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SUMMARY 

The most important result of a quantum chemical calculation is the total energy of the 

molecular system. However, being a single number, it provides little immediate 

chemical information. Energy decomposition schemes provide additional chemical 

information by decomposing the total energy of a molecular system into the sum of 

atomic and diatomic contributions. 

In this work we have implemented in the program APOST3D the Kohn-Sham Density 

Functional Theory (KS-DFT) energy partitioning for open-shell system for a number of 

pure and hybrid DFT functionals. This has permitted to study in some detail some 

polyradical systems, but most importantly it will allow us in the future to apply the 

methodology to transition metal complexes. 

The KS-DFT energy decomposition differs from the well-established Hartree-Fock (HF) 

one on the exchange-correlation term. Within DFT these contributions are obtained 

solely from one-electron integrations, whereas in HF they originate from two-electron 

ones. The extremely good correlations we have obtained for a set of molecules 

between both schemes provides the opportunity to calculate hybrid KS-DFT exchange 

energies or even the exact HF ones from pure KS-DFT exchange expressions, thus 

dramatically reducing the computational cost.  

Finally, one of the technical problems of these energy decomposition schemes is the 

evaluation of the necessary 6D numerical integrations, basically because of their large 

integration error associated. In this work, an improvement of the numerical integration 

method for the two-electron one-center numerical integration has been developed, 

based on the double rotation of a second set of integration grid points. The new 

scheme has been implemented first using a simple model, and then into the APOST3D 

program. The results obtained are promising, but further studies using a more diverse 

set of molecules including transition metal complexes are required.   
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RESUMEN 

El resultado más importante procedente de un cálculo de estructura electrónica es la 

energía total del sistema molecular. Ésta, debido a ser un solo número, nos 

proporciona escasa información química. Los métodos de descomposición de la 

energía nos apostaran información adicional, descomponiendo la energía total del 

sistema como la suma de contribuciones atómicas y diatómicas. 

En este trabajo, hemos implementado para sistemas de capa abierta la partición de la 

energía Kohn-Sham, dentro el marco de la teoría del funcional de la densidad, al 

programa APOST3D para una serie de funcionales de la densidad puros i híbridos. 

Este hecho nos ha permitido estudiar en detalle sistemas poliradicales y nos abre las 

puertas a aplicar esta metodología para complejos que contengan metales de 

transición en un futuro. 

Los métodos de descomposición de la energía KS-DFT difieren del método exacto HF 

(HF) en el término de la energía de intercambio y correlación. En el marco DFT, estas 

contribuciones se obtienen únicamente mediante integrales monoelectrónicas, 

mientras que en el caso HF se requieren integrales bielectrónicas. Las 

extremadamente buenas correlaciones obtenidas entre los dos métodos nos 

proporcionan la oportunidad de calcular la energía de intercambio para funcionales 

KS-DFT híbridos y hasta HF mediante las expresiones de la energía de intercambio 

para funcionales KS-DFT puros, disminuyendo potencialmente el coste computacional. 

Finalmente, uno de los problemas técnicos de los métodos de la descomposición de la 

energía proviene de la necesidad de realizar integrales numéricas 6D, debido a su alto 

error de integración asociado. En este trabajo, se ha desarrollado una mejora del 

método de integración numérica para integrales de un centro y dos electrones, basada 

en la doble rotación del segundo conjunto de puntos de integración. La 

implementación de este método se ha realizado primero utilizando un sistema modelo 

y posteriormente al programa APOST3D. Los resultados obtenidos son prometedores, 

aunque es necesaria la continuación del estudio para un conjunto más diverso que 

incluya complejos con metales de transición.  
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RESUM 

El resultat més important precedent d’un càlcul d’estructura electrònica és l’energia 

total del sistema molecular. Aquest, degut a ser un únic nombre, ens proporciona 

escassa informació química. Els mètodes de descomposició de l’energia aportaran 

informació addicional, descomponent l’energia total del sistema com a suma de 

contribucions atòmiques i diatòmiques.  

En aquest treball, hem implementat per sistemes de capa oberta la partició de l’energia 

Kohn-Sham, dins el marc de la teoria del funcional de la densitat, al programa 

APOST3D per una sèrie de funcionals de la densitat purs i híbrids. Aquest fet ens ha 

permès estudiar en detall sistemes poliradicals i ens obra les portes a aplicar aquesta 

metodologia per complexos que continguin metalls de transició en un futur. 

Els mètodes de descomposició de l’energia KS-DFT difereixen del mètode exacte 

Hartree-Fock (HF) en el terme de l’energia d’intercanvi i correlació. Dintre DFT, 

aquestes contribucions s’obtenen solament a partir d’integrals monoelectròniques, 

mentre que en HF procedeixen d’integrals bielectròniques. Les extremadament bones 

correlacions obtingudes entre els dos mètodes ens proporcionen l’oportunitat de 

calcular l’energia d’intercanvi per funcionals KS-DFT híbrids o fins i tot HF a partir de 

les expressions de l’energia d’intercanvi per funcionals KS-DFT purs, disminuint 

potencialment el cost computacional. 

Finalment, un dels problemes tècnics dels mètodes de descomposició de l’energia 

prové de la necessitat de realitzar integrals numèriques 6D, degut al seu alt error 

d’integració associat. En aquest treball, s’ha desenvolupat una millora del mètode 

d’integració numèrica per integrals d’un centre i dos electrons, basada en la doble 

rotació del segon conjunt de punts d’integració. La implementació d’aquest mètode 

s’ha realitzat primer utilitzant un sistema model i posteriorment al programa APOST3D. 

Els resultats obtinguts són prometedors, tot i que és necessari la continuació de 

l’estudi utilitzant un conjunt més divers de molècules incloent complexos amb metalls 

de transició. 
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1. INTRODUCTION 

 

1.1. Traditional methods for energy partitioning  

The most important result of a quantum chemical calculation is the total energy of the 

molecular system. However, being a single number, it carries little immediate chemical 

information to us. One thing that can provide chemical information is trying to 

decompose the total energy into contributions that are relevant from a chemical point of 

view, e.g. the interaction between two atoms. 

One of the most typical energy decomposition is the so-called Energy Decomposition 

Analysis1 (EDA). It is based on dividing the molecule into two interacting fragments that 

can react forming the molecule. One example could be the one in figure 1. 

 

Figure 1. Interaction between two identically described methyl radical forming ethane. 

 

With this partition, we can achieve the overall stabilization energy ∆E of the molecule 

with respect to the two fragments. Within EDA, this energy can be first decomposed 

into 

intEEE prep  . (1) 

The first term is the preparation energy, ∆Eprep, which is defined as the amount of 

energy required for the deformation of the geometry of each fragment in their 

“equilibrium” to the geometry that they achieve after interacting between them. The 

second term is the interaction energy, ∆Eint, which is defined as the energy change 

when the two fragments are joined to form the final molecule. This interaction energy 

can be further decomposed in four different contributions  

int elstat Pauli oi dispE E E E E      , (2) 

namely, electrostatic interaction, Pauli repulsion, orbital interaction and dispersion. 

