiments on two polymers (PET and PA6) (section IV and 

VI). The paper will continue with a brief discussion and a concluding section. 

 

II. Experimental 

Pure PET and PA6 samples were used for this study. Number-average molecular weight of 

both polymers was determined using solution viscosity measurements and Mark-Houwink 

equation. The values obtained were 36.400 g/mol for PET and 19.000 g/mol for PA6. 

The crystallization course of the PET and PA6 samples has been measured by DSC 

(Q2000 apparatus of TA instruments). Samples were put inside aluminium pans and 

protected during the DSC experiments by an inert atmosphere of N2 (100 mL/min). Melt 

crystallization was studied by cooling down at several controlled rates beginning at a 

temperature (280ºC and 250ºC for PET and PA6, respectively) above the maximum 

temperature of the sample’s DSC melting peak. To minimize thermal degradation, no 

isothermal period was programmed before cooling. For glass crystallization experiments, the 

samples were quenched into liquid nitrogen and heated at a controlled heating rate up to the 

melting temperature. Comparison between the heat of crystallization, Qcryst, and the heat of 

melting, Qm, was used to assess if a fully amorphous state was reached after quenching. For 

PA6 samples, it was impossible to reach it (after quenching Qcryst  Qm/3) and, consequently, 

its glass crystallization kinetics was not studied. The difficulty to reach 10% amorphous PA6 

by quenching from the melt is consistent with the literature. With a cooling rate as fast as 

450ºC/s, XC is still above 6% [34]. We estimate that during quenching in liquid nitrogen we 

reached 150ºC/s. 

Thanks to the physical construction of our DSC cell, it was possible to measure the 

temperature of the sample during all the experiments, and no significant deviations from the 

programmed temperature history were detected. However, heat transport inside a low thermal 

diffusivity material like a polymer produces temperature gradients inside the sample. We 

have corrected the temperature of all the DSC peaks by a constant value corresponding to the 

average sample overheating arising from both the inertial term [35,36]: 

  2
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where D is thermal diffusivity (1.8·10-7 and  1.0·10-7 m2/s for PET and PA6, respectively) 

and h is the sample thickness (0.4 and 1 mm, for the PET and PA6 samples), and from the 

heat of crystallization [35]: 
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where A is the sample contact area with the pan (0.2 and 0.1 cm2 for PET and PA6)[37], , 

thermal conductivity (0.29 W/(m·K) for PET and, also, for PA6) and QMAX the heat evolved 

per unit time at the DSC peak maximum. Due to its higher thickness, h, and smaller section, 

A, these corrections were only significant for the experiments on PA6. At the highest cooling 

rate (-40 K/min), cpT = 1.6ºC and QT = 0.7ºC.  

 

III. Description of the isoconversional method 

Notice that the H-L equation has two exponential factors whose dependencies on temperature 

are oposed. Whereas the exponential factor with U* continuously grows from zero at 

 TT when temperature is increased, the factor with Kg diminishes down to zero when 

temperature is increased until 0
mT is reached. Consequently, crystallization can be done by 

cooling down from 0
mT  (melt crystallization) or by heating up from T  (glass crystallization). 

Obviously, the simplest experiments are those carried isothermally or at constant heating or 

cooling rates. 

 The crystallization kinetics will be fully described when the free parameters, U*, Kg, 

and k0 together with the reaction model, g(), are determined. Let all of them vary with ; 

i.e. U*, Kg and k0α·g(). From Eq. (1) and assuming that the rate constant is given by 

Eq.(6), the crystallization rate can be written as: 
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Let us consider that a given value of  is attained through several experiments performed at 

different constant heating or cooling rates, i. Given that the sample will follow different 

thermal histories, i



  will be different for each one. In any case, it will obey Eq.(10), now 

transformed into: 
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where ),( iii Tt


  . Eq.(11) constitutes a system of non-linear equations on U* an Kg and 

k0αg(). Thanks to the particular dependence on U* and Kg, the unknowns can be obtained 

after the iterative sequence of linear fittings described below. 



