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Abstract

The term compositional data analysis is historically associated to the approach based
on the logratio transformations introduced in the eighties. Two main principles of this
methodology are scale invariance and subcompositional coherence. New developments and
concepts emerged in the last decade revealed the need to clarify the concepts of composi-
tions, compositional sample space and subcomposition. In this work the mathematics of
compositional analysis based on equivalence relation is presented. A logarithmic isomor-
phism between quotient spaces induces a metric space structure for compositions. The
logratio compositional analysis is the statistical analysis of compositions based on this
structure, consisting of analysing logratio coordinates.

Keywords: composition, compositional analysis, equivalence class, logratio, quotient space,
simplex.

1. Introduction

The term compositional data (CoDa) was first introduced by Aitchison (1982) and later
developed in Aitchison (1986). In these publications CoDa is identified with vectors of strictly
positive components whose sum is always equal to one; that is, vectors of the unit simplex

SD = {(w1, . . . , wD)′ : w1> 0, . . . , wD> 0;w1 + . . .+ wD = 1}.

The term compositional data analysis (CoDA) has been implicitly associated with the metho-
dology proposed by Aitchison (1986), which is based on applying the logratio transformations
to the CoDa and describing, analysing and modelling them statistically from the logratios
of their components. The main aim of this methodology is to free the CoDa from the con-
straints of the constant sum in order to be able to use the standard distributions in the real
space to model the CoDa, e.g., the multivariate normal distribution. This strategy has two
fundamental concepts in the so-called principles of CoDA (Aitchison 1986), namely, ‘scale in-
variance’ and ‘subcompositional coherence’. From Aitchison (1986), “scale invariance merely
reinforces the intuitive idea that a composition provides information only about relative val-
ues not about absolute values and therefore ratios of componentes are the relevant entities to
study”; and “subcompositional coherence demands that two scientist, one using full composi-
tion and the other using subcompositions of these full compositions, should make the same
inference about relations within the common parts”. Later it was seen that the methodology
initiated by Aitchison is more than a simple transformation of the CoDa, because it is in
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fact a way to provide the simplex with a structure of Euclidean space. The interested reader
can refer to Egozcue, Barceló-Vidal, Mart́ın-Fernández, Jarauta-Bragulat, Dı́az-Barrero, and
Mateu-Figueras (2011) for further information.

The identification of the term CoDA with the methodology based on the logratio transfor-
mations developed by Aitchison has meant that other possible methods for analysing CoDa
have made little impact. Watson and Philip (1989), Wang, Liu, Mok, Fu, and Tse (2007) or
Scealy and Welsh (2011), for example, prefer to apply the techniques characteristic of direc-
tional data, given that they take the positive orthant of the unit hypersphere centred at the
origin as the sample space of the CoDa. At that time this alternative method for analysing
CoDa was cause for intense epistolary exchanges between D. F. Watson (and G. M. Philip)
and J. Aitchison (see Aitchison 1990; Watson 1990; Aitchison 1991; Watson 1991). Recently,
Scealy and Welsh (2014), have returned to the controversial questioning of the principles of
CoDa, which they consider to be made to specifically exclude any methodology other than
the one developed by Aitchison. As Scealy and Welsh (2014) recognise, the crux of the con-
troversy lies in the definitions of composition and sample space in CoDA, both of which were
introduced by Aitchison (1986) and based on constant sum vectors. The lack of clarity in
the presentation of the properties scale invariance and subcompositional coherence is also a
matter for discussion.

The main aim of this paper is to provide a precise and unequivocal definition of the concepts
of composition, CoDa sample space and subcomposition, on which compositional analysis
(CoAn) is based. Contrary to Scealy and Welsh (2014), we turn to mathematics to introduce
these concepts with maximum precision. Thus, in Section 2 we define the quotient space of the
compositions and we provide a precise definition of the concept of subcomposition. We also
define what we understand by CoAn, distinguishing it from the traditional concept CoDA. In
Section 3 we show how the logarithmic and exponential functions allow us to structure the
sample space as a Euclidean space and to operate with the logratio coordinates of the data
as if we were doing so in the real space. In the last section we compile the advantages and
limitations of CoAn based on logratio coordinates and of the analysis based on transformations
that take the positive orthant of the unit hypersphere as the sample space. Finally, we present
the main conclusions.

