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1 Introduction

Business-to-business (B2B) are events where brief meetings between par-
ticipants with similar interests are celebrated. These participants can be
companies, investors, research groups, etc. That kind of events come up in
several fields like sports, social life, research, etc.

A close example can be found in the ”Parc cient́ıfic i tecnològic de la
UdG”1 where every year two of these events were hold. They were the ”Fo-
rum del Parc cient́ıfic i tecnològic de la Universitat de Girona”2 and the
”Jornades R+D+I en Tic i Salut”3.

In this project we deal with the problem of scheduling the meetings of
a B2B event. This problem, known as the B2B Scheduling Problem, and
its optimization variation, the B2B Scheduling Optimization Problem was
firstly presented in [10] and in [6].

To obtain a schedule of the meetings there are two stages. The first one
consists on getting and filtering all the requested meetings, for this job, it is
necessary a human expert who can choose appropriately witch meeting can
(or must) be discarded, this expert is the human matchmaker. This stage
will not be considered in this project as widely as it is done in [15], and
mainly we will assume that this is already done. Once this first pruning of
meetings is done, what we have will be the final set of meetings that will
appear on the final schedule.

The second stage is when the schedule is actually done. This schedule
must satisfy some constraints, e.g., avoid meetings collisions, avoid unneces-
sary idle times between meetings for each participant, minimize the number
of meeting location changes, etc.

Previously to the work done in this master thesis, B2B have been con-
sidered in several works: CP,TFG, AsP. Here we improve the MaxSAT en-
coding of [15] using cardinality constraints [8] and proposing two implied
constraints that dramatically improve solving time for several instances and
propose some symmetry breaking with almost no effect.

In a second part of the thesis we try to identify the reason of the good
performance obtained thanks to those implied constraints. Namely we study
the benefits of using implied constraints with respect the density and the

1http://www.parcudg.com
2http://www.forumparcudg.com
3http://www.jornadaticsalut.com
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shape of the problem. By density we mean the ratio between the number of
meetings and the accommodation capacity. By shape we mean the configura-
tion of the accommodation capacity. To do that we also provide an instance
generator. This second part has resulted in the publication [7]. To be com-
plete w.r.t. related work, in [16] there are some alternative CP and MILP
based approaches to B2B solving. Our MaxSAT proposal clearly dominates
the solving time in all instances, hence it is state-of-the-art.

For the events celebrated on the ”Parc cient́ıfic i tecnològic de la UdG”,
the schedule of the meetings had been done manually for a human expert.
The problem was that in these events there are about three hundred requested
meetings if not more. These big numbers made the task of schedule them
very tough to be done manually.

A automatized process have been used since it was presented in [6]. Cer-
tainly the use of this method have improved greatly the handmade solutions
in terms of time to obtain the solution, and quality of the solution.

1.1 Goals

This projects can be divided into three main goals.

1. Improve the MaxSAT implementation of the problem that was pre-
sented in [15]. To accomplish this we set the following objectives:

• Identify the flaws in the current version of the MaxSAT imple-
mentation.

• Encode the cardinal constraints of the problem using the state-of-
the-art techniques presented in [1] [4].

• Identify possible implied constraints that may improve solving
time.

• Compare the different encodings with and without implied con-
straints with each other and with the previous MaxSAT model for
the twenty instances of the problem.

2. Create an instance generator. The objectives are the following:

• Use the four reals instances of the B2B scheduling problem to find
some patterns that can be use to model an instance generator.
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• Model the B2B instance generator.

• Make the B2B instance generator parameterizable in several ways
in order to reproduce certain characteristics of B2B real-world
problems.

The development of random problems generators sharing the majority
of real-world instances features was already stated on [17] as one of the
most important challenges of the next years.

Notice that this it is not a goal by itself, but a mean to be able to carry
on with the third goal.

This generator will allow us to augment the set of problems since it
is expected that the random generated instances will share the main
characteristics of the known problems. Having this generator will also
allow us to create instances of any desired size.

3. Study the use of impled constraints. The objectives of this part are the
following:

• Identify different implied constraints for the proposed MaxSAT
model.

• Define some families of instances to be used to study the behaviour
of implied constraints.

• Compare the use of implied constraints on the different families
defined. This instances will be obtained by means of the instance
generator.

• Check if the behaviour seen when using implied constrains on the
generated instances also happens with the real instances of the
problem.

• Illustrate how the use of implied constraints affects the solver de-
cisions, and explain its possible relation with the solver good per-
formance when using them.

1.2 Research group LAP

I would like to thanks the Logic and Programming research group (LAP)4

which is a research group of the University of Girona (UdG). They have

4http://ima.udg.es/Recerca/GrupESLIP.html
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been helping and supporting me during the elaboration of this project.
The research group is mainly focused in propositional satisfiability (SAT),

SAT modulo theories (SMT) and their applications to solve combinatorial
problems in areas such as planning and scheduling: timetabling, task se-
quencing in industrial processes, etc.

Before starting this project, I did some work experience in the research
group supervised by Mateu Villaret5. It was also supervised by him and with
the support of the whole group that I did TFG (”Treball Fi de Grau”) [15].
During this time working with them, we have presented three papers re-
lated with the B2B scheduling problem [6] [8] [7] to different well considered
congresses.

1.3 Sections of the project

This is a research project and it means that the structure of the sections of the
project may differ from other projects. I start the Section 1 , Introduction,
with a little explanation of the problem at hand, and stating the goals of this
project. After that it follow with Section 2, Viability, where I explain the
things that have made this project possible. Then, in Section 3, Methodology,
I explain the extreme programming methodology which is the methodology
used. The next Section is 4, Planning, where I show how the project was
planned, and how it changed over time because of new requirements, dead
roads, etc.

It is followed by the Section 5, Prior knowledge, where some important
concepts to be able to fully understand the work done here are given (e.g.,
NP Problem, Satisfiability problem, Implied constraints). Next there is the
Section 6, Requirements and decisions, where I comment the software and
hardware requirements of the project.

In Section 7, Definition of the problem, a fully detailed explanation of
what B2B events are and the B2B problems is given. In Section 8, Imple-
mentation, I present the improved MaxSAT encoding and the random B2B
instance generator. After that, in Section 9, Results, I show and analyze the
results obtained from the comparison of the MaxSAT models and from the
study of the implied constraints.

Finally in Sections 10, Conclusions, and 11, Further work, I sum up the
work that has been done in this project and I open some roads to continue

5http://ima.udg.es/~villaret/
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studying the B2B scheduling problem.
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2 Viability

This project has been possible to do thanks to the research group LAP, the
”Parc cientific i tecnològic de la UdG”, and the previous work done by myself
in Scheduling B2B meetings [6] [15].

The LAP group is a research group of the University of Girona which has
experience with scheduling and timetable problems, I was able to pick up the
knowledge that was needed to develop this project.

In addition, the group has a cluster formed by thirteen machines which
they put at my disposal. It was really useful to have these machines since
because of the nature of this project I needed to run lots of experiments, and
this way I was able to do this more quickly and with machines with the same
features, which made it more fair when it came to benchmarking.

There also is the ”Parc cient́ıfic i tecnològic de la UdG” which were the
ones that brought the problem to the research group LAP asking for an
automatized method for getting the meetings timetable. It was because, in
a few months time, they would hold the event ”Forum del parc cient́ıfic i
tecnològic de la Universitat de Girona” in which it would become very useful
to have that kind of automatized process.

The ”Parc cient́ıfic i tecnològic” provide us with a lot of help during the
development process. They also put us in touch with Mireia Centelles, which
was the person in charge of the project, and she also did the job of the human
expert.. Mireia helped us in a different ways, e.g., giving us the criteria to
make the filtering of the requested meetings, verifying that the solution given
by the software was correct, etc.

They also gave us the requested meetings of the previous editions of the
event, so we could use them to test our software and compare it with the
handmade solutions.

Finally I would like to put emphasis in the work related with the B2B
scheduling problem that was already done when I started with this project.
The work that I am talking about is the one called Scheduling B2B meet-
ings [15] done by myself and presented in 2014. From that project also came
out the paper Scheduling B2B meetings [6] presented on the The 20th Inter-
national Conference on Principles and Practice of Constraint Programming
also in 2014. It was there and in [10] where the B2B scheduling problem was
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formally defined in the literature for the first time.
The work done in 2014 can be seen as a first approach to the B2B prob-

lems, it is focused with the whole process, since the moment that the par-
ticipants make their requests until the very final schedule. In there, several
different models for the the B2B Scheduling Problem (B2BSP), its optimiza-
tion variation, the B2B Scheduling Optimization Problem (B2BSOP) and
the B2B Location Optimization Problem (B2BLOP) are presented and com-
pared between them. From that work it came clear that a very interesting
way to approach the B2BSOP (which is the most interesting from of the
three) was doing a MaxSAT encoding.

The project that I am presenting here is the one that comes after having
get our hands dirty with the B2BSOP, having understood its behaviour, and
being able to provide a much more competitive MaxSAT model that solves
the problem. Here we also do a deep study of the use and the impact of
implied constraints.

10



3 Methodology

In order to develop this project, since it is a research project, and not a
software project, we decided that the methodology that best fits was the
Extreme programming6. Notice that the methodologies are major focalized
for software development as it, and they are hard to adapt when it comes to
research.

The choice of useing the Extreme programming methodology (or a vari-
ation of it) was because of the fact that when doing research it is highly
possible to find oneself into a dead end. When this happens it is time to go
back a few steps, take into consideration all the problem as a whole and try
another way. This process can be seen as a change on the requirements of
the software, and the Extreme programming methodology is a very good one
when it is predictable to have lots of changes.

