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Abstract
Bayes theorem (discrete case) is taken as a paradigm of information acquisition. As men-

tioned by Aitchison, Bayes formula can be identified with perturbation of a prior probability vector
and a discrete likelihood function, both vectors being compositional. Considering prior, poste-
rior and likelihood as elements of the simplex, a natural choice of distance between them is the
Aitchison distance. Other geometrical features can also be considered using the Aitchison geom-
etry. For instance, orthogonality in the simplex allows to think of orthogonal information, or the
perturbation-difference to think of opposite information. The Aitchison norm provides a size of
compositional vectors, and is thus a natural scalar measure of the information conveyed by the
likelihood or captured by a prior or a posterior. It is called evidence information, or e-information
for short.

In order to support such e-information theory some principles of e-information are discussed.
They essentially coincide with those of compositional data analysis. Also, a comparison of these
principles of e-information with the axiomatic Shannon-information theory is performed. Shannon-
information and developments thereof do not satisfy scale invariance and also violate subcomposi-
tional coherence. In general, Shannon-information theory follows the philosophy of amalgamation
when relating information given by an evidence-vector and some sub-vector, while the dimension
reduction for the proposed e-information corresponds to orthogonal projections in the simplex. The
result of this preliminary study is a set of properties of e-information that may constitute the basis
of an axiomatic theory. A synthetic example is used to motivate the ideas and the subsequent
discussion.

1 Introduction

Information theory was born in communication and coding theory (Shannon, 1948; Shannon and
Weaver, 1949). It was successfully applied soon to different scientific fields, specially to Statistics
(Kullback and Leibler, 1951; Kullback, 1997; Lindley, 1956). However, its application in the Bayesian
framework has revealed some drawbacks that deserve attention. One of them is the fact that infor-
mation provided by an experiment depends on the prior assumption.

The present contribution builds on two well known properties: (1) Bayes theorem (discrete case)
is considered a paradigm of information acquisition and (2) Bayes formula can be identified with per-
turbation (Aitchison, 1986). In fact, Bayes formula corresponds to perturbation of a prior probability
vector and a discrete likelihood function. Following the likelihood principle, proportional likelihood
functions are equivalent, an essential characteristics of compositions. An important consequence is
that the three ingredients of Bayes formula—prior, likelihood and posterior—can be represented in
the same space, i.e. the simplex. Moreover, they share its nature and characteristics. We call these
vectors evidence vectors, because they describe our evidence on a collection of events or how the
evidence changes after an experiment.

The fact, that the nature of probability distributions and likelihood functions is the same, is not
well recognized in mainstream information theory. Likelihood is not treated as a probability vector,
and Shannon information is only defined on prior and posterior distributions. As a consequence,
information theory tries to define divergence or distance measures between distributions, like e.g.
Kullback-Leibler divergence (Kullback, 1997). When considering prior, posterior and likelihood as
elements of the simplex, a natural choice of distance between them is the Aitchison distance. Other
geometrical features can also be considered using the Aitchison geometry. For instance, orthogonality
in the simplex allows us to think of orthogonal information, or the perturbation-difference to think of
opposite information. The Aitchison norm provides a size of information vectors, and is thus a natural
candidate for a scalar measure of the information conveyed by the likelihood or captured by a prior
or a posterior. It is called hereafter evidence information or e-information for short.
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In order to support such e-information theory, a discussion of principles of e-information is pre-
sented. They essentially coincide with those of compositional data analysis. Also, a comparison
of these principles of e-information with the axiomatic Shannon-information theory (Kinchin, 1957;
Ash, 1990; Rényi, 1966) is performed. Shannon-information and developments thereof satisfy neither
scale invariance nor subcompositional coherence, which constitute the basis of compositional analy-
sis. In general, Shannon-information theory follows the philosophy of amalgamation when relating
information given by an evidence-vector and some sub-vector (subcomposition), while the dimension
reduction suggested here for e-information corresponds to orthogonal projections in the simplex. The
result of this preliminary study is a set of properties of e-information that may constitute the basis of
an axiomatic theory.

2 Motivating example

Bayes formula is used to update the knowledge on the occurrence of a family of non-overlapping events
after some observation or experiment. This situation arises frequently because it is the paradigm of
information acquisition in any experiment resulting in a classification of the actual event.

To motivate the following sections, a synthetic example on inspection of buildings is used. Suppose
interest lies in the actual structural state of a building. The states are classified into three categories:
A1 service, A2 damaged, A3 ruin. To know the actual structural category of a building requires a
series of destructive and expensive experiments that would be good to avoid. For this purpose, two
types of non-destructive inspections have been designed,

1. a visual test, R, of fractures, displacements, and the like;

2. a dynamic test, Q, in which the building is vibrated and the response is measured with some
sensor.

