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1. Introduction

Homoclinic and heteroclinic connections of hyperbolic invariant sets play an important

role in the study of dynamical systems from a global point of view. The field of

astrodynamics provides a nice example of their application. In the dynamical models

used for preliminary mission design,‡ homoclinic and heteroclinic phenomena, together

with their associated chaotic behaviour, arise in situations in which the gravitational

pulls from different bodies on a spacecraft compete in equality of conditions (contrary

e.g. to a planetary flyby, in which case a two body approximation is sufficient for

mission design purposes). This is the case of libration point (LP) missions, for which

dynamical systems techniques were introduced relatively recently and are now widely

spread [7, 8, 10, 11, 14, 22]. Genesis [14] has been the first LP mission to make use

of a heteroclinic connection between objects related to the L1 and L2 points of the

Sun–Earth system. More recently, Artemis [22] has also used heteroclinic connections

between the L1 and L2 dynamics but in the Earth–Moon system, with a more complex

final trajectory. The trajectories of these two missions are shown in Figure 1. The

usability of homoclinic and heteroclinic phenomena for the design of LP missions is

limited to the thoroughness of current numerical studies, as well as to the numerical

methodology available to perform them in a manner as systematic as possible. The

main motivation of this paper is to contribute to these two aspects.

Subfamilies (in terms of the energy ranges covered) of the families of heteroclinic

connections continued in this paper have been addressed in previous works, both

analytically and numerically. Having as main motivation the explanation of resonance

transitions observed in the comet Oterma, in [18] the authors numerically compute an

heteroclinic connection between Lyapunov orbits around L1 and L2 which, combined

with previous analytical results on homoclinic connections [19, 20], allow them to both

explain comet Oterma’s behaviour and construct trajectories with prescribed itineraries

via symbolic dynamics. Other works [4, 9, 12] compute heteroclinic connections through

the use of semianalytical techniques (asymptotic expansions with coefficients computed

in finite-precision arithmetic). In these works, individual connections are typically

found by matching the corresponding manifolds on a Poincaré section, and families

are described by individually repeating this matching process for several values of the

continuation parameter. There are also works based on rigorous numerics [24, 25] which

provide proofs on the existence of some connections between periodic orbits.

This paper naturally extends the methodology introduced in [3] to the case

of heteroclinic connections of periodic orbits (p.o.). As in that reference, the

numerical method proposed for the continuation of families of heteroclinic connections

of p.o. consists of solving a nonlinear system of equations whose solution is a curve

‡ This is the phase in which several candidate trajectories are analysed in an approximate model, in

order to choose the one that will be numerically refined to a high–fidelity model and actually used.

The approximate model should be accurate enough for the considered trajectories to preserve their

properties when refined to the high–fidelity model.
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Figure 1. Left: Projection in the rotating (x, y) plane of the trajectories of two

missions: the Genesis mission in the Sun-Earth system (left) and the Artemis spacecraft

in the Earth-Moon system (right). (Downloaded from NASA’s official web pages)

that corresponds to the family. This system includes all the necessary ingredients to

compute such a family: the equations for two different p.o., the eigenvalue/eigenvector

equations for the linear approximations of the corresponding invariant manifolds of the

p.o., and matching conditions for the manifolds in a section. The family of solutions

of the system of equations is numerically continued by a standard predictor-corrector

method (see, e.g. [2]). Both the system of equations and its differential with respect to

the unknowns are evaluated by direct numerical integration of the differential equations,

together with their first and second variational equations. The instability due to the

hyperbolic character of all the p.o. considered is coped with a multiple shooting strategy.

Compared to previous methodology, the procedure presented here is intended to

address two drawbacks. On the one hand, to overcome the convergence restrictions of

the asymptotic expansions used in semianalytical techniques. On the other hand, to

automate the process of computation of families of heteroclinic connections (it is not

necessary to repeat the matching computations to get an heteroclinic connection at each

energy level). It must be noted that some previous works (e.g. [9, 12, 6]) have been able

to obtain heteroclinic connections of tori through the use of semianalytical techniques.

The numerical procedure presented here has a natural extension to connections of tori

(or even p.o. and tori), but its implementation has not been attempted yet and is work

in progress.

Although the methodology presented here is valid for any Hamiltonian system,

all the computations presented in this paper correspond to the Circular Restricted

Three-Body Problem (CRTBP), and for simplicity we have restricted ourselves to the

continuation of heteroclinic orbits between planar Lyapunov p.o. around the collinear

equilibrium points Li, i = 1, 2, 3. A first illustration of the procedure is given by

extending some of the computations in [4], that correspond to heteroclinic connections

between p.o. around the L1,2 points of the Earth–Moon system. As a second application,

the family of the heteroclinic connections found in [18] is continued, providing a range

of energies for which the transition from the exterior 2:3 resonance to the interior 3:2

resonance in the Sun–Jupiter system is possible. The study is done systematically, and
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provides other resonances that can also be connected through the family of heteroclinic

connections mentioned. As a final application, a value of the CRTBP mass parameter is

found for which there exists two families of heteroclinic connections between Lyapunov

orbits around L2 and L3, and these families are followed.

The paper is organised as follows: in Section 2 we describe the numerical method

for the continuation of heteroclinic orbits between p.o. in the general setting of a given

Hamiltonian of n degrees of freedom. In Section 3 we briefly summarise the main features

of the CRTBP. Section 4 presents the numerical explorations previously described. The

paper is ended with some concluding remarks.