Also, when doing research, it is a good approach to start getting results as
quick as possible and then iterate over the implementation in order to improve
the results. It fits perfectly with the Extreme programming philosophy which
says that the most important thing is the code.

3.1 Extreme programming

Extreme programming is a software development methodology of the type of
agile software development. Because of this, it is based in short development
cycles which are intended to improve productivity and to offer the possibility
of adding new requirements.

Extreme programming is based in four principles, these are the following:

• Building software systems requires communicating system requirements
to the developers of the system. In formal software development method-
ologies, this task is accomplished through documentations. Extreme
programming techniques can be viewed as methods for rapidly build-
ing and disseminating institutional knowledge among members of a
development team.

• Extreme programming encourages starting with the simplest solution.
Extra functionality can be added later. The difference between this
approach and more conventional system development methods is the

6https://en.wikipedia.org/wiki/Extreme_programming
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focus on designing and coding for the needs of today instead of those
of tomorrow. This is something known as the ”You aren’t gonna need
it” (YAGNI).

• Feedback comes from different sources:

– Feedback from the system: by writing unit tests. It provides to
the programmers with direct feedback from the sate of the system
after implementing changes.

– Feedback from the customers: functionality test are shown to the
client. It give to the client information about how is the software
implementation going and helps them to decide if it is necessary
to add new requirements.

Usually in the research wold there is not the figure of the client, and it
may be seen as a very self demanding developer.

• Extreme programming argue that only truly important product of the
system development process is code. Codding can also be used to figure
out the most suitable solution.
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4 Planning

In this section we present all the process that we planned to do in this project,
as well as the estimated time for each task, the dead ends that we found while
doing the project and also the things that went well.

As it was said before, this project has three goals.
The first one is to improve the existent MaxSAT model of the B2B

Scheduling Optimization Problem. Here we want to compare the new model
with the old one and see how much we were able to improve.

The second goal is to create an instance generator. Here what we want
is to be able to have a huge set of instances for the B2B scheduling problem
so the next goal can be done more accurately. Notice that this goal is only
a mean to be able to accomplish the next goal.

The third goal is to make and exhaustive study of the use of implied
constraints. Here we want to see if the implied constraints work well for real
instances, and if so, why they do and how they effect the solver decisions.

In order to accomplish the three goals, this project was planned as follows:

1. First of all, we book some time to do a deeper study of the B2B Schedul-
ing Optimization Problem and also to see the state-of-the-art SAT en-
codings. The goal of this study was to find what and how the MaxSAT
model and the encodings presented in [15] could be improved.

For this we estimated two weeks of investigation.

2. After having done some research, we found three major points where
the MaxSAT model could be improved.

• Change the encoding of the cardinal constraints. Currently we
were using a very simple implementation of the cardinal con-
straints, and since there are lots of these constraints in our prob-
lem we planned to change the naive encodings that we where using
on [15] to a state-of-the-art encodings [1] [4].

• Break symmetries. Symmetries are parts of the search tree that
do not need to be explored since they can be deduced from some
others branches of the tree with a linear operation. Break symme-
tries means to stop the search of these useless branches. It usually
yields some good improvements so we planned to search and add
some constraints to the model to break symmetries.
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• Use implied constraints. Implied constraints are constraints that
do not modify the set of solutions nor the search tree, but to use
them usually means reduce the solving time. We also planned to
search some implied constraints and implement them.

The process of decide what to do next took about a week.

3. We started with the new implementation of the cardinal constraints.

This implementation was estimated in three weeks

4. Once the new implementation was finished we use the twenty instances
that we had to run our experiments and compare the results with the
old implementation. Here we saw that using cardinal networks for the
cardinal constrains improved our solving time a lot.

This comparison was estimated with half a week.

5. The next step was the find and implement symmetry breaking. This
part proved to be more difficult of what it was expected. At the end
the results that we obtained where quite a deception, since they did not
improve the solving time, and in some cases they even made it worse.

It was estimated in two weeks but it took almost a month.

6. We considered the symmetry breaking a dead end.

7. We started with the search for implied constraints. We were able to
find two implied constraints which we implemented.

This was estimated in two weeks.

8. Once we had the new implementation with the implied constraints we
use again the twenty instances that we had to run our experiments.
The results that we obtained using implied constraints were really in-
teresting.

9. At this point, and since we had obtained some competitive results,
we write a paper to be send to the twelfth international conference
on Integration of Artificial Intelligence (AI) and Operations Research
(OR) techniques in Constraint Programming 7 [8].

It took two weeks.
7http://cpaior2015.uconn.edu/
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10. Considering the interesting results obtained with the implied constrains
we decided to investigate this behaviour. It became obvious though
that if we wanted to do that we needed a bigger set of instances.

11. We decided to create our own instance generator for the B2B scheduling
problem, since it was (almost) impossible to obtain more real instances
for it.

12. For creating the instance generator it was necessary to study the patters
of the four industrial instances that we had and implement it.

This process was estimated with a week.

13. Sadly it was not possible to extract useful information using only four
instances, and the instance generator that we created was not useful.
At the end we decided to create a random instance generator.

This process took another week.

14. Once we had the set of random instances we could make a very ex-
haustive analysis of the behaviour of the solver when using implied
constraints. This was estimated with two weeks.

15. With that analysis and with the instance generator we wrote another
paper, this one to the annual IEEE International Conference on Tools
with Artificial Intelligence 8.

16. This last paper was not accepted in the conference. However we took
the advices of the reviewers and we also investigate a bit more the
behaviour of the implied constraints especially the variable decisions
which bring some interesting information.

17. With these new results we wrote a third paper, this time to Pragmatics
of Satisfiability 9 [7] which is a workshop held within the international
conference of satisfiability. There the paper was finally accepted.

The figure 1 shows an schematic representation of the planning of the
project.

8https://sites.google.com/site/ictai2015italy/
9http://www.pragmaticsofsat.org/2016/
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Figure 1: Graphic representation of the planning of the project
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5 Prior knowledge

Before starting to describe and analyse the implementation and the results,
it is necessary to provide some insights about the technologies, techniques
and other important concepts that will help to understand better the next
sections.

5.1 NP problems

In computational complexity theory, on one hand we have the class of prob-
lems ”P”, Polynomial time, means that the problem can be solved on a deter-
ministic sequential turing machine in an amount of time that is polynomial
in the size of the input.

On the other hand-side there is the class of problems ”NP”, Nondetermin-
istic polynomial time where you consider a non-deterministic turing machine
instead.

Although any given solution for an NP problem can be verified in polyno-
mial time, there is no known (nowadays) efficient way to find a solution for
the problem. It means that the time required to solve a problem using any
current known algorithm increases exponentially as the size of the problem
grows.

Inside of the NP problems group can be found the so-called subgroup
NP-complete problems. These are NP problems that have the characteristic
that every NP problem can be reduced to them in polynomial time.

This leads us to one of the most important open questions in complexity
theory, and this is the P = NP problem. This problem asks whether some
polynomial time algorithms exists for NP-complete problems.

5.2 Constraint Satisfaction Problem (CSP)

Constraint satisfaction problems (CSP) are problems where the aim is to
search for a state in witch a number of constraints are satisfied at the same
time.

The constraints used in constraint programming are of different kinds:
logical constraints (e.g. ”A or B is true”), arithmetic constraints (e.g. ”x ≤
2”), and many others.
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Figure 2: Euler diagram for P, NP, NP-complete and NP-hard set of problems

A variation of CSP is the Max-CSP where a number of constraints are
allowed to be violated. In this case the quality of the solution is measured by
the number of satisfied constraints. Another variation is the weighted CSP,
which is a Max-CSP where some constraints have a weight w, and it means
that if we violate some of these constraints, the solution will have a cost equal
to the sum of all w from the violated constraints. Notice that it is possible
to find a model problem that has, at the same time, the so-called hard and
soft constraints. Hard constraints are the ones that must be satisfied always,
while the soft constraints are the ones that have a w associated.

Boolean satisfiability problems (SAT), satisfiability modulo theories (SMT)
and answer set programming (ASP) are different forms of the constraint sat-
isfaction problem.

5.2.1 Satisfiability problem (SAT)

A boolean expression, e.g., (A∨B)∧(¬C∧D), is a logic formula constructed
from variables, operators AND, OR, NOT and parenthesis. A formula is
satisfiable if it can be evaluated to true by al least one appropriate assignation
of logical values to the variables.

Thus, the boolean satisfiability problem (SAT) consists on determining if
there is a model (an assignation of variables that make the formula evaluate
as true) for a given boolean formula in conjunctive normal form.

If there is at least one model then the boolean formula is said to be sat-
isfiable, otherwise it is unsatisfiable.

SAT was the first NP-complete problem known. As mention before, it
means that any other NP problem can be reduce to the SAT problem, and
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most important, this reduction can be done in polynomial time. It is because
of that that the SAT solvers (algorithms that try to solve SAT instances in
a efficient way) have become more and more popular.

Thus, to solve a problem using SAT means to reduce that problem to
SAT , and then send it to a SAT solver which will try to find a solution for
that SAT instance. It is very important to keep in mind though that the
SAT problem is an NP-complete problem, and despite of SAT solvers have
improved a lot during the last years, there still is not any SAT solver that
can solve all SAT instances in a polynomial time.