When applying EDA within density functional theory (DFT), the ∆Edisp is added as an 

additional term accounting for the van der Waals interaction correction to the DFT 

energy.  

A different energy decomposition scheme for the total energy of a molecule was 

proposed in 2001 by Salvador et al.2 Unlike the EDA, this molecular energy 

∆E
· ·+
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decomposition does not require a definition of interacting fragments, and decomposes 

the total energy of the system into one-center (atomic) and two-center (diatomic) 

contributions. 

,

A AB

A A B A

E E E


   . (3) 

The one-center terms account for the effective energy of each atom within the 

molecule, whereas the two-center terms reflect the attractive/repulsive interactions 

between every pair of atoms that are responsible of the molecule stability. 

The partitioning of the 3D-space on atomic domains is necessary to apply such energy 

decomposition scheme. That is, one must be able to define the atom within the 

molecule. There are several approaches to this end. 

 

1.2. Atomic partitioning of the 3D-space 

The most important methods that account for the definition of the atom within the 

molecule by dividing the physical 3D-space are the Quantum Theory of Atoms in 

Molecules (QTAIM)3,4 and the fuzzy atoms.5 In both of them each atom is defined as its 

nucleus and a region of the space surrounding it.  

In the QTAIM framework, the 3D-space is divided into atomic regions using information 

from the electron density in such a way that each point of the space belongs to a given 

atom. The set of points conform the atomic domain. On the contrary, fuzzy atoms are 

allowed to overlap. For each atom A and every point of the 3D-space, a weight 

function, ( )Aw r , is introduced in order to measure to what extent the point contributes 

to the respective atom. The weight functions must satisfy the following two conditions 

( ) 1 ( ) 0A A

A

w r w r  . (4) 

QTAIM atoms can also be defined using such weight functions, being their values at a 

point r


 either 0 or 1. In fuzzy atoms they can take any value between 0 and 1.  

There are different schemes within the fuzzy atom framework. In this work we have 

used the so-called Topological Fuzzy Voronoi Cells (TFVC),6 a scheme that provides 

results similar to those obtained with QTAIM but at much lower computational cost. 

Once a partition of the 3D-space has been established, one can obtain the atomic 

contributions of a given quantity expressed as a one-electron integral either by 
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restricting the integration over the atomic domain, or by introducing the appropriate 

atomic weight function 

( ) ( ) ( )

A

A Af r dr w r f r dr N


   . 
(5) 

Similarly, a two-electron integral will naturally decompose into both atomic (if both 

electrons lie on the same atomic domain) and diatomic (if each electron lies in a 

different atomic domain) contributions. 

 

1.3. Molecular energy partitioning in 3D-space 

In 2001 Salvador et al.2 implemented a molecular energy decomposition method for the 

Restricted Hartree-Fock (RHF) energy. The one- and two-center terms obtained read 

as  

 

/2 /2
2

, ,
1 , 1

/2

1

/2

, ,
, 1

1
2 | | 2 | |

2

2 | | | |

2 2 | |

N N
A

A i i A i j i j i j j iA A A A
i i jA

N
B A

AB i i A i i B

i B A

N
A B

i j i j i j j iA B A B
i j AB

Z
E

R

Z Z
E

R R

Z Z

R

         

   

       

 





             

 
       

 

        

 





, (6) 

where N/2 is the number of doubly filled molecular orbitals,  ( )i r , and the [12|12] 

convention is used for the two-electron integrals. In the one electron integrals, the 

subscript “A” indicates that the integration is performed over the atomic domain A , 

*ˆ ˆ| | ( ) ( )
A

i i i ih r h r dr   


    , (7) 

where ĥ  represents either the 
2

2

1
  or 

A

A

R

Z
 operators. 

In the case of the two-electron integrals, the subscript “A,B” indicates that the 

integration for the electrons 1 and 2 are carried out over the atomic domains A  and 

B  respectively.  

* *

, 1 2 1 2 1 2

12

1
[ | ] ( ) ( ) ( ) ( )

A B
i j k l A B i j k ldr dr r r r r

r
      

 
   . (8) 

The concept of effective atomic density7 helps us to define and calculate all 

contributions above from the electron density. Introducing for the atom A the weight 
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function to the electron density function we can define the effective atomic density 

simply as 

)()()( rrwr A

A 
   

( , ') ( ) ( , ')A

Ar r w r r r  . 

(9) 

In the case of RHF the total energy is defined as the sum of the nuclear repulsion, ENN, 

kinetic energy, Ekin, electron-nuclear attraction, EeN, Coulombic electron repulsion, ECoul 

and exchange, Ex , contributions, namely 

xCouleNkinNNHF EEEEEE  . (10) 

The nuclear repulsion is a diatomic contribution that is calculated as  





ABA

NN

AB

NN EE
,

, (11) 

where the EAB
NN for each pair of atoms is calculated as (atomic units used) 

| |

NN A B
AB

A B

Z Z
E

R R



. (12) 

Making use of the effective atomic densities one can easily express the remaining 

terms. Thus, the kinetic energy is a monoatomic contribution that is calculated as 

 


A
rr

AKin rdrrE



'

2 )',(
2

1
 . (13) 

The electron-nuclear attraction is a one-electron energy contribution which is divided 

into the sum of atomic and diatomic contribution as  





ABA

eN

AB

A

eN

A

eN VVE
,

, (14) 

where the VA
eN and VAB

eN terms are expressed in terms of effective atomic densities as 














rdr
Rr

Z
rdr

Rr

Z
V

rdr
Rr

Z
V

A

B

BB

A

AeN

AB

A

A

AeN

A










)(
||

)(
||

)(
||





. (15) 

The Coulombic energy is a two-electron energy contribution which is also expressed as 

a sum of both atomic and diatomic contributions  
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,

Coul Coul Coul

A AB

A A B A

E E E


   , 
(16) 

where the EA
Coul and EAB

Coul terms are defined as 

1 2
1 2

1 2

1 2
1 2

1 2

( ) ( )1

2 | |

( ) ( )

| |

A A
Coul

A

A B
Coul

AB

r r
E drdr

r r

r r
E drdr

r r

 

 







 

 

. (17) 

Finally, the exchange within Hartree-Fock is a two-electron energy contribution which 

involves atomic and diatomic terms as  

,

x x x

A AB

A A B A

E E E


   , (18) 

where the EA
x and EAB

x terms are defined as  

1 2 2 1
1 2

1 2

1 2 2 1
1 2

1 2

( , ) ( , )1

4 | |

( , ) ( , )1

2 | |

A A
x

A

A B
x

AB

r r r r
E drdr

r r

r r r r
E drdr

r r

 

 

 


 


 

 

. (19) 

 

If we take a look at the HF energy components, described on equations (11) to (19), we 

can divide them in two groups: the contributions obtained from one-electron integrals 

and the two-electron terms. Taking into account that these integrals must be performed 

numerically, the first group requires 3D integrations while the second group requires 

formally 6D integrations. Computationally, the cost of each numerical two-electron 

integral requires M2 operations, where M equals the number of grid points used for the 

numerical integration, while the one-electron integrals require only M operations. It is 

clear that the bottleneck of the method is the computation of the costly numerical two-

electron integrals. For each pair of atoms there is one such integral for the Coulomb 

term but Nocc(Nocc+1)/2 integrals for the exchange part, being Nocc the number of 

occupied molecular orbitals. 