2. Continuation of families of heteroclinic connections between periodic

orbits. Numerical methodology

Consider a Hamiltonian system with Hamiltonian function H(x) and equations

ẋ = ZH(x),

for x ∈ R2n, and denote by φt(x) the time–t flow associated to the equations. Denote

also by h the constant value of the Hamiltonian H along a solution, which is known as

the energy of the orbit.

An heteroclinic connection between two invariant objects X, Y is a trajectory that

tends backward in time to X and forward in time to Y , so it lies in W u(X) ∩W s(Y ),

where W u(X) and W s(Y ) stand for the unstable and stable manifolds of X and Y ,

respectively. Consider a p.o. X with hyperbolic character, and assume that we have

a parametrisation of its 2D unstable and stable manifolds that can be numerically

evaluated. We denote these parameterisations as ψu(θ, ξ) and ψs(θ, ξ), where θ is an

angle and ξ ∈ R (we give actual formulae later in this Section). We also assume that

ψu/s(θ, ξ) describes the p.o. for ξ = 0, and that the two branches of the manifold are

given by ξ > 0 and ξ < 0.

Let Σ = {g(x) = 0} be a hypersurface known to be intersected by the invariant

manifolds, where g : R2n → R is a function defined on a neighbourhood of the

intersection. Given a point x, we consider two associated Poincaré maps: P+
Σ , which

propagates the flow (starting at x) forward in time until some intersection with Σ (more

than one cut may be necessary), and P−
Σ , which does the same backward in time. Given

two hyperbolic p.o. X1 and X2, with ψu
1 and ψs

2 the corresponding parametrisations

of W u(X1) and W s(X2), we can choose a value ξ0, with |ξ0| small, and consider the

function

F (θu, θs) = P+
Σ (ψu

1 (θ
u, ξ0))− P−

Σ (ψs
2(θ

s, ξ0)). (1)

The specific values of (θu, θs) for which F (θu, θs) is zero correspond to a heteroclinic

connection. In particular, the points ψu
1 (θ

u, ξ0) (which is close to the p.o.X1 inW
u(X1)),

ψs
2(θ

s, ξ0) (also close to the p.o. X2 in W s(X2)), and P+(ψu
1 (θ

u, ξ0)) = P−(ψs
2(θ

s, ξ0))

(which is in Σ), belong to the heteroclinic orbit.



Numerical continuation of heteroclinic connections 5

The function F and its differential can be numerically evaluated by numerical

integration of the system of ODE of the problem and its first variational equations,

so Newton’s method can be used to find roots of F . In order to obtain initial conditions

for the iteration process, it is convenient to display the intersection of each manifold with

the section Σ, {P+
Σ (ψu

1 (θ, ξ0))}θ∈[0,2π) and {P−
Σ (ψs

2(θ, ξ0))}θ∈[0,2π). Although the section

Σ should be defined locally, in practice, it is more convenient to work with global sections

defined by an implicit equation {g(x) = 0} (actually, in all the computations we have

used just hyperplanes). Since the manifolds are 2D tubes, each intersection is a 1D set.

Each common point of these two sets belongs to a heteroclinic connection, and therefore

corresponds to a zero of F .

For the evaluation of ψu
1 , ψ

s
2, we use the linear approximation of an invariant

manifold of a p.o. X. Assume that x0 is an initial condition of a T–p.o., so that

φT (x0) = x0. Then the p.o. can be parametrised by an angle as

ϕ(θ) = φ θ
2π

T (x0),

for θ ∈ [0, 2π]. Assume that Λ > 0 is an eigenvalue of the monodromy matrix DφT (x0)

(Λ > 1 for the unstable manifold, Λ < 1 for the stable one), and v0 ∈ R2n is a

corresponding eigenvector. Define

v(θ) = Λ−θ/2πDφ θ
2π

T (x0)v0,

for θ ∈ [0, 2π], which is the eigenvector associated to the point ϕ(θ). Then

ψ̄(θ, ξ) = ϕ(θ) + ξv(θ).

for θ ∈ [0, 2π] and ξ ∈ R, gives the linear approximation of the invariant manifold, which

needs |ξ| to be small enough in order to be accurate. A first–order Taylor expansion

shows that, for bounded |t|,
φt(ψ̄(θ, ξ)) = ψ̄(θ + tω, etλξ) +O(ξ2)

for ω = 2π/T , λ = ω ln Λ/(2π). In all the computations done throughout this paper we

have taken |ξ| of the order of 10−6.

For the continuation of families of heteroclinic connections, we can consider the

energy h as a continuation parameter. This means that, for each value of the

energy, we would need to compute the corresponding two p.o., their eigenvalues and

eigenvectors, and a new initial seed in order to solve the equations F (θu, θs) = 0, with

F defined as in (1). We would like to prevent this by performing continuation on

Equation (1) through a standard predictor–corrector method (see e.g. [2]), in order to

obtain larger continuation steps and not to worry about turning points. The problem

with Equation (1) is that the evaluation of ψu
1 , ψ

s
2 depends on the eigenvalues and

eigenvectors of the monodromy matrices of X1, X2. In order to perform continuation,

they would need to be differentiated with respect to the initial conditions of X1, X2.

Instead, it is more convenient to add the eigenvalue and eigenvector conditions to the

continuation equations, plus normalisation conditions in order to have local uniqueness

of the eigenvectors. In this way, we can lay out a whole (nonlinear) system whose

solution gives both the LPO and the heteroclinic connection.