2. The sample space in a compositional analysis

2.1. A composition is an equivalence class

We assume that our data and observations materialise in vectors w = (w1, . . . , wD)′ with
strictly positive components, that is vectors from real space IRD

+ , the positive orthant of IRD.
Note that we are eluding to the case of zero values in the data. We consider the zero as a
special value that deserves a particular analysis according to its nature (Palarea-Albaladejo
and Mart́ın-Fernández 2015); that is, the reason why a zero value is present in a CoDa set
is informative and determines the approach to be applied. The interested reader is referred
to Mart́ın-Fernández, Palarea-Albaladejo, and Olea (2011) for further information. In the
discussion we outline some of the approaches and discuss some kinds of zero.

Sometimes the observational vectors w are constant sum vectors. Typical examples are the
data from time-use surveys where the sum equals to 24 in hours, 1440 in minutes or 100 in
percentages. This case of CoDa is known as ‘closed data’. In other situations, the components
of the observational vectors are themselves meaningful, that is, they represent absolute mag-
nitudes. However, in spite of that, we can decide to take only the relative information into
account for our analysis. For example, in the analysis of household expenditure on D com-
modity groups, we can decide to analyze the distribution of the expenditure regardless of the
total. In both scenarios we are implicitly assuming that the vectors w and kw, with k ∈ IR+,
are providing us with the same compositional information, that is, the information given
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by the ratios between the components. For example, the vectors (0.3, 0.5, 0.2), (30, 50, 20),
(7.2, 12, 4.8), and (3/2, 5/2, 1) provide the same compositional information. In both cases we
are assuming that our data are CoDa and our analysis will be a CoAn. Moreover, from a
strictly mathematical point of view this implies that in a CoAn the sample space is not IRD

+ .

Definition 2.1. Two D-observational vectors w and w∗ are compositionally equivalent,
written w ∼ w∗, if there is a positive constant k such that w = kw∗. This equivalence
relation on IRD

+ splits the space into equivalence classes, called D-compositions or, simply,
compositions. The composition generated by an observational vector w, i.e. the equivalence
class of w, is symbolized by w:

w = {kw : k ∈ IR+} .

Following Aitchison (1986), it is clear that a D-part composition can be geometrically inter-
preted as a ray from the origin in the positive orthant of IRD (Figure 1). Therefore, from a
strictly mathematical point of view, the term CoAn is the equivalent of assuming that the
sample space is the set of all D-compositions.

Definition 2.2. The set of all D-compositions, that is, the quotient space IRD
+/∼ is called

the D-compositional space or, in brief, compositional space, and is symbolized by CD. We
symbolize by ccl (from compositional class) the mapping from IRD

+ to CD which assigns each
D-observational vector w to the composition w, i.e.,

ccl : IRD
+ −→ CD

w 7−→ w = {kw : k ∈ IR+} . (1)

Property 2.1. Two D-observational vectors w = (w1, . . . , wD)′ and w∗ = (w∗1, . . . , w
∗
D)′

are compositionally equivalent when the information provided by their ratios is the same, that
is

wi
wj

=
w∗i
w∗j

for each i, j = 1, . . . , D .

Any D-composition w is completely determined by its ratios wi/wj of their components.
Therefore, in a CoAn the relevant information provided by the observational vector w is
found not in its components wi, but rather in its ratios wi/wj . This is what we mean when
we say that a composition only contains ‘relative information’ about its components. Note
that all the observational vectors in the same ray (Figure 1) have the same ratios, providing
the same relative information. That is, any point in the ray can be selected as representative
of the equivalence class, and any statistical analysis has to provide the same information
regardless of the representative selected. Importantly, if one applies a statistical method that
does not take into account this essential attribute of the compositions, the application of
different criteria to select the representatives will give different results and, likely, one will
extract different conclusions.

To conclude, when we decide to do a CoAn we are assuming that the sample space of our data
is the compositional space CD, which means in fact an acceptance of the ‘scale invariance’
principle.

