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Glycoconjugates constitute a major class of biomolecules which include glycoproteins, glycosph-
ingolipids and proteoglycans. The enzymatic process in which glycans (sugar chains) are linked to
proteins or lipids is called glycosylation. Glycosylation is involved in many biological processes, both
physiological and pathological, inlcuding host-pathogen interactions, tumour invasion, cell trafficking
and signalling. Changes in glycan structure are thought be be at least partly responsible for the devel-
opment of inflammation, infection, arteriosclerosis, immune defects and autoimmunity. Such changes
have been observed in human diseases such as diabetes mellitus, rheumatoid arthritis and Alzheimer’s
Disease. Aberrant patterns of glycosylation are also a universal feature of cancer cells. The field of
glycobiology thus shows great potential for the discovery of glycan biomarkers for disease diagnosis
and prognosis.

Here we focus specifically on N -glycans, that is, glycans attached to protein molecules via a
nitrogen atom. This class of glycans is the best characterized. High-throughput HILIC analysis is
a well-established technique for the separation and quantification of N -linked glycans released from
glycoproteins. HILIC analysis quantifies the N -glycan structures in serum via a chromatogram, which
is subsequently standardized and integrated. The generated data for each sample is a set of relative
HILIC peak areas and as a result, the data is compositional. To-date, most statistical analyses of these
glycan data fail to account for their compositional nature.

We compare and contrast three compositional data models for the glycan HILIC data: the Dirich-
let, Nested Dirichlet and Logistic Normal models, with the intention of providing tools for the statis-
tical analysis of compositional data analysis in the glycobiology field. We use these three models for
classification of disease/control cases in ovarian and lung cancer diagnosis applications. We discuss
and compare these models in terms of their classification performance and goodness-of-fit.
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1 Introduction

Glycobiology is the study of the structure, biology and biosynthesis of glycans. Glycans are chains
of monosaccharides (simple sugar units) which are often linked to protein or lipid molecules, to form
glycoconjugates.The biological roles of glycans are diverse and range from structural to mediatory.
Taylor and Drickamer (2003) divide their functions into two main groups - intrinsic (such as providing
structural components for cell walls, modifying stability and solubility properties of proteins) and
extrinsic (the functions based on the recognition of glycans by other molecules). Glycosylation has
been heavily implicated in human disease. Aberrant patterns of glycosylation have been shown to be
a potential source of disease biomarkers, particularly in the diagnosis and prognosis of cancer and
chronic inflammation (Arnold et al., 2008).

The search for N -glycan biomarkers is ongoing in the Glycobiology field. For example, Kyselova
et al. (2008) identify several N -glycan structures which appear to differ in breast cancer patients,
when compared with healthy control samples. Ercan et al. (2010) find aberrant patterns in the N -
glycosylation of IgG glycoproteins from rheumatoid arthritis patients. The identification of valid
glycan biomarkers could be of great value in disease diagnostics and therapeutics.

Royle et al. (2008) outline a high-throughput hydrophilic interaction liquid chromatography (HILIC)
analysis for detailed quantitative analysis of serum N -glycans released from glycoproteins. The rela-
tive quantites of N -glycans are reported via a glycan profile similar to those in Figures 1 and 2. Each
such HILIC chromatogram generates a set of peaks and their relative percentage areas. The nature of
the data gives rise to a set of compositional vectors (one for each sample), such that each part of the
composition represents the relative proportion of the area under the profile accounted for by a given
peak.

To-date, most statistical analyses of these HILIC glycan profiles fail to account for the composi-
tional nature of these data. Our objective is to establish an improved method for the statistical analysis
of glycan HILIC data, for the identification and validation of glycan biomarkers. In this paper, we
compare and contrast three compositional data models - the Dirichlet, the Nested Dirichlet and the
Logistic Normal models. We fit each model to two glycan HILIC data sets, which are outlined in
Section 2. A brief review of each model is included in Section 3, along with some information on
model fitting strategies and the model comparison criteria used. We apply each of these models to
the two data sets and use the fitted models for supervised classification of samples. The results are
presented in Section 4, followed by a short discussion of the findings in Section 5. In Appendices A -
C we include some additional information on parameter estimation for the Dirichlet distribution, the
derivation of the Nested Dirichlet distribution and the techniques used for N -glycan HILIC analysis.

2 Data

2.1 Lung Cancer Data

Serum samples from preoperative patients diagnosed with lung cancer and cancer-free healthy volun-
teers were obtained from Fox Chase, Cancer Center, Philadelphia, USA under IRB approved proto-
cols. Arnold et al. (2011) quantified the N -glycans in these serum samples, which consist of 100 lung
cancer patients (20 from each of 5 stages - I, II, IIIA, IIIB, IV) and 84 age-matched controls (donors
who did not have cancer). The analysis was carried out by HILIC floresence over using a 60-minute
method. Further details on the analysis may be found in Arnold et al. (2011).

The resulting chromatogram from each sample was integrated over the set of 17 glycan peaks,
resulting in a 17 part compositional vector for each observation. A typical profile from the analysis is
shown in Figure 1.

For the purposes of statistical analyses, we re-group the data into 84 controls and 100 lung cancer
patients.
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Table 1: Details of the 184 patient samples used in the lung cancer study

Disease Status Cases
1 Controls 84
2 Stage 1 20
3 Stage 2 20
4 Stage 3A 20
5 Stage 3B 20
6 Stage 4 20
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Figure 1: Typical HILIC chromatogram of N -glycans released from serum glycoproteins for the Lung Cancer Cohort
(1hr. HILIC, integrated into 17 peaks). Each peak represents major N -glycan structures found in serum. The
complete serum N -glycome is described in Royle et al. (2008). Further details on glycan structures contained
under each peak may be found in Table 14

2.2 Ovarian Cancer Data

Our second data set consists of a set of 24 compositional variables for 63 observations, obtained from
the ovarian cancer data study in Saldova et al. (2007). Venous blood samples were obtained from 63
serum samples taken from healthy controls, patients with benign gynecological conditions, borderline
ovarian tumors, ovarian cancer, primary peritoneal carcinomatosis (PPC), endometrial cancer metas-
tasized to the ovary and other gynecological cancers. These groups are quantified in Table 2. The
samples were collected at St. James’s University Hospital (Leeds, UK), following ethical approval
and obtaining informed consent. After allowing the blood to clot for 30-60 min., serum was ob-
tained by centrifugation at 2000xg for 10 minutes and stored at ! 80 ! C until analysis. The N -glycans
were analysed by HILIC fluorescence, using the 120 minute method, and the chromatograms were
integrated into 24 glycan peaks, resulting in a set of 24 compositional variables for each sample. A
typical chromatogram from the analysis is displayed in Figure 2.