Numerical continuation of heteroclinic connections 6

In order to write this system of equations explicitly, let h ∈ R be an energy level,

x1, x2 ∈ R2n initial conditions of the LPO X1 and X2 of periods T1, T2 respectively,

Λu ∈ SpecDφT1(x1), with Λu > 1, Λs ∈ SpecDφT2(x2), with 0 < Λs < 1, and vu, vs the

corresponding eigenvectors. Consider also θu, θs ∈ [0, 2π] starting phases on the linear

approximation of the unstable and stable manifolds, respectively. Let T u, T s ∈ R be the

times to intersect the section Σ from the starting points ψu
1 (θ

u, ξ), ψs
2(θ

s, ξ) on the (linear

approximation of the) unstable and stable manifolds, respectively (for a given ξ). The

goal of the introduction of T u, T s is to avoid the need to take into account the number

of cuts with the sections, which is inconvenient but necessary if we allow Poincaré maps

to appear explicitly in the continuation equations, as happens in Equation (1).

We also consider p : R2n −→ R a function defining a Poincaré section for the p.o.,

and g : R2n −→ R a function defining the Poincaré section to match the manifolds, this

is, Σ = {g(x) = 0}. The system of equations used for the continuation of heteroclinic

connections between p.o. is

H(x1)− h = 0,

p(x1) = 0,

φT1(x1)− x1 = 0,

H(x2)− h = 0,

p(x2) = 0,

φT2(x2)− x2 = 0,

‖vu‖2 − 1 = 0,

DφT1(x1)v
u − Λuvu = 0,

‖vs‖2 − 1 = 0,

DφT2(x2)v
s − Λsvs = 0,

g
(
φTu(ψu

1 (θ
u, ξ0))

)
= 0,

g
(
φT s(ψs

2(θ
s, ξ0))

)
= 0,

φTu(ψu
1 (θ

u, ξ0))− φT s(ψs
2(θ

s, ξ0)) = 0,

(2)

where ξ0 is kept fixed to a small value (usually 10−6). The unknowns are

h, x1, x2, T1, T2,Λ
u, vu,Λs, vs, θu, T u, θs, T s. (3)

Here T1, T2, θ
u, T u > 0 and θs, T s < 0.

In the computations of Section 4 we often deal with highly unstable p.o. (Λu ≫
1 ≫ Λs > 0), and also the integration times T u, T s become large. Not only to maintain

high precision, but also to guarantee convergence when solving the system (2), is it

necessary to use multiple shooting. We have implemented it both in the p.o. and the

connections. More precisely, we have added new points as unknowns, x11, . . . , x
1
m1−1

along the p.o. X1, x
2
1, . . . , x

2
m2−1 along the p.o. X2, z

u
1 , . . . , z

u
mu−1 along the unstable

branch, and zs1, . . . , z
s
ms−1 along the stable one. The corresponding matching equations
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have been added to system (2), namely

φT 1
i
(x1i )− x1i+1 = 0, i = 0, . . . ,m1 − 2, φT 1

m1−1
(x1m1−1)− x10 = 0,

φT 2
i
(x2i )− x2i+1 = 0, i = 0, . . . ,m2 − 2, φT 2

m2−1
(x2m2−1)− x20 = 0,

φTu
i
(zui )− zui+1 = 0, i = 0, . . . ,mu − 2, g(φTu

mu−1
(zumu−1)) = 0,

φT s
i
(zsi )− zsi+1 = 0, i = 0, . . . ,ms − 2, g(φT s

ms−1
(zsms−1)) = 0,

with x10 = x1, x
2
0 = x2, z

u
0 = ψu

1 (θ
u, ξ0) and zs0 = ψs

2(θ
s, ξ0). In the continuations of

Section 4 it often happens that convergence becomes poor. Except in the cases that

some trajectory is approaching collision, good convergence is recovered by increasing the

number of intermediate points m1,m2,m
u,ms, and recomputing the integration times

{T 1
i }i, {T 2

i }i, {T u
i }i, {T s

i }i.
We solve system (2) through a standard Newton iteration. Note that, both in

the single and multiple shooting cases, the system obtained has more equations than

unknown variables. This is due in part to some redundancy in the equations of

system (2), that we have kept because it does not add a remarkable computational

overhead and provides a certain robustness with respect to convergence. The different

number of equations and unknowns is dealt with by implementing minimum–norm,

least–squares Newton corrections, using QR decomposition with column pivoting to

solve the corresponding linear systems. More details on this can be found in [13]. In

order to differentiate (2) with respect to all the unknowns, we numerically integrate

the system of the CRTBP ordinary differential equations together with their first and

second variationals.§ For the numerical integrations, a variable step Runge–Kutta–

Felbergh method of orders 7 and 8 has been used with a relative tolerance of 10−14. The

absolute tolerances used to stop Newton iterates in the solution of system (2), either in

its simple or multiple shooting version, have ranged from 10−10 to 10−12.

3. The Circular Restricted Three–Body Problem

The CRTBP describes the motion of a particle of infinitesimal mass, moving under the

gravitational influence of two massive bodies called primaries, that describe circular

orbits around their common centre of mass. We will consider the planar problem, in

which the motion of the third body is contained in the plane of motion of the primaries.

