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Abstract

[rgb]1,0,0The paper describes an ongoing work to embed several services
in a Smart City architecture with the aim of achieving a sustainable city. In
particular, the main goal is to identify services required in such framework
to define the requirements and features of a reference architecture to support
the data-driven methods for energy efficiency monitoring or load prediction.
With this object in mind, a use case of short-term load forecasting in non-
residential buildings in the University of Girona is provided, in order to
practically explain the services embedded in the described general layers
architecture. In the work, classic data-driven models for load forecasting in
buildings are used as an example.

Keywords: Short-term load forecasting, Data mining, Services, Building,
Smart city architecture

1. Introduction

The concept of Smart City appears due to the mobilization of people
to the cities. This increase of people has an impact on city services such as
transportation, utilities, communications, waste management, health services
and much other. In order to avoid services degradation, and have an idea of
the effect of such increase of people for a particular service, it is necessary to
manage each service by constantly monitoring it. Therefore, it is needed to
provide the system with mechanisms for collecting data. This is the first step
towards getting to a Smart City. But what it really makes the city smart is
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to process and analyse the data and returns as response some kind of action
to ensure the provision of services at satisfactory levels of quality. Hence, it
is necessary to integrate these monitoring devices with the applications that
perform the analysis of this data and are able to provide an action [12].

The synergy of computational and physical components, specifically the
use of cyber-physical systems (CPSs), led to the advancement of such inte-
gration. At different scale, neighbourhoods, communities or buildings can
also be considered large CPS continuously operated accordingly to demand
affected by the activities of users. As important is to know physical system
constraints as consumers behaviour, and interactions between both. Major
Information and Communication Technology (ICT) vendors have made ef-
forts for developing Smart City transversal platforms oriented to integrate
city information and making it available to end-users. On the other hand, the
utilities (water, electricity, gas, etc.) have their proprietary solutions specif-
ically designed to operate and supervise these infrastructures and providing
managing and billing services. This work falls in between these two scopes
and shares the IoT (internet of Things) vision, focusing not only in making
data available but also providing the required services to facilitate advanced
data analysis, monitoring and assessment procedures in the domain of urban
energy distribution and consumption. This paper aims to analyse a specific
use case in order to identify services that are required in a platform that
supports the development of energy monitoring and assessment applications
for urban infrastructures.

Several general architectures for Smart Cities are proposed in the litera-
ture, but few examples of their implementation and how to embed services
on them are given. According to the existing Smart City architectures, the
present work proposes an implementation of a practical case, a complete
short-term load forecasting system, explaining the singularities layer by layer
trying to cover this gap.

The utilities are the main users of the load prediction systems, who,
thanks to the load prediction, manage the maintenance and the control of the
distribution systems, buying fuel at the best price or shaping the consumption
curve in order to have a flat consumption curve following several strategies.
So, this is a tool for the utilities who manage the distribution systems, and
in particular to help them to forecast the electrical consumption.
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2. Context and related work

In the bibliography, taking into account the existence of different visions,
several definitions of Smart City are found. In [14] the Smart City is defined
as “a city well performing in a forward-looking way in economy, people, gov-
ernance, mobility, environment, and living, built on the smart combination
of endowments and activities of self-decisive, independent and aware citi-
zens”. Otherwise in [6] it is said that Smart City is “a city that monitors
and integrates conditions of all of its critical infrastructures, including roads,
bridges, tunnels, rail/subways, airports, seaports, communications, water,
power, even major buildings, can better optimize its resources, plan its pre-
ventive maintenance activities, and monitor security aspects while maximiz-
ing services to its citizens”. The paper [31] says that “the use of Smart
Computing technologies to make the critical infrastructure components and
services of a city which include city administration, education, healthcare,
public safety, real estate, transportation, and utilities more intelligent, inter-
connected, and efficient”.

Some papers, like [26], coincide that Smart Cities are composed by three
main dimensions. The first one is the technology dimension, where several
technologies are used to monitor, control and share in the city processes.
The second one is the human dimension, where creativity, relationships, ed-
ucation and knowledge are the base of the human infrastructure to provide
social benefits to the Smart City. The third one is the institutional dimen-
sion, where the administration promotes regulations, policies and community
participation to grow properly and sustainably.