 Consider that you have done several experiments of melt and glass crystallization. 

Since, on cooling, crystallization occurs nearer to 0
mT than to T, the corresponding i



  values 

are mainly governed by Kg whereas they are weakly dependent on U*. The contrary holds 

for crystallization during heating, because it occurs closer to T than to 0
mT (Fig.1). 

 Now, take a realistic guess value for U*.This allows for Eq.(11) to be linearized: 
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and to obtain k0α·g() and Kg by linear fitting of 
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(the “U*-plot”). Of course, since the guess value of U* is not the solution, the experimental 

points will not be very well aligned and a second linear fitting (Kg-plot) will be done to 

obtain U* from the equation: 
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where Kg is the value obtained in the former fitting.  

The U-plot has been extensively used for isothermal crystallization experiments 

measuring G or the crystallization half-time since the days when Hofmann and Lauritzen 

proposed its kinetics. The alternate fittings from U-plot to the Kg-plot we propose ensure a 

similar “weight” of melt and glass crystallization experiments in the final U* and Kg 

values. If the experiments cover the two temperature ranges where either U* or Kg 

dominate the temperature dependence, the procedure converges to a constant value of U* 

and Kg. 

For the particular case of PET crystallization and α = 0.5 (Fig.2), convergence has 

been reached after 42 iterations. In this case, the final R-square correlation coefficients are 

very close to one (0.9979 and 0.9972) and the relative standard error of U* and Kg deduced 

from the last fitting is ±2%. However, the real uncertainty is higher. The )ln( i



 vs Ti points 

have also been fitted by a non-linear procedure. The Kg and U* values coincide with those of 

the iterative method but with larger error bars of ±7%. This apparent discrepancy together 

with a hint of how to simplify the iterative procedure is explained in Appendix A.    

 

IV. Crystallization of PET 



Melt and glass crystallization experiments were done on thin (0.7 mm approx.) PET 

specimens of mass around 4 mg. The crystallization heat of the melt diminished steadily from 

the lowest (48.4 J/g at -1.25 K/min) to the fastest (46.0 J/g at -20 K/min) cooling 

experiments. During the heating experiments (2.5 <  β < 20 K/min), Qcryst was smaller (42±1 

J/g). These values should be compared to the heat of melting of 100% crystalline PET (ΔHf = 

140 J/g [38]). The difference means that the final state reached with our experiments has a 

crystallinity below 50%. All the DSC peaks have a queue at long times that could correspond 

to a secondary crystallization process, similar to that reported by other authors [1,7]. Notice 

in Fig.3 (and in the upper part of Fig.1), that this process is more important during glass 

crystallization. 

Application of the method described in the previous section, with T = 312 K [17] and 

0
mT = 553 K [1], has delivered the dependence on α of Kg, U* and k0·g(α) shown by the solid 

curves of Fig.4. Whereas Kg is nearly constant from α = 0.1 to 0.8, U* increases steadily. The 

U* value at α = 0.9 almost triplicates the value at 0.1 (6000 J/mol). Since, in principle, one 

expects G to be independent of α (laser scattering [2] and transmission electron microscopy 

[39] have shown linear growth until impingement) this variation is surprising. A simple 

explanation arises if we consider that the long queue of the DSC peaks correspond to an 

independent crystallization process. In fact, it has been shown that, when crystallization 

occurs through two parallel processes, the activation energy determined by isoconversional 

methods exhibits a fictitious increment with α [16]. 