Taking a (synodic) coordinate system of reference that rotates with the primaries, with

the origin located at their centre of mass, and normalised units, we can assume that the

primaries have masses 1 − µ and µ, µ ∈ (0, 1/2], their positions are fixed at (µ, 0) and

(µ− 1, 0), respectively, and the period of their motions is 2π. By introducing momenta

px = ẋ − y and py = ẏ + x, the equations of motion of the CRTBP transform into the

§ An alternative is to use a Taylor integration package for ODE that automatically computes them

[16, 1].
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following Hamiltonian system

ẋ = px + y, ṗx = py −
(1− µ)(x− µ)

r31
− µ(x− µ+ 1)

r32
,

ẏ = py − x, ṗy = −px − y
(1− µ

r31
+
µ

r32

)
,

(4)

where r1 =
√
(x− µ)2 + y2 and r2 =

√
(x− µ+ 1)2 + y2, and with associated

Hamiltonian function

H(x, y, px, py) =
1

2
(p2x + p2y)− xpy + ypx −

1− µ

r1
− µ

r2
.

Equations (4) satisfy the symmetry

(t, x, y, px, py) −→ (−t, x,−y,−px, py). (5)

This implies that, for each solution of Equations (4), if it is not invariant by

transformation (5), then this transformation will produce another one, which is seen

as symmetric with respect to y = 0 in configuration space.

The CRTBP has five equilibrium points: the collinear points, L1, L2 and L3, located

on the line containing the primaries, and the equilateral ones, L4 and L5, both forming

an equilateral triangle with the two primaries (see Figure 2). Throughout the paper, we

will denote by hi the value of the energy at the equilibrium point Li, i = 1, . . . , 5.

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

EM

L1L2 L3

L4

L5

Figure 2. Equilibrium points of the CRTBP for the Earth-Moon problem

The computations in this paper will be related to the dynamics of the CRTBP

around the collinear equilibrium points L1, L2 and L3. We will follow the astrodynamics

convention in naming the collinear libration points. That is, if xLi
denotes the x

coordinate of the Li point, we have xL2 ≤ µ − 1 ≤ xL1 ≤ µ ≤ xL3 . Namely, L1 is

between both primaries, L2 is on the left hand side of the small one, and L3 is on the

right hand side of the large one. See e.g. [23] for more details.

The eigenvalues associated with the collinear equilibrium points are {±iω,±λ}, so
they are centre×saddle points and Lyapunov’s centre theorem (see e.g. [21]) applies.

Thus, a one–parametric family of p.o. is born from each collinear equilibrium point,

spanning a 2D manifold tangent to real and imaginary parts of the eigenvectors of

eigenvalues ±iω at the equilibrium point. These families are known as the Lyapunov
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families of p.o. (LPO). Close to the equilibrium point, they can be parametrised by the

energy h.

The LPO families inherit hyperbolicity from the collinear libration points, at

least for values of h close to hi. For these energies, LPO have unstable and stable

manifolds. Given two LPO born from different libration points but with the same

energy, their unstable and stable manifolds can intersect, giving rise to heteroclinic

connections between them. As energy varies, families of heteroclinic orbits are obtained.

The next Section presents several numerical continuations of such families, using the

methodology introduced in the previous one, according to the applications mentioned

in the Introduction.

4. Results

In this Section we present the results obtained in the planar CRTBP using the

methodology explained previously, considering different scenarios. In performing the

continuations of the different families of heteroclinic connections of LPO, the number of

multiple shooting points has been increased as needed, except when some trajectory has

approached collision. In these cases, we have stopped the continuations. The families

could be further continued by regularising the equations of motion (which we have not

done).

In looking for families of heteroclinic connections of LPO corresponding to different

libration points, we have always followed a similar pattern. More precisely, the steps

followed to find families of heteroclinic connections between LPO around Ll and LPO

around Lm are:

(i) For a given µ, consider a value of the energy h > max(hl, hm), so there exist planar

LPO around both Ll and Lm.

(ii) Consider a LPO around Ll, Xl, and another around Lm, Xm, of that energy level.

For the orbit around Ll consider the unstable manifold, W u(Xl), and for the one

around Lm the stable manifold, W s(Xm). In each case, take the branch going

towards the other libration point (see, for example, Figure 3 left).

(iii) Consider the j-th intersection of the unstable branch and the k-th intersection of

the stable one with a fixed section Σ (it will always be a hyperplane), for fixed

j, k. We denote them as W u(Xl) ∩ Σj and W s(Xm) ∩ Σk. As the branches of the

manifolds are 2D, the intersection with a section is topologically an S1 curve except

if the manifolds have encountered a collision with the small primary or there exists

a heteroclinic connection with less intersections with Σ.

(iv) Look for the common points of W u(Xl) ∩ Σj and W s(Xm) ∩ Σk. There will be as

many families of heteroclinic connections as number of points found.

(v) Apply the continuation procedure (forward and backward in h) to follow each

family.
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Given a heteroclinic connection from a LPO around Ll to a LPO around Lm, the

symmetry of Equation (5) will produce a heteroclinic connection in the reverse direction

(from a LPO around Lm to a LPO around Ll).

In the following subsections we describe several families that have been computed

for different values of the mass parameter in the planar CRTBP. In each case, we specify

the section Σ used to match the invariant manifolds and we include some plots to

illustrate the steps described above. The section has always been Σ = {x = c} for a

fixed constant c. The curves W u/s ∩ Σj/k are represented in either the (y, py) or the

(px, py) projection of the section Σ. For each common point of W u/s ∩ Σj/k in the

projections that has been considered as a connection, the remaining variables have been

checked to coincide. We denote by (x
Σ
, . . . , pyΣ) each common point of the curves on

the section belonging to a heteroclinic connection. In all this Section, Xi will denote a

LPO around Li.