On the basis of the reviewed works, the common Smart City challenges
are:

• Establish a base Smart City architecture to provide a common frame-
work for the sector.

• Dispose and extend standardized Smart City policies that lead to the
growth and the proliferation of Smart City services and initiatives.

• Design a list of the essential Smart City services such as Smart water,
Smart Governance, Smart buildings, etc.

• Define the basic guidelines in order to perform operations, maintenance,
improvements and the scalability in the Smart Cities.
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Therefore, it has sense to contribute in the field with a suitable Smart
City architecture, selected for developing the services oriented to consump-
tion prediction. It provides the basis where the smart services are going
to operate. The following paragraphs summarize different works done in the
field of Smart Cities covering proposed architectures and services implied and
some of them particularized for short-term load forecasting (STLF). From
the point of view of services, there are some papers cited.

A complete guide for design the Smart City architectures and all the
functionalities from the data point of view is proposed in [32]. A summary of
the main issues of the application systems and the difficulties and challenges
in the construction of the Smart City is presented in [30]. A broad view of
energy services and their usage, functionality and development challenges are
explained in [17]. In order to improve operations and maintenance, reduce
the cost of operation, provide enhanced energy management capabilities and
provide scalability in the Smart City architecture a guidelines are highlighted
in [3]. Several Smart City architectures and their requirements are exposed
and commented in [12]. The work [25] comes up with a model for analysis
of interactions with a Smart City, providing a larger scale simulation among
several Smart City systems. A wide survey of technologies, protocols, and
architecture for an urban internet of things in Smart Cities is shown in [35].

So, there is no defined criteria about the number and the function of layers
of the Smart City architecture. The work [18] presents a three layers archi-
tecture: information storage layer, application layer and user interface layer.
The paper [3] suggests a five layers architecture: smart infrastructure, smart
database, smart building manager, smart interface and integration layer.
The publication [4] proposes a five layers architecture: stakeholder layer, ser-
vice layer, business layer, infrastructure layer and information layer. In [13]
the Smart City architecture is divided in two layers: knowledge processors
and semantic information brokers. The paper [21] proposes a Smart City
architecture with three parts: the physical network, the communications in-
frastructure and the flow of information. The study [2] divides the Smart
City in two layers: monitoring layer and development layer. The work [32]
proposes a five layers architecture: data acquisition, data transmitting, data
storage, support service, domain service and event application.

In relation with Smart City services, a short-term load forecasting model
for non-residential building on the basis of occupancy and temperature is
presented in [23]. A principal component analysis is used for monitoring
the electric consumption of buildings in [7]. In order to organize the power
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production of distributed generation sources in relation with energy storage
system and reduce the operational costs of microgrids a smart energy man-
ager system is provided in [10]. In the work [22], the need to include the
cogeneration power generation in electricity balancing and grid stabilization
is pointed out. The benefits of a home energy control box for optimizing en-
ergy consumption from electrical vehicle charging in residential buildings is
seen in [24]. In [19] an energy system planning which incorporates renewable
energy services, energy storage technologies and system regulation strategies
is provided. A smart energy distribution and management system for mon-
itoring power consumption and users situation and controlling appliances is
presented in [8]. An energy information system (real data acquisition, vi-
sualization, analysis and switching) which admits the integration of several
sensors is provided in [20]. The paper [9] describes a smart lighting solution
which allows the integration of the communications and logic on the current
street lighting infrastructure. A design and implementation of occupancy
sensor platform for individual offices is presented in [1].

Taking into account the energy signatures, in [5] the importance of energy
signatures which can help to improve the energy efficiency and monitor the
consumption, is pointed out. The use of the energy signatures in order to
evaluate the energy performance of chillers using several design options and
operating strategies is seen in [34]. In [28] the addition of occupancy as a
variable in energy signature model PRISM is analysed.

With regard to baseline models and measuring and verification methods,
the work [15] proposes a calibration methodology of the building energy
models which can deal with energy retrofit options. In [33] a calibration
procedure of the energy performance model on the basis of monthly data
through a base load analysis approach is proposed. A statistical evaluation
of the performance of various commercial building baseline models analysing
the importance of the weather and the morning adjustment factors is seen
in [11]. Measuring and verification guiding principles for the assessment of
energy efficiency insisting in the need of unambiguous contractual models are
highlighted in [27].