5.2.2 MaxSAT and weighted MaxSAT

MaxSAT and Weighted MaxSAT (WMaxSat) are the optimization variations
of the SAT problem. Here the goal is to determine the maximum number
of clauses of a SAT problem that can be made true at the same time by an
assignment of boolean values to the variables of the formula. Let us take as
an example the following boolean formula in conjunctive normal form:

(x0 ∨ x1) ∧ (x0 ∨ ¬x1) ∧ (¬x0 ∨ x1) ∧ (¬x0 ∨ ¬x1)

The previous formula is known in the literature as a clique. A clique
is a boolean formula where we have all the possible clauses that involve
two variables, and it is trivially unsatisfiable. However, for the example at
hand, it is possible to assign boolean values for the variables x0 and x1 in
such a way that will make three out of the four clauses true. If this were
a MaxSAT formula where each violation of a clause is penalized by 1 the
optimum solution will be of cost 1.

5.2.3 SAT modulo theories (SMT)

SAT modulo theories (SMT) instances are logic formulas where some boolean
variable have been replaced by atoms from some background theory like linear
integer arithmetic, difference logic, arrays, etc.

For instance, in the following SMT formula, (x ≥ 2)∨ ((2+x = y)→ z =
1), x, y and z are integer variables inside linear integer arithmetic atoms.
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5.2.4 Integer Linear Programming (ILP)

Integer Linear Programming (ILP) problems are a mathematical optimiza-
tion problem in which the objective function and the constrains are lineal,
and all the variables are restricted to be integers.

A variant of the Integer Lineal Programming is the Mixed Integer Lin-
eal Programming (MILP) which involve problems where only some of the
variables have to be integers, while the other variables may be non-integers.

5.3 Implied constraints

Implied constraints are constraints that can be added to a model without
changing its set of solutions. It is useful to add these constraints since usually
they increase the propagation capabilities of the solver.

Using implied constraints has a drawback, by using them the size of
the model is increased, since we are adding redundant information. It is
important to have this in mind since sometimes what is best is to find a
compromise between the implied constraints used and the size by which the
model is increasing.

The use of implied constrains has been proved several times in the lit-
erature to have benefits when encoding into SAT, see for instance [11] [2]
[3].

5.4 Symmetries

When solving a combination problem, sometimes there are interpretations
of the problem that can be obtained by applying a linear operation from
another interpretation. If these interpretations are models it is not a (big)
problem since we are obtaining more (symmetric) solutions for the problem.

The trouble come when these interpretations are not models, and it means
that the solver is making symmetric failures that could be avoided without
losing essential solutions.

Break symmetries is highly recommendable since it reduces the search tree
of the problem. It is also important to notice that for breaking symmetries
it is necessary to add more constraints to the model, which means to have
bigger models.

In figure 3 there is an example of symmetric solutions for the famous
problem of the 5-queens where the goal is to put five queens on a 5x5 chess
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board without them threatening each others. There we have two solutions
where the second one is the first one rotated 90 degrees.

Figure 3: Two symmetric solutions for the 5-queens problem. The second
solution is the first one rotated 90o.

5.5 Instances types

An instance is a representation of a problem, and these instance can be
grouped in two categories depending on the way that the have been obtained.
These categories are:

• Industrial instances, or real-world instances. These are the ones that
are obtained from the real world, and it means that they are real in-
stances. Usually these are the most difficult to obtain and also the ones
more wanted.

• Random instances. These are the instances that are obtained randomly.
These instances are easy to obtain since it is fairly easy to create a
random instance generator.

Create industrial instances is a very interesting problem. For doing this,
it is necessary to analyse real world instances for a specific problem and then
generate instances that follow the patters that have been observed. The
quality of these instances depends on the quality of the analysis of the real
world instances.
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This distinction is quite important since that a solver that is good solving
random instances may not be that good solving real world instances, and vis-
versa.
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6 Requirements and decisions

In this project we have different goals, on one hand we want to compare the
performance of different MaxSAT models of the B2B scheduling optimization
problem. And on the other hand we want to dig into the use of implied
constraints. Also, to make all of this possible it is necessary to have lots of
instances, and thats why we are also building a instance generator.

In order to accomplish this objectives we had to made some decisions
about how we were going to do this.

6.1 Software requirements

Our aim is to model the B2B scheduling problem as a MaxSAT problem and
solve it. For doing so we have to phases:

• Transform our instances of the B2B scheduling problem into MaxSAT
instances. This is done by writing a JAVA (jdk 7) application that will
take as input a B2B instance and will give as a output the equivalent
MaxSAT instance. This Java application is a console application since
it is no necessary to have any kind of user interface. It was decided
to use Java as a programming language for this phase because of the
quality and quantity of the Java documentation and libraries available,
and also because Java is a language that we were already familiarized
with.

• Solve the MaxSAT instance. For this phase we use two different state-
of-the-art MaxSAT solvers. For the comparison of the different MaxSAT
models, we use QMaxSat14.04auto-glucose3 [13], which uses glucose [5] 10

as a SAT solver, and at its turn, glucose is based on MiniSat 11.
QMaxSat14.04auto-glucose3 did a very good job in the industrial par-
tial MaxSAT tracks on the MaxSAT Evaluation 2014. 12.

For the exhaustive analysis of the implied constraints we use Open-
WBO [14]13 as MaxSAT solver, also using glucose as SAT solver. This

10http://www.labri.fr/perso/lsimon/glucose/
11http://minisat.se/
12http://www.maxsat.udl.cat/14/results/index.html
13http://sat.inesc-id.pt/open-wbo/
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solver was ranqued as one of the best non-portfolio solver in the in-
dustrial partial MaxSAT tracks of the MaxSAT Evaluations 2014 and
2015.

The reason of using two different MaxSAT solvers is that between the
first set of experiments and the second set of experiments there was
and elapse of time in which Open-WBO seem to rise its position on
the MaxSAT Evaluation. Notice that the fact of using two different
MaxSAT solvers in this project is not a problem an does not led to erro-
neous conclusions since the experiments that use one or other MaxSAT
solver are not compared between them.

6.2 Instances

Because of the nature of our project, it is highly necessary to have a big set
of instances to run our models with. We already had nine instances (four
industrial instances, and five crafted instances) that came from the work in
[6]. For this project we also manually craft eleven new instances which are
used to compare the new models with the existent ones.

However, it is not enough for the third goal of the project (to make an
exhaustive study of the use of implied constraints). For this reason we model
an instance generator, doing so we can have lots of instances that share some
of the real-wold main characteristics. This instance generator is written in
C++ for the speed that offers this language.

6.3 Hardware requirements

In order to run our experiments we used a cluster with 13 machines, each
machine with the following specifications:

All experiments have been run on a cluster of Intel XeonTMCPU@3.1GHz
machines, with 8GB of RAM, under 64-bit CentOS release 6.3, kernel 2.6.32.
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7 Definition of the problem

Since all this project and work started when the ”Parc cient́ıfic i tecnologic
de la Universitat de Girona” came asking for a solution to automatize the
timetable generation for the event ”Forum del parc cient́ıfic i tecnologic de
la Universitat de Girona”, we will start here explaining what is the process
in that event, which will be similar to any other B2B event. And then we
will formalize the problem.

7.1 B2B events

As said before B2B are events where brief meetings between participants with
similar interests are celebrated. In the ”Forum del parc cient́ıfic i tecnologic
de la Universitat de Girona” the participants filled in a form talking about
their interests. Then the participants can see the information of every other
participant, and they request meetings with normal or hight priority. The
participants can also add some other information like their available time or
if they prefer to have meetings only on the morning or the afternoon.

After having gathered all this information, we do a prune of the meetings
according to its priority.

Thus the information that we have at this point is:

• The requested meetings, after being filtered, for each participant.

• The forbidden time slots of each participant.

• Information about the event, like how many meetings can be hold at
the same time, duration of each meeting, etc.

Now we can start with the problem itself, we have to find a schedule that
fulfils the following restrictions:

• Each meeting has to be scheduled at morning or afternoon as requested.

• Each participant has at most one meeting at each time slot.

• No meetings can be scheduled on participant’s forbidden time slots.

• At most one meeting is scheduled in a given time slot and location.
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Once the final schedule is obtained, the human expert asks the partici-
pants for a confirmation. The confirmed ones are fixed and the rejected ones
are retracted. Finally the last arrival participants have to be considered, they
may ask for some new meetings. Add this point the human expert tries to
add manually the last-minute meetings.

In the figure 4 a diagram of this process is shown.

Figure 4: Diagram explaining the process of a B2B event

7.2 B2B Scheduling Problem (B2BSP)

Here we formally define the B2B Scheduling Problem. Let us define some
nomenclature first.

Definition 1 (Nomenclature). Let P be a set of participants, T a list of time
slots and L a set of available locations (tables). Let M be a set of unordered
pairs of participants in P (meetings to be scheduled). Additionally, for each
participant p ∈ P , let f(p) ⊂ T be a set of forbidden time slots.

Definition 2 (B2B Scheduling Problem). The B2B Scheduling Problem
(B2BSP) is the problem of finding a feasible B2B schedule.

A feasible B2B schedule S is a total mapping from M to T ×L such that
the following constraints are satisfied:

• Each participant has at most one meeting scheduled in each time slot.

∀m1,m2 ∈M such that m1 6= m2 :

π1(S(m1)) = π1(S(m2)) =⇒ m1 ∩m2 = ∅

• No meeting of a participant is scheduled in one of her forbidden time
slots.

∀p ∈ P,m ∈M :

p ∈ m =⇒ π1(S(m)) /∈ f(p)
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• At most one meeting is scheduled in a given time slot and location.