4.1. Heteroclinic connections in the Earth-Moon system

As a first example, we extend some of the families of heteroclinic connections of LPO

computed in [4]. We consider the CRTBP for the Earth-Moon problem with mass

parameter µ
EM

= 0.01215 0585. As h1 < h2, for values of the energy h > h2 there exist

LPO around L1 and L2. Thus, given two planar Lyapunov orbits, X1, X2, one around

L1 and one around L2, at the same energy level, we follow a branch of W u(X1) and a

branch of W s(X2) up to their first intersection with the section Σ = {x = µ
EM

− 1},
see Figure 3 left. We plot the curves obtained in the (y, py) plane and look for common

points (see Figure 3 right). We find two such points, that correspond to two families of

heteroclinic connections with no loops around the Moon.

-0.1

-0.05

 0

 0.05

 0.1

-1.2 -1.1 -1 -0.9 -0.8

y

x

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  0.02  0.04  0.06  0.08  0.1

p y

y

-1.15

-1.05

-0.95

-0.85

 0.025  0.05  0.075  0.1

Figure 3. Left: (x, y) projection of the branches of Wu(X1) (red) and W s(X2) (blue)

up to the first crossing with Σ for the Earth-Moon CRTBP, for a fixed energy. Right:

(y, py) projection of the curves Wu(X1) ∩Σ1 and W s(X2) ∩Σ1. The branch Wu(X1)

has orbits that collide with the small primary, so the curve Wu(X1) ∩ Σ1 is open and

only part of it is shown in the plot.

These two families are considered as one family in [4], labelled as He01,2, for values
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of the energy up to approximately h ≃ −1.5685. Without regularisation, we are able to

follow the same family up to values of the energy of −1.512772726. See Figure 4, left,

where the characteristic curves of the two families are shown in the (h, y
Σ
) plane.
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h
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 40

-1.57 -1.55 -1.53 -1.51

d m
×1
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Figure 4. Characteristic curves of two families of heteroclinic connections of the

Earth-Moon CRTBP. Left: the curves in the (h, yΣ) plane. Right: Minimum distance

to the Moon in km of each heteroclinic connection (average distance from the Earth

to the Moon: 384400 km)

We have also computed the minimum distance dm from each heteroclinic connection

to the Moon. Along one of the families, dm decreases from the beginning of the family,

see Figure 4 right. We have stopped the computations when that distance reaches a

value of approximately 0.02 (about 6300 km from the surface of the Moon). In Figure 5,

left, the orbit with the minimum dm computed is shown. Along the other family, the

minimum distance dm increases initially, and after reaching a maximum value of 0.0766

(about 27700 km from the surface of the Moon), it decreases. This is mainly due to the

fact that the width of the Lyapunov orbits involved increases (see Figure 5, right).

In Figure 5, the heteroclinic orbits labelled with letters a, b, and c in Figure 4 are

shown. Some data corresponding to these orbits can be found in Table 1.
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Figure 5. Heteroclinic connections between LPO around L1 and L2 of the CRTBP

for the the Earth-Moon value of the mass parameter. From left to right, the orbits

correspond to the points labelled with letters a, b, c in Figure 4. The red and blue

colours correspond to the trajectory on the unstable and stable manifold respectively.
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h y
Σ

dm
a −1.565229525561280 0.02162260888134571 0.02162260624628988

b −1.548737225565584 0.1516356943492464 0.07661260101642152

c 1.512772725566362 0.07830352581009974 0.03965928526119706

Table 1. Values of energy h, yΣ and dm of the orbits shown in Figure 5

4.2. Homoclinic-heteroclinic connections and resonance transitions in the Sun-Jupiter

system

We consider the Sun-Jupiter CRTBP, with mass parameter µSJ = 0.000953875, and

a range of values of the energy h > h2, so that the Hill region (the region in the

configuration (x, y) plane where the motion is allowed) has just one component, but

three different zones (see Figure 6): an interior region around the Sun, an exterior

region surrounding both primaries up to infinity, and a two-bottleneck region around

Jupiter. The interior and exterior regions are connected via the region around Jupiter

where the Lyapunov orbits of that specific energy level exist. The transitions between

these three regions are governed by the invariant manifolds structures associated with

the p.o. around L1 and L2, as well as the existence of heteroclinic and homoclinic

connections, and transit and non-transit orbits. Transit and non–transit orbits were

introduced in [5], and can be compactly defined as follows: a trajectory approaching a

LPO, either forward or backward in time from one of the three regions described above,

is considered transit if it traverses the bottleneck corresponding to the LPO and goes

to the next region. On the contrary, it is considered non–transit if it bounces back to

the region it comes from. Transit orbits are known to lie in the interior of the invariant

manifold tubes of LPO, that separate them from non–transit orbits [5, 20, 18]. In

addition to this, we will denote by inner orbits (or trajectories) those that stay around

the Sun in the interior of the Hill’s region, and outer orbits those that surround the Sun

and Jupiter in the exterior region.

In [18], the authors show how homoclinic orbits of LPO around L1 and L2, together

with a heteroclinic connection between them for the same value of the energy, can be

combined in a dynamical chain according to a sequence of regions to visit (exterior,

Jupiter, interior), called itinerary. This dynamical chain is the backbone of the collection

of orbits –denoted as a dynamical channel– that follow the same itinerary. For the

specific value of the energy h = −1.51452351743876 (Jacobi constant CJ = 3.03), they

actually compute the corresponding homoclinic and heteroclinic connections and an

orbit that makes the transition from the exterior region to interior region, and vice-

versa, through the Jupiter region, in such a way that it follows a 2:3 resonance with

Jupiter in the exterior region, and a 3:2 resonance in the interior one. This orbit is

provided as a dynamical explanation of the resonance transitions followed by comet

Oterma.