Table 2: Details of the 63 patient samples used in the ovarian cancer study

Disease Status Cases
1 Controls 3
2 Benign 12
3 Borderline 6
4 Ovarian Cancer 13
5 Primary peritoneal carcinomatosis (PPC) 3
6 Other gynecological cancers metastasizing to ovary 5
7 Other gynecological cancers 21

We investigate two different re-groupings of the data for model fitting. In Section 4.2, we define
two groups in the data. We merge the control and benign groups (1 and 2), as these are free from
ovarian cancer and merge the ovarian cancer groups (4 and 6). We then use this to fit control vs.
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Figure 2: Typical HILIC chromatogram of N -glycans released from serum glycoproteins for the Ovarian Cancer Cohort
(2hrs. HILIC, integrated into 24 peaks). Each peak represents major N -glycan structures found in serum. The
complete serum N -glycome is described in Royle et al. (2008). Further details on glycan structures contained
under each peak may be found in Table 15.

ovarian cancer models. We also define a three group model for this data set. In Section 4.3 we fit our
models to just three subgroups of the data : the benign group (2), the ovarian cancer group (4) and
the group with other gynecological cancers (7), as these groups would seem, intuitively, to have least
overlap.

3 Methods

A data vector x = (x1, x2, . . . , xp) consisting of strictly positive real numbers, which are constrained
to sum to a fixed value, is known as a composition. The sample space of such data is a (p ! 1)-simplex
embedded in Rp space, defined by

S(p" 1) = { x = (x1, x2, . . . , xp) " Rp; x1 # 0, . . . , xp # 0;
p!

j =1

xj = K}

where K is an arbitrary constant. The data is typically scaled such that K = 1. Thus the sample
space of the data is a subspace of Rp

+ , the positive orthant of p dimensional real space. This should be
accounted for in the statistical analysis of the data.

Many methodologies for compositional data analysis have been discussed and tested in the litera-
ture, and two main parametric classes of models have emerged. One is the Dirichlet class of models,
which model the data directly within the simplex, and the other is the Logistic Normal class of mod-
els. Taking this approach, the data is transformed to real space and the multivariate normal model is
fitted to the transformed data. There are favourable and unfavourable arguments for both approaches
to modeling the data.

The Dirichlet family has some very elegant mathematical properties and the models are easily
interpretable in terms of the composition. Nevertheless, it has been well documented that the ordinary
Dirichlet distribution is generally incapable of capturing some of the patterns of variance arising in
real data, due in no small part to its strong implied independence structure. However, in an attempt
to search for distributions on the simplex with less enforced independence, more flexible extensions
of the Dirichlet distribution have also been considered with some success, such as the Generalized
Dirichlet distribution, introduced by Connor and Mosimann (1969). We examine one such model
called the Nested Dirichlet model (Null, 2008) described in Section 3.2. We fit both this and the
ordinary Dirichlet model to the data sets outlined in Section 2 and compare the results. We also
consider the second approach, that of modeling the data using the Logistic Normal model proposed
by Aitchison and Shen (1980), which is outlined in Section 3.3; Aitchison (2003) describes many
advantages of this model. The Logistic Normal class has a richer structure than the Dirichlet class



3 METHODS 5

and thus it has the ability to capture patterns of variability in real data which are beyond reach of
the Dirichlet class. Importantly, since the Logistic Normal model is so closely related to the well-
established multivariate normal class, we can easily utilize the wide range of tools which have been
developed for this class.

We compare and contrast each of these models (the Dirichlet, the Nested Dirichlet and the Logistic
Normal models) when applied to our data. We evaluate them on both their predictive abilities (using
their cross-validated supervised classification performance) and their goodness-of-fit, measured by
the Bayesian Information Criterion (BIC). Our objective is to make tools available for the statistical
analysis of glycan HILIC data, which allows the three models to be fitted and a clear comparison
made between them.

3.1 The Dirichlet Model

The Dirichlet probability density function for a vector of compositional components x = (x1, x2, . . . , xp) "
Sp, such that xl # 0 for l = 1, 2, . . . , p and

" p
l=1 xl = 1 is written

f(x;w) =
1

B(w)

p#

l=1

x! l " 1
l

where w = (ω1, ω2, . . . ,ωp) " Rp, such that ωi > 0 for i = 1, 2, . . . , p and ω# =
" p

l=1 ωl , is the
Dirichlet parameter vector. B(w) is the multinomial beta function defined as

B(w) =

$ p
l= 1 Γ(ωl)

Γ(ω#)

The Dirichlet distribution may be derived from a set of independent gamma random variables with
the same scale parameter. Given a vector of p independently distributed Gamma random variables
Y = (Y1, Y2, . . . , Yp), each with scale parameter θ and with shape parameters (ω1, ω2, . . . ,ωp), re-
spectively, the Dirichlet distribution is directly recoverable through the change of variables X =
Y/

" p
i =1 Yi . The transformed variables X are said to follow a Dirichlet distribution with parameters

(ω1, ω2, . . . ,ωp). This property gives the Dirichlet distribution a strong implied independence struc-
ture, making this model generally incapable of capturing the true variance structure of a set of real
data. This said, the Dirichlet distribution also has some very elegant properties, such as the following
agglommeration property: If

(x1, x2, . . . , xp) $ Dir(ω1, ω2, . . . ,ωp)

then we may join any pair of these variables xi and xj and easily derive their new distribution as

(x1, . . . , (xi + xj ), . . . , xp) $ Dir(ω1, . . . , (ωi + ωj ), . . . ,ωp)

This may be useful for the glycan HILIC data. For example, the combined relative areas of particular
peaks could be of interest as a disease marker, rather than, or as well as, the individual relative areas.
This property is also very useful in the derivation of the Nested Dirichlet model outlined in Section
3.2.