Let R1, R2, R3 and Q1, Q2, Q3 be the possible outputs of the respective experiments. The two
experiments were calibrated on a number of buildings whose actual structural category is known.
The result of the calibration is typically described by the conditional probabilities P[Rj |Ai], P[Qj |Ai],
i = 1, 2, 3, j = 1, 2, 3. The two sets of conditional probabilities, describing the experiments, are
assumed known (Table 1).

Table 1: Likelihood for each possible output: probability of A1 service, A2 damage, A3 ruin conditional to the output.
Maximum likelihood of each column presented in boldface. Last row shows e-information (Aitchison norm)
associated with each evidence vector (likelihood).

R1 R2 R3

q q q sum
A1 0.8772 0.1206 0.0022 1
A2 0.0714 0.5000 0.4286 1
A3 0.0526 0.2105 0.7368 1

norm 2.1832 1.0133 4.5446

Q1 Q2 Q3

q q q sum
A1 0.8918 0.0952 0.0131 1
A2 0.8760 0.1239 0.0001 1
A3 0.1322 0.0809 0.7869 1

norm 1.7465 0.3040 6.8169

When an inspection of a building is planned, there is some previous knowledge about how the
building may be performing. It can be based on the location or area where it is, the year of construction,
or the typology of the structure. This knowledge can be described by a prior probability vector,
π = (π1, π2, π3), called prior evidence on the structural state of the building (Table 2). Once one of
the two available tests is carried out on the target building, an output is obtained, e.g. Rj as the result
of the visual test. Given Rj , Bayes formula updates the prior evidence π into the posterior evidence
p = (p1, p2, p3), where pi = P[Ai|Rj ]. It can be written

P[Ai|Rj ] = κ P[Rj |Ai] P [Ai] , κ−1 =
3∑

k=1

P[Rj |Ak] P [Ak] ,
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Table 2: Probabilities of A1 service, A2 damage, A3 ruin. Prior π; posterior p for each posible test output Ri, Qi,
i = 1, 2, 3. Maximum probability of each column presented in boldface. Last row shows e-information (Aitchison
norm) of each evidence vector.

R1 R2 R3

π p p p
A1 0.5500 0.9427 0.2676 0.0050
A2 0.3000 0.0419 0.6050 0.5350
A3 0.1500 0.0154 0.1274 0.4599

sum 1 1 1 1
norm 0.9194 3.0337 1.1022 3.7521

Q1 Q2 Q3

π p p p
A1 0.5500 0.6344 0.5149 0.0573
A2 0.3000 0.3399 0.3657 0.0001
A3 0.1500 0.0256 0.1194 0.9425

sum 1 1 1 1
norm 0.9194 2.4057 1.0808 6.4460

or equivalently pi = κqiπi, where qi = P[Rj |Ai]. In the latter expression, the reference to Rj has
been dropped because it is fixed once the output of the experiment is known. Table 2 shows posterior
evidence obtained by updating the prior π with each possible output of each of both experiments.

Consider now some questions about the performance of the tests:

(a) Given one of the available tests, which of the possible outputs provides more information?

(b) Given the output from the visual test, Rj , and from the dynamic test, Qk, which of the two
outputs is more informative?

(c) In order to deliver a diagnosis of the structural state of the building, a decision on A1, A2, A3

should be made. Assume that the output of a test is Rj . Independently of the cost-benefit of
such a decision, how reliable is the decision taken?

(d) Can we define an average information provided by a test before getting the output? Which of
the two tests is more informative?

The answer to question (a) requires a measure or size of the information provided by the likelihood
vectors q(Rj) = (P[Rj |A1],P[Rj |A2],P[Rj |A3]), j = 1, 2, 3, and the selection of the maximum one.
Similarly, question (b) calls for the quantitative comparison of the likelihood vectors q(Rj) and q(Qk),
now coming from different tests. Question (c) demands measuring the strength of evidence on the
decision to be taken, assuming that the maximum posterior probability determines the choice. Again
a measure of information is needed, although now it should be defined for the posterior evidence
p = (p1, p2, p3) better than for the likelihood vectors. Question (d) points at the need of an average
information on the possible outputs of each test.