Our goal in this Section is to follow families of heteroclinic connections between
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Figure 6. Projection in the (x, y) plane of some branches of the invariant manifolds

of LPO around L1 and L2 of the Sun-Jupiter CRTBP, for h = −1.5127313471774606.

The forbidden region for motion is also represented (in black). Left: Inner branches of

Wu/s(X1) and outer branches ofWu/s(X2). Right: Detail of the region around Jupiter,

a branch of Wu(X1) and a branch of W s(X2). Orbits in the unstable manifolds are

plotted in red, and orbits the stable ones in blue.

LPO around L1,2 and families of homoclinic connections of LPO around L1,2, in order to

find the ranges of energy in which they exist simultaneously, making dynamical chains

possible. For each type of connection, we will follow several families, that provide

several possibilities for a dynamical chain corresponding to a given itinerary. In the

case of homoclinic connections, different families will be found to correspond to different

resonances.

The different resonances will be identified in terms of two–body dynamics. A

Keplerian orbit around Jupiter (a solution of the two–body problem), is said to be

in a p:q resonance when its mean motion is p/q, where p is the number of revolutions of

the massless particle around the Sun, and q the number of revolutions of Jupiter (see,

e.g. [23]). Thanks to the use of normalised units, in the inertial frame the mean motion

resonance of the orbit with respect to Jupiter is a−3/2, where a is the semimajor axis

computed as a two–body orbital element. In terms of synodic coordinates, a can be

written as

a−1 = 2/r − v2,

being r2 = x2 + y2, v2 = px
2 + py

2. For solutions of the two–body problem, a remains

constant. For trajectories of the CRTBP it is not constant, but it will be approximately

constant for trajectories that behave essentially as a two–body solution. This happens

for the inner and outer homoclinic connections providing the dynamical chains studied

in [18]. As a value of reference for each such homoclinic connection, we will compute the

value of a at the point of the intersection of the two manifolds. We will see how a−3/2

varies along a family of homoclinic connections and how it is related to resonances.

In the remaining of this Subsection, we first compute and describe families of

heteroclinic connections between LPO around L1 and L2. After that, we compute and
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describe families of homoclinic connections of LPO around L1 and of LPO around L2.

We relate different families to different resonances according to the previous discussion.

We end this Subsection with a comment on the representation of resonant transit orbits.

Homoclinic connections are computed using the methodology of [3], of which, as

mentioned in the introduction, the methodology of this paper is an extension.

4.2.1. Heteroclinic connections in the Sun-Jupiter system. We start looking for

heteroclinic connections from LPO around L1 to LPO around L2 in the Sun-Jupiter

system. We compute two kinds of heteroclinic orbits: those with no loops around

Jupiter, and those with just one loop around the planet. Concerning the latter, for

example, in Figure 7 left, the invariant manifolds up to the second intersection with

the section Σ = {x = µSJ − 1} are plotted in configuration space, for the value of the

energy h = −1.5180226. In Figure 7 right, the curves W u(X1) ∩ Σ2 and W s(X2) ∩ Σ2,

for the same energy level, are plotted. The two common points of the curves belong

to two families of heteroclinic connections with a loop around Jupiter. We follow these

families using the method of Section 2.

-0.04

-0.02

 0

 0.02

 0.04

-1.08 -1.04 -1 -0.96 -0.92

y

x

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.05 -0.04 -0.03 -0.02 -0.01  0

p y

y

Figure 7. Left: (x, y) projection of the branches of Wu(X1) (red) and W s(X2) (blue)

up to the second crossing with Σ for the Sun-Jupiter CRTBP, and a certain value of

the energy. Right: (y, py) projection of the curves Wu(X1) ∩ Σ2 and W s(X2) ∩ Σ2.

The families are denoted by Hekj , where k denotes the number of loops and

j = 1, 2, . . . is the index used to label each family. In Figure 8 left, the characteristic

curves of the aforementioned families of each kind are shown in the (h, y
Σ
) plane. We

also compute the minimum distance to Jupiter of each orbit, see Figure 8 right. As we

see, two of the families tend quickly to the small primary, so regularisation would be

required in order to further follow the corresponding branches. In both cases (orbits

with no loops, or with one loop around Jupiter) two of the families can be computed

up to values of the energy about -1.507.

In Table 2, some data of the selected orbits marked in Figure 8 is given. These

orbits are shown in Figure 9.
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Figure 8. Left: two families of heteroclinic connections with no loops around Jupiter

(He0j , j = 1, 2), and two families with one loop around Jupiter (He1j , j = 1, 2). Right:

Minimum distance to Jupiter in km (semimajor axis of Jupiter: 7.7834082× 108 km).

h y
Σ

dm
a −1.511880607561459 0.258030744057995× 10−2 0.258030744058029× 10−2

b −1.515156607561478 −0.145692618451761× 10−2 0.271786667180622× 10−3

c −1.507246907557488 −0.046616960243633 0.019477513097560

Table 2. Values of energy h, yΣ and dm for the selected orbits marked in Figure 8.
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Figure 9. Examples of heteroclinic connections between LPO around L1 and L2 for

the Sun-Jupiter value of the mass parameter. The red and blue colours correspond to

the trajectory on the unstable and stable manifold respectively.

4.2.2. Homoclinic connections in the Sun-Jupiter system. In this Section we are

interested in homoclinic connections to LPO around L1 (in the interior region) and

around L2 (in the exterior one), and the behaviour of the keplerian semimajor axis of

these homoclinics.