 

Another family of methods to calculate the energy from the Schrödinger equation is the 

Density Functional Theory (DFT). In the Kohn-Sham implementation (KS-DFT), the 

only difference with respect to Hartree-Fock is the exchange contribution, Ex. In the KS-
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DFT energy this term is replaced by the exchange-correlation energy, Exc, which is 

obtained as the one-electron integral  

( ) [ ( )]xc xc xcE r dr r dr      (20) 

Here, ( )xc r  is the exchange-correlation energy density, which is a functional of the 

electron density (and its derivatives), i.e.  , ,..xc   . In KS-DFT the exchange-

correlation functional is usually expressed as a sum of exchange and correlation 

contributions. For the exchange part, some functionals (the hybrid ones such as 

B3LYP) also include partially the HF exchange. Those that do not are called pure 

functionals. 

 

The main problem one must face to implement similar energy decomposition for the 

KS-DFT energy is the exchange-correlation term, because it has a different definition 

for every KS-DFT functional and mainly because, contrary to HF, it is expressed as a 

one-electron integral. This would naturally lead to only atomic exchange-correlation 

contributions, destroying the chemical picture of the analysis. 

The difficulty to define the one- and two-center exchange-correlation energy terms 

forced some groups to develop approximations of this energy contribution in two 

different ways. The first approximation is to do a HF-type energy decomposition with 

the Kohn-Sham orbitals.8,9The problem is that now the sum of the atomic and diatomic 

components does not coincide with the total energy, as implicit in equation (18). 

Another option is to decompose the Exc into only one-center contributions,10 losing all 

the information from the diatomic interactions.  
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1.4.  KS-DFT energy partitioning 

Formally, Exc is a one electron quantity, for which the atomic decomposition using a 3D-

space partitioning would be possible simply as 

 ( ) ( )xc xc xc

A A

A A

E w r r dr E    . (21) 

One way to calculate the atomic and diatomic exchange-correlation contribution is 

including the weight function twice as 

  rdrrwrwE
BA

xc

BA

xc 


,

)()()(  . (22) 

Unfortunately, the equation (22) doesn’t give reasonable results about the diatomic 

exchange-correlation energy term. If we take a look, it can be observed that in the 

framework of the QTAIM theory the diatomic terms would be zero, which can hardly be 

put in correspondence with bonding interactions. Thus, another definition to describe 

the diatomic terms was still required. 

In 2007, Salvador et al.11 proposed a strategy for the 3D-space decomposition of the 

KS-DFT energy in which they introduce the concept of the bond order density (BODEN) 

to calculate the diatomic exchange-correlation energy terms.  

The bond order density )(rAB


  for the pair of atoms A and B is obtained by integrating 

the diatomic exchange density )',( rrx

AB


  over the coordinate 'r


. For single 

determinant closed-shell wave functions, the bond order density is defined as 

  *

,

( ) 2 ( ) ( ) ( ) ( )
nocc

B A

AB A ij A ij i j

i j

r w r S w r S r r    , (23) 

where the Sij
A term corresponds to the atomic overlap matrix elements of the molecular 

orbitals and is defined as 

*( ) ( ) ( )A

ij A i jS w r r r dr   . (24) 

The BODEN represents the part of the density used to form the A-B interaction. An 

estimation of the diatomic exchange-correlation can be obtained by replacing the 

density (and its derivatives) in eq. (20) with the BODEN of the given pair of atoms. The 

diatomic exchange-correlation energy term then reads  

 ( ), ( )xc xc

AB AB ABE r r dr    . (25) 
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For the case B=A the value of the exchange-correlation term is already provided by the 

equation 21, although, a correction from the diatomic contributions is required so that 

the sum of the atomic and diatomic contributions reproduce the total exchange-

correlation energy value 

/ 2xc xc xc

A A AB

B A

E E E


  . (26) 

It can be seen that the sum of atomic and diatomic terms gives the total Exc.  

The advantage of the pure KS-DFT methods is that the expensive HF-type 6D integral 

to calculate Ex is not required. In the case of using hybrid functionals, the calculation of 

Exc gets computationally more complicated because every functional has a different 

combination of pure DFT expressions from equation (25) and HF-type contributions for 

the exchange. 

Both the HF and KS-DFT energy decomposition schemes are implemented in the local 

program APOST3D.12 The current implementation involved only the closed-shell 

restricted KS-DFT for a reduced number of pure and hybrid functionals, namely HFS, 

BLYP and B3LYP. 
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2. OBJECTIVES 

 

In this project three different goals have been proposed related with the implementation 

of tools into the IQCC program APOST3D supervised by Dr Salvador. 

The first goal is the implementation of the molecular energy decomposition for 

unrestricted Kohn-Sham DFT. This is the main goal of the project because its future 

application to open-shell systems that contains transition metals, for example the ones 

already studied by us,13 can help to elucidate the differences of the metal-ligand 

interactions along redox processes. 

The second goal is the implementation of the molecular energy decomposition to other 

Kohn-Sham functionals, like PBEPBE and PBE0, both for restricted and unrestricted 

case. With this we want to analyse to which extent the use of the BODEN for different 

exchange-correlation functionals, which consists in a one-electron integral, can be 

used to mimic the behaviour of the HF-exchange formula, which consists in a two-

electron integral. For this purpose we perform a systematic study of atomic and 

diatomic exchange and total energy contributions for a set of molecules at the HF level 

and using different DFT functionals. 

The last goal of this project is to improve the accuracy of the two-electron numerical 

integrations for reducing the integration error on the Coulombic and HF-exchange 

energy contributions. For this purpose we use a simple analytical model of diatomic 

two-electron integral. 
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3. METHODOLOGY 

3.1.  Computational details  

A stablished set of 30 molecules was used to test the implementation and the posterior 

analysis of the decomposition of Hartree-Fock and KS-DFT energies. This set contains 

four main groups of molecules. The first group is formed by 5 molecules of carbon 

oxides and sulphur oxides, containing SO, SO2, SO3, CO and CO2. The second group 

is formed by the series C2H6, C6H6, C2H4 and C2H2 , that perfectly represent the 

different bond multiplicities. A third group is formed by a set of 14 hydrides with the 

general formula XHn , where X goes from Li to Cl atoms. Already in ref. 11 it was found 

that larger differences between the exchange energy contributions obtained with HF 

and pure KS-DFT could be observed due to the absence of core electrons in hydrogen. 

Finally, a number of other diatomic molecules were also included to the set, which 

again should reflect the effect of the different bond multiplicities in the value of the 

diatomic energy components 

All calculations were carried out using Gaussian09.14 We used different KS-DFT 

functionals, B3LYP and PBE, and HF with cc-pVTZ atomic basis set. Unless otherwise 

stated, all the geometries were optimized with the same level of theory. 