2.2. Representatives of compositions

Any composition w is determined by any observational vector w that belongs to the equiva-
lence class. Thus, many different criteria can be used to select a representative of a composi-
tion. Each criterion gives rise to a different reference frame where projecting the compositions
of CD. Here we present the most commonly-used criteria that facilitate the interpretation and
have relevant mathematical properties.
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Definition 2.3. The linear criterion selects the unit-sum vector w/
∑D
j=1wj to represent

the composition w. We symbolize by rl the mapping from CD to the subset SD of IRD
+ , that

is
rl : CD −→ SD ⊂ IRD

+

w 7−→ w/
∑D
j=1wj ,

(2)

where SD is the well-known unit simplex, historically considered as the sample space of CoDa.

The mapping rl corresponds to the constraining operator or closure operator C introduced
by Aitchison (1986). Geometrically, rl (w) is the intersection of the ray going from the origin
through w and the hyperplane of IRD defined by the equation w1 + . . . + wD = 1 (Figure
1). This criterion can be generalized to representatives with a sum equal to 100 or any other
positive value.

Definition 2.4. We symbolize by rs the mapping from CD to the subset SphD+ of IRD
+

which assigns to composition w the intersection of the ray going from the origin through w
and the unit hypersphere of IRD centred in the origin, i.e.,

rs : CD −→ SphD+ ⊂ IRD
+

w 7−→ w/‖w‖ , (3)

where SphD+ is the strictly positive orthant of the unit hypersphere of IRD centred in the origin.
We call this selection criterion the spherical criterion (Figure 1) because the representatives are
unit-norm vectors using the classical Euclidean norm. This selection criterion was proposed
by Watson and Philip (1989).

Definition 2.5. The hyperbolic criterion, rh , assigns to composition w the intersection of
the ray going from the origin through w and the hyperbolic surface HipD+ in IRD

+ implicitly
defined by the equation

∏D
i=1wi = 1:

rh : CD −→ HipD+ ⊂ IRD
+

w 7−→ w/g(w) ,
(4)

where g(w) = (
∏D
j=1wj)

1/D is the geometric mean of the components of vector w (Fig. 1).

Note that the function composition log ◦ rh is equivalent to the centred logratio transformation
(clr) introduced by Aitchison (1986): clr (w) = log(w/g(w)).

The mappings rl , rs and rh can also be viewed as scale-invariant functions from IRD
+ to CD.

Recall that a function f(·) from IRD
+ is said to be ‘scale invariant’ if for any positive constant

k and for any observational vector w, the function verifies f(kw) = f(w).

These criteria to select a representative of a composition can be extended to any surface
defined in IRD

+ using a bijective function. Indeed, making each composition correlate with the
intersection of the corresponding ray with the surface is sufficient.

2.3. Subcompositions

In a CoAn, attention is usually focused on a determinate subset of the components of our
observations of IRD

+ . For example, in time-use surveys we might only be interested in those
activities that are different from the sleeping hours. If the analysis to be carried out on the
components selected from our observations must also be compositional, then the sample space
also needs to interpret it as a quotient space. This brings us to the need to introduce the
concept of subcomposition.

Definition 2.6. Given a composition w ∈ CD, any composition obtained from the selection
of two or more components of the D-observational vector w is termed a subcomposition of
w. More precisely, let s be the number of selected components, with 2 ≤ s < D, and
i1 < . . . < is the sub indexes of these components (we implicity assume that the sub indexes
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Figure 1: Linear, spherical and hyperbolic selection criteria (case D = 2).

of the D-observational vectors are 1, . . . , D). Let S be the s × D matrix with the ones in
the positions (1, i1), . . . , (s, is) of the matrix and zeros in the remaining positions. Making a
subcomposition can be viewed as the transformation subS from CD to Cs given by

subS : CD → Cs
w → Sw .

