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Abstract 

The aim of this article is to describe a method for relating two compositions which 
combines compositional data analysis and canonical correlation analysis (CCA), 
and to examine its main statistical properties. We use additive log-ratio (alr) 
transformation on both compositions and apply standard CCA to the transformed 
data. We show that canonical variates are themselves log-ratios and log-contrasts. 
The first pair of canonical variates can be interpreted as the log-contrast of a 
composition that has the maximum correlation with a log-contrast of the other 
composition. The second pair can be interpreted as the log-contrast of a 
composition that has the maximum correlation with a log-contrast of the other 
composition, under the restriction that they are uncorrelated with the first pair, and 
so on. 

Using properties from changes of basis, we prove that both canonical 
correlations and canonical variates are invariant to the choice of divisors in alr 
transformation. We show how to implement the analysis and interpret the results 
by means of an illustration from the social sciences field using data from Kolb’s 
Learning Style Inventory and Boyatzis’ Philosophical Orientation Questionnaire, 
which distribute a fixed total score among several learning modes and 
philosophical orientations. 
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1 Introduction 

Compositional data lie in a constrained positive space with a fixed sum and convey 

information on the relative importance of components. Typical examples are chemical and 

geological compositions (adding to 100% in weight or volume), genotype frequencies 

(adding to 1), time use (adding to 24 hours), voting (adding to 100% of votes), or household 

budget allocation (adding to 100% of the budget). The fixed sum is typically normalized to 

one, and a D-term composition (x1, x2,..., xD) is thus constrained as follows:  

 0<xd<1 and 



D

d
dx

1

1 (1.1) 

Serious problems arise when using standard statistical analysis tools on compositional 

data (Aitchison, 1986, 2001; Pawlowsky-Glahn & Buccianti, 2011):  

1. Compositional data have a bounded distribution. This implies at least non-normality 

and heteroscedasticity (lower variance close to the boundary). 

2. One component can only increase if some others decrease. This results in negative 

spurious correlations among the components (Pearson, 1897) and prevents interpreting 

effects of linear models in the usual way “keeping everything else constant”.  

3. The true dimensionality of a set of compositional variables is D1. Analysis of all D 

dimensions leads to perfect collinearity.  

4. Compositional data lie in a (D1)-dimensional Euclidean space called the simplex, 

with different operations and distance from real space (Billheimer et al., 2001; Pawlowsky-

Glahn & Egozcue, 2001). 

The compositional data analysis (CoDa) tradition started with Aitchison’s seminal work 

(1986) on treating chemical and biological compositions. Nowadays, however, it spans 

almost all of the hard sciences and has started to be used in the social sciences, which often 

face similar problems (Batista-Foguet et al., 2015; Coenders et al., 2011; van Eijnatten et al., 

2015; Ferrer-Rosell & Coenders, 2016; Ferrer-Rosell et al., 2015, 2016a, 2016b; Fry, 2011; 

Hlebec et al., 2012; Kogovšek et al., 2013; Vives-Mestres et at., 2016).  

The literature on CoDa has extensively dealt with relating one composition to non-

compositional data (Egozcue et al., 2012; Hron et al., 2012; Martín-Fernández et al., 2015) 

and with analyzing one single composition. As far as the exploratory data analysis of one 
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single composition is concerned (Egozcue & Pawlowsky-Glahn, 2011), available methods 

include the variation array (Aitchison, 1986), principal component analysis (Aitchison, 1983; 

Aitchison & Greenacre, 2012), the CoDa-dendrogram (Pawlowsky-Glahn & Egozcue, 2011), 

and the CoDa-biplot (Aitchison & Greenacre, 2012). As regards exploratory tools to relate 

two compositions, the natural choice is canonical correlation analysis – CCA (Aitchison, 

1986). Typical problems relating two compositions include the relationship between the 

composition of species and the chemical composition of the environment (ter Braak, 1996); 

between the composition of foods and the composition of their energy and nutrients; or 

between the composition of materials and the composition of spectral curves in image 

processing. The use of CCA for compositional data was foreshadowed in Aitchison (1986), 

without much mention of its properties or interpretation. At a later date, van den Boogaart 

and Tolosana-Delgado (2013) devised an advanced procedure for compositional CCA 

requiring software designed for this purpose.  