All energy decompositions were carried out with the program APOST3D using the 

TFVC method of partition of the 3D-space. The numerical integrations were carried out 

using a radial grid of 70 and an angular grid of 434 points for the one-electron 

integrations, and a radial grid of 40 and an angular grid of 146 points for the two 

electron integrations. 

All calculations related with the optimization of the numerical one- and two-electron 

integrals were realized with a self-developed Fortran77 code. For this purpose, 50 

radial grid points and 110,146, 170, 266,302 and 434 angular grid points were used in 

our tests. The exact values of the model one-electron and two-electron integrals were 

calculated with the Wolfram Alpha online application.15  

 

3.2.  3D numerical integrations 

The numerical integrals in KS-DFT implementations typically use Becke’s multicenter 

integration scheme.16 It involves a combination of atomic-centered grids, each of which 

is defined in 3D-spherical coordinates. The numerical integration for each center 

involves a radial part, which is defined on the range [0,  ), and an angular part 

covering the full 3D-space 
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In our case implementation, a Gaussian-Legendre quadrature17 was used for the radial 

grid and the set of Lebedev-Laikov18 grids was used for the angular part. 

The Gaussian quadrature is an approximation to a defined integral of a one-coordinate 

function f(x)  stated as a weighted sum of function values at specified integration 

points, within the domain of integration usually from -1 to 1. This is the case of the 

Gauss-Legendre quadrature. A transformation of the corresponding coordinates and its 

weight from [-1, 1] to [0, ] is required, leading to  

1

0
0 2

0 1

21
( ) ( )

1 (1 )

rx
I f r dr f x dx r r dr

x x






   

   , (27) 

where r0 corresponds to the distance that will contain half of the integration points. The 

original integral is rewritten as 

1

0
02

1

2 1

(1 ) 1

r x
I f r dx

x x


 
  

  
 , (28) 

and with the application of the Gaussian-Legendre quadrature, the integral is 

approximated as a weighted sum of the values of the function calculated at some pre-

established integration points 

0
0 2

0

21
( ) ( ) ( ) ( ) ( ) ( )

1 (1 )
k k k k k

k

rx
f r dr f x w x f x f r w x w x

x x


 

  
  

 . (29) 

The angular grid of Lebedev consists on a given set of grid points, distributed on the 

surface of a sphere of radius unity, with their corresponding weights. They can be 

combined with a quadrature for the radial part to achieve a 3D numerical integration 

formally in spherical coordinates 

,( ) ( ) ( ) ( )
NangNrad

rad ang

k i k

k i

f r dr f r w r w i  , (30) 

as a weighted sum of the 3D function evaluated at a set of grid points (Nrad Nang) 

spherically distributed, where  , ,k i k i ir r  . 

In the case of (two-electron) 6D-integrals, a set of spherical grid points per each center 

must be used. 
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3.3. A note on sustainability  

Computational chemistry uses computers to generate information such as properties of 

molecules or simulated experimental results. It has become a useful way to investigate 

materials that are too difficult to find or too expensive to purchase. It also helps 

chemists to get greater insight into the chemistry and make predictions before running 

the actual experiments, so that they can be better prepared for making observations. 

From a sustainable point of view, the computational chemistry is: 

i) Safer, because the experimental chemistry have an intrinsic danger associated to 

the experiments 

ii) More clean, because there are no waste of chemical products during our tests 

iii) More effective in comparison of performing experiments. 
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4. RESULTS AND DISCUSSION  

4.1.  Optimization of the rotational angles on a 6D integral 

One of the main objectives of this project is the improvement of the numerical 

integration method used for the two-electron energy components on the APOST3D 

program. The numerical integrations needed to compute these contributions are very 

dependant of both the number and the spatial distribution of the radial and angular grid 

points that we use. 

We have focused on the improvement of the accuracy of two-electron numerical 

integration over the same atom A and over two atoms along different interatomic 

distances. For this purpose we have used a simple analytical model for two electron 

integrations, representing the two-electron repulsion found in molecular systems, 

namely  

      

2 2 22 2 2
2 2 2 01 1 1 2( ( ) )2( )

1 1 1 2 2 21/2
2 2 2

1 2 1 2 1 2

x y z zx y z
e e

I dx dy dz dx dy dz

x x y y z z

     



    
  , 

(31) 

where z0 is used to control the type of integral. For one-center type z0=0, and for two-

center integrals z0 determines the interatomic distance. 

To approximate a two-electron integral like that of equation 31 one needs two sets of 

spherical grids, one for the integration over each electron coordinate, consisting of N 

points each. The numerical 6D integration involves the use of N2 grid points. In the 

particular case of a one-center two-electron integration, N integration points can not be 

used because they would cancel the denominator of equation (17) and lead to a 

division by zero. These points are neglected but this loss affects negatively the 

accuracy of the integral.  

Two possible solutions for an improvement of the accuracy of the numerical integration 

are i) increasing the number of radial and angular points or ii) to modify the spatial 

position of the grid for the second electron in order to use the maximum number of grid 

points for the integral evaluation. Computationally, the first option is highly expensive 

for the two-electron integrals. Then, it was thought that exploring the second option 

could be a good idea. 

To use the maximum number of grid points, one can rotate the coordinates of the grid 

points for the second electron. First, the determination of which convention of 

coordinates defines our set of grid points is required. As we can see in the figure 2, our 

system can be defined on spherical coordinates or Cartesian coordinates.  



Treball de Fi de Grau Martí Gimferrer Andrés 27/05/2016 

14 
 

 

 

Figure 2. Representation of a sphere in Cartesian and Spherical coordinates with the 

corresponding angles drawn. 

 

The Cartesian coordinate system for the integration points was used because we found 

in previous tests that the conversion from Cartesian to Spherical and the posterior 

conversion from spherical to Cartesian coordinates produce some numerical noise that 

would affect the accuracy of results.  

The Cartesian coordinates of the angular grid can be modified (without changing the 

value of the associated weight) by applying rotations along one or two axis. In the case 

of a rotation of  and  degrees along the z and y axis, respectively, the rotated 

coordinates are related to the original ones as  

 
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cossinsincos
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000

00

000

zyxz

yxy

zyxx

rot

rot

rot







, (32) 

where appropriate 3D-rotation matrices have been used.  

Originally, in APOST3D the second set of grid points was rotated only along the z-axis 

for a predefined value of   9.3 degrees. However, we have realized that with the 

rotation of only this angle all points situated along the z-axis were not modified and 

thus still would cancel the denominator of the equation (17). Applying a rotation of  

degrees along a second axis would allow the use of all grid points for the integration, 

depending on the particular value of  and  angles. Of course, it does not mean that 

the result of the numerical integration would be exact. Then, the goal is to observe how 

the values of  and  affect the accuracy of the numerical integration using different 

number of angular grid points, and whether a definite trend could be established.  