(5)

The symbol wS indicates the observational subvector Sw = (wi1 , . . . , wis)
′, and wS repre-

sents the final subcomposition which belongs to the compositional space Cs. The transfor-
mation subS is compatible with the equivalence relation ∼, that is, equivalent observational
vectors are transformed into equivalent subvectors. Importantly, the selected components
(wi1 , . . . , wis)

′ provide the same relative information regardless they belong to w or they
form the subcomposition wS . This ‘subcompositional coherence’ is an inherent attribute of
the compositions rather a required principle. The formation of a subcomposition wS from
a D-composition w can be geometrically interpreted as the orthogonal projection of the ray
associated to w onto the subspace of IRD

+ generated by the positive coordinate axes associated
to the components in the subcomposition. Figure 2 shows the subcompositions for the case
D = 3 and the relationship with the corresponding representatives.

3. The Euclidean compositional space

Any statistical analysis with data from the sample space CD needs this space to have an
algebraic and metric structures. Remember that such basic concepts as the mean and the
variance of a set of data are based on the algebraic and metric structure of the sample space of
the data. The strategy that we develop is to define an isomorphism between CD and another
Euclidean space using the logarithmic function. Despite this isomorphism may not be the
unique feasible isomorphism, the rest of the possibilities are still unknown to us.

3.1. A quotient Euclidean space in the real space

The well known classical Euclidean space IRD is based on the addition and subtraction ope-
rations. Because we need to connect the relative information provided by the ratios of com-
ponents with an existing Euclidean space, the logarithmic function becomes a useful option.
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Figure 2: Geometrical interpretation in IR3
+ of a subcomposition w12 of a composition w ∈ C3. Filled circles

are the observational vectors. Empty circles their corresponding linear representatives.

Indeed, the logarithmic transformation from IRD
+ to IRD suggests defining in IRD an equiv-

alence relation in correspondence with the compositional equivalence relation ∼ defined in
IRD

+ . Note that if w ∼ w∗, then logw − logw∗ of IRD is a multiple of the vector of unities
1D = (1, . . . , 1)′ ∈ IRD.

Definition 3.1. Two vectors z and z∗ in IRD are equivalent, written z ≡ z∗, if a constant
λ exists such that z∗ − z = λ1D. The equivalence class {z + λ1D : λ ∈ IR} generated by the
vector z in IRD is denoted by z. The set of all these classes is the quotient space IRD/ ≡,

denoted by LD. We denote by ocl (from ones class) the mapping from IRD to LD which
assigns each vector z ∈ IRD to the class z

ocl : IRD → LD
z → z .

(6)

Figure 3 shows that the classes z can be geometrically interpreted by straight lines parallel to
1D. A simple criterion for selecting a representative of an equivalence class z is to assign the
intersection point of the straight line associated to this class and the orthogonal hyperplane
by the origin

VD = {z ∈ IRD : z′1D = 0} . (7)

Definition 3.2. We denote by rVD
the one-to-one mapping which assigns each class z to

this representative

rVD
: LD → VD

z → z−
∑D

j=1
zj

D 1D = HDz ,
(8)

where HD is the D×D centering matrix, that is HD = ID−D−1JD (ID is the identity matrix
of order D ×D, and JD = 1D1D

′).

Definition 3.3. The sum of two classes z and z∗ in LD is defined as z + z∗ = z + z∗, and
the product of an equivalence class z by a constant α ∈ IR is defined by αz = αz.
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Figure 3: Selection of the representative rVD z (empty circle) for an equivalence class z in L2 = IR2/ ≡.
Dashed line is the orthogonal hyperplane to vector 1D.

With these definitions, the quotient space LD becomes a real vector space. The class of 0D is
the neutral element and the opposite of z is the class −z. Moreover, the mapping rVD

is an

isomorphism between the vector space (LD,+, ·) and the subspace VD of IRD (Equation 7).
Since the dimension of VD is D − 1, the dimension of the vector space LD will be also equal
to D − 1.

The vector space structure defined in LD is coherent with a subcompositional analysis because
one can define subvectors in the space VD and reproduce them in LD using the inverse mapping
rVD

−1. More precisely, the mapping subS (Equation 5) corresponds to orthogonal projection
of the hyperplane VD (Equation 7) onto the subspace of IRD defined implicitly by

{z ∈ IRD : z′1D = 0; zj1 = 0; . . . , zj(D−s)
= 0} ,

where j1, . . . , j(D−s) are the sub indexes of the no-selected components in the subvector.