Drawing from Aitchison (1986), in this article we develop and illustrate a simple 

procedure for carrying out CCA of two compositional vectors and examine its interpretation 

and main statistical properties. Even if specialized techniques for compositional data have 

appeared (van den Boogaart & Tolosana-Delgado, 2013; Pawlowsky-Glahn & Buccianti, 

2011; Pawlowsky Glahn et al., 2015; Thió-Henestrosa & Martín-Fernández, 2005), 

compositional data can also be transformed so that they can be subject to standard and well-

understood statistical techniques carried out using standard software. This is the approach we 

take in this article.  

Given the fact that only information on the relative size of components is available in a 

compositional data context, logarithms of ratios between component values are a meaningful 

way of expressing the data and guaranteeing the principles of CoDa (Aitchison, 2001). A 

logarithm of a ratio is scale invariant, meaning that it does not change if the values involved 

are multiplied by an arbitrary constant. Adding or dropping components from a composition 

does not modify the log-ratios computed from the remaining components. This is related to 

the principles of scale invariance and subcompositional coherence. For full details on CoDa 

principles, see Pawlowsky Glahn et al. (2015). 

Several log-ratio transformations have been suggested in the literature (Egozcue et al., 

2003). Additive log-ratio transformation (alr) is the easiest to compute since it is simply the 

log-ratio between each component and the last:  
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 yd=ln(xd/xD)=ln(xd)ln(xD) with d=1,2,...,D1 (1.2)  

Alr-transformed yd variables recover the full unconstrained real space. It must be noted 

that one dimension is lost. Although alr transformation is used in this article due to its 

simplicity, there are alternatives (see Egozcue et al., 2003 for a general background on the 

transformations and Section 3.3. for a discussion of their applicability to CCA).  

Since the decision on which component to leave in last place and serve as a reference in 

the alr transformation is often arbitrary, there is concern regarding whether the results of a 

statistical analysis are invariant to this arbitrary choice. Of course, different log-ratios 

constitute different variables and the raw results will never be invariant. However, it is 

considered desirable that overall goodness of fit measures be invariant to this choice. Once 

results are reexpressed as a function of the log components ln(xd), they should ideally also be 

invariant.  

The structure of the article is as follows. First, we review the basics of CCA. We then 

come to the particular case in which CCA is applied to compositions that have been subjected 

to alr transformation, showing how to interpret the key results, proving that they are invariant 

to the choice of reference component, and discussing alternative transformations. Following 

this, we present an illustration from the field of education using data from Kolb’s Learning 

Style Inventory (Batista-Foguet et al., 2015; Kolb, 1984, 1999) and Boyatzis’ Philosophical 

Orientation Questionnaire (Boyatzis et al., 2000). The final section discusses the strengths 

and weaknesses of the method.  

 

2 Canonical Correlation Analysis 

Canonical correlation analysis (CCA) is a multivariate analysis technique which studies the 

relationships between two sets of variables Ya=(ya1, ya2, ..., yap) and Yb=(yb1, yb2, ..., ybq) 

usually defined in the real space. The method was first introduced in Hotelling (1936) and a 

non-technical description can be found in Hair et al. (2009).  

CCA builds pairs of linear combinations of each set of variables called canonical variates. 

The first canonical variate cva1 for set Ya is derived so that it is maximally correlated with the 

first canonical variate cvb1 for set Yb. The second canonical variate cva2 for set Ya is derived 

so that it is maximally correlated with the second canonical variate cvb2 for set Yb under the 

restriction that both new canonical variates are uncorrelated with cva1 and cvb1. The following 
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pairs are extracted in a similar manner and have the maximum mutual correlation, while 

being uncorrelated with the previous pairs. The process may be continued up to min{p,q} 

times.  