To analyze the main crystallization process (the one occurring first) we take into 

account that, at the peak temperature, α ≡ αMAX = 0.5 for melt crystallization. In contrast, for 

glass crystallization, αMAX is much smaller and depends on the particular experiment (αMAX = 

0.33 – 0.39). We thus make the hypothesis that, at the peak maximum, the degree of 

completion of the first crystallization process, α1, is always the same and equal to 0.5. So, we 

define: 

 
MAX

 5.0
1   ,         (14) 

and we renormalize the crystallization rate, 


1 , accordingly. We have applied the fitting 

method of Section III to obtain Kgα, Uα* and k0α·g(α) for discrete values of α1. Calculations 

have ended at α1 = 0.8 (α = 0.52 - 0.62 for glass crystallization and 0.8 for melt 

crystallization) to avoid a significant contribution of the secondary process. The result has 

been added in Fig.4 as full symbols. 



 Now U* is nearly constant (7.3-8.2 kJ/mol) as expected, and Kg increases only 

slightly with α (4.7·105 to 5.9·105 K2). An additional proof for the correctness of these values 

compared to those obtained above comes from error analysis; the error bars of U* shown in 

Fig.4c correspond to the solid line. This means that, before renormalization of α into α1, the 

points of the Kg-plot were not very well aligned (notably for α1 > 0.5), indicating that the 

overall crystallization process does not follow the H-L kinetics. 

 Our Kg and U* values fall within the wide range reported in the literature (Table I). 

Notice that, in Table I, the Kg values obtained from measurements of G [2,5,39,40] are, on  

the average, lower than those obtained from the crystallization rate. This is not strange 

because, since 


N  grows as the temperature departs from 0
mT , it will also contribute to the 

fitted value coming from the crystallization rate (Eq.7). The higher Kg value corresponds to a 

faster increase of 


N  with respect G when temperature diminishes below 0
mT . This is what 

occurs in ref.[2] where the density of crystallites grows steadily by 5 orders of magnitude 

from 220 to 130ºC. 

 We can determine the crystallization regime from the Kg value after applying the 

Lauritzen Z-test [41]. In regime I nuclei grow so fast that formation of any nucleus is 

followed by rapid completion of the substrate whereas, in regime II, nuclei grow slowly and 

many nuclei form before substrate completion. The lamellar width, L, is related to the so-

called Z-parameter according to: 
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where a0 is the width of the molecular chain in the crystal (around 0.5 nm), and Z ≤ 0.01 or ≤ 

1.0, and n = 4 or n = 2 for regimes I or II, respectively [41]. A realistic value for the lamella 

width (L < 34 nm) is only obtained for regime I that applies to the whole temperature range 

of our experiments (notice that all points are aligned in the U- and Kg plot of Fig.2).  Once 

the crystallization regime is known, the product of the lateral energy times the fold surface 

energy, σσe, can be calculated through [22]: 

0
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e nbT

khKg
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where kB is the Bolzmann constant, Δhf, the melting enthalpy of the perfect crystal per unit 

volume (Δhf = ΔHf·ρc = 210 J/cm3 for PET whose crystal density is ρc = 1.5 g/cm3) and b, the 



monolayer thickness (0.553 nm [24]). We obtain, σσe = 12 10-4 J2m-4, that is similar to the 

values published by most authors [24]. 

 Before leaving this section, we will check the goodness of our analysis by using the 

Kgα, Uα* and k0α·g(α) values to calculate the overall crystallization rate (dα/dt) and compare 

it to the experimental DSC peaks. Eq.(2) has been numerically integrated following the 

method of Farjas developed in refs. [18,42], with the especial condition that crystallization 

begins after an incubation period. For crystallization experiments performed during cooling 

or heating ramps, this condition corresponds to dα/dt = 0 until T = TONSET [2], where TONSET 

is the experimental onset temperature of the DSC peak. In Fig.3, the calculated and 

experimental peaks are compared. There is good agreement despite that, as discussed above, 

the overall crystallization of our samples is a complex transformation that involves two 

individual processes. In fact, the discrepancies seen in Fig.3 mainly arise from the experiment 

(the DSC peaks do not have a steady evolution when the heating or cooling rate is changed).  