Additionally, both visual and dynamic tests can be carried out on the same building. Then Bayes
formula takes the form

P[Ai|Rj , Qk] = κ P[Rj , Qk|Ai] P [Ai] ,

being κ an adequate normalizing constant. To use this joint updating, the joint likelihood of the
two tests is required. It can be simplified whenever the two tests are conditionally independent, i.e.
when given any structural state Ai, P[Rj , Qk|Ai] = P[Rj |Ai] ·P[Qk|Ai]. Under this assumption Bayes
formula reduces to

P[Ai|Rj , Qk] = κ P[Rj |Ai] P[Qk|Ai] P [Ai] , (1)

for some normalizing constant κ.
This shows that the two tests can be carried out sequentially and the posterior evidence is then

updated also sequentially. The result remains unaltered irrespective of the order in which the tests are
carried out. Frequently, conditional independence of the tests does not hold. However, Eq. (1) can
still be valid. It corresponds to situations in which the order in a sequential testing does not influence
the resulting posterior. This can occur for some specific results Rj , Qk or, more restrictively, when
the order does not affect the result for any Rj and for any Qk. The latter case is normally called
exchangeability of the tests in Bayesian frameworks. Conditional independence suggests an additional
question:
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(e) Which is the relationship of information provided by two single outputs of different experiments
(conditionally independent or not) and the corresponding joint output?

When the joint conditional probability P[Rj , Qk|Ai] is not known, this question addresses the problem
of redundancy that remains open both in information theory and Bayesian statistics.

3 Bayes formula and Aitchison geometry of the simplex

Real vectors with n positive components are in Rn
+. An equivalence relation for proportional vectors

can be defined, i.e. x, y ∈ Rn
+, are equivalent if, and only if, there is a positive constant c, such

that x = cy (Barceló-Vidal et al., 2001). These equivalence classes can be represented in the n-part
unit-simplex, Sn, by means of a representative which components add to one. The operation to select
such a representative is called closure, and is defined as

Cx =

(
n∑
i=1

xi

)−1

· x , x = (x1, x2, . . . , xn) .

Perturbation and powering are operations in Sn; they can be interpreted as operations on equivalence
classes of vectors in Rn

+. For α ∈ R, and x, y ∈ Rn
+, perturbation and powering are

x⊕ y = C(x1y1, x2y2, . . . , xnyn) , α� x = C(xα1 , xα2 , . . . , xαn),

where the result of both operations are the representatives in Sn of the operated equivalence classes.
The n-part simplex or, equivalently, the set of equivalence classes in Rn

+, is a (n − 1)-dimensional
vector space. The neutral equivalence class for the perturbation is represented by n = C(1, 1, . . . , 1);
the perturbation-opposite element of x is 	x = (−1)� x = (x−1

1 , x−1
2 , . . . , x−1

n ).
Bayes formula matches exactly the definition of perturbation. Recalling notation in Section 2,

consider π = (π1, π2, . . . , πn), the prior probabilities of a partition A1, A2, . . . , An of a probability
space, with πi = P[Ai]. After the realisation of some experiment R, the conditional probabilities
qi = P[R|Ai] are arranged in a likelihood vector q = (q1, q2, . . . , qn). Posterior probabilities are
denoted pi = P[Ai|R], and p = (p1, p2, . . . , pn). Bayes formula is then

pi = κ qi πi , κ
−1 =

n∑
k=1

qkπk . (2)

Vectors π and p are in Sn because they are normalized to one, but they can be considered as rep-
resentatives of classes of non-normalized probability vectors. The likelihood vector q is in Rn

+ and is
seldom normalized. Clearly, Bayes formula (2) is readily identified with a perturbation in Sn,

p = q⊕ π . (3)

This fact was used by Aitchison (1986) to illustrate and interpret perturbation. Now we reverse the
argument: since Bayes formula is well represented in Sn, the Aitchison geometry of the simplex can
be used to reinterpret Bayes formula.

The n-part simplex Sn is an (n−1)-dimensional Euclidean space with the Aitchison distance, norm
and inner-product (Pawlowsky-Glahn and Egozcue, 2001; Billheimer et al., 2001). For simplicity in
the expression, they are defined using the centered log-ratio transformation, clr, of x ∈ Rn

+ or of its
representative in Sn,

clr(x) = log(x)− log(gm(x), gm(x), . . . , gm(x)) , x = C exp(clr(x)) ,

where the functions log and exp act on vectors componentwise, and gm(·) is the geometric mean of its
arguments. The i-th component of clr(x) is clri(x) = log(xi/gm(x)), and the sum of components of
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the clr(x) is null. For x,y ∈ Sn, the Aitchison distance, norm and inner-product are

da(x,y) = d(clr(x), clr(y)) =

√√√√ n∑
i=1

(clri(x)− clri(y))2 , (4)

‖x‖a = ‖clr(x)‖ =

√√√√ n∑
i=1

(clri(x))2 , (5)

〈x,y〉a = 〈clr(x), clr(y)〉 =
n∑
i=1

clri(x) · clri(y) , (6)

where d(·, ·), ‖ · ‖, 〈·, ·〉 denote the ordinary Euclidean distance, norm and inner product.
The Euclidean structure of Sn has many implications. Some of them are remarkable in this context.