The raw canonical coefficients waij and wbij are the weights used to compute the i-th pair of 

canonical variates from the j-th original variables:  

 cva1=wa11ya1+ wa12 ya2+···+ wa1p yap 

 cvb1=wb11yb1+ wb12 yb2+···+ wb1q ybq 

 cva2=wa21ya1+ wa22 ya2+···+ wa2p yap (2.1) 

 cvb2=wb21yb1+ wb22 yb2+···+ wb2q ybq 

  ......  

In practice, the canonical coefficients are computed from three covariance matrices: the 

square matrix Saa contains covariances in the first variable set, the square matrix Sbb 

covariances in the second set, and the rectangular matrix Sab covariances between variables of 

one set and the other. Canonical variates are obtained from an eigenvalue analysis of matrix:  

 babbabaa SSSS 11   (2.2) 

The correlation between cva1 and cvb1 is the first canonical correlation 1̂ , the correlation 

between cva2 and cvb2 is the second canonical correlation 2̂ , and so on. These canonical 

correlations are obtained as the square root of the eigenvalues of the matrix in Equation (2.2).  

The maximum number of canonical variates that can be extracted is the smallest 

dimension of the two sets of variables. For instance, if p=5 and q=8, then a maximum of 5 

pairs of variates can be obtained. As with many other multivariate analysis techniques, the 

researcher is interested in a parsimonious solution and in interpreting only the most relevant 

variates. The relevance of a pair of canonical variates can be assessed by the sheer size of the 

canonical correlation, the interpretability of the canonical variates from the canonical 

weights, or the statistical significance of the canonical correlations according to Wilks’  

tests, which are also a function of the eigenvalues. Since, 1̂ > 2̂ >…> },min{ˆ qp , a common 

strategy is to sequentially test the following hypotheses:  
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 H01: 1=2=3=···=min{p,q}=0 

 H02: 2=3=···=min{p,q}=0 

 .....  (2.3) 

 H0min{p,q}1: min{p,q}1=min{p,q}=0 

 H0min{p,q}: min{p,q}=0  

The rejection of H01 to H0i and the failure to reject H0i+1 to H0min{p,q} shows the first i 

canonical correlations to be statistically significant.  

Other common results of a CCA which provide a useful aid to interpreting the canonical 

variates require standardization in some form or other (Hair et al., 2009) and are:  

1. Standardized canonical coefficients (coefficients used to compute canonical variates 

from standardized y variables).  

2. Canonical loadings (correlations between the canonical variates and the y variables they 

are computed from).  

3. Canonical cross-loadings (correlations between canonical variates and the other set of y 

variables).  

4. Redundancy analysis (percentages of variance for the y variables explained by their 

own canonical variates and from the canonical variates computed from the other set of y 

variables).  

 

3 Canonical Correlation Analysis of Compositional Data 
Transformed by Means of alr 

3.1 Interpretation 

Given two compositions with Da and Db components, Xa=(xa1,xa2,…,xaDa) and 

Xb=(xb1,xb2,…,xbDb), following Aitchison (1986) we first apply alr transformation with 

the last component in the denominator. The results are the following two real vectors 

with p=Da1 and q=Db1 elements:  
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We can rewrite Equation (3.1) as:  

 

            aDaapaDaaaDaaa xxxxxx lnln,,lnln,lnln 21  Y  

 

            bDbbqbDbbbDbbb xxxxxx lnln,,lnln,lnln 21  Y  (3.2)  

Ya and Yb are two sets of real variables to which we can apply the standard CCA 

procedure from the covariance matrices of each set of transformed variables and the 

covariance matrix between the transformed variables of one set and the other in Equation 

(2.2).  