3.1.1 Fitting a Dirichlet Distribution

To estimate the parameters for the distribution, we use the fixed point iteration method outlined by
Minka (2000) to numerically maximize the log likelihood function. (Huang, 2005) compares four
methods of estimating Dirichlet distributions and concludes that the fixed point iteration was the only
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one of the four that had held the inequality ωl > 0 for all l, without having to place a bound on the
objective function.

To carry out the fixed point iteration, we begin with an initial guess for w and optimize the
log liklihood with respect to w, iterating over the following steps for iteration t = 1, 2, . . . until
convergence

¥ Find a function llower(w
t |X) that places a lower bound on the log likelihood, l(wt |X) which

is tight at the current estimate wt " 1 (a fixed quantity).

¥ Maximize the lower bound llower(w
t |X) with respect to wt to update the parameter estimates.

This method ensures that the log likelihood increases at each step and reaches a maximum when
the parameters converge.

Starting values for approximating MLEs for the Dirichlet

We use a variation on the Method of Moments, suggested by Ronning (1989), to find starting values
for the MLE approximation. The first and second moments of the Dirichlet distribution are:

E[Xk ] =
ωk

ω#
and E[X2

k ] = E[Xk ]
1 + ωk

1 + ω#

and then variance of the Dirichlet may be written

Var[Xk ] =
E[Xk ](1 ! E[Xk ])

1 + ω#

Re-arranging the above equation gives an expression for the sum of the parameters, in terms of
the expectation and variance of the Dirichlet, which we estimate from our data.

ω# =
E[Xk ](1 ! E[Xk ])

Var[Xk ]
! 1

However, rather than using just a single compositional variable Xk to estimate this sum, Ronning
(1989) suggests that we average this quantity over (p ! 1) variables, to give a more reliable estimate.
Hence, the initialization we use for the fixed point iteration is

log %ω# =
1

p ! 1

p" 1!

k=1

log

&
E[Xk ](1 ! E[Xk ])

Var[Xk ]
! 1

'

We then calculate an initial parameter estimate for each variable, using its expectation

%ωk = %ω#E[Xk ]

.
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A Fixed Point Iteration to optimze MLEs for the Dirichlet

Given our starting values for w, we numerically maximize the Dirichlet likelihood function updating
our parameters through iteration t = 1, 2, . . . until convergence of the model log likelihood. We
describe the fixed point iteration method in detail in Section A. The parameter update at iteration t is

ωt
k = Ψ" 1

(

Ψ(
p!

l=1

ωt " 1
l ) +

1

N

n!

i =1

log xik

)

Note that this update involves inverting the digamma function, which must also be approxi-
mated numerically. We use Newton’s Method for the approximation. Letting s = Ψ(

" p
l=1 ωt " 1

l ) +
1
N

" n
i =1 log xik , we initialize the inverse digamma function using the approximation

ωinit
k = Ψ" 1(s) %

*
exp(s) + 0.5 if s # ! 2.22;
! 1

s+ " if s < ! 2.22

and iterate over

ωnew
k = ωold

k !
Ψ(ωold

k ) ! s

Ψ$(ωold
k )

until convergence.

3.2 The Nested Dirichlet Model

An extension of the Dirichlet distribution is the more flexible Nested Dirichlet model. This model
was introduced in Null (2008) and Null (2009). The latter applies the Nested Dirichlet to model base
player abiility. It is used as a conjugate prior for multinomial data, gathered on fourteen possible
outcomes from a plate appearance. This results in a Nested Dirichlet posterior distribution for player
ability.

The Nested Dirichlet distribution extends the Dirichlet distribution by arranging the variables
into a tree structure. The original compositional variables are leaves in the tree and we introduce k
new variables, or nesting variables, which are the internal nodes in the tree. Each nesting variable
is evaluated as the sum of variables nested directly underneath. We fit this model directly to our
compositional data sets and use it for classification of samples. The structure of the model is outlined
further below.

Some Notation for the Nested Dirichlet Distribution

¥ p: the number of ”original” variables (which are the leaves in the nesting tree)

¥ k: the number of nesting variables

¥ xi such that i & p is the ith variable in the original compositional vector, which has a corre-
sponding Nested Dirichlet parameter ωi

¥ Ij = { i : xi is nested under xp+ j ; j = 1, 2, . . . , k} , the set of indices for variables in nest j.

¥ xp+ j is the jth nesting variable, which has a corresponding parameter ωp+ j
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¥ Wj = { ωl : l " Ij } represents the set of Nested Dirichlet parameters for variables in the jth
nest

¥ W#
j =

"
l%I j

ωl the sum of parameters of variables in the jth nest

The density of the Nested Dirichlet distribution is derived from the product of the k + 1 distribu-
tions of each nest and results in the pdf

f(x; ω ) =

$ p+ k
l=1 x! l " 1

l
$ k

s=0 B(Ws)
$ k

j =1 x
W!

j " 1
p+ j

The probability density function for the Nested Dirichlet may be derived from a product of the
Dirichlet distributions contained within the nests, as shown in appendix B

3.2.1 Fitting a Nested Dirichlet Distribution

For p variables, there are pp" 2 possible nesting trees. Therefore, for large p, it would be computa-
tionally inefficient to search through all possible solutions. We use a heuristic search to find a ’good’
nesting tree, by optimizing the BIC (Bayesian Information Criterion) defined in Section 3.4. The
following forwards-searching algorithm seems to give good results:

1. Decide on a value for the maximum number of iterations (MAX ITER) and maximum number
of successive rejections (MAX REJ)

2. Begin with a random initialzation of the nesting tree

3. At each iteration, propose one of the following moves:

(a) CREATE Create a new nest by joining two variables

(b) ADD Add variable i to an already existing nest j (if i and j are in the same nest)

(c) JOIN Join two existing nests i and j (if i and j are in the same nest)

(d) BREAK Propose to remove a subset of variables from an existing nest

4. Accept the proposed move if it increases the model BIC

5. Iterate over steps 2 and 3 until MAX ITER iterations are carried out or MAX REJ proposals
are successively rejected

We run this algorithm over several initializations and choose the final nesting tree which has the
largest BIC.