(1) The Aitchison norm allows to measure the size of evidence contained in a prior, a posterior and
in a likelihood vector.

(2) Distances are preserved under a perturbation by a likelihood vector.

(3) The notion of orthogonality can be introduced using the inner product; therefore, its meaning
can be interpreted in the context of Bayes formula.

For instance, let q(1) = (a, a, b) and q(2) = (c, d, gm(c, d)) be two likelihood vectors. Orthogonality of
these two likelihood vectors is easily checked, i.e. 〈q(1),q(2)〉a = 0. It is easy to realize that, when used
in Bayes formula, q(1) is unable to modify the ratio of evidences of the two first components in the
prior, i.e. the log-odds log(π1/π2) in the prior remain unaltered in the posterior. Alternatively, the
use of q(2) in the Bayes formula modifies the prior ratio of evidences of π1 and π2, but leaves invariant
the prior value of log((π1π2)1/2/π3). Interpretation of orthogonality is now that the likelihood vectors
q(1), q(2) provide evidences on different and non-overlapping aspects in Bayesian updating. Moreover,
for this example in S3, given an evidence vector there is only one possible evidence direction which is
orthogonal to the previous one, because the dimension of the space is 2.

Another important practical consequence is the following:

(4) Any vector in Sn can be represented by its coordinates with respect to a basis of the space,
particularly an orthonormal basis. Therefore, evidence vectors (prior, posterior and likelihood)
can be represented as real vectors with all standard and intuitive properties.

The example from Section 2 is represented in Figure 1 in orthonormal balance-coordinates (Egozcue
et al., 2003; Egozcue and Pawlowsky-Glahn, 2005, 2006a,b)

b1 =

√
2
3

log
x1

gm(x2, x3)
, b2 =

√
1
2

log
x2

x3
,

where gm denotes geometric mean. The first balance b1 contrasts service versus damage-ruin, whereas
b2 compares damage over ruin. Figure 1 shows Bayesian updating in two different cases, when the
output of the visual inspection is R2 (left) and when the output of the dynamic test is Q2 (right). In
the case of R2 as output (left) the norm of the prior (green) is similar to the norm of the likelihood
(light-blue) (see Tables 1,2) but they have different directions. The posterior closes a triangle which
is approximately equilateral. For output Q2, Figure 1 (right) shows a different scenario. The norm of
the likelihood associated with Q2 is less than the norm of the prior. As a consequence, the norm of
the posterior has been incremented only a little bit, from 0.92 for the prior to 1.08 for the posterior
(Table 2).
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Figure 1: Bayes updating represented in coordinates: posterior is the perturbation (vector sum) of prior and likelihood.
Left, after test output R2; Right, after test output Q2. Abscissa: b1 = (2/3)−1/2 log(x3/gm(x1, x2)); ordinate:
b2 = 2−1/2 log(x2/x3).

4 Evidence-information principles

The following principles concerning e-information are referred to the Bayes formula. Prior, likelihood
and posterior are denoted π = (π1, π2, . . . , πk), q = (q1, q2, . . . , qk), and p = (p1, p2, . . . , pk), respec-
tively; all components are positive. Prior and posterior are assumed to be probabilities, i.e. they are
normalized to add to one, whereas the likelihood is not normalized.

Scale invariance of evidence

Prior, likelihood and posterior describe a state of evidence: prior (previous) to an experiment; provided
by one experiment, and posterior (after) the realisation of the experiment. Therefore, evidence should
be measurable in the same way at the three states. Accepting that proportional likelihood functions
provide equal experimental evidence, normalization of prior and posterior should be irrelevant. This
constitutes the principle of scale invariance of evidence. A consequence is that the only relevant
information conveyed by π, q, p is contained in the ratios of components of each one of these three
vectors. If Ie(p) denotes evidence information conveyed by the evidence vector q, closed to unit as a
probability vector or just non-closed as a likelihood, then

Ie(q) = Ie(Cq) .

An immediate consequence of scale invariance is that any relevant quantity, f , describing evidence
should be a 0-degree homogeneous function of the components, i.e. f(λx) = f(x) for any positive real
constant λ and being x either a prior, a likelihood or a posterior distribution.