The absolute integration errors of the interval [0,15] degrees along 50 steps of rotation 

for each combination of angles were computed using the difference between the 

numerical integration from our program and the exact value, which was obtained with 
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the Wolfram Alpha online applet. For a better presentation of the results we used two-

dimensional representations of the root mean square deviation (RMSD) calculated 

using the integration errors from the different number of angular grid points for a 

determined combination of angles. We decided to mix all the different angular grids 

because we thought that the mixture of all of them could better represent a general 

case even knowing that the numerical integrations are highly dependent of the number 

of grid points. 

The first test was the two-electron one-center integration. This case is tricky because 

this situation is where the maximum number of grid points cancels the denominator on 

equation 31. Thus, the results of the two-electron integral must have a high difference 

when rotating the second set of grid point. The results obtained are represented in 

figure 3. 

 

Figure 3. Two-dimension diagram of the RMSD for the two-electron one-center numerical 
integration error. The lowest integration error regions are indicated with a white arc. 

 

The observed pattern is very complex. Without any rotation of the second electron grid 

points the integration error is very high. It corresponds with the (0,0) point in the graph. 

However, the rotation of the second set of grid points does not provide better results for 

every combination of angles. The zone in the graphic with radius smaller than 6 and 

higher than 12 also provides high integration errors. However, we can observe a 

tendency represented with a white arc with radius between 8.5 and 9.5 from the (0.0) 

origin in which the integration errors are minimum for our model system. There are also 
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some critical points, e.g. the combination of angles (12,0) or (0,12) that provide very 

high integration errors. We have observed that in this case there is a very high 

integration error for only one of the angular grids used (typically the one including 266 

grid points) and this is reflected on the figure even if the other angular grids yield small 

errors.

The second and third tests were the 6D two-electron two-center numerical integrals 

with different interatomic distances. In this case, we want to see if the pattern from the 

first test is similar when the second electron grid points do not have the same 

coordinates and observe the effect of the distance in the integration error. These tests 

can help us to find which energy decomposition terms would contribute more to the 

total integration error. The results obtained for an interatomic distance of 1.5 Å and 2 Å 

are represented in figure 4. 

 

Figure 4. Two-dimension diagram of the RMSD for the two-electron two-center numerical 
integration for z0=1.5 (left) and z0 = 2 (right). 

If we compare the figures 3 and 4 we can observe that the integration error is two 

orders of magnitude smaller in the case of two-center integrations. Moreover, the 

integration error also decreases significantly with the z0 distance (figure 4 left and 

right). This high difference on the integration error together with the fact that it is 

probably unlikely to have overlapping grid points when the electrons are not in the 

same center allows us to affirm that the rotation of the second electron grid points is 

less necessary depending on the interatomic distance. From the left diagram on figure 

4, we can observe that the integration error distribution is less symmetric than the one 

observed on figure 3. This is because our diatomic model is built along the z-axis, thus 

the rotation of  and  is no longer equivalent. There is a similar tendency respect the 

combination of angles that provides the minimum integration error, but in this case we 

can observe that the number of angle combinations decrease. Although, in the case of 
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representing the results on the same numerical scale that the figure 3, all the possible 

combination of angles give a reasonable small integration error. 

Finally, we have implemented in APOST3D this double rotation scheme for the two-

electron one-center integrations. We have performed similar analysis for a reduced set 

of molecules (8), and computed the error obtained in the total energy (comparing the 

exact number obtained with Gaussian and the sum of all one- and two-center 

contributions). The preliminary results are shown in figure 5. 

 

Figure 5. Two-dimension diagram of the RMSD for the total energy for a set of molecules 
obtained with PBEPBE functional (left) and Hartree-Fock (right). Integration errors in kcal/mol 

 

If we compare the figure 5 with the figure 3, we can observe that the integration errors 

for real cases share a similar tendency with our model system. Moreover, we can affirm 

that the rotation of the two angles provides better results than the rotation of only one. 

Two-electron two-center energy integrals are required for the Coulomb contribution 

both in PBEPBE and HF, but the ones associated to the exchange contribution are only 

present for the latter. The results indicate that for HF calculations we have a 

compensation of the integration error between the two implicated components, 

providing an integration error somewhat smaller than in the case of pure KS-DFT 

functionals like PBEPBE.  

Both HF and PBEPBE share a the minimal integration error region for rotation angles 

of ca. (8,8). However, looking at the evolution of the integration error for each individual 

molecule of the set it appears that there is not a unique value of rotation for which the 

error is minimal in every case. That is, minimal error is achieved for each molecule 

using different rotation angles. Anyway, a wider systematic study will be required to 

confirm the preliminary results obtained and to extract a combination of  and  angles 

which minimize the integration error. 
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4.2.  Implementation of unrestricted KS-DFT energy decomposition 

The main objective of this project was the implementation of the molecular energy 

decomposition to unrestricted Kohn-Sham functionals to have the opportunity of 

working with open-shell systems in the future. 

To calculate the electronic density for an open-shell system it is required to divide it into 

the alpha and beta contributions, taking into account the alpha and beta molecular 

orbitals, respectively. Then, the exchange-correlation energy is determined as the sum 

of the contributions for each spin, computed independently. 

For the atomic and diatomic exchange energy components the same procedure must 

be realised as for the restricted case for the bond order density, giving in this 

unrestricted version the following expressions 

, , *,

,

, , *,

,

( ) ( ) ( )

( ) ( ( ) ( ) ) ( ) ( )

( ) ( ( ) ( ) ) ( ) ( )

AB AB AB

N
B A

AB A ij B ij i i

i j

N
B A

AB A ij B ij i i

i j

r r r

r w r S w r S r r

r w r S w r S r r

 


    


    

  

  

  

 

 

 





, 

(33) 

where N corresponds to the number of alpha electrons, N corresponds to the number 

of beta electrons, and different atomic overlap matrix elements are used for the alpha 

and beta molecular orbitals. Note the absence of cross-terms, i.e. no alpha-beta 

mixture is necessary. 

The concept of BODEN can also be applied to unrestricted open-shell systems to 

calculate the EAB
xc terms by doing  

xc xc xc

AB AB ABE dr dr             . (34) 

In the case of gradient-corrected (GGA) functionals, the exchange-correlation is a 

functional of the density and its gradient. Thus, we have to compute also the gradient 

of the BODEN for each pair of atoms. In fact, in the unrestricted case one must 

compute the following three quantities 
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. (35) 

 

If we express the KS-DFT exchange and correlation contributions separately, equation 

34 is written as 
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, (36) 

where it becomes evident that the exchange contribution involves only same-spin 

quantities. Finally, the atomic EA
xc contributions are derived from the diatomic ones 

using equation 26, analogously to the restricted case. 

We have implemented into APOST3D the expressions above for the unrestricted 

version of the pure functionals HFS, BLYP and PBEPBE, and hybrid B3LYP and PBE0. 

Both PBEPBE and PBE0 have been also implemented in the restricted version. Five 

new subroutines have been added to the original APOST3D version. Subroutines 

capable of computing the exchange-correlation density at a given set of points where 

obtained from the CCLRC Density Functional repository.19  

 

4.3. Application to polyradical systems 

After the implementation of all the corresponding definitions for the unrestricted KS-

DFT functionals, we wanted to apply them to some well-known polyradical molecules. 