In the following sections, a suitable Smart City architecture, selected for
developing the services oriented to consumption prediction is detailed. It
provides the basis where the smart services are going to operate. After that,
a use case to explore the smart-x service in line with the proposed architecture
layers is provided.
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3. Vision

As it can be seen in the bibliography, there is an extensive proposal of ar-
chitectures to face common challenges that arise in the Smart Cities concept.
But, a reference architecture that allows the entire operation of a Smart City
has not been designed yet. The subject has been treated cautiously due to
the number of technologies that involves, and mainly because it has not been
established an standard for integrating these technologies in order to generate
a coherent, flexible, scalable, repeatable and effective system. Furthermore,
some of the approaches deal with Smart Cities from a theoretical viewpoint
which distances itself from the real world. The proposed architectures focus
on different aspects from the point of view of technology, human-system in-
teraction or logic [32]. Most of the proposals from the technological aspect,
divide the architecture in layers. There could be some slight differences, but
as seen in the previous section they have some features in common.

The proposed 5-layers architecture is composed by: data acquisition layer,
data transmission layer, data storage layer, preprocessing layer, services layer
and application layer, as shown in Figure 1. This architecture delivers better
definition of the function of each layer and it is oriented to the services
implementation.

APPLICATION 

LAYER

SERVICE

LAYER

PREPROCESSING 

LAYER

STORAGE

LAYER

TRANSMISSION 

LAYER

ACQUISITION 

LAYER

Figure 1: Proposed layers architecture.
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• Data acquisition layer is responsible for collecting and storing ex-
ternal data. It can capture any kind of information including images,
video, sound, and others. In particular circumstances, some prepro-
cessing can be done here, in order to store the data filtered or more
elaborated.

• The data transmission layer is in charge of end-to-end communi-
cations. Network technologies and protocols are taken into account at
this level.

• The data storage layer has to be able to support large-scale complex
data. Also, it has to guarantee that the data is reliable and must pro-
vide for the introduction of new data from new sensors or new available
information. That is, it has to be scalable. At the same time, the layer
has to provide access methods to the data.

• Preprocessing layer Once the data is stored, since they come from
different types of sensors or information sources, the architecture has
to prevent from duplications, outliers, errors, missing values and in-
consistency. These kind of actions are carried out by the preprocessing
layer.

• Services layer. Following with the most common layers that con-
stitute the majority of architectures proposed for a Smart City from
the technological point of view, there is the services layer. This layer
makes possible the usability of the data, usually by means of modules
of software that provide the data requested by the user in a transparent
manner.

• Applications layer The last layer is the applications layer. It is re-
sponsible for interacting directly with the user. It shows the data to
the user in a comprehensible manner such as graphical form, table or
other type of display, and facilitates the interaction with the platform.

A use case focusing on forecasting electrical energy to improve its man-
agement is proposed in the next section. This example is intended to
help to identify services involved, required functionalities and possible
interactions. The architecture has to consider not only the infrastruc-
ture itself but also the interaction with consumers, providing perfor-
mance indicators and using forecasting models. The use case shows
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that acquisition, preprocessing, analysis and modelling of data are re-
quired processes to provide a set of goal oriented services to systemat-
ically exploit data for energy management purposes. In this particular
case, classic data-driven methods for forecasting are proposed, but the
idea behind can easily be extrapolated to other methods.

4. A use case: short-term load forecasting

The aim of this use case is to present the implementation of a smart-x
service following the architecture reference of the Smart Cities. The predic-
tion of the load consumption is a need in the Smart Cities and a well-known
research domain. The consumption of the non-residential buildings is deter-
mined by several factors such as previous consumption, occupancy, tempera-
ture and temperature set point. There are several ways to deal with the load
forecasting depending on the horizon, available data or used model. In gen-
eral the main objective is to forecast with high accuracy and few data. The
process is usually composed by data selection, data pre-processing, model
selection, training process, model evaluation and results exploitation.