Given that the elements of LD can be interpreted as straight lines parallel to vector 1D, one
can define the distance between the two classes z and z∗ of LD as the Euclidean distance

between these two straight lines in IRD. This distance is equal to the length of the difference
vector rVD

(z)− rVD
(z∗) (Figure 4).

Following this strategy, it is possible to reproduce the Euclidean structure defined on VD ⊂ IRD

on LD .

Definition 3.4. For each z, z∗ ∈ LD, we define the L-inner product <z, z∗>L as the usual

inner product <rVD
z, rVD

z∗> in IRD.

It follows that < z, z∗ >L= z′HDz
∗. Then it is possible to define a norm and a distance in

LD from the L-inner product.

Definition 3.5. The L-norm of an equivalence class z ∈ LD is given by

‖z‖L = (<z, z>L)1/2 = (z′HDz)1/2, (9)
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Figure 4: Two equivalence classes z and z∗ of LD, its corresponding representatives rVD z and rVD z∗, and
the distance between them (case D=3).

and the L-distance between two classes z and z∗ in LD is given by

dL(z, z∗) = ‖z− z∗‖L =
[
(z− z∗)′HD(z− z∗)

]1/2
. (10)

Since dL(z, z∗) = d(rVD
z, rVD

z∗), the following property holds.

Property 3.1. From the definitions (9) and (10), the quotient space LD becomes an
Euclidean space isometric to the subspace VD of IRD.

3.2. The logarithmic isomorphism between the quotient spaces

The logarithmic and exponential transformations from IRD
+ to IRD are compatible with the

equivalence relations ∼ and ≡ defined in IRD
+ and IRD, respectively, i.e.,

w ∼ w∗ in IRD
+ ⇐⇒ logw ≡ logw∗ in IRD ,

and

z ≡ z∗ in IRD ⇐⇒ exp z ∼ exp z∗ in IRD
+ .

Therefore, these transformations can be extended to the quotient spaces CD and LD.

Definition 3.6. We will symbolize by logc the transformation from CD to LD, i.e.,

logc : CD −→ LD
w 7−→ logw ,

(11)

and by expc the inverse transformation from LD to CD, i.e.,

expc : LD −→ CD
z 7−→ exp z .

(12)
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The representative in VD of the equivalence class logw is

rVD
(logw) = HD logw = log

w

g(w)
,

where g(w) is the geometric mean of the vector w.

Importantly, the function composition rVD
◦ logc is equivalent to the transformation clr

(Aitchison 1986). This one-to-one correspondence between CD and LD allows a real vec-
tor space isomorphic to LD to be defined in CD.

Definition 3.7. In correspondence with the sum in LD, the inner operation ⊗ in CD is
defined as

w ⊗w∗ = expc
(
logw + logw∗

)
= expc

(
logw + logw∗

)
= (w1w

∗
1, . . . , wDw

∗
D)′ ,

for any w,w∗ ∈ CD.

Similarly, in correspondence with the product by a constant in LD, the external operation �
in CD is defined as

α�w = expc
(
α logw

)
= expc

(
α logw

)
= (wα1 , . . . , w

α
D)′ (w ∈ CD) (α ∈ IR) .

The operations ⊗ and � are respectively the perturbation and power operations introduced
by Aitchison (1986).

Therefore, (CD,⊗,�) becomes a real vector space of dimension D − 1, isomorphic to the
quotient space LD and to the subspace VD of IRD. In the commutative group (CD,⊗), the
composition 1D = (1, . . . , 1)′ is the neutral element, and the inverse composition w−1 of w is

the composition w−1 = (1/w1, . . . , 1/wD)′.

Moreover, the structure of real vector space of (CD,⊗,�) is compatible with the concept of
subcomposition.

Property 3.2. The mapping subS defined in Equation 5 is a linear function between the
vector spaces (CD,⊗,�) and (Cs,⊗,�). Therefore, it holds that

subS(w ⊗w∗) = wS ⊗w∗S and subS(α�w) = α�wS , (13)

for any w,w∗ ∈ CD and α ∈ IR.