The first pair of canonical variates in Equation (2.1), when expressed in terms of 

logarithms of components, becomes:  

 cva1=wa11ln(xa1)+ wa12 ln(xa2)+ ···+ wa1p ln(xap)( wa11+ wa12+···+ wa1p) ln(xaDa)  

 cvb1=wb11ln(xb1)+ wb12 ln(xb2)+ ···+ wb1q ln(xbq)( wb11+ wb12+···+ wb1q) ln(xbDb)  (3.3) 

Since the raw canonical coefficients are applied from ln(xa1) to ln(xap) and again to 

ln(xaDa) with reversed signs, the weights of all Da logarithms add up to zero, and the same 

occurs with the weights of the Db logarithms of the xb variables. This would also hold for the 

remaining canonical variates.  

This is the same as saying that the canonical variates are log ratios of the product of 

components with a positive weight raised to a power equal to that weight, over the product of 

components with a negative weight raised to a power equal to the absolute weight. Let us 

show an example of the former for a canonical variate of a 5-dimensional composition with:  

 cva1=1ya1+1.5ya2+ 0.5ya3 0.5 ya4 (3.4)  

The reexpression of this canonical variate as a log-ratio is:  

 cva1=1ln(xa1)+ 1.5ln(xa2)+ 0.5ln(xa3) 0.5 ln(xa4)2.5ln(xa5)= 







5.2

5
5.0
4

5.0
3

5.1
21ln

aa

aaa

xx

xxx
  (3.5)  
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The 1acv  log-ratio in this example is high mainly when xa1 and xa2 are high and xa5 is low. 

Since the sum of positive exponents equals the sum of negative exponents, the log-ratio is 

also a log-contrast, that is, a log-linear combination where the sum of the coefficients is 0 

(Aitchison, 1986: 84).  

The first pair of canonical variates can thus be interpreted as the log-contrast of one of the 

compositions that has the maximum correlation with a log-contrast of the other composition. 

The second pair can be interpreted as the log-contrast of one of the compositions that has the 

maximum correlation with a log-contrast of the other composition, under the restriction that 

they are uncorrelated with the first pair of canonical variates. A similar interpretation would 

hold for the third pair, subject to zero correlation with the first two pairs, and so on.  

3.2 Invariance of the Results to the Choice of Reference Component 
in alr 

Although the last component in each composition was chosen as the common divisor in our 

alr transformation, this could equally have been any other component. Consequently, for any 

analysis involving alr vectors, it is important to check the invariance of the key results to 

component permutations, or in other words, their invariance with respect to the choice of 

divisor in alr transformation. In this section we show specifically that Wilks’  tests, 

canonical correlations, and canonical variates as functions of log components Equation 

(3.3) are invariant to this choice.  

It is easy to see how two alr-transformed vectors using different components as a divisor 

are related using a change-of-basis matrix. Following Mateu-Figueras et al. (2011), the 

elements of an alr vector are the coefficients of the original composition with respect to a 

particular non-orthonormal basis on the simplex, the sample space of compositional data. The 

effect of changing the common divisor is to obtain the coefficients with respect to another 

particular basis, which is analogous to performing an oblique rotation of the data.  

Let Ya and Yb be the alr transformed vectors using the last components as common 

divisors and let Ya
* and Yb

* be the alr-transformed vectors using other components as 

denominators. Then, Ya
*=QYa and Yb

*=PYb. We can obtain the exact expression of 

matrices Q and P (see Aitchison, 1986: 94), but the important point here is that matrices 

Q and P are change-of-basis matrices. From the usual properties of covariance matrices 

we know that:  
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 'QQSS aa
*
aa   (3.6)  

 '* PPSS bbbb   (3.7)  

 '* PQSS abab   and '* QPSS baba    (3.8)  

When using different common divisors in alr transformation, the analyzed matrix in 

Equation (2.2) becomes:  

     *
ba

*
bb

*
ab

*
aa SSSS

11 
 (3.9)  

By using the relationships in Equations (3.6)(3.8), Equation (3.9) becomes:  

  
          
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1111
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babbabaa
*
ba

*
bb

*
ab

*
aa






 (3.10)  

From linear algebra properties, we know that the eigenvalues of a matrix are 

invariant under changes of basis. Consequently, both the canonical correlations and 

Wilks’  tests are invariant under change of common divisor in alr transformation.  