Although the long queue of the DSC peaks makes that the isoconversional principle is 

not fully obeyed in this experiments of PET crystallization, this example constitutes an 

additional proof [10,11,18,42, 43] of the flexibility of model-free isoconversional methods to 

predict the course of complex transformations. 

 

V. Crystallization of PA6 

The experiments on PA6 were done on single pellets (m  10 mg). Since quenching in liquid 

nitrogen didn’t gave a 100% amorphous state, the reported results are those of melt 

crystallization (3.5 < β < 40 K/min ). As the cooling rate increased, Qcryst steadily decreased 

from 53 to 38 J/g indicating a higher difficulty to crystallize. Again, like with PET, Qcryst is 

much smaller than the enthalpy of full crystallization (ΔHf = 190 J/g [44]).  

 Once the DSC peaks have been shifted to correct for the sample thermal lag (Section 

II) and, in view of their long queue, we have subtracted this secondary crystallization process 

as shown in Fig.5. Then, the equilibrium melting temperature, 0
mT , has been determined by 

the Hoffmann-Weeks method [45]. We have obtained 0
mT = 222ºC. This value and T∞ = 20ºC 

have been used as input parameters to apply the iterative method described in Section III to 

obtain the crystallization kinetic parameters of PA6. The result is shown in Fig.6. Kg is 

almost constant (1.02±0.05 105 K2 for 0.05 < α < 0.95, whereas the U* dependence on α has a 

peak below α = 0.3. Above α = 0.3, U* = 3.1±0.2 kJ/mol. Probably, the peak of U* is related 



to the initial faster crystallization (high temperature side of DSC peaks) seen on the DSC 

peaks (Figs.5 and 7). 

 Our Kg value falls on the lower range of the reported values obtained from DSC 

experiments [46, 47, 32, 33, 26] or from direct measurement of G [48], and our U* value is 

closer to that extracted from G (4.0 kJ/mol) than that from non-isothermal DSC (3.3 kJ/mol 

[26]) (see Table II). However, without crystallization experiments at temperatures closer to 

T∞ than to 0
mT , one cannot be very confident on the fitted value of U*. As with PET, most Kg 

values of PA6 obtained from DSC are higher than that obtained from G. For PA6, the 

Lauritzen Z-test tells us that crystallization occurs in regime II, and application of Eq.(16) (n 

= 2, b = 1.9 nm, ρc  = 1.24 g/cm3, Δhf = 236 J/cm3[46]) delivers σσe = 17 10-5 J2/m4. 

The kinetic parameters of Fig.6 together with the TONSET values (inset of Fig.5) allow 

us to calculate the melt crystallization rate during arbitrary thermal histories. Agreement with 

experiment is excellent when the experiments carried out at a constant cooling rate are 

simulated (Fig.7). Two further tests on the predictive capability have been done by cooling 

the melt at -20 K/min down to an isothermal stage (at 190ºC and 180ºC). The predicted 

transformation rates are compared with the DSC experiments in Fig.8. They show good 

agreement. Since at -20 K/min TONSET = 83.7ºC, crystallization begins during the cooling 

period before the isotherm (inset of Fig.8). This short period has an influence on the 

crystallization course as illustrated by the comparison between the curves predicted with or 

without cooling ramp. As expected, the best agreement with experiments is achieved in the 

first case (Fig.8). Concerning the isotherm at 190ºC, crystallization begins after an initial 

incubation time that, from the TONSET values (inset of Fig.5) has been estimated to be 30 s, 

following the method of ref. [49]. In view of the long crystallization time at this temperature 

(Fig. 8), the incubation period is too short to be relevant. 