We apply this forwards search to the data sets outlined in and the results are shown in 4. For each
data set, the algorithm was run over each of 100 random initializations of the nesting tree. We defined
the algorithm as having converged if either

1. a maximum of 150 (MAX ITER) iterations was reached.

2. 50 (MAX REJ) successive proposed moves were rejected.

sec:dataoutline
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Parameter Estimation for the Nested Dirichlet

The distribution of each nest in the Nested Dirichlet model, conditional on its sum (i.e. conditional
on the variable it is nested under), is independent of the variables outside that nest. Hence, to estimate
the parameters for the Nested Dirichlet, we find use the method outlined in Section 3.1.1 to estimate
the Dirichlet parameters for each nest. Thus, each node in our nesting tree will have a maximum
likelihood parameter estimate, which is also its MLE for the Nested Dirichlet model.

3.3 The Logistic Normal Model

A class of distributions have been developed for modeling data on the simplex, derived from the
normal distribution. Aitchison and Shen (1980) outline some properties and applications of this class
of distributions. A compositional vector x with p components, such that the components sum to one,
lies in the simplex space defined by

Sd = { (x1, x2, . . . , xd) " Rd
+ ; x1 # 0, . . . , xd # 0; x1 + x2 + . . . + xd & 1}

where d = p ! 1 and Rd
+ is the positive orthant of Rd space. Note that xp is determined by the first d

components, since xp = 1 ! x1 ! . . . ! xd. Then any compositional vector x " Sd may be transformed
to Rd under the additive log ratio transformation

yi = log(xi /xp); i = 1, 2, . . . , d

Conversely, any vector which lies in Rd may be transformed to Sd by the additive logistic transforma-
tion

xi = ey
i /(1 +

d!

j =1

eyj ); i = 1, 2, . . . , d

If y follows a multivariate normal distribution, MV N(µ, Σ), on Rd, then it follows that x follows
a Logistic Normal distribution, L (µ , Σ), on Sd. Thus the pdf of x may be expressed as:

f(x) = f(x1, x2, . . . , xd+1 ) = f(x1, x2, . . . , xd) = f(y)|Jx& y| = f(y)
1

$ p
j =1 xj

= (2π)" d/ 2|Σ |" 1/ 2

(
p#

i =1

xi

) " 1

exp

*
!

1

2
(y ! µ )T Σ" 1(y ! µ )

+
(x " Sd,y " Rd)

Aitchison (2003) outlines the advantages of using this distribution to model compositional data,
over the Dirichlet class of distributions. This distribution can model both dependent and independent
structures in the data and also, test hypothesis on independence. Modeling the data as Logistic Normal
provides access to the well-developed methods of statistical analysis for the normal distribution, such
as estimation and hypothesis testing of the model parameters, tests of normality and multivariate
analysis.

3.3.1 Fitting a Logistic Normal Model

We apply the additive log ratio transform to the compositional data, which transforms it to Rd space.
We then fit a multivariate normal distribution to the transformed data.

The maximum likelihood parameter estimates for the multivariate normal distribution MV N(µ, Σ),
given observed data y1,y2, . . . ,yn are given by

µ̂ =
1

n

n!

i =1

yi
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and

Σ̂ =
1

n

n!

i =1

(yi ! µ̂ )(yi ! µ̂ )�

We use the mclust library, designed by Fraley and Raftery (2006), within the R Development
Core Team (2005) software package to calculate these maximum likelihood estimates for each group
in the data. We make the assumption of homogeneity of covariance across all groups. The estimated
parameters are then used as the maximum likelihood parameter estimates for the Logistic Normal
distribution fitted to the compositional data.

3.4 Model Comparison

To compare the fit of the Dirichlet, Nested Dirichlet and Logistic Normal models, we use a variant
of the BIC proposed by Steele (2002), which is an adjustment to that proposed by Schwarz (1978).
The latter form of the BIC penalizes each parameter in the model by log n, where n is the overall
sample size. This form assumes that all observations contribute to each parameter estimate in the
model. The adjusted BIC proposed by Steele (2002) is preferable for models in which some or all of
the parameters are group dependent:

BICadj = 2LL ! k log n !
G!

g=1

kg log ng

= 2LL ! ktot log n !
G!

g=1

kg log
ng

n

= BIC !
G!

g=1

kg log
ng

n

where ng is the number of observations in group g, k is the number of parameters estimated using the
whole data set, kg is the number of parameters estimated solely from data from group g and ktot is
the total number of parameters in the model.

For the both the Dirichlet and the Nested Dirichlet models, all parameters are estimated indepen-
dently in each group. For the Dirichlet, we estimate p parameters for each group and for the Nested
Dirichlet we estimate q = p + k for each group. Therefore, for these models, the adjusted BIC is:

BICDir = 2LL !
G!

g=1

kg log ng

= 2
G!

g=1

LLg !
G!

g=1

kg log ng

=
G!

g=1

(2LLg ! kg log ng) =
G!

g=1

BICg

which is simply the sum of the BICs for each group.
For the Logistic Normal model, the parameters to be estimated are:
Therefore, for the Logistic Normal model, we have k = (p)( p" 1)

2 and
" G

g=1 kg = G(p ! 1) and the
BIC is:
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Parameter Number of Parameters Group dependent
µg (p ! 1) = d Yes
Σ (p)( p" 1)

2 = d(d+1)
2 No

BICLN = 2LL !
&

p2 ! p

2
+ G(p ! 1)

'
log n ! (p ! 1)

G!

g=1

log
, ng

n

-

Thus, for the Logistic Normal model, we adjust the BIC by subtracting (p ! 1)
" G

g=1 log (ng/n)
from the ordinary BIC.