∀m1,m2 ∈M such that m1 6= m2 :

π1(S(m1)) = π1(S(m2)) =⇒ π2(S(m1)) 6= π2(S(m2))

As an additional constraint, we consider the case where meetings may
have a morning/afternoon requirement, i.e., that some meetings must neces-
sarily be celebrated in the morning or in the afternoon. Let’s then consider
that the set of time slots T is divided into two disjoint sets T1 and T2 and,
moreover, that we have a mapping t from meetings m in M to {1, 2, 3}, where
1 means that the meeting m must take place at some time slot in T1, 2 means
that it must take place at some time slot in T2, and 3 means that it does not
matter. Then the schedule should also satisfy the following requirement:

∀m ∈M :

(t(m) = 1 =⇒ π1(S(m)) ∈ T1) ∧ (t(m) = 2 =⇒ π1(S(m)) ∈ T2)

7.3 B2B Scheduling Optimization Problem with ho-
mogeneity d (B2BSOP-d)

Typically, we are interested in schedules that minimize the number of idle
time periods. By an idle time period we refer to a group of idle time slots
between a meeting of a participant and her next meeting.

Before formally defining this optimization version of the B2BSP, we need
to introduce some auxiliary definitions.

Definition 3 (Idle time period). Given a B2B schedule S for a set of meetings
M , and a participant p ∈ P , we define LS(p) as the list of meetings in M
involving p, ordered by its scheduled time according to S:

LS(p) = [m1, . . . ,mk], with

∀i ∈ 1..k : p ∈ mi

∀m ∈M : p ∈ m⇒ ∃!i ∈ 1..k : mi = m

∀i ∈ 1..(k − 1) : π1(S(mi)) < π1(S(mi+1))

By LS(p)[i] we refer to the i-th element of LS(p), i.e., mi.
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Definition 4 (B2B Scheduling Optimization Problem with homogeneity h).
The B2B Scheduling Optimization Problem with homogeneity h (B2BSOP-h)
is the problem of finding a feasible B2B schedule S, where the total number
of idle time periods of the participants is minimal, i.e., minimizes∑

p∈P

#{LS(p)[i] | i ∈ 1..|LS(p)| − 1, π1(S(mi)) + 1 6= π1(S(mi+1))}

and also the difference between the number of idle time periods of any two
participants is at most h.

7.4 NP-Hardness of B2BSP

The complexity hardness of the B2BSP can be proved with a reduction from
the edge coloring problem that is NP-complete. Let us define the Edge
coloring problem with more detail.

Definition 5 (Edge coloring problem). Decide whether given a graph G, it
is possible to color all edges of G in such a way that any two consecutive
edges have different color using only degree(G) colors.

In Figure 5 there are some examples of graphs with a proper edge coloring.

Figure 5: Four examples of a proper edge coloring.

Once we know the edge coloring problem, let us show how the B2BSP
can be reduce to it:

• Each node of the graph represents a participant of the B2B event.

• Each edge between two nodes corresponds two nodes corresponds to a
meeting between the corresponding participants.

• The degree of the graph is the number of time-slots.

• For the reduction we can assume that we have as many tables as we
need.

Also, the B2BSP problem can be reduced from the restricted timetable
problem (RTT) as proved in [9]
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8 Implementation

In this section we describe our MaxSAT models for the B2BSOP-d prob-
lem and our instance generator. Firstly we start with out MaxSAT models
starting with the one called Base Model. This Base Model contains all the
necessary constraints to solve the problem. After we extend the model by
presenting the two implied constraints that we have identified, and then we
present the constraints for doing the symmetry breaking.

Finally we present our random B2B instance generator where we will give
the notions of shape and density of a B2B instance and we explain how we
have build it.

8.1 MaxSAT Base Model for the B2BSOP-d

8.1.1 Parameters

Each instance is defined by the following parameters.

nMeetings : number of meetings
nTimeSlots : number of available time slots
nMorningSlots : number of morning time slots
nTables : number of available locations
nParticipants : number of participants
morningMeetings : subset of {1, . . . , nMeetings} to be scheduled in morning

slots
afternoonMeetings : subset of {1, . . . , nMeetings} to be scheduled in after-

noon slots
meetings , function from {1, . . . , nParticipants} to 2{1,...,nMeetings}: set of

meetings involving each participant
forbidden, function from {1, . . . , nParticipants} to 2{1,...,nTimeSlots}: set of

forbidden time slots for each participant

8.1.2 Variables

We define the following propositional variables.

schedule i,j: meeting i is held in time slot j
usedSlotp,j: participant p has a meeting scheduled in time slot j
fromSlotp,j: participant p has a meeting scheduled at, or before, time slot j
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endHolep,j: participant p has an idle time period finishing at time slot j
max 1, . . . ,max b(nTimeSlots−1)/2c and min1, . . . ,minb(nTimeSlots−1)/2c:

unary representation of an upper bound and a lower bound of the maxi-
mum and minimum number of idle time periods among all participants,
respectively. Note that there can be at most b(nTimeSlots − 1)/2c idle
time periods per participant. By restricting the difference between
these variables to be less than a certain value, we will enforce homo-
geneity of solutions (Constraints (16) to (21)).

Notice that all variables but schedule are only necessary for optimization.
We also use some auxiliary variables that will be introduced when needed.

8.1.3 Constraints

All constraints except (15) are hard. To help readability we define M =
{1, . . . , nMeetings}, T = {1, . . . , nTimeSlots}, P = {1, . . . , nParticipants}.

• At most one meeting involving the same participant is scheduled in each
time slot.

atMost(1, {schedule i,j | i ∈ meetings(p)}) ∀p ∈ P, j ∈ T (1)

• No meeting is scheduled in a forbidden time slot for any of its partici-
pants. ∧

i∈meetings(p), j∈forbidden(p)

¬schedule i,j ∀p ∈ P (2)

• Each meeting having a morning or afternoon slot requirement is sched-
uled in a time slot of the appropriate interval.

exactly(1, {schedule i,j | j ∈ 1..nMorningSlots})
∀i ∈ morningMeetings (3)

¬schedule i,j
∀i ∈ morningMeetings
∀j ∈ nMorningSlots + 1..nTimeSlots

(4)

exactly(1, {schedule i,j | j ∈ nMorningSlots + 1..nTimeSlots})
∀i ∈ afternoonMeetings (5)
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¬schedule i,j
∀i ∈ afternoonMeetings
∀j ∈ 1..nMorningSlots

(6)

exactly(1, {schedule i,j | j ∈ T}) ∀i ∈M \ (morningMeetings ∪
afternoonMeetings)

(7)

• At most one meeting is scheduled in a given time slot and location.

atMost(nTables , {schedule i,j | i ∈M}) ∀j ∈ T (8)

Notice that with Constraints (3) to (8) we get a total mapping from the
meetings to time slots and locations.

8.1.4 Optimization

Minimization of the number of idle time periods is achieved by means of soft
constraints. In order to be able to perform that minimization we introduce
channeling constraints between the variables schedule, usedSlot and fromSlot .

• If a meeting is scheduled in a certain time slot, then that time slot is
used by both participants of the meeting.

schedule i,j → (usedSlotp1i ,j ∧ usedSlotp2i ,j) ∀i ∈M, j ∈ T
where p1

i and p2
i are the participants of meeting i. (9)

In the reverse direction, if a time slot is used by some participant, then
one of the meetings of that participant is scheduled in that time slot.

usedSlotp,j →
∨

i∈meetings(p)

schedulei,j ∀p ∈ P, j ∈ T (10)

• For each participant p and time slot j, fromSlotp,j is true if and only
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if participant p has had a meeting at or before time slot j.

¬usedSlotp,1 → ¬fromSlotp,1 ∀p ∈ P (11)

(¬fromSlotp,j−1 ∧ ¬usedSlotp,j)→ ¬fromSlotp,j ∀p ∈ P, j ∈ T \ {1}
(12)

usedSlotp,j → fromSlotp,j ∀p ∈ P, j ∈ T (13)

fromSlotp,j−1 → fromSlotp,j ∀p ∈ P, j ∈ T \ {1}
(14)

− [Soft constraints] If some participant does not have any meeting in a
certain time slot, but it has had some meeting before, then she does not
have any meeting in the following time slot.

(¬usedSlotp,j∧fromSlotp,j)→ ¬usedSlotp,j+1 ∀p ∈ P, j ∈ T\{nTimeSlots}
(15)

We claim that, with these constraints, an optimal solution will be one
having the least number of idle time periods. Note that, for each participant,
each meeting following some idle time period increases the cost by 1.

If we were just considering optimization, Constraints (11) and (12) would
not be necessary, since minimization of the number of idle time periods would
force the value of fromSlotp,j to be false for every participant p and time slot
j previous to the first meeting of p. However, since we are also seeking for
homogeneity, these constraints are mandatory. Without them, the value of
fromSlotp,j could be set to true for time slots j previous to the first meeting of
p, inducing a fake idle time period in order to satisfy the (hard) homogeneity
constraints defined below.