So, in the next sections, with the aim to generate an auto-regressive
(AR) model to predict the consumption of the buildings a complete process
of short-term load forecasting using only real consumption data is explained,
respecting the same architecture layers explained in the Section 3.

4.1. Data acquisition

4.1.1. Sensors

There are several sources of data: electrical load data, weather data and
indoor data. Different sensors, placed in distinct places are collecting data
with an hourly sampling rate.

• Electric load data: electrical load data (kW) is collected using the Cam-
pus Infrastructure Monitoring System (CIMS). The CIMS is composed
of several Schneider power meters installed at the university buildings.
The consumption data is collected in PI, PII, PIII, PIV, Faculty of
Science, Faculty of Law and Faculty of Economics buildings. There are
three different types of power meters: PowerLogic ION 7350 (power,
current, voltage, frequency, power factor, current and harmonic distor-
tion), PowerLogic ION 6200 (power, current, voltage and frequency)
and PowerLogic PM-810 (power, power factor and frequency). With
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the devices properly configured, the data is transferred by the log in-
serter from each device to the database every 15 minutes. The com-
munication between meters and data storage is performed with the
PowerLogic ION Enterprise 5.6 software.

• Weather data: data of temperature (◦C) using a HMP-35AC sensor
of Vaisala, relative humidity (%) using a Humicap sensor of Vaisala
and solar radiation (W/m2) using a CM11 sensor of Kipp & Zonen are
collected outside the buildings by the Department of Physics.

• Indoor data: Only for the case of PIV, indoor ambient and occupancy
data are collected inside the building. A wireless sensor network (WSN)
is collecting data of temperature (◦C) using a MCP9700A sensor of Mi-
crochip, relative humidity (%) using a 808H5V5 sensor of Sencera, light
level (lux) using a PDV-P9203 sensor of Optoelectronics and presence
using a passive infra-red sensor of Parallax. In summary, there are 6
sensors badges capturing ambient data and 2 capturing people activity.

4.1.2. Dataset

Taking into account that in this work an AR model is implemented, only
consumption data is used. In the paragraphs that follow, the used data is
explained with a brief introduction of its location.

The experiments are conducted using data from PI, PII, PIII and PIV,
Faculty of Science, Faculty of Law, Faculty of Economics buildings located at
the University of Girona, as seen in Figure 2. The buildings have classrooms,
offices and laboratories.
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Figure 2: Location of the buildings in the campus of the University of Girona.

In Table 1, the architectural characteristics for each university building
are shown.

Building Floors Year
Volume
(m3)

Frontage
area (m2)

Glass
area (m2)

PI 6 1983 26150 3791 610
PII 6 1992 25560 2326 1351
PIII 3 2003 11346 1785 310
PIV 3 2003 12000 1836 630

Faculty of Science 3 1997 34810 4903 1233
Faculty of Law 6 1999 32290 6420 1675

Faculty of Economics 5 1997 32287 4770 1375

Table 1: Architectural features of the buildings.

In Table 2, the specifications of the heating system for each university
building are seen.
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Building
Heating system

System Boiler brand (power)
PI

Gas boiler + Fancoil

Fer (442 kW)
PII Robur (327 kW)
PIII Dietrich (310 kW)
PIV Ygnis (824 kW)

Faculty of Science Dietrich (560 kW)
Faculty of Law Wiessman (575 kW)

Faculty of Economics Dietrich (310 kW)

Table 2: Heating system features of the buildings.

In Table 3, the specifications of the cooling system for each university
building are explained.

Building
Cooling system

System
Refrigeration
brand (power)

PI

Compression refrigeration
system + Fancoil

Mitsubishi (160 kW)
PII Ygnis (269 kW)
PIII Carrier (255 kW)
PIV Climaveneta (618 kW)

Faculty of Science Daikin (430 kW)
Faculty of Law Teva (1113 kW)

Faculty of Economics Carrier (255 kW)

Table 3: Cooling system features of the buildings.