It is easy to see how the normalized eigenvectors of matrices in Equations (3.9) and 

(2.2), denoted as *
aiw  and wai respectively, must be related by aiai wwQ *'  or 

  aiai wQw 1* '  . Then we obtain the invariance of the corresponding canonical variates 

as:  

      aiaaiaaiaaiaaiai cvcv   YwQYQwQYwQYw 1 '''1*'** '  (3.11)  

Conversely, all results that imply standardization, like standardized canonical coefficients, 

canonical loadings/cross-loadings and redundancy analysis, are not invariant to the choice of 

reference component in alr transformation. In the case of CoDa, however, given the facts that 

canonical variates can be readily interpreted as log-ratios and log-contrasts on their own, and 

that standardization is extremely uncommon for log-contrasts, standardized information is not 

needed to enhance interpretation and is not considered in this article.  
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3.3 Appropriateness of Alternative Log-ratio Transformations for 
Canonical Correlation Analysis 

One key issue when working with CoDa is the choice of the log-ratio transformation, since 

different possibilities are available. Additive log-ratio (alr) and centered log-ratio (clr) 

transformations were introduced in Aitchison (1986), while isometric log-ratio transformation 

(ilr) was introduced in Egozcue et al. (2003).  

Aitchison’s (1986) proposal for compositional CCA involved alr transformation. 

Although alr transformation is simple and easy to interpret, it is asymmetric in its parts. By 

changing the part in the denominator, a different alr-transformed vector is obtained. For this 

reason, when alr transformation is used, it is important to check the invariance of the results 

with respect to the choice of common denominator, as we have done in Section 3.2. 

However, as Egozcue et al. (2003) noted, the main drawback of alr transformation is that it is 

not an isometric transformation from the simplex to the real space. It was later shown that an 

alr vector can be viewed as the coefficients of a composition with respect to a non-

orthonormal basis on the simplex (Mateu-Figueras et al., 2011). Consequently, it is not 

suitable for statistical techniques that use distances or angles between alr vectors, such as 

cluster analysis. Note that these problems do not occur when using CCA because eigenvalues 

and eigenvectors of a product of covariance matrices are involved. Due to the non-

orthonormality of the basis, the equality aiai wwQ *'  is only true if the vector product *' aiwQ  

is normalized, although this does not affect the analyses considered in this article.  

Clr transformation is defined as the logarithm of the ratio of each part over the geometric 

mean. It is a symmetric transformation with respect to the compositional parts and also an 

isometric transformation. Nevertheless, clr transformation has the disadvantage that the clr 

covariance matrix is singular. In our case, clr transformation would not be a good choice 

because CCA uses covariance matrices and their inverses. Conversely, it would be a good 

choice for cluster analysis or other statistical techniques in which distances are crucial and 

covariances do not need to be inverted.  

Ilr transformation is isometric and consequently makes it possible to associate distances in 

the simplex with distances in the transformed space. Additionally, an ilr vector can be viewed 

as the coordinates of a composition with respect to an orthonormal basis on the simplex. 

Finally, covariance matrices can be inverted. It can thus be used in virtually all statistical 

analyses. The expression of the ilr using a particular orthonormal basis is given in Egozcue et 
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al. (2003). Nevertheless, in inner product spaces, an orthonormal basis is not uniquely 

determined and in some cases it is not straightforward to determine which basis is the most 

appropriate to solve a specific problem and how it can be interpreted. Faced with the problem 

of interpreting CCA on ilr transformation, van den Boogaart and Tolosana-Delgado (2013) 

devise a graphical back-transformation of the canonical coefficients. In any case, the 

invariance of the ilr results with respect to the choice of the orthonormal basis also holds.  

In this article, although alr transformation was used due to its simplicity, ilr 

transformation could also have been used, and we actually did rerun the illustration analysis 

with ilr transformation. The final canonical variates expressed in terms of the log components 

and as log-contrasts are invariant, because alr and ilr vectors are also related through a 

change-of-basis matrix.  