The aim of this study was twofold: i) to verify that the energy decomposition for the 

unrestricted Kohn-Sham functionals worked properly, and ii) apply the energy 

decomposition to quantify where the atomic and diatomic energy differences go to 

when going from low to high spin states of the polyradicals. 

 

Figure 6. Polyradical molecules studied, (CH2CH)2 (right) and trimethylenebenzene (TMB) (left). 
Fragment definitions for the TMB molecule are indicated. 

 

The two polyradical molecules studied are (CH2CH)2 and the trimethylenebenzene 

(TMB) which are represented in the figure 6. In the case of (CH2CH)2, the system 
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exhibits two radical centers. The electronic transition studied with the unrestricted KS-

DFT energy decomposition implemented is the singlet-triplet excitation. On the other 

hand TMB is a triradical, exhibiting doublet and quartet electronic states.  

We have performed the energy decomposition of the KS-DFT energy (B3LYP/cc-pVTZ) 

for all four electronic states. For illustration, in Table 1 we compile the results obtained 

for (CH2CH)2 in triplet state. For the atomic components we have computed the 

deformation energies, that is, subtracting the corresponding free-atom energy to the 

atomic contribution. Atomic deformation energies reflect the energy penalty the atoms 

pay to form the chemical bonds. 

 

Table 1. Atomic deformation and diatomic energy components (in kcal/mol) for the 

triplet state of (CH2CH)2  See figure 6 for atomic numbering. 

Atom 1 2 3 4 5 6 7 8 9 10 

1 +150.4 -170.0 -8.5 -170.0 -161.7 -6.0 -6.0 -1.0 -6.0 -6.0 

2 -170.0 +169.2 -170.0 -3.8 -3.7 -150.9 -150.9 -3.7 -1.8 -1.8 

3 -8.5 -170.0 +150.4 -170.0 -1.0 -6.0 -6.0 -161.7 -6.0 -6.0 

4 -170.0 -3.8 -170.0 +169.2 -3.7 -1.8 -1.8 -3.7 -150.9 -150.9 

5 -161.7 -3.7 -1.0 -3.7 +22.1 +0.1 +0.1 -0.3 +0.1 +0.1 

6 -6.0 -150.9 -6.0 -1.8 +0.1 +17.2 -3.6 +0.1 +0.3 +0.1 

7 -6.0 -150.9 -6.0 -1.8 +0.1 -3.6 +17.2 +0.1 +0.1 +0.3 

8 -1.0 -3.7 -161.7 -3.7 -0.3 +0.1 +0.1 +22.1 +0.1 +0.1 

9 -6.0 -1.8 -6.0 -150.9 +0.1 +0.3 +0.1 +0.1 +17.2 -3.6 

10 -6.0 -1.8 -6.0 -150.9 +0.1 +0.1 +0.3 +0.1 -3.6 +17.2 

 

Energy components greater than +15 Kcal/mol are written in green, while those smaller 

than -15 Kcal/mol in red. It can be observed that the deformation energy of the atoms is 

very high and positive (atomic destabilization produced for the bond formation). 

However, there are important differences between hydrogen and carbon atoms. The 

electron cloud of carbon atom is bigger and much difficult to deform than that of the 

hydrogen. Thus, the deformation energy of a carbon must be higher which is reflected 

in the results. 

The diatomic term for a pair of bonded atoms is highly negative (stabilization from the 

bond formation) because it must compensate part of the deformation energy of the 

atoms involved on the bond, e.g. C1 is bonded to C2, C4 and H5, with all three 

diatomic energies smaller than -150 kcal/mol. 

The energy contributions between the distant atoms are very small in comparison with 

the deformation and binding energies (in absolute value). Its contribution to the total 
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energy is small and can be positive (reflecting small steric repulsions) or negative. For 

example, H6-H7 diatomic contribution is slightly negative while the H7-H8 one is 

positive. The former involves a geminal interaction, whereas the second a slight steric 

repulsion between atoms in 1,3 position. 

For this system, the singlet-triplet gap is only -1.3 kcal/mol, computed at the B3LYP/cc-

pVTZ level of theory. We can use the energy decomposition terms to analyse which 

interatomic interactions are favoured/disfavoured when going from the singlet to the 

ground-state triplet. We have observed small differences in both the atomic and 

diatomic contributions for the two electronic states, which add up to -1.4kcal/mol. That 

is, the integration errors, which are not negligible for each state separately (ca. 11 

kcal/mol) fortunately cancel. Analyzing the results we see that going from singlet to 

triplet states the C2-H6 bond (and all symmetry equivalent ones) destabilize by +0.9 

kcal/mol, whereas all C-C interactions, both the bonded (-0.5kcal/mol) and non-bonded 

(-0.7 kcal/mol) are slightly enhanced.  

In this case a fortuitous error cancellation permits a quantitative analysis. This has not 

been the case for other similar diradical systems studied. This points out the need for 

improving the numerical integration method in the energy decomposition (an improved 

numerical integration method is required in order to describe properly the small 

contributions, in absolute value). 

In TMB molecule the energy decomposition yields a large number of atomic and 

diatomic terms that make the analysis too complex. In this case one can visualize the 

molecule as three interacting allyl radicals, and obtain fragment energy components 

simply by adding all one- and two-center contributions of the atoms that form each 

molecular fragment. The fragments are defined as indicated in figure 6. The fragment 

energy decomposition results for the doublet-quartet excitation are compiled in table 2. 

 

Table 2. Fragment analysis of the total energy differences (in Kcal/mol) between the 

quartet and doublet state of the TMB molecule. The overall double-quartet gap 

computed at the B3LYP/cc-pVTZ level of theory is -24.4 kcal/mol.  

ΔEtot (D-Q) FRAG 1 FRAG 2 FRAG 3 

FRAG 1 -23.3 -0.5 +25.8 

FRAG 2 -0.5 -5.0 -4.4 

FRAG 3 +25.8 -4.4 -20.7 
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The study of the energy decomposition in this molecule is not trivial because the 

doublet spin state of the TMB is not described properly. The broken-symmetry of the 

wave function complicates the interpretation of the results because the three allyl 

fragments are not equivalent. However, we can observe that the intra-fragment total 

energy difference terms are negative. It means that all allyl fragments stabilize when 

going from the doublet to the quartet state. The inter-fragment interaction between 

fragments 1-2 and 2-3 stabilizes. The most interesting results come from the fragment 

3 because the 3-1 inter-fragment interaction destabilizes with a value of +25.8 kcal/mol. 

These results can be better interpreted by looking at the spin densities of the fragments 

in the doublet state. The fragment analysis provides values of -0.19, 0.66 and 0.53 for 

allyl fragments 1, 2 and 3 respectively. The sum of the fragment spin densities is very 

close to 1, which corresponds to a doublet state, but the broken symmetry solution is 

far from the assumed spin down-spin up-spin up configuration of the unpaired 

electrons. The largest electronic redistribution after the doublet to quartet transition 

occurs on fragment 1, as a spin flip is required to achieve the formal quartet state. This 

is visualized in the analysis with a stabilization of 23.3 kcal/mol for this allyl fragment. 