The Shannon information associated with a probability vector x is

Is(x) = −
n∑
i=1

xi log(xi) , (7)

which is not scale-invariant. Similarly, the Kullback-Leibler divergence between two probability vectors
x, y is the non-symmetric expression

Is(y : x) =
n∑
i=1

yi log
(
yi
xi

)
which is not scale-invariant. Note that this explains why it cannot be applied to likelihood vectors.
However, Kullback-Leibler divergence can be symmetrised and centered to attain scale invariance
(Mart́ın-Fernández et al., 1998; Mart́ın-Fernández, 2001).
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Bayes formula is addition of evidence

Evidence only changes when an experimental result is obtained. Furthermore, one can think of an
experiment which likelihood does not change the prior evidence or which does not provide any infor-
mation, i.e. π = p which, in the context of Bayes formula, means that q = n = C(1, 1, . . . , 1); one
can conceive evidences from independent experiments cancelling each other in such a way that, when
jointly considered, they do not provide any information, their evidences being opposite; exchangeable
or independent experiments should be commutative. These general ideas configure change of evidence
as an Abelian group operation between prior and likelihood, thus deserving the name of addition
(van den Boogaart et al., 2010).

Information-evidence does not depend on prior evidence

It seems reasonable that information provided by an experiment should not depend on what is previ-
ously known about the actual event. Therefore, when for two possibly different prior evidences π1 and
π2 and the likelihood of a result of an experiment q, two posterior evidences are obtained pi = πi⊕q,
i = 1, 2, then the properties

Ie(p1 	 p2) = Ie(π1 	 π2) , Ie(p1 	 π1) = Ie(p2 	 π2) = Ie(q) , (8)

should hold. The first equation expresses that the difference in e-information prior to the experiment
should not change for the posteriors after a given output of the experiment. The second equation in
(8) means that the change of evidence only depends on the likelihood associated with an output of
the experiment and does not depend on the prior evidence.

These elementary properties are not fulfilled by the Shannon information, Is (see Eq. (7)).

Extension-projection rules

Consider an evidence vector p = (p1, pn1+1) in Sn1+1, n1 ≥ 2, which conveys an e-information Ie(p).
If, for some reason, the interest is centered in the reduced evidence vector p1 ∈ Sn1 , a reasonable
question is: which is the relationship between Ie(p) and Ie(p1)? Or, more specifically, which is the
value of pn1+1 for which Ie(p) = Ie(p1)? For most information measures the value of pn+1 is 0.
Particularly, this is true for Shannon information since Is(p) = Is(p1)− pn1+1 log pn1+1, and the last
term vanishes when pn+1 tends to zero. This fact is notably unreasonable for evidence information:
an evidence vector with a null component should carry a large, if not infinite, evidence against the
event for which the null probability holds. Another paradoxical result is obtained when the argument
is extended to an infinite collection of events, all of them with null probability, and appended to the
initial evidence vector: an infinite sequence of events are excluded as impossible without any additional
evidence.

The Shannon information theory has two ways to answer to these questions. After obtaining the
expression of Is (Eq. 7), the above mentioned properties are a simple consequence, thus conforming
a first way. The second way is the adoption of some axiomas (Kinchine, Renyi, Ash), most of them
reasonable. However, all axiomatic systems for Shannon information include an extension axiom
which explains how information changes from a probability vector Cp1 with n1 components, to an
extended one (p1,p2) when Cp2, with n2 components, is appended to form and extended vector
with n1 + n2 components. Assuming that the extended vector (p1,p2) is normalized to one, i.e.
(p1,p2) = C(p1,p2), the extension rule (axiom) can be formulated

Σ(p1)Is(Cp1) + Σ(p2)Is(Cp2) + Is((Σ(p1),Σ(p2))) = Is((p1,p2)) , (9)

where Σ(pi), 0 ≤ Σ(pi) ≤ 1, denotes the sum of all probabilities contained in pi and, consequently,
Σ(p1) + Σ(p2) = 1. This extension rule is clearly inspired in the total probability theorem: Is(Cpi) is
the information conditional to the actual event given by the categories corresponding to pi; and Σ(pi)
is the probability of such a condition. The term Is((Σ(p1),Σ(p2))) is the information added due to
the choice between the categories corresponding to p1 and p2 and it only appears whenever the two
subvectors p1, p2 are joined.
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From the Shannon information extension rule (Eq. 9), the null extension property is easily ob-
tained. In fact, taking n2 = 1, p2 = (0), then Σ(p2) = 0, Σ(p1) = 1, Cp1 = p1 and Is(Cp1) =
Is((p1, 0)).

Once Equation (9) has been shown to be inadequate for evidence information, an alternative
formulation is required. Three main ideas should be taken into account for that purpose.

(a) When the number of components of an evidence vector increases, the evidence information should
also increase.

(b) Complete evidence against, or in favour, of an event implies an unbounded evidence information.

(c) Additivity of evidence information is a vector additivity within an Euclidean geometry.