8.1.5 Homogeneity

We reify the violation of soft constraints in order to count the number of idle
time periods of each participant. This will allow us to find the maximum and
minimum number of idle time periods among all participants, and to enforce
homogeneity by bounding their difference.
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• endHolep,j is true if and only if participant p has an idle time period
finishing at time slot j.

endHolep,j ↔ ¬
(
(¬usedSlotp,j ∧ fromSlotp,j)→ ¬usedSlotp,j+1

)
∀p ∈ P, j ∈ T \ {nTimeSlots} (16)

• sortedHolep,1, . . . , sortedHolep,nTimeSlots are the unary representation of
the number of idle time periods of each participant p.

sortingNetwork([endHolep,j | j ∈ T ], [sortedHolep,j | j ∈ T ])

∀p ∈ P (17)

• max 1, . . . ,max b(nTimeSlots−1)/2c and min1, . . . ,minb(nTimeSlots−1)/2c are (an
approximation to) the unary representation of the maximum and min-
imum number of idle time periods among all participants, respectively.

sortedHolep,j → max j ∀p ∈ P, j ∈ 1..b(nTimeSlots − 1)/2c (18)

¬sortedHolep,j → ¬minj ∀p ∈ P, j ∈ 1..b(nTimeSlots − 1)/2c (19)

Constraints (18) and (19) are not enough to ensure that the max and
min variables exactly represent the maximum and minimum number
of idle time periods among all participants. However, together with
Constraints (20) and (21), they suffice to soundly enforce the required
homogeneity degree.

• The difference between the maximum and minimum number of idle time
periods can be at most d (in our setting the chosen number was 2).

dif j ↔ minj XOR max j ∀j ∈ 1..b(nTimeSlots − 1)/2c (20)

atMost(d, {dif j | j ∈ 1..b(nTimeSlots − 1)/2c}) (21)

8.2 Implied Constraints

We have identified the following implied constraints.

• The number of meetings of a participant p as derived from usedSlotp,j
variables must match the total number of meetings of p.

exactly(|meetings(p)|, {usedSlotp,j | j ∈ T}) ∀p ∈ P (22)
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• The number of participants having a meeting in a given time slot is
bounded by twice the number of available locations.

atMost(2× nTables , {usedSlotp,j | p ∈ P}) ∀j ∈ T (23)

8.3 Symmetry Breaking

For the B2BSOP we consider location and time symmetries. Location sym-
metries are implicity eliminated by the model described, since only the num-
ber of tables occupied is considered. Unfortunately, removing time symme-
tries in the presence of participants’ forbidden time slots seems not to be
feasible. However, we can break some time symmetries when there are no
forbidden time slots and the meetings have neither morning nor afternoon
slot requirements (there are several instances with these characteristics). No-
tice that since we are minimizing the number of idle time periods, we can-
not soundly break time symmetries by simply fixing a priori an ordering of
meetings. Instead, what we do is to force some ordering in the “matrix” of
usedSlot variables as follows, assuming an even number of time-slots and the
existence of a participant with an odd number of meetings.14

• For some participant p with an odd number of meetings we force the
number of meetings of p taking place in the first half of time slots to be
odd.

((. . . (usedSlotp,1 XOR usedSlotp,2) . . . ) XOR usedSlotp,bnTimeSlots/2c)
(24)

8.4 Encoding of Global Constraints

In the model described appear the global constraints at most (atMost) and
exactly (exactly) k. These global constraints state that at most or exactly
k variables of a given set of variables needs to be true respectively. In the
model also appears the global constraint sort sortingNetwork , that given a
set of variables as a input it returns as a output the same number of variables,
first the ones that are true, and then the ones that are false.

Here we first recall the encodings that were used for these global con-
straints in the MaxSAT model presented on[15], from now on this will be
called Näıve Encoding. Then we state the encodings that we use for the
Cardinality Networks based Encoding that we present in this project.

14All instances considered are like this.
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Näıve Encoding

• atMost(1, ): quadratic number of pairwise mutex clauses.

• exactly(1, ): atMost(1, ) plus a clause (disjunction) with all the in-
volved variables, for the ”at least part of the constraint.

• sortingNetwork : odd-even sorting network.

• atMost(k, ): näıve sequential unary counter [18].

Cardinality Nerworks based Encoding

• atMost(1, ): quadratic number of pairwise mutex clauses.

• exactly(1, ): commander-variable encoding [12].

• exactly(k, ), sortingNetwork and atMost(k, ): cardinality networks [1]
[4].

By using cardinality networks we can deal with soft constraints in a more
clever way: instead of soft constraints (15), we post as soft constraint the
negation of each “output variable” sortedHolep,j of the sortingNetwork cor-
responding to constraint (17). This way, knowing that each participant will
have at most b(nTimeSlots − 1)/2c idle time periods, we can reduce the
number of soft constraints, as well as the number of sortedHolep,j variables
of each participant, to a half.

8.5 Random B2B Instance Generator

Here we present our random B2B instances generator. To create this gen-
erator, we consider a number of participants P and a number of meetings
M . The key question is how these M meetings are distributed among these
P participants. In this distribution, we need to impose a restriction to en-
sure the feasibility of the instance: the number of meetings requested by a
participant cannot be greater than the number of time slots T .

We first analyze how these distributions of meetings among participants
are in at hand real-world B2B instances. The set of available real-world B2B
instances [6] plus the eleven new instances that we provide 15 sum up a total

15Instances available at http://imae.udg.edu/recerca/lap/simply/
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Figure 6: Histograms of variable: number of meetings of each participant,
for the four real-world instances.

of 20 instances: 5 of them come from real data, and the remaining 15 are
crafted modifications from the real ones. We focus our analysis on 4 real
B2B instances (the fifth one is similar to the two tic instances considered).

In a first step we want to check if our real data fits any known distribution.
As we analyze the number of meetings requested by each participant, we do
not consider if a meeting is requested by both of its two participants or just
by one. Also, our analysis does not consider others aspects of the distribution
of requests. For instance, if requests are clustered. This may happen in B2B
events divided into fields, in which participants request most of their meetings
with other participants of the same field, creating clusters of participants.

In Figure 6 we represent the histograms of the number of meetings of
each participant in real-world B2B instances. We observe that some of the
histograms are right-skewed (forum-13 and forum-14) while some others
are clearly left-skewed (tic-12 and tic-13). From the shape of those his-
tograms, it is difficult to conjecture the probability distribution for such data.
Right-skewed histograms slightly resemble those of a binomial distribution
B(n, p) with small n and small p. For the left-skewed histograms, it is worth
remarking that the number of available time slots T for meetings was un-
known before the requesting process. For that reason, some requests were
removed (by a priority criteria) of those participants having more requests
than T . This preprocessing step was performed in all instances in order to
ensure the feasibility restriction mentioned above.

As we cannot draw general conclusions about probability distributions
from this reduced set of real instances, we present a regular model to gener-
ate random B2B instances. This model is based on a probability U that a
participant requests a meeting with another.
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8.5.1 B2B random generator regular model

Definition 6 (Regular model). Let P be a positive number of participants,
and U a real value in [0, 1]. The probability that a participant pi requests
a meeting with another participant pj is exactly U , where 1 ≤ i, j ≤ P and
i 6= j.

In the regular model defined above, the number of meetings requested per
participant follows a binomial distribution B(n, p) with parameters n = P−1
and p = U .

Each participant can request meetings with the remaining P − 1 par-
ticipants. This means that for each of them, there is a sequence of P − 1
yes/no independent experiments, each of which yields success with probabil-
ity U . This is exactly the definition of a binomial distribution B(n, p) with
parameters n = P − 1 and p = U .

Therefor in the model presented, the expected number of meetings re-
quested by each participant is (P − 1)U . since in a binomial distribution
B(n, p), the mean is np.

Note that our model allows us to generate instances in which the number
of meetings requested per participant is close to the maximum. The reg-
ular model is not parametric on the number of time slots T . Thus, when
(P − 1)U � T , there exists (with high probability) a number of partici-
pants requesting more meetings than available time slots, and hence it is not
possible to schedule all of them. To avoid trivially unfeasible instances, we
perform a preprocessing step limiting the maximum number of requests of a
participant to T .16 This way, the resulting problem contains many partici-
pants requesting T meetings, i.e., many observations close to the maximum.
This is not a problem since we have found this kind of participant is very
frequent.

We use this model to generate random families of B2B instances, and
we study the performance of the solving process on the use of the implied
constraints. This study checks whether or not it is beneficial to use them for
the B2BSOP, and in which situations is more useful to use one or another.
In particular, we focus our study on two features of the problem: the density
and the shape.

Let us define first the assignation matrix A of size T · L. An element

16A trivially unfeasible instance contains participants requesting more meetings than
available time slots.
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(i, j) of this matrix represents that time slot ti and location lj is scheduled
whether with a meeting mk ∈M or with no meeting.

Ai,j =

{
mk if 1 ≤ k ≤M
∅ otherwise

Definition 7 (Density of a B2B instance). Given a positive number of meet-
ings M , time slots T and locations L, the density d of a B2B instance is the
relation between the number of meetings M and the accommodation capacity
T · L.

d =
M

T · L
Definition 8 (Shape of a B2B instance). Given the accommodation capacity
T · L, the shape s of a B2B instance is defined as the relation between the
number of time slots T and the number of locations L.

s =
T

L

Finally, we remark that this model does not represent all features of
real-world instances. For instance, using this model we cannot generate a
large number of participants requesting a number of meetings far from the
mean. In particular, it may be possible the existence of passive participants
in some B2B events. These participants are characterized by requesting
no meetings (i.e, they attend the event because other participants request
meetings with them). In this case, a polynomial decreasing distribution, as
a power-law distribution, may model these instances more adequately. The
model also does not take into account forbidden time slots for the participants
nor morning/afternoon requirements. However, our model seems adequate
to model B2B instances similar to the known real-world ones.
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9 Results

Here we present the results that we have obtained. We start with the results
related with the first goal of the project, they are exposed in the subsection
Comparison with previous work 9.1. We follow with the results of the second
and the third goal, exposed in the subsection Implied constraints experimental
evaluation 9.2.

Recall that the second goal was a mean to accomplish the last goal, so it
make sense to present the results referring to them both in the same subsec-
tion.