3.5 ClassiÞcation of Samples

Suppose we fit model M to a dataset with G groups, estimating a parameter set θg for each group,
we may develop a rule for classification of observation xi using the posterior probabilities of the
observation belonging to each group, derived from Bayes rule. This posterior is expressed as:

p(zig = 1|xi ) =
τgp(xi |θg)

" G
j =1 τj p(xi |θj )

where

¥ zig =

*
1 if xi belongs to group g
0 otherwise

¥ τg = p(zig = 1) the prior probability of belonging to group g

To test this classification rule on our data, we use cross-validation of our samples to remove the
bias which would result from using the same samples to both develop and test the classification rule.
Thus, we remove observation xi from the sample, estimate model parameters θg for each group g, then
calculate the posterior probabilities of xi belonging to each group. We repeat this process for each
observation in the sample and use the resulting classifications to test the model’s classification ability.
In our models, we assume there is no prior belief about group memberships, so we let τg = 1/G
for g = 1, 2, . . . , G. Whilst it is possible to estimate τg, we do not do this here because the group
proportions in the training data are not representative of the group proportions in the population of
interest.

4 Results

We fit the Dirichlet, Nested Dirichlet and Logistic Normal models to the two glycan HILIC data
sets described in Section 2. The model fitting procedures are outlined in Section 3. For each data
set, we classify observations into the predefined groups using cross-validation for each model. We
quantify the agreement of the classifications with the true group memberships using two measures
- the proportion of observations on the diagonal of the classification contingency table, as well the
Rand Index proposed by Rand (1971). We also measure the model goodness of fit using the adjusted
BIC, as discussed in Section 3.4. The search algorithm used to fit the nesting trees for the Nested
Dirichlet models is detailed in Section 3.2.1.
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4.1 A Two Group Model for the Lung Cancer Data

In this section, we apply our compositional data methods to the lung cancer data described in Section
2.1. Due to the apparently poor differentiation between the stages of lung cancer, we merge all lung
cancer stages into a single group, which results in the data set being divided into 100 cancer cases and
84 control cases. We fit the Nested Dirichlet model for the set of 17 compositional variables.

Table 3: Cross-validated classifcation results for (a) the Dirichlet (b) the Nested Dirichlet and (c) the Logistic Normal
models fitted to the lung cancer data set

Cancer Control
Cancer 63 37
Control 21 63

(a)

Cancer Control
Cancer 72 28
Control 15 69

(b)

Cancer Control
Cancer 81 19
Control 8 76

(c)

The nesting tree for the Nested Dirichlet data is estimated using all 184 observations (as opposed
to allowing the nesting tree to differ across groups). The estimated tree structure is shown in Figure
3. This tree structure is constrained to be the same across groups and we estimate Nested Dirichlet
parameters within each group. We also fit the Dirichlet and Logistic Normal models to the data and
compare the three models. The contingency tables for the classifications are displayed in Table 3,
along with measures of performance for the classifications resulting from each model, in Table 4.
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Figure 3: Nested Dirichlet nesting tree for the lung cancer data

The Nested Dirichlet model outperforms the Dirichlet model in terms of classification perfor-
mance. However, the Logistic Normal model gives the best differentiation between control and cancer
groups, of the three models. It has a misclassification rate of just under 15%.

Table 4: Classification diagnostics for the lung cancer data

Dirichlet Nested Dirichlet Logistic Normal
Classification Rate 0. 68 0.77 0.85

Rand Index 0.57 0.64 0.75

The goodness of fit statistics are presented in Table 5. This table provides the adjusted BIC for
each model. The BIC values are reflective of the classification results, as the Logistic Normal model
has the largest BIC, whilst the Dirichlet has the smallest.
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Table 5: Adjusted BIC for each model fitted to the Lung Cancer Data

BICadj
Dirichlet 21783.77

Nested Dirichlet 23758.09
Logistic Normal 25155.66
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Figure 4: Nested Dirichlet nesting tree for the ovarian cancer data (control/cancer groups)

4.2 A Two Group Model for the Ovarian Cancer Data

We apply our compositional models to the ovarian cancer data outlined in Section 2.2. We combine
cases in the Control and Benign groups and also cases with ovarian cancer (ovarian cancer + other
gynecological cancers metastasizing to the ovaries). The models are applied to these two groups only.
Our motivation for this is to test the ability of the models to differentiate between those with and
without ovarian cancer. Group membership information is shown in Table 6.

Table 6: Data included in the control/cancer models for the ovarian cancer data set

Disease Status Cases
Control/Benign (CB) 15

Ovarian Cancer/ Other gynecological cancers metastasizing to the ovaries (OC) 18

Table 7: Cross-validated classifcation results for (a) the Dirichlet (b) the Nested Dirichlet and (c) the Logistic Normal
models fitted to the ovarian cancer data set (control/cancer groups)

OC CB
OC 12 6
CB 5 10

(a)

OC CB
OC 14 4
CB 4 11

(b)

OC CB
OC 11 7
CB 2 13

(c)

We fit the Nested Dirichlet distribution to the data, with the optimized nesting tree as shown in
Figure 4. We also fit the Dirichlet and Logistic Normal models to the data. For each model, we classify
observations using cross-validated classification methods. The agreement of these classifications with
the true group memberships are detailed in Table 7. Measures of the classification performance may
be found in Table 8.

For these data, the Nested Dirichlet is the best of the three models, in terms of classification
performance. It has a misclassification rate of approximately 24%. It is closely followed by the
Logistic Normal model, with a misclassification rate of just over 27%.

Table 9 shows the goodness-of-fit measures calculated for our fitted models. Here, the BIC for the
Nested Dirichlet model is much larger than that for the Logistic Normal, which has a negative BIC.
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Table 8: Classification diagnostics for the ovarian cancer data set (control/cancer groups)

Dirichlet Nested Dirichlet Logistic Normal
Classification Rate 0.67 0.76 0.73

Rand Index 0.54 0.62 0.59

Table 9: Adjusted BIC for each model fitted to the Ovarian Cancer Data (control/cancer groups)

BICadj
Dirichlet 81856.33

Nested Dirichlet 1486944.00
Logistic Normal -1835.56

Thus, it appear that for these data, the Nested Dirichlet model is preferable to both the Dirichlet and
the Logistic Normal, with regard to both goodness of fit and classification performance.