The last condition means, in a Pythagorean sense, that orthogonal evidence vectors should add infor-
mation; opposite evidence vectors should cancel evidence information; and so on.

Taking into account these ideas, the following extension rule is proposed. Let p1 ∈ Sn1 and
p2 ∈ Sn2 be two evidence vectors with n1, n2 components, respectively. The extended evidence vector
p = (a1p1, a2p2), with a1, a2 > 0, and not necessarily closed to 1, has the evidence information

I2
e (p) = I2

e (p1) + I2
e (p2) + I2

e (a1gn1(p1), a2gn2(p2)) , (10)

where gni(pi) is a vector with ni components which are all equal to the geometric mean of the compo-
nents of pi. In Eq. (10), e-information appears squared in all terms. Pythagoras theorem can be recog-
nised assuming the term I2

e (a1gn1(p1), a2gn2(p2)) to be zero. This means that a kind of orthogonality
between sub-vectors containing different components is assumed. The term Ie(a1gn1(p1), a2gn2(p2))
is the e-information obtained when the two subvectors a1gn1(p1), a2gn2(p2) are joined. Each subvec-
tor has all components equal, and therefore, they do not provide any e-information when individually
considered. The e-information comes from the ratios of the values a1gm(p1), a2gm(p2).

Definition

After the described principles on evidence information a definition can be given fulfilling the require-
ments. Let p be an evidence vector with n components closed or not to the unit and represented in
Sn by Cp. The evidence-information is defined as the Aitchison norm of p, i.e.

Ie(p) = ‖p‖a = ‖clr(p)‖n = ‖ilr(p)‖n−1 , (11)

where ilr assigns coordinates for any choice of an orthonormal basis of the simplex, and ‖ · ‖k is the
ordinary Euclidean norm in Rk.

The identification of evidence-information with the Aitchison norm in the simplex implies that
some requirements described in the principles are automatically satisfied: scale invariance is inherited
from scale invariance for compositional vectors; the neutral composition n = C(1, 1, . . . , 1) has null
e-information, Ie(n) = 0; invariance of e-information conveyed by a likelihood (Eq. 8) can be written
as

da(π1,π2) = da(p1,p2) , da(p1,π1) = da(p2,π2) = ‖q‖a , (12)

where, for i = 1, 2, the posteriors pi are obtained using Bayes formula (3) to update priors πi by
means of the likelihood q, i.e. pi = q⊕ π.

Equation (12) holds automatically in the simplex equipped with the Aitchison geometry, given that
it is the parallelogram property in Euclidean spaces. This property is simply interpreted, meaning
that Aitchison distances between priors and posteriors are invariant under the shift-perturbation
represented by the likelihood used to update priors. The second equation means that evidence provided
by a Bayes updating does not depend on the priors but only on the likelihood.

The extension rule can also be translated into the Aitchison geometry. Consider the composite
evidence vector (a1gn1(p1), a2gn2(p2)) whose associated e-information, or Aitchison norm appears in
Equation (10). In order to compute the square norm, define a sequential binary partition (SBP)
(Egozcue and Pawlowsky-Glahn, 2005, 2006b) in which the first partition separates the first group
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Figure 2: Comparison of e-information and Kullback-Leibler divergence to the neutral element along two straight-lines
in the simplex (left). The two straight-lines in the simplex are represented in a ternary diagram (right). Colors
correspond to divergences in the left panel represented .

of n1 components from the last group of n2. Call the corresponding balance b1. Subsequent steps
of partition can be selected arbitrary given rise to a collection of balances b2, b3, . . . , bn−1, with
n = n1 + n2. In the first subcomposition a1gn1(p1) all components are equal to a1gm(p1). Similarly,
the second subcompostion has all elements equal to a2gm(p2). Therefore, all balances corresponding
to partitions of the two subcompositions are null, i.e. b2 = b3 = · · · = bn−1 = 0. Alternatively, the
first balance is

b1 =
√

n1n2

n1 + n2
log

a1gm(p1)
a2gm(p2)

.

Therefore, using (11), it holds that ‖(a1gn1(p1), a2gn2(p2))‖a = |b1|. Equation (10) can now be written
as ‖p1‖2a + ‖p2‖2a + |b1|2 = ‖p‖2a; this holds when ‖p‖2a is expressed as a sum of squared balances with
respect to the basis which first balance is defined as b1.