9.1 Comparison with previous work

In this section we compare the performance of the MaxSAT model proposed
in [15], which is the one called Näıve, with the different models proposed
here. We also show how extending the model with implied constraints and
symmetry breaking, we can significantly improve the solving time. We use the
same nine instances that the authors used in [6], plus new eleven instances.
Among all these instances, there are five of them that come from the real
world (the ones without craf annotation) the rest have been crafted from
those by increasing the number of meetings, reducing the number of locations
and removing the forbidden time slots.

All the MaxSAT instances are solved by the state-of-the-art MaxSAT
solver QMaxSat14.04auto-g3 [13].

All experiments have been run using the default options of each solver,
on Intel R© XeonTMCPU@3.1GHz machines, under CentOS release 6.3, kernel
2.6.32.

In Table 1 we show the results obtained. Only instances named tic do not
contain forbidden time slots nor morning and afternoon preferences, hence
symmetry related experiments are only reported for those. Column named
näıve shows the results obtained using the Näıve Encoding. Columns car-
dinal show the results using the Cardinality Network Based Encoding of our
base model. Columns imp1, imp2, imp12 and imp12+sym show the re-
sults for the Cardinality Network Based Encoding using implied constraints
1, 2, both, and both with symmetry breaking, respectively. The three num-
bers below the names of each instance are: the ratio between the median
of meetings per participant and nTimeSlots , the ratio between nTables and
nParticipants , and the ratio between the number of meetings to schedule and
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the available slots (nTables × nTimeSlots).

instance näıve cardinal imp1 imp2 imp12 imp12+sym
forum-13

(0.20, 0.40, 0.52)
24.8 0 20.5 0 13.4 0 25.2 0 18.3 0 - -

forum-13crafb
(0.24, 0.36, 0.66)

1492.7 6 83.4 6 82.4 6 83.1 6 81.2 6 - -

forum-13crafc
(0.20, 0.34, 0.61)

116.3 1 1872.4 1 1661.3 1 1800.5 1 1300.2 1 - -

forum-14
(0.35, 0.56, 0.62)

TO - 431.2 2 349.1 2 409.2 2 240.2 2 - -

forumt-14
(0.79, 0.90, 0.87)

21.1 5 8.0 5 8.5 5 11.9 5 10.2 5 - -

forumt-14crafc
(0.79, 0.83, 0.94)

148.9 5 32.7 5 28.8 5 33.1 5 31.5 5 - -

forumt-14crafd
(0.78, 0.83, 0.94)

84.9 4 32.4 4 26.6 4 37.1 4 35.5 4 - -

forumt-14crafe
(0.78, 0.80, 0.98)

TO - 95.2 5 78.1 5 105.2 5 94.7 5 - -

ticf-13crafa
(0.21, 0.40, 0.52)

21.2 0 24.6 0 15.0 0 45.9 0 35.9 0 - -

ticf-13crafb
(0.51, 0.36, 0.66)

3866.1 3 118.3 3 117.3 3 111.3 3 114.2 3 - -

ticf-13crafc
(0.21, 0.34, 0.61)

309.4 1 574.2 1 562.3 1 416.9 1 432.3 1 - -

ticf-14crafa
(0.35, 0.56, 0.62)

TO - TO - 1532.8 0 2044.1 0 1339.6 0 - -

tic-12
(0.74, 1.00, 0.74)

0.2 0 0.2 0 0.3 0 0.2 0 0.2 0 0.4 0

tic-12crafc
(0.74, 0.76, 0.97)

7.8 0 4.1 0 3.1 0 2.5 0 2.6 0 3.4 0

tic-13
(0.76, 0.89, 0.85)

18.4 0 5.9 0 4.1 0 4.6 0 4.2 0 5.7 0

tic-13crafb
(0.80, 0.89, 0.87)

3.6 0 2.4 0 2.6 0 7.1 0 5.5 0 4.1 0

tic-13crafc
(0.76, 0.80, 0.94)

TO 4 25.9 4 19.1 4 25.2 4 23.9 4 26.1 4

tic-14crafa
(0.79, 0.90, 0.87)

30.0 0 16.3 0 10.2 0 24.4 0 16.4 0 14.2 0

tic-14crafc
(0.79, 0.83, 0.94)

740.0 0 49.3 0 45.1 0 45.7 0 44.5 0 56.8 0

tic-14crafd
(0.79, 0.83, 0.94)

190.7 0 35.2 0 47.9 0 32.5 0 34.9 0 53.2 0

Table 1: Solving time (in seconds) and optimum found (number of idle time
periods) per instance and solver. TO stands for 2 hours timeout. For aborted
executions we report the (sub)optimum found if the solver reported any.

From the results of Table 1 we can extract the following conclusions:

• The Cardinality Network Based Encoding of our base model clearly
outperforms the Näıve encoding.

• To use implied constraints is, in almost all the situations, beneficial.
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• When the amount of information provided by the implied constraints is
elevated is when really pays off to use them: in particular, for implied
constraint 1, this happens when the ratio between the median of meet-
ings per participant and nTimeSlots is low; for implied constraint 2,
this happens when the ratio between nTables and nParticipants is low.
This result is studied more deeply in the next subsection of results.

• The use of symmetry breaking seems not to really help (in fact we
think that we need some more hard instances to appreciate its possible
benefits).

9.2 Implied constraints experimental evaluation

Here, we expose the results related with the second and the third goal of
this project by evaluating the effects on the solver performance by the use of
implied constraints. To do so we follow the following process:

1. Generate some families of random B2B instances with the generator
that we described in the previous section.

2. Solve the B2B instances with and without using implied constraints.
Doing these experiments we can identify those cases for which the use
of some implied constraint is beneficial.

3. Validate these observations of random B2B instances in real-world
problems since it is very important to check if the behaviour observed
with the random instances also happens with the industrial instances.

4. Conjecture the reasons of the success of using implied constraints based
on some observations from the solver.

In our experiments, we generate families of random B2B benchmarks,
containing each of them 20 instances per configuration. We use 16 different
configurations, resulting in a total of 320 different random instances for our
experimentation. All experiments are run with a timeout of 2 hours (7200
seconds). As in [6], we use a value for homogeneity h = 2. We solve each
instance without using implied constraints, and with using implied constraint
1, 2 and both. In the plots, these methods are named as no-imp, imp1,
imp2 and imp12 respectively. We use Open-WBO [14] as MaxSAT solver.
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Note that the solver used here is different that the one that we use for the
comparison results 9.1. The reason is because we used the state-of-the-art
solver at the moment of doing the experiments, and there is an elapse of time
of several months between the two experiments.

Random B2B instances were solved in a cluster of nodes with 32GB of
RAM and 2 processors Intel(R) Xeon(R) @ 2.27 GHz, limiting all experi-
ments to a single core and to a maximum of 4GB of RAM. Real-world B2B
problems were solved in a cluster of nodes with 8GB of RAM and 1 processor
Intel(R) Xeon(R) @ 3.1 GHz.

9.2.1 Random B2B Instances

In our experimentation, we use an estimation of the number of meetings M ,
since this number is unknown a priori. As explained on the previous section,
we know than the expected number of requests per participant is (P − 1)U .
Therefore, the expected total number of requests is E[R] = P (P − 1)U .
Notice that we distinguish between requests and meetings, since a meeting
can be produced by a single request or by two (both participants request a
meeting with each other). Therefore, the expected number of meetings is
bounded by:

E[M ] ≤ E[R] = P (P − 1)U

However, when the probability U is small, the number of requests is also
small, and hence the number of meetings can be approximated as E[M ] ≈
E[R].17 Finally, we approximate M using its expected value, i.e., M ≈ E[M ].
In what follows, we use these approximations.

First, we analyze our regular model varying the probability U for a fixed
density and a fixed shape. Using the approximation of M ≈ E[R], we use

a density d ≈ 1 and a shape s = 1 (i.e., T = L =
⌈√

E[R]
⌉
). In Figure 7,

we represent the runtime of solving these families of random instances, with
U = {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5} and fixed P = 40. We observe
that, in general, using no implied constraints is slower than using any of

17The expected number of meetings is exactly E[M ] =
(
P
2

)
(2U(1 − U) + UU) =

P (P−1)(2U−U2)
2 , which is the probability that one or both participants of a meeting re-

quest it, among the total pairs of participants. When U is small, we can approximate it
as E[M ] ≈ P (P − 1)U .
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them, and using both is always one of the fastest methods. Also, in general
we see that the hardness of solving these instances increases for higher values
of U . Although this does not happen in all cases (e.g., the hardest family
using imp1 is observed when U = 0.2), that is specially clear when using
both implied constraints (i.e., imp12 ), which is indeed the fastest method in
general.

It is worth mentioning that when U = 0.5, we are solving instances with a
number of meetings close to 540. These instances have a much bigger number
of meetings than real-world problems, whose maximum is the 302 meetings of
the instance forum-14. Also notice that in this case, we cannot approximate
M 6≈ P (P − 1)U = 780. For the experiments that follow, we continue
using a fixed number of participants P = 40, which we consider that is a
big enough number to reproduce the hardness of some real-world problems.
Notice that the number of participants for the real instances categorized as
tic ranges between 42 and 47. Also, we use a fixed probability U = 0.1.
With the previous approximation, and using P = 40 and U = 0.1, we obtain
E[M ] = 156, which is a reasonable number of meeting w.r.t. real instances
(whose number of meetings ranges between 125 and 184 for the previously
mentioned family).

Based on the definitions of density and shape, we can easily create families
of random B2B problems using the regular model and just modifying the
input values of T and L. The next thing we want to do is detect those cases
in which the use of some implied constraint is more beneficial than any other
encoding. To do so, we generate families of random B2B instances varying
the density and the shape.