We start with the inner homoclinics, that is, homoclinic connections of LPO around

L1 that revolve around the Sun. We always use the section Σ = {x = 0} and consider

orbits that revolve once around the Sun, so we look for the first intersection of W u(X1)

and the second intersection of W s(X1) with Σ (see Figure 6 left). In Figure 10, we show

these curves, in the (px, py) plane, for three different values of the energy. The shadowed
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regions correspond to transit orbits forward and backward in time.

-0.4

-0.2

 0

 0.2

 0.4

 0.8  1  1.2  1.4  1.6  1.8

p y

px

-0.17

-0.15

-0.13

 1.21  1.23  1.25  1.27

-0.4

-0.2

 0

 0.2

 0.4

 0.8  1  1.2  1.4  1.6  1.8

p y

px

-0.4

-0.2

 0

 0.2

 0.4

 0.8  1  1.2  1.4  1.6  1.8

p y

px

Figure 10. (px, py) projection of the curves Wu(X1) ∩ Σ1 and W s(X1) ∩
Σ2 for the energy values, from left to right, h = −1.5185311413912728, h =

−1.5125206068732759, h = −1.5063309905638478.

Each intersection point between both curves belongs to a homoclinic orbit. We

have followed the twelve corresponding families of inner homoclinics, Hij, j = 1, . . . , 12

of the Sun-Jupiter CRTBP problem. In Figure 11 left, the characteristic curves of

the families in the (h, y
Σ
) plane are shown. Although, as previously said, we stop the

continuations when approaching a collision (in this case, a close passage to Jupiter of

the Lyapunov orbits), we are able to obtain homoclinics for a range of values of the

energy larger than the range of the heteroclinic connections computed. In the same

Figure, right, we plot, for each family, the energy and the value of the mean motion of

the approximated ellipse, a−3/2. We can see that the families are organised in groups

of four around different resonances, 3:2, 4:3 and 5:4. At each group, two of the families

are of symmetric orbits, whereas the other two are of non-symmetric. For the families

computed, the non-symmetric ones correspond always to the families with the value of

a−3/2 closer to the resonance, see Figures 11 right and 15 right.

Next, we proceed with the homoclinic connections to LPO around L2 that revolve

once around both the Sun and Jupiter, that is, outer homoclinics. Again we use the

section Σ = {x = 0} and look for the first intersection ofW u and the second intersection

of W s with Σ (see Figure 6, left). Similarly as before, we look for the intersections of

the curves W u(X2) ∩ Σ1 and W s(X2) ∩ Σ2. In Figure 12, we show these curves in the

(px, py) plane for three different values of the energy. Again, we follow twelve families of

homoclinic connections, Hoj, j = 1, . . . , 12 that correspond to the twelve intersections

of both curves.

In Figure 13, left, we plot the characteristic curves, in the (h, y
Σ
) plane, of the

families computed. The range of energy for which we compute outer homoclinics is

essentially the same as for the inner ones. We also compute the value of the semimajor

axis and, in Figure 13, right, the characteristic curves in the (h, a−3/2) plane are shown.

We can observe that, as the families of inner homoclinics, they are organised in groups

of four. In this case, around the resonances 1:2, 2:3 and 3:4.

In Figure 14 some inner and outer homoclinic orbits of different families are shown.
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Figure 11. Different families of homoclinic connections to LPO around L1 of the Sun-

Jupiter CRTBP that surround once the Sun. In blue, families of symmetric orbits; in

red, families of non-symmetric orbits. Left: characteristic curves in the (h, yΣ) plane.

Right: families in the (h, a−3/2) plane. The dotted lines correspond to the 3:2, 4:3 and

5:4 resonances.
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Figure 12. (px, py) projection of the curves Wu(X2) ∩ Σ1 and W s(X2) ∩
Σ2 for the energy values, from left to right, h = −1.5173634301253143, h =

−1.5147777489155008, h = −1.5109240998869069.

In Table 3 the minimum (starting) value for which each couple of families exist is

given, as well as the resonance that corresponds to each family.

Resonance Inner

family

h Resonance Outer

family

h

3:2
Hi1,2 -1.5187738680438660

1:2
Ho1,2 -1.5176875927559890

Hi3,4 -1.5187644031439360 Hi3,4 -1.5176861758563389

4:3
Hi5,6 -1.5134324575378211

2:3
Ho5,6 -1.5164193318780410

Hi7,8 -1.5130995908322500 Ho7,8 -1.5164069483330780

5:4
Hi9,10 -1.5098028285856659

3:4
Hi9,10 -1.5119690998868209

Hi11,12 -1.5081547305639951 Ho11,12 -1.5118090998870310

Table 3. Minimum value of the energy h, for which families of inner and outer

homoclinic connections exist.

Figure 15 provides an example of a compact representation of all the inner transit
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the Sun-Jupiter CRTBP. In blue, families of symmetric orbits; in red, families of non-

symmetric orbits. Left: characteristic curves in the (h, yΣ) plane. Right: families in

the (h, a−3/2) plane. The dotted lines correspond to the 1:2, 2:3 and 3:4 resonances.
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Figure 14. Examples of inner (top) and outer (bottom) homoclinic connections

(symmetric and non-symmetric) of LPO around L1 and L2 for the Sun-Jupiter value

of the mass parameter. The orbits correspond to the highest value of h computed from

the families inner families Hi1, Hi8 and Hi10 and from the outer families Ho3, Ho7 and

Ho10 (from left to right).