This discussion remarks that the definition in Equation (11) satisfies the requirements established
as principles of evidence-information. However, a comparison of Shannon information and evidence-
information should reveal some similarities. Certainly, Shannon information and subsequent devel-
opments have been proven to be fruitful tools in many applications of almost all fields of science.
Shannon information for an evidence vector in Sn is lower bounded by Is(n) = logn, to be compared
to Ie(n) = 0. In order to compare both information approaches, Figure 2 (left) shows values of Ie(x),
x ∈ S3, compared with Kullback-Leibler divergence of x to n, Is(x : n). The points x ∈ S3 have
been chosen to follow two straight-lines in the simplex shown in Figure 2 (right). As the straight-lines
have been parameterised with arc-length, evidence-information (the Aitchison norm of x) appears as
a cone. The Kullback-Leibler divergence describes curves which are on one side not very far from
evidence information, but that are definitively different from it.

Unit of evidence-information

The choice of any unit is somewhat arbitrary. However, Aitchison norm and distance in the simplex
has been used as a standard for years. It is then reasonable to take the evidence-information unit
equal to the Aitchison norm unit. Then, an evidence vector p ∈ Sn has unit evidence information
whenever Ie(p) = ‖p‖a = 1. To get a little insight into the meaning of this unit, consider an evidence
vector u = (u, u−1, 1, 1, . . . , 1) with u = exp(1/

√
2). The clr(u) = (1/

√
2,−1/

√
2, 0, 0, . . . , 0), then

Ie(u) = ‖u‖a = 1. This can be phrased as follows: a likelihood vector has unit evidence information
when a neutral prior is updated to u. All components remain constant, except two of them: one is
approximately doubled (multiplied by exp(1/

√
2) ≈ 2.028) and the other one is approximately halved

(multiplied by exp(−1/
√

2) ≈ 0.493). Obviously, for a fixed n, there are infinitely many unitary
evidence vectors in Sn but the example presented is specially intuitive.
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5 Evaluating the inspection example

The definition of evidence-information as the Aitchison norm of a (compositional) evidence-vector,
and the framework of the Aitchison geometry of the simplex allow answering the questions stated in
Section 2.

(a) Given one of the available tests, which of the possible outputs provides more
information?

Once the likelihood of all outputs of each experiment are known, its Aitchison norm measures the
information provided by each output. Table 1, shows both the likelihood and the associated evidence
information. The output Q3 of the dynamic test provides the maximum e-information, Ie(Q3) = 6.82,
followed by R3 with Ie(R3) = 4.54. Therefore, in both experiments the outputs which make the
state ruin more likely are the most informative. Their e-information is more than double of the other
outputs.

(b) Given the output from the visual test, Rj, and from the dynamic test, Qk,
which of the two outputs is more informative?

Both likelihoods for R3, Q3 are in S3 and, therefore, they are comparable. Given the two outputs,
R3 and Q3, the statement Ie(Q3) > Ie(R3) (Section 2) is licit and meaningful and an answer is
immediately obtained from Table 1. This does not mean that the dynamic test is more informative
than the visual one in general. For instance, according to Table 1, Ie(Q2) < Ie(R2). The likelihoods
corresponding to the different experiments are shown in Figure 3. The length of the evidence vectors
in Figure 3 represents the e-information associated with each possible output of the two tests. Addi-
tionally, it appears that the likelihood vectors corresponding to R1 and R3 and also Q2 and Q3 are
practically opposite although their e-informations are not equal. This is very evident in the case Q2

and Q3, where Q2 is very poorly e-informative. Approximate orthogonality is also notorious between
Q3 and {R1, R3}. This means that the output Q3 informs on features that R1 and R3 are unable to
illustrate. The likelihood corresponding to Q3 is almost parallel to the second axis in Figure 3, mean-
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ing that observation of Q3 strengthens the evidence in favor of A3 (ruin) and against A2 (damage),
leaving almost invariant the log-ratio of probabilities A1 (service) over (A2, A3). In turn, observation
of R3, which likelihood is mainly parallel to the first axis in Figure 3, gives evidence on (A2, A3) and
against A1, but leaves approximately invariant the evidence of A2 versus A3.

(c) In order to deliver a diagnosis of the structural state of the building, a de-
cision on A1, A2, A3 should be made. Assume that the output of a test is Rj.
Independently of the cost-benefit of such a decision, how reliable is the decision
taken?