The number of data instances of PI is 27375, covering a total of 38 months,
from 1st September, 2011 to 15th October, 2014. The total of instances of
PII is 16589, covering a total of 24 months, from 21st November, 2012 to 15th
October, 2014. The number of instances of PIII and PIV is 16590, covering
a total of 24 months, from 23rd November, 2012 to 15th October, 2014. The
number of instances of Faculty of Science is 27366, covering a total of 38
months, from 1st September, 2011 to 14th October, 2014. The number of
instances of Faculty of Law is 27379, covering a total of 38 months, from 1st
September, 2011 to 15th October, 2014. The number of instances of Faculty
of Economics is 27379, covering a total of 38 months, from 1st September,
2011 to 15th October, 2014.
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In the Figure 3 the consumption of a week in spring and summer is
observed:
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Figure 3: Consumption vs. hour.

In the Figure 4 the consumption of a week in autumn and winter is seen:
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Figure 4: Consumption vs. hour.

4.2. Data transmission

There are three data sources. The Department of Physics, serving weather
data, the CIMS, disposing of consumption data and the WSN of PIV, col-
lecting ambient and occupancy data.

The Department of Physics uses a wired sensor network to collect the data
from the several instruments of the weather station. At the same time, the
CIMS captures the consumption of different buildings using a wired network
too. In the case of the indoor data a WSN is employed.

The WSN is composed by 8 motes of the Libelium-brand which send the
measured data to a central hub, called Meshlium, trough XBee radio modules
that communicate by means of the ZigBee protocol. The Meshilum data is
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accessed using an Ethernet connection. The Libelium technology is based on
Arduino and the topology of the network is star.

In the Figure 5 the WSN of PIV building is seen:

Figure 5: Wireless sensor network of PIV building.

4.3. Data storage

The data come from 3 distinct sources: meteorological data provided by
the Department of Physics, consumptions data for each buildings provided by
CIMS and indoor data collected by the WSN. Each source presents distinct
configurations, and even owners, that made impossible a direct actuation
over the distinct databases storing the information further than data access.
Data presents distinct formats for each of the sources and a homogenization
step is mandatory.

The CIMS data is stored in a MSSQL database for the Schneider software
ION. Department of Physics data is accessed via an SFTP server and the
WSN data is stored in a MySQL database inside the Meshlium. The solution
implemented is an homogenization server whose tasks consist in periodically
connect to the distinct data sources, check for updates and update a local
MySQL database with an homogeneous format for all the data and provide
a simple interface for user to select and download the desired data.
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4.4. Data preprocessing

In the following sections, the steps to clean and uniform the data are
explained as seen in the Figure 6.

INSTANCE 

SELECTION

DATABASE
MISSING VALUES 

FILTER
NORMALIZATION

OUTLIERS FILTER
FEATURE 

SELECTION

Figure 6: Block diagram of the preprocessing.

4.4.1. Missing values

Given the mistakes in sensor readings, there is always a small amount of
lost values. The percentage of missing values needs to be minimized. There
are several methods used to filter the missing values such as removing or
averaging them. In our case, the instances with missing values are deleted.

4.4.2. Normalization

If data has different scales and units normalization is needed. The use of
the same data scale improves the forecasting. The normalization range used
is from 0 to 1, as seen in the Equation 1.

xin =
xi√∑
i (x2i )

(1)

Where:
xin is the normalized instance.
xi is the instance.

4.4.3. Outliers

The performance of the model is increased if the outliers are filtered. The
more restrictive the process, the greater amount of data lost. The outliers
filtering process [29] consists in detection and substitution. In the present
case, the process of detection consists in identifying n outliers based on the
euclidean distance to their k nearest neighbours. Then, according to an
outlier detection process, the outliers are removed.
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4.4.4. Feature selection

With the aim of removing irrelevant features, redundant and non-correlated
attributes are removed. Reducing the size of the database, the computational
cost is reduced. The feature selection process is composed by two blocks that
perform linear correlations. The first block, in order to eliminate the useless
attributes, removes the features with low correlation with the class attribute.
The second block, with the aim of deleting the duplicate attributes, removes
the attributes with high correlation among them.

4.4.5. Instance selection

The number of instances is reduced in order to minimize the computa-
tional cost. The selected training data is a 30% random sub-sample. Samples
about this percentage reduce the computational time while maintain the fore-
casting performance levels.