4.3 A Three Group Model for the Ovarian Cancer Data

We also define a three group data structure for the ovarian cancer data introduced in 2.2. We omit
the borderline group and the group with other gynecological cancers metastasizing to the ovaries, as
these groups are not mutually exclusive from other groups. We also omit the control and PPC groups,
due to their small sample sizes. This divides our data into three groups, as outlined in Table 10 .
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Figure 5: Nested Dirichlet nesting tree for the ovarian cancer data (3 groups)

We fit a Nested Dirichlet nesting tree to the three groups in this data set and the estimated tree
structure is shown in Figure 5. This nesting tree has 17 nests, thus the fitted Nested Dirichlet distri-
bution is the product of 17 Dirichlet distributions.
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Table 10: Re-grouping of the Ovarian Cancer Data set into three groups

Disease Status Cases
Control OMITTED
Benign 12

Borderline OMITTED
Ovarian Cancer 13

Primary peritoneal carcinomatosis (PPC) OMITTED
Other gynecological cancers metastasizing to ovary (Other MTO) OMITTED

Other gynecological cancers (Other) 21

In addition to the Nested Dirichlet model, we also fit the Dirichlet and Logistic Normal models
to these data. For each model, we compute cross validated posterior group probabilities for each
observation and classify the observation into the group with highest probability. The classification
results are given in Table 11.

Table 11: Cross-validated classifcation results for (a) the Dirichlet (b) the Nested Dirichlet and (c) the Logistic Normal
models fitted to the ovarian cancer data set (3 groups)

Benign Other Ovarian Cancer
Benign 5 6 1

Other 8 11 2
Ovarian Cancer 4 5 4

(a)

Benign Other Ovarian Cancer
Benign 5 6 1

Other 2 13 6
Ovarian Cancer 1 6 6

(b)

Benign Other Ovarian Cancer
Benign 5 6 1

Other 6 10 5
Ovarian Cancer 1 6 6

(c)

None of the three models perform especially well, suggesting that there is perhaps not enough
group information in the data. The Nested Dirichlet model performs better than the Dirichlet and
the Logistic Normal models, in terms of both classification performance and goodness-of-fit. The
assessment of classification performance for each model is given in Table 12.
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Table 12: Classification diagnostics for the ovarian cancer data set (3 groups)

Dirichlet Nested Dirichlet Logistic Normal
Classification Rate 0.43 0.52 0.46

Rand Index 0.54 0.55 0.55

Table 13 provides the BIC values for each model. The results are similar to those for the two
group model. The Nested Dirichlet has the largest BIC and the Logistic Normal has the smallest.

Table 13: Adjusted BIC for each model fitted to the Ovarian Cancer Data (3 groups)

BICadj
Dirichlet 139986.20

Nested Dirichlet 1527874.00
Logistic Normal -1761.13

5 Discussion

This paper introduces the application of compositional data methods for the analysis of N -glycan
HILIC data. The compositional models give good classification performance and their suitability can
be compared using the BIC, which generally appears to select models with high classification rates.
We hope to develop an R package (R Development Core Team, 2005) for use with glycan HILIC data,
which can be used to fit these models and compare their performance.

5.1 Comparison of the Dirichlet model with the Nested Dirichlet model

The Nested Dirichlet distribution gives a much improved classification performance over the ordinary
Dirichlet distribution. This is the case for all models fitted here. For those who wish to retain the
convenience of modelling compositional data in the Simplex space, without losing the ease of model
interpretion which this approach affords, the Nested Dirichlet distribution bears significant advantage
over the Dirichlet distribution. It also appears to provide a better fit for the data, indicated by the
larger BICs we observed for these models.

5.2 Comparison of the Nested Dirichlet with the Logistic Normal model

For modelling the Lung Cancer data set, the Logistic Normal model proves superior to the Nested
Dirichlet model in terms of both classification performance and goodness-of-fit. However, the con-
trary is the case for the Ovarian Cancer data, for which the Nested Dirichlet model provides the best
fit for the data. From this, we conclude that choice of model for compositional data should be made
by examining the possibilities and selecting the model which seems to give the best results.

5.3 Computational EfÞciency

Searching for the Nested Dirichlet tree structure proved to be cumbersome. Null (2008) suggests
looking at all possible nesting trees and choosing that with the maximum likelihood. For p composi-
tional variables, there are pp" 2 arrangements of nesting tree possible. Since our data typically consists
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Figure 6: Recorded CPU time taken to fit Nested Dirichlet distributions, with varying parameters p, k, N and G

of p = 17 or p = 24, this is not computationally feasible. Therefore, we are required to employ some
heuristic search strategies for identifying the correct tree. We tried three different search methods
- a greedy search, simulated annealling and the forwards search method described in Section 3.2.1.
The latter seemed to give the best result in general, that is the tree with largest BIC, so we adopt
this approach for tree fitting. However, for the Nested Dirichlet distribution, the model fitting time
increases approximately linearly with the number of nests in the tree, as would be expected (for every
nest added, an additional Dirichlet model is required). This means that as the tree gets more complex,
the search algorithm becomes very slow. Thus, with regard to efficiency, both the Dirichlet model and
the Logistic Normal model are much faster to estimate than the Nested Dirichlet distribution.
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A A Fixed Point Iteration for the Dirichlet distribution

Given a starting approximation for the parameters, w, we use a fixed point iteration to numerically
maximize the log likelihood of the Dirichlet distribution. If X is an N ' p matrix of Dirichlet data
and xi is the ith row of X, the log likelihood of the Dirichlet distribution is written

l(w;X) = log
N#

i =1

f(xi |ω)

=
N!

i =1

log f(xi |ω)

=
N!

i =1

log

(
1

B(w)

p#

l=1

x! l " 1
il

)

=
N!

i =1

log Γ(ω#) !
N!

i =1

p!

l=1

log Γ(ωl) +
N!

i =1

p!

l=1

(ωl ! 1) log xil

= N log Γ(ω#) ! N
p!

l=1

log Γ(ωl) +
N!

i =1

p!

l=1

(ωl ! 1) log xil

A lower bound on the gamma function is

Γ(x) # Γ(x̂) exp { (x ! x̂)Ψ(x̂)}

where ψ(s) is the digamma function, the log derivative of Γ(s). At iteration t, letting x = Γ(
" p

l=1 ωt
l )

and x̂ = Γ(
" p

l=1 ωt " 1
l ), allows us to set the lower bound

Γ(
p!