3.3. The compositional space as an affine Euclidean space

Because (CD,⊗,�) is a real vector space, it can be viewed as an affine space when the group
(CD,⊗) operates on CD as a group of transformations.

Definition 3.8. Given a composition p ∈ CD, the perturbation associated to p is the
transformation from CD to CD defined by

w→ p⊗w (w ∈ CD) .

Then we say that p⊗w is the composition which results when the perturbation p is applied
to the composition w.

Perturbations in the compositional space play the same role as translations play in the real
space. Like them, the set of all perturbations in CD is a commutative group isomorphic to
(CD,⊗). Thus, the composition of two perturbations p

1
and p

2
is the perturbation associated

to p
1
⊗p

2
. Furthermore, the perturbation associated to 1D is the identity perturbation which

does not produce any change when applied to a composition. Also, for any given perturbation
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p there is the inverse perturbation p−1 which undoes the changes produced by p. Finally,
given two compositions w′ and w∗ ∈ CD, a unique perturbation p exists which transforms w
on w∗. This perturbation is

p = w∗ ⊗w−1 =

(
w∗1
w1
, . . . ,

w∗D
wD

)′
,

the perturbation difference between w and w∗. Thus, the measurement of the ‘difference’
between two compositions is defined from the ratios between the components of compositions.

The one-to-one transformations logc (Equation 11) and expc (Equation 12) between CD and
LD allow the real Euclidean structure defined on LD to be transfered to CD.

Definition 3.9. The compositional inner product of two compositions w and w∗ will be
equal to

<w,w∗>C=< logw, logw∗>L= (logw)′HD logw∗.

Importantly, < w,w∗ >C=< clrw, clrw∗ >, i.e., the standard inner product of the clr-
transformed vectors.

From this inner product in CD we can define a norm and a distance in the compositional
space.

Definition 3.10. The compositional norm of a composition w ∈ CD will be given by

‖w‖C = (<w,w>C)
1/2 =

[
(logw)′HD logw

]1/2
,

and the compositional distance between two compositions w and w∗ of CD is given by

dC(w,w
∗) =

[
(logw∗ − logw)′HD(logw∗ − logw)

]1/2
.

The distance dC(w,w
∗) defined on CD is equivalent to the Aitchison distance (Aitchison,

Barceló-Vidal, Mart́ın-Fernández, and Pawlowsky-Glahn 2000) that can be expressed as the
typical Euclidean distance between the corresponding clr -transformed vectors.

Property 3.3. In relation to subcompositions, the distance dC satisfies what is known as
subcompositional dominance, according to which

dC(wS ,w
∗
S) ≤ dC(w,w∗) ,

for any w,w∗ ∈ CD and for any subcomposition S.

Proof. It is sufficient to demonstrate that the compositional norm of a composition w
is greater or equal to the compositional norm of a subcomposition wS obtained by removing
one of its components. If, without lack of generality, we assume that wS = (w1, . . . , wD−1)

′,
then it holds that

‖w‖2C = ‖wS‖2C +
1

D(D − 1)
(logw1 + . . .+ logwD−1 − (D − 1) logwD)2 ,

and ‖w‖C ≥ ‖wS‖C .

The subcompositional dominance property of the Euclidean space CD correlates with the
traditional property at the real space IRD, according to which the distance between the
orthogonal projections of two points on any subspace is never greater than the original distance
between the points. In practical terms, this property also admits the following interpretation:
given two observational vectors wS and w∗S , if one adds supplementary components to both
vectors to form, respectively, the vectors w and w∗, then the difference between the new
vectors must be at least equal to the difference between the initial vectors.
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Palarea-Albaladejo, Mart́ın-Fernández, and Soto (2012) present examples to illustrate that
other usual distances, like the typical Euclidean or the angular distances, do not verify this
property. As a consequence, when one applies these distances or one calculates related statis-
tics (e.g., correlation coefficient), some misleading results can be obtained.

Since CD is a real vector space of dimension D − 1, any composition w could be identified
with its D − 1 coordinates relative to a basis of CD. In practice, we can obtain a basis of
CD from a basis of the subspace VD of IRD. Indeed, if v1, . . . ,vD−1 is a basis of VD then
expc(r−1VD

v1), . . . , expc(r−1VD
vD−1) is a basis of CD, and the coordinates of a composition w

relative to this basis coincide with the coordinates of rVD
(logw) relative to v1, . . . ,vD−1.