The key question is what does reliability of a decision mean. In a decision making context a standard
way of evaluating a decision is to compare risks of the possible alternatives; in the example A1, A2,
A3, the less risky event is taken as the optimal decision and the minimum risk decision is reliable
if differences with other alternatives are important. As we assume that the utility or cost-benefit
function is not available, the posterior probabilities are taken as the expected utility. Then, the most
probable (posterior) state is decided. Reliability of the decision is then measured by the posterior
e-information. For instance, after observing R3, the decision taken (maximum probability event)
is A2 and its reliability is the e-information 3.75 (see Table 2). If R2 would be observed instead,
decision would be also A2 but its reliability, expressed as e-information, would be less (1.10). The
same reasoning can be applied to decisions taken based on prior probabilities. In general more reliable
decisions are expected when they are taken a posteriori, as some information is expected from the
experiment. However, evidence provided by an experimental result can be opposite to the prior
evidence, thus resulting in a loss of e-information. Although in the presented example this situation
does not appear, the observation of R2 and Q2 results in small increases of e-information, thus meaning
that reliability of a posteriori decision is only a little bit higher than the prior decision. However,
Figure 1 reveals that the small increase of reliability from prior to posterior is due to different causes.
In the case of R2 (left panel), the result is as e-informative as the prior, and the prior, likelihood and
posterior form a triangle close to be equilateral. In the case of Q2 (right panel), there is an additional
reason for a low increase of e-information, the size of the likelihood evidence vector is smaller than
the prior, i.e. the prior is more e-informative than the e-information coming from the experimental
result Q2.

(d) Can we define an average information provided by a test before getting the
output? Which of the two tests is more informative?

This question has been considered from the beginnings of information theory (Lindley, 1956). It puts
forward three different points: what should be averaged? which kind of average? and, if it has to be
weighted, which are the weights? Starting with the first point, there are several alternatives. A first
option is to average likelihood vectors corresponding to different experimental outputs. The average
would be carried out using operations in the simplex because likelihood vectors are compositional
evidence vectors. In general, this option tends to cancel out the average; see Figure 3, where likelihood
vectors appear with a star like shape. To average e-information, which is a positive variable, seems
therefore more adequate. This leads to the second question: we can average, at least, three different
functions of e-information: the e-information itself, the square of e-information and the logarithm of
e-information. With respect to the weights used in the average, one may know the probabilities of
getting each result of the experiment, for instance P[Ri], i=1,2,3. However, these probabilities should
be compatible with the prior if previously assumed. Likelihood times prior is the joint probability
of states and experimental results, and probabilities P[Ri] and the prior probabilities P[Aj ] are the
two marginals of the joint probability. Denoting L(Ri) the likelihood vector corresponding to the
observation Ri (in the example, the columns of Table 1), and R the output of the experiment as a
random variable, the proposed average alternatives may be expressed as

Eφ[Ie(R)] = φ−1(E[φ(Ie(L(R)))]) , (13)
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Table 3: Probabilities of experimental outputs and e-information averages for experiments R (visual) and Q (dynamic),
compatible with the assumed prior.

experiment P[Ri], i = 1, 2, 3 mean rms geom.
visual R 0.512 0.248 0.240 2.461 2.767 2.153
dynamic Q 0.773 0.102 0.125 2.235 2.861 1.734

where φ is a monotonic scaling function and E[·] is the standard expectation for real variables. Expec-
tation Eφ is a generalized expectation for scaled variables called φ-mean by De Finetti (1990). In our
case suitable choices of φ are: identity, squaring, or logarithm, i.e. mean, root-mean-square (rms), or
geometric mean. For the example used, Equation (13) takes the form

Eφ[Ie(R)] = φ−1

(
3∑
i=1

φ(Ie(L(Ri))) P[Ri]

)
. (14)

Table 3 shows the results for both experiments, visual inspection and dynamic test. Probabilities of
experimental results have been obtained from the assumed prior (Table 2) and the likelihood associated
with the experimental results (Table 1). Averages have been obtained according to Equations (13) and
(14). Average e-information is larger for the visual experiment using the mean and the geometric mean
of e-information, whereas the situation is reversed for the root-mean-square e-information. The reasons
for this result are clear and can be visualized in Figure 3, where Ie(Q2) is very small compared with
the e-information provided by the dynamic test Q3. This causes the increase of the root-mean-square
and the corresponding decrease of the arithmetic average and, specially, of the geometric average.
Consequently, the choice of the kind of average to be taken becomes relevant, as depending on it
different aspects of the distribution of e-information are enhanced.

6 Conclusion

Bayes formula is taken as the paradigm of information acquisition. Prior, posterior and likelihood
participating in Bayes formula are identified as compositions and the Bayes formula itself as perturba-
tion in the simplex. Additionally, prior, posterior and likelihood are interpreted as vectors describing
the evidence before, after and carried by the output of an experiment. Some principles support this
interpretation. They essentially coincide with compositional data principles thus leading to the defi-
nition of evidence-information as the Aitchison norm of evidence vectors. An example on inspection
of buildings illustrate the use of evidence-information to quantify different aspects of the proposed
inspection-tests: measuring provided e-information, opposite and orthogonal e-information, compar-
ing experiments, expected e-information from an experiment.
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