In our results, we use the Penalized Average Runtime 10 (PAR10) rep-
resentation, which is the average of the runtime used to solve the set of
instances, assigning to those instances with timeout (i.e., 7200 seconds) a
runtime equal to 10 times the value of the timeout (i.e., 72000 seconds).
For each family, we represent a box-and-whisker plot, which represents the
maximum, minimum, median, and quartiles 1 and 3 of the runtimes of the
family.

In Figure 8, we represent the runtime of solving some families of random
B2B instances varying the density d, with a fixed shape s = 1 (i.e., T = L,
and P = 40, U = 0.1).

Recall that we approximate the density d as follows:
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Figure 7: Analysis of the runtime (in seconds) of solving some random B2B
instances with and without using implied constraints, using the regular model
with P = 40 and U = {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5}, with a fixed

density d ≈ 1 and shape s = 1 (i.e., T = L =
⌈√

E[M ]
⌉
). For visualization,

we slightly shift the value of U of each family.

d =
M

T · L
≈ P (P − 1)U

T · T/s
Notice that when P , U and s are fixed, the variations in the density are

equivalent to variations in T (or L). In this experiment we identify several
phenomena:

• We observe that denser the instance, harder to solve. This happens for
all the 4 encodings. For instance, when d = 1.29 (T = 11) no instance
is solved for none of the encodings, but they all solve all instances when
d = 0.54 (T = 17) in approximately less than 100 seconds.
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Figure 8: PAR10 (in seconds) of solving some random B2B families of in-
stances, with and without using implied constraints, varying their density d.
Instances are generated using the regular model with P = 40, U = 0.1, and
a fixed shape s = 1 (i.e., T = L), hence d = M/TL ≈ P (P − 1)Us/T 2.

• We observe that, in general, using no implied constraints (no-imp) is
slower than using one implied constraint (either imp1 or imp2 ), and
using one is slower than using both (imp12 ).

• We observe that, interestingly, imp2 shows a good performance w.r.t.
no-imp when the density is high. For instance, when d = 1.08 (T = 12),
imp2 solves a total of 8 instances (40% of the family) while no-imp
(and also imp1 ) only solves 2 of them (10%). On the contrary, when
the density is small, it is imp1 which shows a better performance w.r.t.
no-imp. For instance, when d = 0.54 (T = 17), the maximum runtime
of imp1 is 10.69 seconds, while no-imp spends a maximum of 54.75
seconds (the maximum of imp2 is 111.85 seconds).

In Figure 9, we represent the runtime of solving families of random B2B
instances varying the shape s. Again, we set P = 40 and U = 0.1. We want
a fixed density d. Originally, we used E[R] to calculate T and L as follows:

T = L =
⌈√

E[R]
⌉
. Therefore, for this P and U , T and L originally had

a value of 13. In order to fix a density, the product of T and L should also
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Figure 9: PAR10 (in seconds) of solving some random B2B families of in-
stances, with and without using implied constraints, varying their shape s.
Instances are generated using the regular model with P = 40, U = 0.1, and
a fixed density d ≈ 1 (i.e., T · L = E[R]), hence s = T/L ≈ T 2/P (P − 1)U .

be similar 18 to that number (169). Notice that this way, some combinations
of (T, L) does not exist (e.g., T = 16). Therefore, the density d is close and
slightly smaller than 1, and approximately the same for all families. Hence,
the variations in the shape are also equivalent to variations in T (when P , U
and d are fixed). In this experiment we identify several phenomena:

• The higher the value of the shape s (i.e., more time slots w.r.t. loca-
tions), the harder to solve the instance. Notice that for a fixed density,
when the shape is small, the number of time slots is also small and
the number of locations is high. Therefore, it is more likely to find
a solution with no idle time periods, and the solver does not need to
continue the search to prove that it is the optimum. On the contrary,
when the shape is high (and hence, the number of time slots is high
and the number of locations is small), the optimum may contain idle
time periods, and proving it can be costly.

• Again no-imp is worse than imp1 and imp2, and these two are worse

18Notice that the T and L are integers, so an equal size may not be possible.
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than imp12.

• The benefits of using one of the implied constraints depends on the
shape. When the shape is small, imp1 is faster than imp2. For instance,
when s = 0.52 (T = 9), imp1 spends a total of 7.95 seconds in solving
all instances of the family, while imp2 spends 20.23 seconds. On the
contrary, when the shape is high, imp2 is more beneficial. For instance,
when s = 1.44 (T = 15) imp1 only solves 2 instances (10% of the
family) while imp2 solves 14 (70%).

• The best encoding is the imp12. Harder the instance, better its per-
formance w.r.t. the other 3 encodings. For instance, when s = 1.85
(T = 17), no-imp, imp1 and imp2 solve only 1 instance, while imp12
solves 9.

The intuition behind these observations may be connected to the relation
between the implied constraints and the number of locations and time slots.
In particular, the first implied constraint depends on the number of meetings
of each participant, and this number is bounded by the number of time slots.
The second implied constraint depends on the number of locations. Notice
that since we are using cardinality networks to encode these constraints, the
smaller the number of time slots is, the better for the first implied constraint
encoding, and similarly with the number of locations and the second implied
constraint.

9.2.2 Real-world B2B Instances

Next we want to check if the previous observations are also valid in real-
world B2B instances. Notice that in the case of real-world instances, the
combinations of T and L are reduced (in order to obtain feasible, non-trivial
instances). Therefore, the number of perturbed problems (from the original
ones) is smaller.

In Figure 10 we represent the runtime of solving some real-world B2B
instances varying the density d, with a fixed shape s. To fix the shape of
these problems, we use the original numbers of time slots and locations, and
we increase both of them in the same proportion. Based on the observations
from the Figure 8, we predicted that imp1 is more beneficial with small
densities, imp2 for a high density, and imp12 shows a good performance in
all cases. From the results, we conclude that this observation is also valid in
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Figure 10: PAR10 (in seconds) of solving some real-world B2B instances,
with and without using implied constraints, varying their density d, and
with a fixed shape, i.e., ∆T = ∆L.
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Figure 11: PAR10 (in seconds) of solving some real-world B2B instances,
with and without using implied constraints, varying their shape s, and with
a fixed density, i.e., fixed T · L.

our set of real-world instances. For instance, when ∆d = −40%, the fastest
encoding in solving all instances is imp1. Also, imp2 solves all instances when
∆d = 0% (in this case, there are several timeouts for no-imp and imp1 ).
Finally, imp12 is, in general, one of the best choices. This last claim is not
clear from the plot. In Table 2, we report some statistics of this experiment.
We use the Penalized Average Runtimes PAR1 and PAR10. Notice that the
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∆d = −40% ∆d = −20% ∆d = 0%
solved PAR1 PAR10 solved PAR1 PAR10 solved PAR1 PAR10

no-imp 20 148.49 148.49 20 340.38 340.38 16 1835.82 14797.82
imp1 20 3.54 3.54 20 3.48 3.48 18 735.39 7216.33
imp2 20 470.21 470.21 20 190.59 190.59 20 746.34 746.34
imp12 20 7.13 7.13 20 6.12 6.12 20 148.54 148.54

Table 2: Statistics of solving some real-world B2B instances, varying their
density d, for a fixed shape s (with ∆T = ∆L).

∆s = 0% ∆s = 10% ∆s = 20%
solved PAR1 PAR10 solved PAR1 PAR10 solved PAR1 PAR10

no-imp 16 1835.82 14797.82 10 3720.64 36125.48 5 5437.97 54045.19
imp1 18 735.39 7216.33 12 3281.89 29205.53 5 5397.89 54004.82
imp2 20 746.34 746.34 15 2289.69 18492.07 6 5142.26 50508.96
imp12 20 148.54 148.54 15 1832.71 18035.06 10 4054.49 36458.95

Table 3: Statistics of solving some real-world B2B instances, varying the
shape s, for a fixed density d (with T · L fixed).

penalization in PAR1 is small, thus it is useful to compare the runtime of
solving families where the majority of instances were solved. On the other
hand, using PAR10 specially penalizes those timeouts, and thus it is useful
when many instances were not solved. From these results, we observe that
imp12 is the fastest method in solving hard instances (see ∆d = 0%), but
it is also a good choice when the instances are easy (see ∆d = −40%). In
this last case, the differences between imp1 (the fastest method) and imp12
are very small. Therefore, this observation also seems to be valid in our
benchmarks.

In Figure 11 we represent the runtime of solving some real-world B2B
instances varying the shape s, with a fixed density d. To do so, we in-
crease/decrease T and L in the same proportion. The observations from
Figure 9 are that imp1 seems to be more useful than imp2 for small shapes,
and vice-versa, while imp12 is always beneficial. This claim is not totally
observed from the plot, due to the number of timeouts. In Table 3, we re-
port some statistical results. In this case, we consider more appropriate to
use PAR1 in the cases of a reduced number of timeouts. We observe that
PAR1 of imp1 is smaller than PAR1 of imp2 for small values of ∆s (see
∆s = 0%). However, as ∆T increases, imp2 is faster than imp1. Finally,
we can observe than imp12 dominates the other encodings. Therefore, this
second observation also seems to be valid in our set of instances.
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Figure 12: Branching variables decided by the solver along its execution, for
the encodings no-imp, imp1, imp2 and imp12, for a random B2B instance
with low density, during their first 160000 decisions (solved by imp12 in
157729 decisions.).