 

VI. Conclusions and perspectives 

In this paper, we have developed a new isoconversional method to obtain the kinetic 

parameters of Hoffman-Lauritzen model (U* and Kg) governing polymer crystallization. It 

involves an iterative procedure to optimize the linear fits of modified Friedman’s plots [50] 

and can be applied to experiments carried out at any thermal conditions (constant or varying 

heating rates and isothermal). Compared with the current methods to obtain U* and Kg (fit to 

the isothermal crystallization half-time, and Vyazovkin’s method for non-isothermal 

experiments [17]), these parameters are allowed to vary with the crystalline fraction, α. In 



case they are constant, the fitting procedure needs to be applied to a single value of α only 

and, as shown in Appendix A, becomes as simple as with the current methods. 

It has been applied to analyse the DSC crystallization curves of PET and PA6 

samples. Since PET crystallization has been done from the melt and from the glass states, 

accurate values of U* and Kg have been obtained as a function of α. In a preliminary 

analysis, U* remained constant around 7.5 kJ/mol up to a transformed fraction of 0.5 and, 

then, it increased steadily. It has been shown that this anomalous variation was fictitious 

because it disappeared when the secondary crystallization occurring at long times was 

subtracted from the DSC signal. Kg was much less sensitive to the secondary crystallization 

and remained almost constant around 5.3·105 K2. 

In contrast with PET, PA6 crystallization could only be done from the melt and, 

consequently, the fitted value of U* was less reliable than that of Kg. Kg remained almost 

constant around 1.0·105 K2 whereas U* showed a peak below α = 0.3 that has been attributed 

to a faster initial crystallization rate. 

In addition to extracting the kinetic parameters, our method allows to predict the 

crystallization course for an arbitrary thermal history. This possibility has been tested by 

comparing the DSC curves measured at several heating and cooling rates with the predicted 

curves. Moreover, isothermal crystallization of PA6 after a cooling ramp has been 

successfully simulated.  

To the best of our knowledge, this is the first time that an isoconversional method is 

able to obtain the dependence of the kinetic parameters on the transformed fraction and to 

make predictions of the crystallization course for a process that follows a temperature 

dependence as complex as that of Hoffman-Lauritzen (the easier case of crystallization just 

below the melting point was already done in ref.[51]). It opens the door to the analysis of a 

broader range of polymers and processes with temperature dependencies similar to that of 

Hoffman-Lauritzen, like those already commented on in the Introduction. Furthermore, even 

those processes not having well-established temperature dependence such as sol-gel 

transformation of gelatin [52] or collagen denaturation [53], but occurring near equilibrium, 

are also candidates for this kind of analysis. 
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Appendix A 

Fig.A1 collects several Kg (U*) points obtained from fitting the U-plot (Kg-plot) of PET for 

α = 0.5 for several guess values of U* (Kg). The intersection of both series of points is the 

solution delivered by our iterative procedure and is indicated by a full square with solid error 

bars. The meaning of these error bars is the standard error of Kg when U* is fixed and 

viceversa. 

 Alternatively, U* and Kg can be obtained by non-linear fitting of the )ln( i



 vs Ti plot 

to the H-L dependence (Fig.A2). The result coincides with that of the previous procedure 

(filled square in Fig A.1) but with larger error bars (dashed in Fig.A1). These bars correspond 

to the projection to the Kg and U* axes of the ellipse of (Kg,U*) values with 68% confidence 

level (also drawn in Fig.A1) whereas the error bars of the iterative procedure are the vertical 

and horizontal sections of the ellipse. Since the fitted values of Kg and U* are not 

independent, the correct error bars are those given by the non-linear fitting [55]. 
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Table I.- Kinetic parameters of PET crystallization 
From measurements of G 
Kg (105 K2) U* (kJ/mol) references 
2.4 
4.14 
2.92 
2.8-3.2 

5.8 
8.1 
6.45 
6.3 

Okamoto et al. [2] 
Phillips et al. [5]& 
Palys et al. [39] 
van Antwerpen [40]% 

From measurements of the crystallization rate 
Kg (105 K2) U* (kJ/mol) references 
4.6 
6.1 
3.7 
3.4 
3.2 

6.4 
-- 
6.3 
7.5 
4.3 

Lu et al. [1]$ 
Rahman et al. [54] $ 
Chan et al. [6]  
Phillips et al. [5]& 

Vyazovkin et al. [7] 
& G(T) dependence fitted by us. 
% G(T) dependence fitted by Runt et al. [56]. Kg varied with molecular weight. 
$ The “universal” value of U* (6.3 kJ/mol) was assumed. 
 