The red and blue colours correspond to the trajectory on the unstable and stable

manifold respectively.

trajectories of an energy level associated to a resonance (similar plots can be done

for outer transit trajectories). The left plot is actually a zoom of Figure 10 left. In

it, a region of transit orbits has as boundary the segments of the W s(X1) ∩ Σ1 and

W u(X1) ∩ Σ2 curves delimited by the four homoclinic connections Hi1,2,3,4. The right
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plot of Figure 15 displays the same curves in the (px, a
−3/2) plane, showing that all the

transit trajectories of the region are associated to the 3:2 resonance.

It must be noted that, since for each connection belonging to Hii we have the values

of all the variables of Equation (3) along the family, performing the continuations of the

Hi1,2,3,4 families provides all the necessary information to generate the borders of the

corresponding region of transit orbits at each energy level. For example, the segment

of W s(X1) ∩ Σ2 between Hi1 and Hi4 is delimited by the θs values corresponding to

these two connections. The same observation applies to the section plots of all the

families of homoclinic and heteroclinic connections we have followed. In this way, the

computations presented in this Subsection can be viewed as a first step towards the

automatic generation of trajectories in the dynamical channel associated to a given

itinerary.
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Figure 15. Curves Wu ∩ Σ1 (red) and W s ∩ Σ2 (blue) for the value h =

−1.51853114139. Left: detail of the curves in the (y, py) plane around the intersection

points corresponding to the families Hij , j = 1, . . . , 4. The numbers correspond to the

family that each point belongs to. Right: the same curves in the (px, a
−3/2) plane.

4.3. Heteroclinic connections between LPO around L3 and L2

As a final example of application of the procedure presented for the continuation of

heteroclinic connections of p.o., in this Subsection we will compute two families of

heteroclinic connections of LPO around L2 and L3. As far as we know, no heteroclinic

connection has been computed involving a LPO around L3 and LPO around another

collinear libration point. The use of purely numerical procedures is mandatory in

this case, since semianalytical procedures do not produce useful approximations in the

neighbourhood of L3 [15].

We will first look for a value of µ for which there is a heteroclinic connection between

L3 and a LPO around L2. For that, we fix a Poincaré section Σ = {x = 0}, and for any

given µ, we perform the following steps:

• We compute L3, its energy value h3 and the LPO around L2 for that energy level.

We consider the branch of the unstable manifold W u(L3) that goes to the y < 0
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region, and we follow it up to the first crossing with Σ (see Figure 16, left). So we

obtain a point P µ
L3,Σ

= (x
Σ
, . . . , pyΣ).
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Figure 16. For µ = 0.04, projection in (x, y) of the invariant manifolds (unstable

in red, stable in blue) of the equilibrium point L3 (left, all branches of each invariant

manifolds are plotted), and of the LPO around L2 with the same energy (right, only

the outer branches), up to the section Σ = {x = 0}. The region in black corresponds

to the forbidden region of motion.

• Similarly, we follow the outer branch of W s(X2) up to Σ (see Figure 16, right), and

compute the distance between the point P µ
L3,Σ

and the set W s(X2) ∩ Σ1.

Varying µ, we obtain the function dmin(µ). This function is plotted in Figure 17,

left, where we can see that it becomes zero at a single value of µ, which is µh =

0.04005993174156. Therefore, for this value of µ there exists a heteroclinic connection

between the equilibrium point L3 and a LPO around L2 (see Figure 17, right). The
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Figure 17. Left: Function dmin(µ) (see the text for details). Right: A heteroclinic

orbit between L3 and a LPO around L2 (in black) for µ = µh.

application of the symmetry of Equation (5) will produce an heteroclinic connection

between the Lyapunov orbit and L3 in the opposite direction, that will follow the branch

of the stable manifold of W s(L3) that goes to y > 0 and the outer unstable manifold

W u(X2).

For the value µ = µh, increasing the value of the energy there appear LPO around

L3 with heteroclinic connections to LPO around L2, and the same will happen for values

of µ close to µh for certain values of the energy. We fix µ = 0.04, and follow the same
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strategy as in previous cases. We find two families of heteroclinic connections, whose

characteristic curves are plotted in Figure 18.
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Figure 18. Two families of heteroclinic connections between LPO around L3 and L2.

The same procedure, but taking into account the k–th crossing with the section

Σ for k > 2, will provide heteroclinic connections with k − 1 loops around the large

primary. In any case, it is always necessary a study of the suitable values of µ to look

for heteroclinic connections between LPO around L3 and L2. Furthermore, considering

the branch of W u(X3) that goes to y > 0, and the inner stable branch of W s(X1),

heteroclinics between LPO around L3 and L1 will be obtained.

5. Conclusions

We have presented a numerical method to carry out the continuation of families of

heteroclinic connections between hyperbolic periodic orbits. Compared with previous

methodology, our approach presents two advantages: it overcomes the convergence

restrictions of semianalytical techniques and provides the automation of the matching

process of manifolds of periodic orbits in a section when varying a parameter for the

continuation of a family.

We have applied our methodology to the CRTBP, for different values of the mass

parameter. In particular we have compared our results with existing ones, and we have

also obtained new families. In the case of the resonance transitions in the Sun–Jupiter

system studied in [18], we have determined ranges of energy in which they are possible,

as well as enlarged the choice of resonances that can be connected.
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[12] G. Gómez, M. Marcote, and J. M. Mondelo. The invariant manifold structure of the spatial Hill’s

problem. Dyn. Syst., 20(1):115–147, 2005.
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