9.2.3 Performance of the MaxSAT solver

Finally, let us conjecture why the use of implied constraints is beneficial to
improve the performance of the solver. In the following plots, all Boolean
variables are grouped into the high-level variables and constraints they en-
code (see the horizontal lines). These high-level variables are: scheduling,
usedSlot and fromSlot are directly the ones of the encoding, exactlyOne are
the auxiliary variables to encode that each meeting is scheduled in a time slot
exactly once, tableCount are the auxiliary variables to encode that at most
one meeting is scheduled in a time slot and location, imp1 and imp2 are the
auxiliary variables to encode the implied constraints, and the rest are the
auxiliary variables to deal with optimization and homogeneity. Vertical lines
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represent the calls to the SAT solver used by the MaxSAT solver algorithm.
In Figure 12, we represent the branching variables on which the solver

decided along its execution, for the encodings no-imp (top left), imp1 (top
right), imp2 (bottom left) and imp12 (bottom right), for a random B2B
instance generated with the regular model and low density (P = 40, U = 0.1,
T = 16 and L = 16). For simplicity, we only represent the results of a single
instance. However, we have found the same behavior in all instances we have
analyzed. Therefore, we expect the conclusions drawn from this plot are
general. According to the results from Figure 8, instances with low density
are solved faster by imp1 (and imp12 ). The runtime and the number of
decisions for each encodings are:

No implied constraints: 70.78 s 3444288 dec.
Implied constraint 1: 5.88 s 343487 dec.
Implied constraint 2: 84.16 s 3152049 dec.
Implied constraints 1 and 2: 3.07 s 157729 dec.

As this instance is solved by imp12 in 157729 decisions, we only represent
the first 160000 decisions for the 4 encodings. However, the behavior shown
in the plots is the same during the whole execution.

We remark that Open-WBO uses a CDCL SAT solver internally (we use
its default version, which uses Glucose 3.0). In CDCL solvers, after each
conflict, the variables involved in it are increased their activity, and these
activity counters are used by the branching heuristics to select the next
decision. Therefore, these decisions give an intuition about where the search
was performed.

We observe that in three encodings, variables scheduling, usedSlot, from-
Slot and exactlyOne are very active during the whole execution. This is
expected since they represent the most important variables of the problem.
When we use one implied constraint only, this implied constraint is very ac-
tive. Also, when we use both implied constraints, they reinforce their activity
mutually, and hence, the performance of the solver is improved.

This phenomenon is clear in the plot, but we can analyze it in details
during the whole execution. For instance, in the encoding imp1, 3.90% of
the decisions correspond to this implied constraint. When using the encoding
imp12, the percentage of decisions in the variables of the implied constraint
1 is 6.32% of the total. Therefore, the use of imp2 reinforces the activity of
imp1, and hence, the instance is solved faster.
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Figure 13: Branching variables decided by the solver along its execution, for
the encodings no-imp, imp1, imp2 and imp12, for a random B2B instance
with high density, during their first 45000 decisions (solved by imp12 in 42550
dec.).

In Figure 13, we represent the results of the same experiment using an
instance with high density (P = 40, U = 0.1, T = 12 and L = 12). Again,
we only represent results for a single instance but conclusions are general
for the family. According to the results from Figure 8, instances with high
density are solved faster by imp2 (and imp12 ). This is also the case of this
instance, whose runtime and number of decisions are:

No implied constraints: 74.47 s 1568888 dec.
Implied constraint 1: 36.97 s 631983 dec.
Implied constraint 2: 4.44 s 237389 dec.
Implied constraints 1 and 2: 0.84 s 42550 dec.

In this case, the encoding imp2 took 12.44% of its decisions on the
Boolean variables of this implied constraints. When we use both implied
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constraints imp12, the decisions on the variables of the second implied con-
straint represent the 17.86% of the total number of decisions.

The encoding imp1 is more efficient for the instance forum-14, taking
2.54% of its decision on this constraint. When using both implied constraints,
this increases up to 3.55% of the decisions. Similarly, the encoding imp2 is
more efficient solving the instance tic-14crafd, with a 4.93% of decision on
this constraint. When using both implied constraints, these decisions are the
5.18%. This suggests that the previous hypothesis is also valid in real-world
B2B problems.

Finally, we want to analyze the effect of implied constraints between two
calls to the SAT solver (vertical lines in the previous plots). Notice that all
previous random instances have an optimum equal to zero. This means that
all meetings can be scheduled without idle periods. On the other hand, many
real-world B2B instances do have these idle periods, i.e., their optimums
are greater than zero, and hence, the SAT solver is called multiple times.
Recall that the algorithm MSU3, used by the MaxSAT solver Open-WBO,
first solves the formula only containing hard clauses. Then, it iteratively
increases the possible number of unsatisfied soft clauses (i.e., a lower-bound
of the optimum), till finding the solution of the problem. Therefore, solving
any B2B instance requires at least two calls to the SAT solver.

Interestingly, we observed that the use of implied constraints allows to the
SAT solver to find lower-bounds to the optimum with unit propagation. In
particular, all calls to the SAT solver except the first and the last ones were
solved without performing any decision. We conjecture that the existence
of idle periods may be produced in some cases by the existence of forbidden
time slots (by a certain participant), and the use of implied constraints may
detect them by unit propagation. On the contrary, this does not occur when
no implied constraints are used. This suggests that redundant clauses (e.g.,
implied constraints) may increase the unit propagation rates, and hence,
improve the performance of the solver.
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10 Conclusion

In this work we have deal with the already known B2B Scheduling Opti-
mization Problem. This is a problem that came from the real world. In this
project we have deeply studied the problem, taking as a base work the one
presented in [15]. At the beginning of the project we set three primordial
goals.

The first goal was to improve the B2BSOP MaxSAT model. For that
we look into the state-of-the-art encodings for some global constraints that
we had on the MaxSAT model. Implementing these encodings, instead of
the näıve ones that were used before clearly improved the time solving of
the model. Moreover, we also extended the MaxSAT model in two other
aspects. On the one hand, we were able to find two implied constraints
which we added on the model. These two implied constraints yield really
interesting results. It is important to mention that these results are the base
and the motivation of the goal three. On the other hand, we extended the
MaxSAT model by adding a constraint to break symmetries. This symmetry
breaking can only be used for instances that do not have forbidden time slots
for any participant, have a even number of timeslots, and have a participant
with an even number of meetings. All of these prerequisites for the instances,
and the fact that it did not seem to bring good results made our work trying
to break symmetries a dead end.

We also brought eleven new instances which, together with the existent
ones sum up a total of 20 real-world and crafted instances for the B2BSP.

With all of that we presented a new B2BSOP MaxSAT model (imp12 )
that has been able to solve all 20 instance (in a 2 hours timeout) of the
problem in 3866 seconds while the old model could solve only 16 instances
(in a 2 hours timeout) and took 7076.1 second only for these.

Respect the second goal, which was to create a B2BSP instance gener-
ator, we conclude that there are too few real-wold instances of the B2BSP.
However, we proposed a random B2B instance generator which is based on a
probability that a participant requests a meeting with another. This model,
even thought it proved successful for our needs, does not represent some
features of real-world instances, e.g., participants that do not request any
meeting, forbidden time slots, morning/afternoon requirements.

Finally, related with the last goal, we provided an experimental study
of the effectiveness of using implied constraints in B2B scheduling problems
using MaxSAT-based encodings. For that, using our generator, we gener-
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ated families of random B2B instances, and we studied the strengths and
weakness of using implied constraints based on the characteristics of the in-
stance. We focused our analysis on the density (i.e., the ratio between the
number of meetings and the accommodation capacity) and the shape (i.e.,
the configuration of the accommodation capacity).

We observe that there exists some kind of duality in the benefits of the
use of the two implied constraints. For small densities or certain shapes,
it is more useful to use one of these implied constraints. On the contrary,
for high densities or opposites shapes, the other implied constraint is more
beneficial. Overall, the use of both implied constraints results into a very
good performance in all cases. Finally, we conjectured why this is the case
by some observation of the solver. We also illustrated how the solver focuses
its search when both implied are used.
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11 Further work

As future work, we plan to find some more implied constraints and to improve
symmetry breaking. We also plan to develop a portfolio with all the encod-
ings and models presented. We also propose to analyze heuristics that, for
instance, prioritizes its decisions on the most relevant variables we have ana-
lyzed (i.e., imp1 or imp2 ), depending on the characteristics of the problem,
as the density or the shape.

Referring to the B2B instance generator, we plan to do a deeper analysis
of the real-world instance and take into account some of they features and
characteristics, e.g., participants that do not request any meeting, forbidden
time slots, moorning/afternoon requirements.

Finally, we also think in doing some modifications on the B2BSOP in
order to make it more generic, e.g., establish some kind of precedence between
meetings so the participants can decide which meetings they want to have
firsts, this has a great interest since it is possible that some participant wants
to meet another participant only hafter having had a meeting with someone
else. We also consider the possibility of having meetings with more than two
participants, and also in changing the optimization function so the length of
the idle time periods is taken into account.
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12 Related publications

Based on this work, we have published two papers:

• M. Bofill, M. Garcia, J. Suy, and M. Villaret. MaxSAT-Based Schedul-
ing of B2B Meetings. In 12th International Conference on Integration
of AI and OR Techniques in Constraint Programming, CPAIOR 2015,
volume 9075 of LNCS, pages 65?73. Springer, 2015.

• M. Bofill, M. Garcia, J. Giraldez-Cru, and M. Villaret. A Study on
Implied Constraints in a MaxSAT Approach to B2B Problems. In
Pragmatics of SAT, 2016.
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