Table II.- Kinetic parameters of PA6 crystallization 
From measurements of G 
Kg (105 K2) U* (kJ/mol) references 
1.17 4.0 Burnett et al. [48]& 
From measurements of the crystallization rate 
Kg (105 K2) U* (kJ/mol) references 
0.74 
1.53 
1.81 
1.63 
1.08 
1.09-1.17, 1.32 
2.33 

-- 
-- 
-- 
-- 
-- 
--, 7.3 
6.2 

Wu et al. [46]% 
Weng et al. [47] % 
Sanh et al. [32] % 
Li et al. [33] % 
Huang et al. [27] % 
Huang et al. [27]$ 
Guo et al. [29]$ 

& G(T) dependence fitted by us. 
% Isothermal DSC. The “universal” value of U* (6.3 kJ/mol) was assumed. 
$ Non-isothermal DSC. In ref.[27] results depend on the fitting method. 
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Figure 1.- The contribution of the Kg and U* terms to the Hoffman-Lauritzen kinetic 

constant. The U* term alone almost determines the kinetics of glass crystallization (+2.5 and 

+20 K/min DSC peaks) whereas the Kg term, that of melt crystallization (-20 and -1.25 

K/min peaks).  

 

0.018 0.020 0.022 0.024 0.026 0.028 0.030 0.032 0.034

-2

0

2

4

6

8

10

Ln
(d


/d
t)

+
U

* /R
(T

-T


) 
(t

 in
 s

)

1000/(TT·f) (1/K2)

heating

cooling

U*= 7650 

Kg = 468000 K2 

6 7 8 9 10 11 12

-2

0

2

4

6

8

10

Ln
(d


/d
t)

+
K

g/
T

/f/


T
 (

t i
n 

s)
1000/(T-T) (1/K)

cooling

heating

PET
 = 0.5

U*(guess)
= 5000 J/mol

n = 1

2

41

42

 
Figure 2.- Initial and last fittings (n gives their order) of the iterative procedure used to 

determine the values of U* and Kg. Kg is proportional to the slope of the U-plot (bottom-left 

axes), and U*, to that of the Kg-plot (top-right axes).  
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Figure 3.- Transformation rates of glass and melt crystallization of PET at different heating 

and cooling rates.  
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Figure 4.- Dependence of the kinetic parameters of PET crystallization on the transformed 

fraction. Solid lines and error bars: overall crystallization process. Points: main crystallization 

process (see main text).  
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Figure 5.- Deconvolution of the PA6 DSC peaks to subtract the process occurring at long 

times (dashed line). Inset: onset temperature vs heating rate. 
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Figure 6.- Kinetic parameters of PA6 obtained from the DSC experiments.  
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Figure 7.- Transformation rates during melt crystallization of PA6 at several cooling rates: 

experiment (solid lines), prediction (dashed lines).  
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Figure 8.- Crystallization rate of PA6 during two isothermal stages reached at -20 K/min: 

experimental curves (solid lines), predicted curves (dashed lines). The curve labelled “no 

cooling ramp” means that crystallization before the isotherm has been neglected.  Inset: T(t) 

dependence before the 180ºC isotherm is reached.  
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Figure A1.- Correlation between U* and Kg values obtained from the U and Kg plots. Their 

intersection (filled square) delivers the best fitting values of the H-L dependence of 

crystallization rate on temperature.  
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Figure A2.- Non-linear fitting to the H-L crystallization rate dependence on temperature.  


