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Abstract

Under the assumption that the Aitchison geometry holds in the simplex, standard
analysis of compositional data assumes a uniform distribution as reference measure of
the space. Changing the reference measure induces a weighting of parts. The changes
that appear in the algebraic-geometric structure of the simplex are analysed, as a step
towards understanding the implications for elementary statistics of random compositions.
Some of the standard tools in exploratory analysis of compositional data, such as center,
variation matrix and biplots are studied in some detail, although further research is still
needed. The main result is that through a progressive down-weighting of some parts, the
geometry of the space approaches that of the corresponding subcomposition. In this way,
the coherence between standard and down-weighted analyses is preserved.

Keywords: simplex, sigma-additive measures, subcomposition, weighting, Bayes space, biplot,
center, variability.

1. Introduction

When analysing a composition, some parts may heavily influence the results. A typical
example are inaccuracies in the measurements in some not fully relevant parts. They can
dominate the analysis, producing a large contribution to variability or to distances. Also,
relevance of some parts in a given problem can call for weighting techniques to adapt the
simplex geometry accordingly. There are a number of weighting techniques that can be useful
in this sense (e.g. Filzmoser and Hron 2015). Among them, the change of reference measure of
the simplex has several implications that need to be fully understood for a consistent analysis.
This contribution is aimed at showing changes that appear in the algebraic-geometric structure
of the simplex, as well as some effects in elementary statistics and exploratory tools.

One of the most fruitful concepts in compositional analysis is that of subcomposition (Aitchi-
son 1986). In Aitchison (1992), some reasonable principles for a coherent analysis of subcom-
positions were established. Beyond the idea that compositional analyses should be scale in-
variant, those principles included the assumption that distances between compositions should
be greater than or equal to those observed in a subcomposition. This principle, called sub-
compositional dominance (Aitchison 1992; Aitchison, Barceló-Vidal, Mart́ın-Fernández, and
Pawlowsky-Glahn 2000; Egozcue 2009), highlights a change of the geometry of subcomposi-
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tions (for instance, a change in inter-distances between two data-points in the subcomposition)
with respect to the original geometry of the full composition. Taking a subcomposition can
be considered as an extreme case of down-weighting, since the influence of some parts of the
composition is removed from the analysis. However, there are cases in which the complete
removal of the influence of some parts of the original composition is not desirable. This
motivates the idea of weighting compositions as a continuous transition from the full compo-
sition, endowed with the corresponding Aitchison geometry (Pawlowsky-Glahn and Egozcue
2001), to a subcomposition, endowed with the induced Aitchison geometry, which differs in
dimension and metrics (distances, inner product, norm).

Apparently, there are many ways of weighting compositions so that a transition from a
full composition to a subcomposition is performed. However, fulfilling all coherence re-
quirements is quite challenging. One option deserving attention is the one proposed for
Bayes spaces (Boogaart, Egozcue, and Pawlowsky-Glahn 2010; Egozcue, Pawlowsky-Glahn,
Tolosana-Delgado, Ortego, and Boogaart 2013b) and, more specifically, for Bayes Hilbert
spaces (Egozcue, Dı́az-Barrero, and Pawlowsky-Glahn 2006; Boogaart, Egozcue, and Pawlowsky-
Glahn 2014). Bayes Hilbert spaces are spaces of measures and densities, and their algebraic-
geometric structure is an extension of the Aitchison geometry of the simplex. In fact, in
(Boogaart et al. 2014), it is shown that the simplex, endowed with the Aitchison geometry,
is a particular case of a Bayes Hilbert space. In the development of Bayes Hilbert spaces,
a reference probability measure is introduced as a parameter regulating the geometry of the
measures and densities in the space. This kind of approach provides a way of coherently
introducing weighting strategies, both in the simplex and in the analysis of compositional
data. The present aim is to start studying the change of reference measure in the simplex,
being conscious that there is a long way from the general theory of Bayes Hilbert spaces to
applications in compositional data analysis. Special attention is paid to the transition from
the geometry of the simplex SD for compositions to the geometry of Sd, d < D, where sub-
composititions are defined. The main difficulties are interpretative, as usual in compositional
data analysis.

The structure of the paper is as follows: Section 2 translates the milestones of Bayes Hilbert
spaces into the case of compositions, with special emphasis on the role of the reference mea-
sure. Section 3 introduces the centered log-ratio transformation (clr) with respect to an
arbitrary reference measure in the simplex, following the definition in Boogaart et al. (2014)
for general Bayes Hilbert spaces. Section 4 gets into details of metric concepts under a change
of the reference measure, such as orthogonality, bases, and balances. A proposition on domi-
nance of distances is there stated (see proof in Appendix A). Section 5 gives an introduction to
distributions of random compositions, their variability and centre under a weighted geometry
of the simplex. Section 6 shows how variation matrix and biplots work under weighting using
an example of electoral results.