Definition 3.11. Let v1, . . . ,vD−1 be a basis of VD, and let V be the D × (D − 1)
matrix [v1 : . . . : vD−1]. Then the coordinates of the composition w relative to the basis
expc(r−1VD

v1), . . . , expc(r−1VD
vD−1) are the components of the vector (FV)−1F logw, where

F = [ID−1 : −1D−1].

Note the expression of the coordinates of w will depend on the matrix V we selected. These
coordinates are usually known as logratio coordinates because they are always expressed in
terms of logarithms of ratios of components. For example, for

V =



1− 1/D −1/D −1/D . . . −1/D
−1/D 1− 1/D −1/D . . . −1/D
−1/D −1/D 1− 1/D . . . −1/D

...
...

...
. . .

...
−1/D −1/D −1/D . . . 1− 1/D
−1/D −1/D −1/D . . . −1/D


, (14)

the coordinates of w relative to V are equal to (log(w1/wD), . . . , log(wD−1/wD))′. In this case,
the logratio coordinates coincide with the additive logratio transformation (alr) introduced
by Aitchison (1986).

When one is making a statistical analysis it is recommendable to select orthonormal basis in
CD because the metrics properties are preserved under a change of basis. This fact guarantees
the invariance of the results under a change of basis. To select an orthonormal basis it suffices
that the matrix V verifies the two identities V

′
V = ID−1 and VV

′
= HD. In this case,

the mapping that assigns composition w to its logratio coordinates is the isometric logratio
transformation ilrV relative to matrix V (Egozcue, Pawlowsky-Glahn, Mateu-Figueras, and
Barceló-Vidal 2003), that is

ilrV : CD −→ IRd−1

w 7−→ ilrV w = (FV)−1F logw .

In practice, it is very useful to select a basis that facilitates the interpretation of the logratio
coordinates. Egozcue and Pawlowsky-Glahn (2005) describe a stepwise procedure to make an
orthonormal basis of CD from sequential binary partitions of components of the observational
vectors of IRD

+ .

4. Final remarks and conclusions

Because all Euclidean spaces of the same dimension are isometric, the sample space of CoDa
CD is isometric to IRD−1. This fact allows all the statistical procedures that we naturally apply
on the real space IRD−1 to be applied to CoDa. The isomorphism presented in this article is
based on the logaritmic function. From a theoretical point of view, other approaches could
be possible but are unknown to us. With our approach, the compositional quotient space CD
has an algebraic and a metric structure induced by the isomorphism. Consequently, it suffices
to work with the logratio coordinates of the compositions with respect to an orthonormal
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basis on CD (Mateu-Figueras, Pawlowsky-Glahn, and Egozcue 2011). That is, our CoAn is in
essence a logratio CoAn, that is an analysis of CoDa based on the logarithm of the information
provided by the ratios.

The fact that our analysis focuses on ratios means that it can be applied directly to the ori-
ginal data of IRD

+ , to the simplex SD, to the strictly positive orthant of the unit hypersphere
SphD+ , to the hyperbolic surface HipD+ or to any other representative. Moreover, when work-
ing with logratio coordinates all of the statistical procedures that are defined in IRD−1, both
descriptive and inferential, are transferred to the space CD. The application of CoAn leads to
the assumption that the group of perturbations is the operating group on the compositional
space, in the same manner as we assume that the translations is the operating group in the
real space. This is the keystone of the methodology introduced by Aitchison (1986). In fact,
it means accepting that the ‘difference’ between two compositions w = (w1, . . . , wD)′ and
w∗ = (w∗1, . . . , w

∗
D)′ is based on the ratios w∗j/wj between parts instead of on the arithmetic

differences w∗j −wj , according to the ‘relative scale’ property. Therefore, for example, the dif-

ference between the compositions (0.980, 0.010, 0.010)
′

and (0.970, 0.002, 0.028)
′

is more than

three times greater than the distance between (0.300, 0.200, 0.500)
′

and (0.200, 0.300, 0.500)
′
.