 

4 Illustration 

4.1 Background 

In this illustration of compositional CCA, our aim is to relate students’ learning styles to their 

philosophical orientations. Philosophical orientation is a good means of understanding the 

relationship between people’s values and beliefs, and their behavior and approach to learning 

(Boyatzis et al., 2000). Since a person’s behavior is related to his or her values and beliefs, 

philosophy is important for comprehending and predicting behavior, with the added 

advantage that a person’s philosophy goes beyond social context. Philosophical orientation is 

useful for answering questions such as how individuals ‘act across various social settings’ or 

‘think about establishing the value of things, activities and others’ (Boyatzis et al., 2000: 50). 

Three major clusters of philosophical systems have traditionally been proposed. These 

clusters define the extent to which a person is pragmatic (PR), intellectual (IN) or humanistic 

(HU).  

A person with a predominantly PR philosophical orientation will make decisions based on 

the benefits of the action, measured in terms of utility or comparing input and output. If the 

objectives to be achieved are not clear or measuring utility is difficult, then an activity will be 

less valuable to a person with this orientation.  
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Someone with a predominantly IN philosophical orientation will be rational, logical and 

focus on comprehending everything. The central concern underlying this philosophical 

orientation is analytical.  

Someone with a predominantly HU orientation is thought to be committed to human 

values. This kind of person will tend to determine whether an activity is worthy in terms of its 

impact on other people and the quality of the relationship with these people. The central issue 

underlying HU orientation is a concern for close and personal relationships.  

According to Experiential Learning Theory, learning is a process whereby knowledge is 

created through the transformation of experience (Kolb, 1984). Learning requires abilities to 

grasp and transform knowledge that are polar opposites. In grasping knowledge, some people 

perceive new information through experiencing the concrete, tangible, and felt qualities of the 

world, which is referred to as concrete experience (CE), while others tend to take hold of new 

information through symbolic representation or abstract conceptualization (AC). In 

transforming knowledge, some people tend to carefully watch others who are involved in the 

experience and reflect on what happens (reflective observation – RO), while others choose to 

start doing things (active experimentation - AE). Learning can also be conceived as a four-

stage cycle, where each stage is represented by a learning mode.  

At the CE stage, one tends to rely more on intuition than on a systematic focus. Moreover, 

in this stage, a learner relies on the ability to be open, receptive and adaptive to changes. At 

the RO stage, one comprehends situations by taking into account different perspectives. In 

this stage, a learner relies on patience and objectivity, as well as thoughts and feelings. At the 

AC stage, logic and ideas are needed to understand a problem, rather than feelings. A learner 

in this stage relies on systematic planning and the theoretical development of ideas. Finally, 

at the AE stage, one learns by experimenting with changing situations. In this stage, a learner 

will find it more useful to put ideas into practice and see what really works than to simply 

observe.  

4.2 Data and Measures 

Multidimensional forced-choice questionnaires to measure philosophical orientations and 

learning modes were designed in Boyatzis et al. (2000) and Kolb (1999). In these 

questionnaires, each question consists of a set of D statements, and each statement is an 

indicator of a different dimension, in our case, of a philosophical orientation (D=3) or a 
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learning mode (D=4). Respondents are instructed to rank these statements. In this article, we 

assume that ranks are coded as D1 for the most preferred statement, D2 to the second most 

preferred, down to 0 for the least preferred. The Philosophical Orientation Questionnaire 

consists of k=20 questions designed as in this example:  

“I think of my value, or worth, in terms of:  

 (a) My relationships (e.g. family, friends).  

 (b) My ideas or ability to invent new concepts or ability to analyse things.  

 (c) My financial net worth or income.”  

Statement (a) reflects the HU orientation, (b) the IN orientation, and (c) the PR 

orientation.  

The Learning Style Inventory includes k=12 questions designed as in this example:  

“When I am learning:  

 (a) I like to experience sensations.  

 (b) I like to observe and listen.  

 (c) I like to think about ideas.  

 (d) I like to do things.”  