4.5. Data service

There is the intention to explore the performance limits of the AR model.
So, the experiments are realized using only consumption data taking into
account that these data models are simpler and useful in 1-hour ahead fore-
casts.

4.5.1. Methodology

A methodology for predicting the load consumption 1-hour ahead is pro-
posed. This methodology consists of several blocks as shown in Figure 7.
The preprocessed data is split, 1/3 to test and 2/3 to train. Then, with the
training data a grid search of the suitable training parameters is performed
over the selected model (AR). The final step is the validation of the model
using test data and the performance indicator calculation.
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GRID SEARCH

AR MODEL

CLEAN DATA

SPLIT

TEST SET (1/3) TRAIN SET (2/3)

MODEL 

VALIDATION

PERFORMANCE

Figure 7: Block diagram of the forecasting model.

4.5.2. Grid search

Grid search method performs a search through the ranks of pairs of train-
ing parameters and chooses the best ones. The main tested parameters of
the regression model are the following ones: ridge parameter and feature
selection.

4.5.3. AR model

The AR model [16] specifies that the output variable depends linearly on
its own previous values. Taking into account that the occupancy data is only
available for PIV building and the temperature variable does not increase
the accuracy of this model due to the partial disaggregation of the heating
ventilating and air conditioning system, AR model is a proper model to apply
in short-term load forecasting (1-hour ahead). So, the consumption depends
on the past values of consumption, as can be seen in Equation 2.

Xt = C +

p∑
i=1

ϕiXt−i + εt (2)

Where:
Xt is the output variable.
Xt−1 are the previous values of the output.
ϕi, ..., ϕp are the parameters of the model.
C is a constant.
εt is white noise.

16



4.5.4. Validation

The validation process contrasts the model generated with training data
(65%) against the test data (35%). The mean absolute percentage error
(MAPE) indicator is used to validate the model due to its popularity in the
forecasting field. The first period of time is used to predict the last period
of time.

The MAPE performance indicator, showed in Equation 3, does not de-
pend on the magnitude of the unit of measurement, and is used to compare
models. If the MAPE is small, the model is accurate. In the topic, a range
between 1% and 20% is considered acceptable.

MAPE =
1

N

N∑
i=1

∣∣∣∣ym(i) − yp(i)
ym(i)

∣∣∣∣× 100 (3)

Where:
N is the number of observations.
ym is the measured output.
yp is the predicted output.

4.6. Smart application

On the basis of the outputs of the model, the smart application can of-
fer several services such as prediction charts, energy saving information or
corrective actions effectiveness. The users can access to the application in-
terfaces to increase the expert knowledge in order to reduce the consumption
or to monitor the forecasting accuracy. In the present paper analytic and
graphic results are explained.

4.6.1. Analytical results

Table 4 shows the MAPE indicator for all the buildings, where CC is the
correlation coefficient and the computation time is the time to perform the
experiment.
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Building Computing time (ms) C.C MAPE (%)
Faculty of Science 3672 0.986 5.21

Faculty of Law 4031 0.968 16.75
Faculty of Economics 3734 0.972 15.58

PI 4109 0.981 6.06
PII 2797 0.943 7.84
PIII 3235 0.876 30.11
PIV 2250 0.967 6.83

Table 4: AR model results for all buildings.

The Faculty of Law and The Faculty of Economics present intermediate
level of accuracy due to the variability in the consumption profile. PIII has
low level of accuracy as a result of inconsistent data.

4.6.2. Graphic results

In this section several charts are presented. First three MAPE charts are
presented. Then, seven prediction consumption charts are showed.

• MAPE vs. Hour:
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Figure 8: MAPE vs. Hour.
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As can be seen in Figure 8, there are three time slots which present poor
quality prediction, some night hours (4:00 to 6:00) due to the cleaning and
security services and at the beginning (7;00 to 10:00) and the end (20:00 to
22:00) of the school day given the variability in the human behaviour.

• MAPE vs. weekday:
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Figure 9: MAPE vs. weekday.

As is shown in Figure 9, Saturday presents low accuracy in the forecasting
due to random activities realized in the buildings. In addition, the beginning
and the end of the week, that is Mondays and Fridays, taking into account
the high dispersion of human behaviours, present lower forecasting precision.