The relative scale property of CoAn justifies the choice of the logarithm transformation to
measure the difference between two compositions.

The CoAn applies only in the open orthant IRD
+ . That is, the components of the observational

vectors must be strictly positive. This limitation is certainly a difficulty because often the
observations contain zeros. However, when the zeros are rounded zeros or are count zeros
they can be preprocessed using techniques inspired by techniques for missing data (Palarea-
Albaladejo and Mart́ın-Fernández 2015) that make a replacement by a small value. When the
zero is an essential zero, that is, the zero value is a true value, it makes no sense to replace
the zero by a small value. In this case, the analysis should take into account the presence
and absence of zeros, that is, the pattern of zeros. Both descriptive and inferential analysis
should be performed among the groups defined by the pattern of zeros.

Some researchers, for example Watson and Philip (1989), consider that the appropriate group
to operate on compositions is the rotations on the sphere and not the perturbations on which
the logratio CoAn is based. Watson and Philip (1989) represent a composition w from the
components of the unitary vector w/||w||, that is, from the cosine of the different angles that
w forms with the axes of coordinates. Then, the angle formed by two observation vectors w
and w∗ is taken as the appropriate measure from which to define the distance between the
two compositions. Others, for example Wang et al. (2007) and Scealy and Welsh (2011), also
apply the methodology of Watson and Philip (1989) after applying the scale-invariant trans-
formation w → (w/

∑D
j=1wj)

1/2 to the observations. Thus, they work with the components

of the unitary vector (w/
∑D
j=1wj)

1/2 rather than the coordinates of the vector w/||w||. From
these approaches, which are based on the representation of the compositions on the positive
orthant of the unit hypersphere centred at the origin, the authors apply the statistical analysis
(characteristic) of directional statistics, based on the von Mises-Fisher distribution. As stated
in Aitchison (1982)’s final discussion, the problems of this approach derives from the fact that
the von Mises-Fisher distribution is defined on the whole unit hypersphere and not only on
the positive orthant. This leads to problems when the components of w are too close to 0.
Aitchison (1982) also points out the difficulties that CoAn based on the spherical represen-
tation of the compositions encounters when dealing with problems related to independence
and regression. Neither is it possible from this representation to easily relate the statistics
that describe a set of compositions w1, . . . ,wn of CD to the statistics of the subcompositions
wS,1, . . . ,wS,n.

To conclude, the most relevant results shown in this article are:

• A composition is an equivalence class and its sample space is the quotient space CD. Ge-
ometrically, the compositions are semi-straight lines by the origin of the positive orthant
of the space IRD

+ . We refer any analysis of these equivalence classes as compositional
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analysis (CoAn). Regardless the use of the logarithm function or a transformation,
when an analyst decides to do a CoAn he or she is assuming that the sample space of
the data is the compositional space CD, which means in fact an acceptance of the ‘scale
invariance’ principle of CoDA.

• The logarithmic and exponential transformations provide the space CD with an Eu-
clidean space structure. We denominate logratio CoAn the compositional analysis
developed from this structure of CD. It agrees with the methodology introduced by
Aitchison (1982), based on a logratio relative scale of measurement of the difference
between two compositions.

• The logratio CoAn allows us to carry out the standard statistical analyses on the logratio
coordinates.

• The logratio CoAn allows us to apply the subcompositional analysis in a natural and
intuitive way, giving results which are coherent with those obtained from the whole
compositions.

• The logratio CoAn has the drawback of being unable to operate directly with composi-
tions with zero values. Applying preprocessing techniques to replace rounded and count
zeros is then recommended. A statistical analysis in the presence of essential zeros must
take into account the groups defined by the pattern of zeros.

• When the techniques for analysing directional data are restricted to compositions, they
must be considered to be a CoAn. Even though these analyses do not have the problem
of the zeros it is still impossible to guarantee that coherent results will always be ob-
tained in inferential studies (e.g., confidence regions), that is, strictly contained within
the positive orthant, because the sample space of these analyses is the whole sphere.
Moreover, this approach does not guarantee that a subcompositional analysis will pro-
duce results that concur with the results of the analysis of the whole composition.
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