l=1

ωt
l ) # Γ(

p!

l=1

ωt " 1
l ) exp

.(
p!

l=1

ωt
l !

p!

l=1

ωt " 1
l

)

Ψ(
p!

l=1

ωt " 1
l )

/

(1)

We use this directly to place a lower bound on the log likelihood at iteration t, given wt " 1, the
parameter update at iteration t ! 1.

l(wt ;X) # N log

0

Γ(
p!

l=1

ωt " 1
l ) exp

.(
p!

l=1

ωt
l !

p!

l=1

ωt " 1
l

)

Ψ(
p!

l=1

ωt " 1
l )

/1

! N
p!

l=1

log Γ(ωnew
l ) +

N!

i =1

p!

l=1

(ωnew
l ! 1) log xil

= N log Γ(
p!

l=1

ωt " 1
l ) + N(

p!

l=1

ωt
l )Ψ(

p!

l=1

ωt " 1
l ) ! N(
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l=1

ωt " 1
l )Ψ(

p!

l=1

ωt " 1
l )

! N
p!

l=1

log Γ(ωt
l ) +

N!

i =1

p!

l=1

(ωt
l ! 1) log xil

= llower(w
t ;X)

This lower bound can be maximized iteratively over t = 1, 2, . . ., until w converges, by differen-
tiating with respect to each ωt

k ; k = 1, 2, . . . , p at iteration t, and setting equal to zero.
Note that since ω# = g(ωm) and d! !

d! m
= 1,
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∂ log Γ(ω#)

∂ωm
=

∂ log Γ(ω#)

∂ω#

∂ω#

∂ωm
= ψ(ω#).

and then the gradient of the lower bound on the log likelihood, with respect to ωt
k , is written

∂llower(w
t ;X)

∂ωk
= NΨ(

" p
l=1 ωt " 1

l ) ! NΨ(ωt
k) +

" n
i =1 log xik = 0

(since wt " 1 is constant with respect to wt ). Rearranging the above in terms of the update at iteration
t,

ωt
k = Ψ" 1

(

Ψ(
p!

l=1

ωt " 1
l ) +

1

N

n!

i =1

log xik

)

This algorithm is continued until all parameters converge. (Our convergence criteria is that the
maximum difference argmax

k
|ωt " 1

k ! ωt
k | & 0.00001 ).

The inversion of the digamma function is carried out using Newton’s Method. Let s = Ψ(
" p

l=1 ωt " 1
l )+

1
N

" n
i =1 log xik , then to solve ωt

k ! Ψ" 1(s) = 0 for wt, iterate over

ωnew
k = ωold

k !
Ψ(ωold

k ) ! s

Ψ$(ωold
k )

Initial estimates for the algorithm above are given by

ωinit
k = Ψ" 1(s) %

*
exp(s) + 0.5 if s # ! 2.22;
! 1

s+ " if s < ! 2.22

which comes from the approximation to the digamma function

Ψ(x) %
*

log(x ! 1
2) if x # 0.6;

! 1
x ! 1

" if x < 0.6

B Derivation of the Nested Dirichlet distribution

The probability density function for the Nested Dirichlet may be derived directly from the density
function of the Dirichlet distribution. Before we derive this density function, some further notation
for the Nested Dirichlet is required.

Some Notation for the Nested Dirichlet Distribution

¥ xl ( xp+ j denotes that xl nested under the jth nesting variable.

¥ Ij = { i : xi ( xp+ j ; j = 1, 2, . . . , k} the indices of variables in nest j. I0 is the set of indices
for the unnested variables and X0 denotes the set of unnested variables.

¥ χ 0 is the set of unnested variables
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¥ χ j = { xl : xl ( xp+ j } the set of variables nested under the jth nesting

¥ χ̃ j = C(χ j ) the variables nested under xp+ j , constrained to be compositional by the closure
operator

¥ Wj = { ωl : l " Ij } represents the set of Nested Dirichlet parameters for variables in the jth
nest

¥ W#
j =

"
l%I j

ωl the sum of parameters of variables in the jth nest

¥ |χ j | is the number of variables nested under the jth nesting variable.

Then for a Nested Dirichlet distribution with formed from a composition of p parts and with k
nesting variables, we may express the probability density function of the Nested Dirichlet function as
a product of the Dirichlet density functions contained within it.

Since xp+1 , . . . , xp+ k are completely determined by x1, x2, . . . , xn , we can write

f(x1, x2, . . . , xn+ k) = f(x1, x2, . . . , xn)f(xn+1 , . . . , xn+ k |x1, x2, . . . , xn) = f(x1, x2, . . . , xn)

Expressing this in terms of the sets of variables in each nest, gives us

f(x1, x2, . . . , xn) = f(χ 0, χ 1, χ 2, . . . ,χ k)

= f(χ 0)f(χ 1, χ 2, . . . ,χ k |χ 0)

= f(χ 0)f(χ 1|χ 0)f(χ 2|χ 0, χ 1) . . . f(χ k |χ 0, χ , . . . , χ k" 1)

= f(χ 0)f(χ 1|xp+1 )f(χ 2|xp+2 ) . . . f(χ k |xp+ k)

Clearly, the unnested variables are Dirichlet distributed

χ 0 $ Dir(W0)

while the conditional distributions for each nest may be derived from the distribution of their
compositional form.