• MAPE vs. Month:
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Figure 10: MAPE vs. Month.

As presented in Figure 10, there is no clear conclusions about which
months are better predicted but in general, months with high variability and
unclear profiles such as December, June or March present worse prediction.

The following charts show the consumption prediction for each building.

• Faculty of Science, Faculty of Law and Faculty of Economics prediction:
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Figure 11: Consumption vs. hour.
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As is seen in Figure 11, the worst prediction level is found in Saturdays due
to the random after-school activities in some buildings. Besides, in the early
hours of Mondays, due to the irregularity of some services, the prediction
accuracy decays.

• PI,PII, PIII and PIV prediction:
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Figure 12: Consumption vs. hour.

As shows in Figure 12, PIII presents the poorest forecasting quality due
the inconsistency of the data. As in the previous figure, Saturdays are the
worst predicted days.

5. Discussion

Following the smart-x architecture layers a use case is performed:

• In the acquisition layer the robustness is key, in the present case some
misbehaviours of the sensors comported data loss and outliers.

• In relation with the transmission layer, some ZigBee reception problems
entailed data loss, so a previous study of the sensor distribution is
needed.
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• The storage layer must be safe, standard and scalable, the load con-
sumption database presented integration difficulties.

• With reference to the preprocessing layer, outliers or missing values in
the sensor measures lead to a low accuracy in the forecasting. Using
a software with suitable preprocessing tools is completely necessary to
obtain fine results.

• In reference to the service layer, although occupancy and weather data
are variables that partially explain consumption in buildings, the AR
models are simple and quick. In summary, the presented model depends
only on the consumption, so weather data is not needed, making it more
economic and compact. In this case, the prediction is performed 1-
hour ahead, that means better performance results than 24-hours ahead
models, where exogenous data is usually needed. From the results,
it’s obvious that some buildings present better forecasting accuracy
than others. In order to provide fine predictions using AR models, the
building must has clean and consistent data. Cyclic and well-defined
consumption patterns deliver proper AR model predictions. If there
are some random or undefined activities in the buildings, the auto-
correlation is low. The buildings with big amount of classrooms or
offices with concrete schedule are easy to predict, in the other hand,
buildings with rooms with non-defined activities are hard to predict.
Similarly, there are some time-slots with high variability in the human
behaviour in the nights or at the beginning and the end of the school
day that present difficulties to be predicted.

• Taking into account the appliance layer, there is the need to make
it accessible and upgradeable. In the present case some efforts have
been employed to present the results (charts, tables, etc.) through web
services.

In relation with the case study, some actions to take for possible energy
saving improvements can be derived from the system analysis:

• Compress work schedules, reducing the hours flexibility. Specify the
entering and leaving work, the mealtime and the lunchtime periods.

• Suppression of the HVAC system during weekends and holidays. Adjust
the HVAC operation time downwards.
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• Move the cleaning service to day hours.

• Control the HVAC in order to have temperature, relative humidity and
light level inside the proper range, proposed by the authorities, taking
into account the homogeneity along the building.

6. Conclusions

Urban development involves the use of intelligent services taking advan-
tage of monitored data and providing an action to improve or maintain the
quality of these city services. This paper focuses on the particular case of
the electricity, identifying services that can help in increasing the energy
efficiency in urban infrastructures.

The work proposes a use case of short-term load forecasting in non-
residential buildings with real data in order to practically explain the services
embedded in the described Smart City general layers architecture. These lay-
ers are responsible of collecting the data from the sensors, transmitting the
data to the central hub, storing, cleaning and standardising this data, apply-
ing the forecasting methodology and finally provide an application to show
the results. The use case provided as a demonstration, consists of predicting
the consumption in 7 university buildings. The load forecasting is performed
using AR models showing that the results differs according to the profile of
the building and the quality of the data. When the data is complete and the
consumption pattern is cyclic and clear, the results are fine. Also, the service
allows to test the prediction accuracy from different points of view, such as
analysing which is the best month predicted or the same for the days of the
week.

As a future work, more services have to be defined to help providing
more information to the users in order to improve the energy efficiency of
the buildings. For example, defining an index related to the efficiency of the
building can be a good contribution to the subject.
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