Statement (a) reflects the CE mode, (b) the RO mode, (c) the AC mode, and (d) the AE 

mode.  

The ranks of each dimension are summed across the k questions to produce D global 

scores, one for each dimension. These D scores have a fixed sum for all respondents, equal to 

kD(D1)/2. Once the global scores have been computed, forced-choice instruments can be 

understood as compositions, in which the kD(D1)/2 total is allocated to the D dimensions 

(components), so that data only convey information about the relative importance of 

dimensions (learning modes and philosophical orientations) for a given individual. Under this 

coding scheme, the dimension score is the number of times the dimension has been preferred 

over other dimensions in all possible pair-wise comparisons over the k questions. For 

instance, if a component is always ranked as the lowest, it has never been preferred to any 

other mode and receives a 0 score. If a component is always ranked as the highest, it is 

preferred k times to the other D1 modes and receives a k(D1) score. Scores can thus be 

understood as having ratio scale properties: a component with a score of 6 has been preferred 
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to other components twice as many times across the k items than a mode with score of 3 

(Batista-Foguet et al., 2015). Alternative ways of coding these questionnaires are discussed in 

de Vries and van der Ark (2008).  

In this illustration, we use the same data as those used by Batista-Foguet et al. (2015), 

which cover 7 consecutive years (2006-2013) of candidates on an international MBA 

program at a leading European business school. The sample size was 1,194 full time 

participants from 86 countries, of which the most common were Spain (15.9%), the US 

(13.7%), India (9.6%), and Germany (5.6%). 69.7% were male and 30.3% female. Average 

age was 31.4 years (SD 2.8 years). Previous student background was heterogeneous, 

including not only economics (11%) and management studies (32%), but also engineering 

(36.4%), social sciences (9.3%), arts (5.7%) and hard sciences (5.5%). 

The philosophical orientation components were labeled xp1=pragmatic (PR), 

xp2=intellectual (IN), and xp3=humanistic (HU); while the learning mode components were 

labeled xl1=abstract conceptualization (AC), xl2=concrete experience (CE), xl3=active 

experimentation (AE), and xl4=reflective observation (RO). The final two components, HU 

and RO, were used as a reference for the alr transformation:  
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4.3 Results 

After submitting the sets (yp1, yp2) and (yl1, yl2, yl3) to a CCA using SPSS v.23, the resulting 

canonical correlations are 1̂ =0.246 and 2̂ =0.163. Their significance tests are in Table 1. 

The raw (unstandardized) canonical coefficients are in Table 2.  

Table 1: Significance Tests for the Canonical Correlations 

H0 Wilk's  2 DF p-value 
1=2=0 0.914 93.854 6 0.000 
2=0 0.973 28.295 2 0.000 

 

Table 2: Raw Canonical Coefficients as a Function of the Log-ratios 

  Variate 1 Variate 2 
Philosophical orientations   
 yp1 (log-ratio of PR over HU) -0.524 1.730 
 yp2 (log-ratio of IN over HU) 2.085 -0.274 
Learning modes   
 yl1 (log-ratio of AC over RO) 1.720 -0.177 
 yl2 (log-ratio of CE over RO) -0.447 -1.347 
 yl3 (log-ratio of AE over RO) -1.032 1.311 

 

The original canonical variates are functions of the log ratios and are easily re-expressed 

by hand as a function of the log-components as in Equation (3.3). For instance, in the 

philosophical orientation composition the first canonical variate is:  
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Table 3: Raw Canonical Coefficients as a Function of the Log-components 

  Variate 1 Variate 2 
Philosophical orientations 
 ln(xp1) (PR) -0.524 1.730 
 ln(xp2) (IN) 2.085 -0.274 
 ln(xp3) (HU) -1.561 -1.456 
Learning modes 
 ln(xl1) (AC) 1.720 -0.177 
 ln(xl2) (CE) -0.447 -1.347 
 ln(xl3) (AE) -1.032 1.311 
 ln(xl4) (RO) -0.241 0.213 
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Canonical variates as a function of log components are shown in Table 3. As in Equation 

(4.2), the coefficients in Table 2 apply to all rows in Table 3 but the last one of each 

composition, which receives their sum with reversed sign.  