The high stabilization of the fragment 3 is probably originated from internal spin 

reorganizations, whereas fragment 2 essentially remains unaffected. Thus, inter-

fragment interactions involving this fragment do not vary significantly. Finally, the large 

stabilization of the other two allyl groups is compensated by a destabilitzation of their 

mutual interaction by +25.8 kcal/mol.  

 

4.4. HF vs DFT atomic and diatomic exchange terms.  

Salvador and Mayer11 observed a very good correlation between the KS-DFT and the 

Hartree-Fock exchange energy not only for the diatomic but also for the atomic 

contributions. After including the electron correlation component using BLYP as a KS-

DFT functional the correlation was still apparent. 

After implementing the energy decomposition for other KS-DFT functionals for 

restricted and unrestricted wave functions, we wanted to observe the behaviour of the 

exchange KS-DFT energy in front of the HF exchange energy, calculated both with the 

same KS-DFT wave function. That is, we want to see to which extent the pure KS-DFT 

exchange atomic and diatomic terms obtained from one-electron integrations match the 

HF exact-exchange terms, obtained from the costly two-electron integrations. 

We optimized all the geometries and calculated the wave function for the set of 

molecules at the B3LYP/cc-pVTZ level of theory. Then, the exchange energy 
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contributions for the B88, B3 and HF functionals are calculated using the previously 

calculated B3LYP KS orbitals. 

The KS-DFT and HF atomic and diatomic exchange components are compared by 

linear correlation. As a result, close to perfect correlations are obtained in all cases. 

The results are compiled in table 3.  

Table 3. Linear regressions of the atomic and diatomic exchange KS-DFT versus HF 
energy contributions. 

 
 Atomic  

 
Diatomic 

 

 
r2 slope offset r2 slope offset 

B3 vs HF 1.0000 0.9946 -0.0290 0.9900 1.0036 0.0302 

B88 vs HF 1.0000 1.0010 -0.0426 0.9845 1.0163 0.0365 

PBE vs HF 1.0000 0.9961 -0.0433 0.9844 1.0075 0.0410 

 

It was known from ref 11 that the atomic exchange energy from the hydrogen 

contributions affect negatively to the correlations due to the lack of core electrons. 

However, the authors used a different 3D-space atomic definition in their analysis that 

could not accommodate the large polarization of the H atoms in the molecules. In our 

results using the improved TFVC atomic definition, the atomic exchange energy terms 

are included for the hydrogens and the correlation works properly. Moreover, we can 

observe in table 3 that all the correlations have a slope close to 1 and a very small 

offset. 

For this set of molecules there is a perfect correlation between the pure KS-DFT 

exchange energies, which require one-electron integrals to be calculated, and the 

hybrid KS-DFT and HF exchange energies, which require two-electron integrals. Thus, 

these promising results could give to us the opportunity to calculate the exchange 

energy contributions for hybrid KS-DFT functionals at the cost of a one-electron 

numerical integral.  

The set of molecules studied contains only simple closed-shell molecules. The atomic 

and diatomic terms for four open-shell polyradical molecules are added to the B3 vs HF 

exchange linear correlation analysis, achieving a very good integration of them into the 

existing correlations. 

It must be taken into account that our tests do not include organometallic molecules 

which are more complicated due to the quantity of electrons and the d orbitals of the 
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transition metals. Further studies involving this type of molecules should be included 

into the set to check if the tendencies observed remain. 

4.5. HF vs DFT total atomic and diatomic contributions 

Finally, as a last study, the atomic and diatomic total energy components were 

calculated for the set of molecules at different levels of theory, namely HF, PBEPBE 

and B3LYP methods. The optimized geometries and molecular orbitals are used for 

each case. The goal is to analyze to which extent the overall atomic (deformation) and 

diatomic terms behave for different levels of theory. The results obtained for the 

relevant diatomic are compiled on table 4. 

All diatomic energies are negative except for the strong interatomic repulsion between 

the B atoms in diborane. The results are as expected for all methods. The different 

bond multiplicities in the hydrocarbon series are perfectly described. The diatomic 

energies for the single, aromatic, double and triple bond are 0.24, 0.40, 0.48 and 0.70 

a.u. respectively. Linear correlations are carried out to better analyze the trends of the 

results for the different methods. There is also a very good correlation between the KS-

DFT and HF total diatomic energies. The R2 of all linear regressions are higher than 

0.96. In figure 7 we represent the worst case, which corresponds to the PBEPBE 

versus HF total diatomic energy contributions. 

 

Figure 7. Representation of the PBEPBE (y-axis) in front of the HF (x-axis) total diatomic 
energy terms with the corresponding linear regression and its equation. 

 

y = 0.8035x - 0.0154 
R² = 0.9665 

-03 

-02 

-02 

-01 

-01 

00 

01 

01 

02 

-3.200 -2.600 -2.00 -1.400 -.800 -.200 .400 1.00 1.600 

E
to

t 
P

B
E

P
B

E
  

Etot HF  



Treball de Fi de Grau Martí Gimferrer Andrés 27/05/2016 

25 
 

There is only one data point deviating significantly from the correlation, corresponding 

to the H2S molecule. This case will be discussed later in more detail.  

 

Table 4. Total diatomic energies (in a.u.) for the set of molecules calculated with HF, 

PBEPBE and B3LYP.  

Bond 
Involved 

Molecule EHF EPBEPBE EB3LYP 

C-C C2H2 -0.705 -0.711 -0.728 

C-H C2H2 -0.262 -0.228 -0.241 

C-C C2H4 -0.483 -0.453 -0.467 

C-H C2H4 -0.282 -0.234 -0.250 

C-C C6H6 -0.409 -0.338 -0.360 

C-H C6H6 -0.283 -0.234 -0.252 

C-C C2H6 -0.246 -0.229 -0.231 

C-H C2H6 -0.295 -0.235 -0.254 

B-B B2H6 1.379 1.123 1.185 

B-Hb B2H6 -0.885 -0.716 -0.757 

B-H B2H6 -0.843 -0.653 -0.698 

C-O CO -1.740 -1.562 -1.608 

C-O CO2 -2.020 -1.651 -1.731 

S-O SO -2.148 -1.848 -1.912 

S-O SO2 -2.674 -2.209 -2.328 

S-O SO3 -2.967 -2.393 -2.530 

H-H H2 -0.228 -0.223 -0.233 

N-N N2 -0.814 -0.898 -0.900 

N-O NO+ -1.851 -1.464 -1.556 

C-N CN- -1.778 -1.547 -1.609 

N-O NO -1.641 -1.112 -1.197 

Li-F LiF -0.327 -0.291 -0.301 

F-F F2 -0.410 -0.453 -0.445 

Li-H LiH -0.246 -0.224 -0.233 

Be-H BeH2 -0.514 -0.456 -0.473 

B-H BH3 -0.854 -0.668 -0.714 

C-H CH4 -0.288 -0.233 -0.251 

N-H NH3 -0.412 -0.350 -0.364 

O-H H2O -0.597 -0.478 -0.505 

H-F HF -0.506 -0.438 -0.453 

Na-H NaH -0.201 -0.182 -0.190 

Mg-H MgH2 -0.391 -0.337 -0.353 

Al-H AlH3 -0.642 -0.553 -0.575 

Si-H SiH4 -0.942 -0.796 -0.835 

P-H PH3 -1.122 -0.842 -0.914 

S-H H2S -1.095 -0.304 -0.344 

H-Cl HCl -0.252 -0.237 -0.242 
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For the atomic energy terms we decided to represent the atomic deformation energies 

to compare more effectively the different methods. Moreover, we separated the atomic 

contributions involving H atoms because in this case they could also affect negatively 

to the correlations. The atomic deformation energies for the non-hydrogen atoms are 

compiled in table 5. 