χ̃ j $ Dir(Wj )

and since χ j = χ̃ j xp+ j

f(χ j |xp+ j ) = f(χ̃ j xp+ j |xp+ j )|Jχ j& χ̃ j
|

= f(χ̃ j )

&
1

xp+ j

' |χ j |" 1

where |Jχ j& χ̃ j
| is the determinant of the Jacobian matrix resulting from the change of variable

rule, outlined in Appendix ??.
For any xl " χ j and any ym " χ̃ j ,

∂ym

∂xl
=

∂(xm/xp+ j )

∂xl
=

* 1
xp+ j

if i = j

0 otherwise
Then
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1
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Note that the dimension of the Jacobian is one less than the size of χ j , since a Dirichlet distribu-
tion with d variables is fully determined by any subset of size d ! 1, as the pth variable degenerate.
The Nested Dirichlet probability density function may easily be derived from the above.

f(x;w) = f(χ 0)f(χ̃ 1)f(χ̃ 2) . . . f(χ̃ k)
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Thus, the density of the Nested Dirichlet distribution is derived from the product of the k + 1
distributions of each nest and results in the pdf

f(x; ω ) =

$ p+ k
l=1 x! l " 1

l
$ k

s=0 B(Ws)
$ k

j =1 x
W!

j " 1
p+ j

Each variable l in the Nested Dirichlet model has a corresponding parameter wl , which is identical
to its Dirichlet parameter, in the distribution of its respective nest.

C Glycan Analysis

This section contains some brief information on the glycan data used in our statistical analysis. For
each data set, we have identified the glycans which are predominantly found under each peak in the
chromatograms. Details of these glycans are given for both the lung cancer data (see table 14) and
the ovarian cancer data set (see table 15. Information on the nomenclature used for the glycans in this
table is described in Section C.1. Further infomation may be found in Royle et al. (2008) and also on
the website for the Dublin-Oxford Glycobiology group. In Section C.2, we provide a short summary
on the methods used to release and separate the glycan structures from the serum samples from which
these data were gathered.

C.1 Structural symbols for the N -glycans and their linkages and abbrevia-
tions used.

Briefly, all N -glycans have two core N-Acetylglucosamines (GlcNAc) and a trimannosyl core; F at the
start of the abbreviation indicates a core fucose linked α 1- 6 to the core GlcNAc; A[y]a represents the
number of antenna (GlcNAc) on the trimannosyl core linked to the α 1-y mannose arm; B, bisecting
GlcNAc linked β 1-4 to core mannose; Fb after Aa represents the number b of fucose linked α 1-3 to
antenna GlcNAc; Gc represents the number c of galactose linked β1 ! 4 on antenna; S(z)d represents
the number d of sialic acids linked α 2-z to the galactose.

http://glycobase.nibrt.ie:8080/database/documents/abbreviations.pdf
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C.2 N-Glycan analysis

Release and puriÞcation ofN -glycans from human serum

N -glycans were released from serum using the high-through-put method described by Royle et al.
(2008). Briefly, serum samples were reduced and alkylated in 96-well plates, and then they were
immobilized in SDS-gel blocks and were washed. The N-linked glycans were released using peptide
N -glycanase F (1000 U/mL; EC 3.5.1.52) as described previously (Bigge et al., 1995; Kuster et al.,
1997).

Fluorescent labeling of the reducing terminus ofN -glycans

Glycans were fluorescently labeled with 2-aminobenzamide (2AB) by reductive amination (Bigge
et al., 1995) (LudgerTag 2-AB labeling kit LudgerLtd., Abingdon, UK).

HILIC

HILIC was performed using a TSK-Gel Amide-80 4.6 x 250 mm column (Anachem, Luton, Bed-
fordshire, UK) on a 2695 Alliance separation module (Waters,Milford,MA) equipped with a Waters
temperature control module and a Waters 2475 fluorescence detector. Solvent A was 50 mM formic
acid which was adjusted to pH 4.4 with ammonia solution. Solvent B was acetonitrile. The column
temperature was set to 30 ! C. Gradient conditions were as follows: 60 min method (lung cancer co-
hort, Arnold et al. 2008)- a linear gradient of 35 to 47% solvent A over 48 min at a flow rate of 0.8
mL/min, followed by 1min at 47 to 100% A and 4min at 100% A, returning to 35% A over 1 min and
then finishing with 35% A for 6 min; 120 min method (ovarian cancer cohort, Saldova et al. 2007) -
a linear gradient of 26-52% A, over 104 min. at a flow rate of 0.4 mL/min. followed by 1 min. at
52-100% A and 6 min. at 100% A at 1 ml/min., returning to 26% A over 1 min. and then finishing
with 26% A for 8 min. (Royle et al., 2008). Samples were injected in 80% acetonitrile (lung cancer
cohort) or 74% acetonitryle (ovarian cancer cohort) as described by Saldova et al. (2007). Fluores-
cence was measured at 420 nm with excitation at 330 nm. The system was calibrated with a dextran
ladder, as described previously (Saldova et al., 2007).

Table 14: Predominant glycans found under each peak for the Lung Cancer data set. The glycans in brackets are not
major, but were identified from a 2 hour HILIC.

Peak Predominant Glycans Peak Predominant Glycans
1 A1 10 A2G2S2
2 A2 11 FA2G2S2, FA2BG2S2
3 FA2, (A1G1, A2B) 12 A3G3S2, A3BG3S2, A2F1G2S2
4 FA2B, A2G1, M5 13 A3G3S3
5 FA2G1, FA2BG1 14 A3F1G3S3
6 A2G2, A2BG2, A2G1S1 15 A4G4S4
7 FA2G2, FA2BG2, FA2G1S1 16 A4F1G4S4
8 A2G2S1, (A2BG2S1) 17 A4G4LacS4, A4F2G3S4
9 FA2G2S1, FA2BG2S1, A3G3
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Table 15: Predominant glycans found under each peak for the Ovarian Cancer data set.

Peak Predominant Glycans Peak Predominant Glycans
1 A2B, A1G1 13 A2BG2S1
2 FA2 14 FA2G2S1
3 FA2B, A2[6]G1, M5 15 FA2BG2S1, A3G3
4 A2[3]G1 16 A2G2S2
5 FA2[6]G1 17 FA2G2S2
6 FA2[3]G1, FA2[6]BG1 18 FA2BG2S2
7 FA2[3]BG1 19 A3G2S2, A2F1G2S2
8 A2G2, A2[6]G1S1 20 A3BG3S2
9 A2BG2,A2[3]G1S1 21 A3G3S3

10 FA2G2,FA2[6]G1S1 22 A3F1G3S3
11 FA2BG2,FA2[3]G1S1 23 A4G4S4
12 A2G2S1 24 A4F1G4S4, A4G4LacS4, A4F2G4S4
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