The canonical variates in Table 3 correspond to the following log-contrasts:  
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The first pair of canonical variates can therefore be interpreted as follows: when the IN 

(xp2) orientation is high and the HU (xp3) orientation is low, then the AC (xl1) mode is high 

and the AE (xl3) mode is low. The second pair of canonical variates can be interpreted as 

follows: when the PR (xp1) orientation is high and the HU (xp3) orientation is low, then the AE 

(xl3) mode is high and the CE (xl2) is low. Our results are similar to those of Boyatzis et al. 

(2000), who reported the PR orientation as correlating positively with AE and negatively with 

CE; and the IN orientation as correlating positively with AC and negatively with AE.   

 

5 Discussion 

The increasing awareness of CoDa leads to an increasing interest in problems involving more 

than one composition. Standard statistical analysis includes many tools for relating two sets 

of variables, and one of the most popular in multivariate exploratory analysis is CCA. Within 

CoDa, tools for relating several compositions are still underdeveloped. In this article we have 

shown how to adapt CCA to compositional data in order to explore the relationship between 

two compositions. In our illustration we have found learning styles to be related to 

philosophical orientations in an interpretable manner in accordance with the literature, which 

supports the practical usefulness of the method as an exploratory tool.  

The appeal of the CoDa log-ratio approach for applied researchers lies in the fact that 

once the data have been transformed using appropriate log-ratios, standard and well-

understood statistical techniques such as CCA can be used. Once log-ratios have been 

computed, a compositional CCA is no more complicated than a standard CCA and standard 

statistical software dealing with CCA can be used. In order to be used with compositional 
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data, software must be able to derive the canonical variates from the covariance product in 

Equation (2.2) and include raw canonical coefficients as a part of the output. We recommend 

either SPSS, the cca function in the yacca R library (setting xscale=FALSE, yscale=FALSE), 

or the cc function in the CCA R library. It must be taken into account that some software for 

CCA either analyzes correlation matrices rather than covariance matrices (like the canocor 

function in the R library of the same name) or reports only standardized coefficients (like the 

CCorA function in the vegan R library). For the computation of canonical correlations and 

their significance tests, standardization or the use of correlations are irrelevant.  

In some cases, the interpretation of the results of a statistical method on compositional 

data differs to some extent from its interpretation on unconstrained data. In the case of CCA, 

standardized results are neither usable nor needed, because unstandardized canonical variates 

can be interpreted as log-contrasts in a straightforward manner. This way of interpreting the 

results as log-contrasts fits well with the CoDa way of thinking and increases the 

attractiveness of the approach within an exploratory CoDa. CCA can also be applied to relate 

one composition to a set of numeric variables defined in the real space. In this case, the 

canonical variates are log-contrasts in the composition and linear combinations of the set of 

numeric variables with maximum mutual correlation.  

The CoDa approach focuses on relative rather than absolute differences in the data. 

Treating compositional data directly without the log-ratio transformation implies assuming 

that the difference between scores 1 and 2 is the same as the difference between scores 10 

and 11, while in the former case they differ by 100% and in the second by only 10%. A 

commonly mentioned limitation of the CoDa approach is the presence of zeros in the xd 

variables, which prevents the analyst from computing log-ratios. Details on methods 

available for treating zeros prior to analysis, which perform well if the percentage of cases 

with zeros is not large, can be found in Martín-Fernández et al. (2011).  

Further research could include adapting other multivariate techniques that relate sets of 

variables to compositional data, such as redundancy analysis, in order to derive a specified 

number of new latent variables from a composition that explains as much variance as possible 

from the other compositions. Related methods in the statistical modeling arena include 

simultaneous regression systems in which both explanatory and dependent variables are 

compositional (Tolosana-Delgado and van den Boogaart, 2013) and compositional partial 

least squares (Kalivodová et al., 2015).  
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