Table 5. Compilation of the non-hydrogen atomic deformation energy contributions (in 
a.u.) for the set of molecules calculated with HF, PBEPBE and B3LYP using their 
corresponding wave function. 

Atom Molec. EHF EPBE EB3LYP Atom Molec. EHF EPBE EB3LYP 

C C2H2 0.317 0.219 0.249 N CN- 0.921 0.618 0.662 

C C2H4 0.371 0.212 0.258 N NO 0.939 0.572 0.639 

C C6H6 0.388 0.193 0.248 O NO 0.626 0.275 0.321 

C C2H6 0.432 0.216 0.276 Li LiF 0.190 0.181 0.183 

B B2H6 1.403 1.100 1.192 F LiF -0.006 -0.111 -0.100 

C CO 0.852 0.747 0.782 F F-F 0.224 0.168 0.179 

O CO 0.617 0.398 0.431 Li LiH 0.154 0.146 0.149 

C CO2 2.163 1.775 1.883 Be BeH2 0.560 0.526 0.546 

O CO2 0.556 0.316 0.351 B BH3 1.312 1.041 1.123 

S SO 1.364 1.177 1.229 C CH4 0.408 0.201 0.263 

O SO 0.795 0.326 0.276 N NH3 0.406 0.177 0.210 

S SO2 3.207 2.723 2.882 O H2O 0.331 0.098 0.130 

O SO2 0.740 0.468 0.510 F HF 0.047 -0.057 -0.046 

S SO3 5.273 4.401 4.666 Na NaH 0.138 0.126 0.130 

O SO3 0.674 0.395 0.437 Mg MgH2 0.489 0.462 0.484 

N N2 0.316 0.257 0.270 Al AlH3 1.111 1.008 1.047 

N NO+ 1.437 1.135 1.217 Si SiH4 2.095 1.827 1.922 

O NO+ 0.669 0.419 0.465 P PH3 1.905 1.443 1.575 

C CN- 0.621 0.499 0.534 S H2S 1.232 0.231 0.297 
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In this case all atomic deformation energies are positive except for the F atom in LiF. 

This is due to the large polarization of the atoms in this ionic molecule. That is, the 

atomic deformation energies also take into account charge-transfer contributions that 

can make the deformation energies to become negative for electronegative atoms.  

Linear regressions between both KS-DFT versus HF for the non-hydrogen atomic 

deformation energy terms are performed obtaining in both cases R2 higher than 0.97. 

Thus, we can affirm that the atomic deformation energy contributions for a HF 

calculation using a HF wave function correlates perfectly with the same KS-DFT 

contributions calculated using a KS-DFT wave function. 

The atomic deformation energy contributions involving hydrogen atoms are compiled in 

table 6. The deformation energies are again positive in almost all cases, except when 

the H atom acts more clearly as a hydride (NaH and LiH).  

 

Table 6. Compilation of the hydrogen atomic deformation energy (in a.u.) contributions 
for the set of molecules calculated with HF, PBEPBE and B3LYP using their 
corresponding wave function. 

Molec. EHF EPBEPBE EB3LYP Molec. EHF EPBEPBE EB3LYP 

C2H2 0.072 0.041 0.044 NH3 0.123 0.095 0.098 

C2H4 0.066 0.026 0.030 H2O 0.231 0.187 0.196 

C6H6 0.065 0.023 0.027 HF 0.301 0.268 0.277 

C2H6 0.068 0.021 0.026 NaH 0.033 -0.008 -0.010 

B2H6 0.345 0.195 0.218 MgH2 0.049 0.000 -0.001 

B2H6 0.182 0.073 0.086 AlH3 0.088 0.028 0.030 

LiH 0.038 -0.008 -0.010 SiH4 0.150 0.070 0.076 

BeH2 0.084 0.031 0.032 PH3 0.258 0.132 0.149 

BH3 0.180 0.082 0.092 H2S 0.318 0.052 0.058 

CH4 0.067 0.023 0.027 HCl 0.109 0.086 0.085 

 

Again we observe a large deviation between the HF and KS-DFT values for the 

hydrogen atoms on H2S. The problem with the H2S molecule comes from the atomic 

partitioning of the 3D-space. In this particular case, the shape of the electron density in 

the interatomic H-S region is very different comparing the KS-DFT and HF results. In 
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HF the shape of the density is very flat, producing a quite different atomic domain for 

hydrogen atom. This effect can be seen already in the partial atomic charges. With KS-

DFT methods the partial charge on the S atom is ca. +0.42, whereas for HF it 

increases up to +1.52, indicating a much larger polarization. These changes in the 

density are then translated into the energy decomposition analysis, providing quite 

different results for both methods. Excluding the H2S molecule in the analysis, linear 

regressions between both KS-DFT methods vs HF for only the hydrogen deformation 

energies yield R2 values higher than 0.86 in both cases,  
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5. CONCLUSIONS AND PERSPECTIVES 

In this work we have improved the numerical integration method implemented originally 

in the APOST3D program by carrying a second rotation of the integration grid in the 

one-center two-electron integrals. It was also found that the rotation of two angles 

provides better results that the rotation of only one for a model system. The results 

obtained for actual molecules were very well simulated with our model system and we 

found a tendency from the combination of angles which minimizes the integration error. 

Wider studies are required including more complex molecules containing transition 

metals but the results obtained are promising. 

We have implemented into APOST3D the unrestricted KS-DFT energy decomposition 

for the pure DFT functionals HFS, PBEPBE and BLYP and for the hybrid functionals 

B3LYP and PBE0. We have also implemented the restricted version of the scheme for 

PBEPBE and PBE0 functionals. The new capabilities of the code will allow us to study 

transition metal complexes in the future. 

We have observed that the BODEN concept for the KS-DFT energy decomposition 

works perfectly for the closed- and open-shell methods implemented. A very good 

correlation is found comparing, for a fixed set of molecular orbitals, the KS-DFT and the 

HF exchange energy atomic and diatomic contributions for a relatively large set of 

molecules. These findings open the possibility of replacing the costly two-electron HF-

type exchange integrations by the one-electron pure DFT formulation.  

On the other hand, both the KS-DFT and HF energy decomposition schemes provide 

atomic deformation and diatomic energy components that also correlate very well with 

each other. 
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