2. Change of reference measure for compositions

Consider D categories c1, c2, . . . , cD; they represent a partition of a measurable space Ω. A
D-part composition x = (x1, x2, . . . , xD) in the D-part simplex SD assigns a proportion xi to
the category ci. Assuming that the composition x is closed to 1, the proportion assigned to
the whole space Ω is just 1. For any subset of categories, the proportion assigned is the sum
of the corresponding proportions. For instance, the proportion assigned to the subset {c1} is
x1, and the proportion assigned to the subset {c1, c2} is x1 +x2. From this point of view, the
composition x defines a finite additive measure on Ω, which is denoted µx{·}. The argument
of this measure is any subset of Ω. Examples are µx{Ω} = 1, µx{∅} = 0, µx{c1} = x1,
µx{c1, c2} = x1 + x2.

Measures can be represented by densities. The idea is that sums (integrals) on a subset of Ω
give the measure of this subset. In the case of the simplex SD, the density is identified with
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the composition x, as for any subset A ⊆ Ω it satisfies

µx{A} =
∑
ci∈A

xiP0{ci} , P0{ci} = 1 , i = 1, 2, . . . , D ,

where the uniform measure P0{·} on Ω has been made explicit as reference measure. Note that
P0{Ω} = D and addends of sums (integrals) along the composition are equally weighted with
1 = P0{ci}. The reference measure specified as p0 = (P0{c1}, P0{c2}, . . . , P0{cD}) is a non-
closed uniform measure. Therefore, it is compositionally equivalent to the neutral element of
the simplex n = (1/D, 1/D, . . . , 1/D). The conclusion is that a composition x ∈ SD defines
a measure µx on Ω specifying the measure of each elementary subset {ci} and, at the same
time, x is the density of µx with respect to the uniform reference measure P0, which density
is p0. In mathematical terms, the density (composition) x is the Radon-Nikodym derivative
of µx with respect to the reference measure P0 which can be written as

x =
dµx
dP0

, µx{A} =

∫
A

dµx
dP0

dP0 =
∑
ci∈A

xi P0{ci} ,

for any A ⊆ Ω. When P0 is the unitary and uniform reference measure, there is no need to
distinguish between x as a composition, as a measure or as a density. These facts change
when weights are introduced through the reference measure.

To analyse the effects of a change of reference measure as a means to introduce weights,
consider an arbitrary array of positive weights, p = (p1, p2, . . . , pD). The corresponding
measure P is then characterised by P{ci} = pi, for i = 1, 2, . . . , D, and by the measure of the
whole space, P{Ω} =

∑D
i=1 pi. Note that p is the density of P with respect to the uniform

measure P0. A question is now to look for the density of the measure µx with respect to the
new reference measure P . This density is y = x/p = (x1/p1, x2/p2, . . . , xD/pD). In fact, for
A ⊆ Ω,

µx{A} =
∑
ci∈A

xi =
∑
ci∈A

yi pi =
∑
ci∈A

xi
pi
pi . (1)

The measure µx is thus retrieved from two different densities, x when considering the uniform
reference P0, and y for a reference P . Note that y is a vector which components do not add
to one, i.e. it is not closed. However, it is compositionally equivalent to Cy = x 	 p, as its
components are proportional (Pawlowsky-Glahn, Egozcue, and Tolosana-Delgado 2015).

If the reference measure P is represented by the vector of weights p, the composition Cy
is just a perturbation of x, a shift in the simplex, recalling that the perturbation-difference
	 includes the closure, C, and, consequently, Cy = x 	 p = x 	 Cp. From now on, the
non-closed version of y is denoted y(p) when the reference measure needs to be specified.
Following Boogaart et al. (2010) and Boogaart et al. (2014), a weighted perturbation and
powering can be defined for densities like y(p) such that they operate linearly in the weighted
simplex. However, their use is not recommended in this context as standard perturbation (⊕)
and powering (�) are easily interpreted and computed in the applications. This avoids linear
operations with the shifted densities Cy(p) = x	 p . In practice, weighted compositions will
be used only in the computation of distances and inner products, as explained below.

3. Centred log-ratio with respect to a reference measure

In Boogaart et al. (2014), the clr-transformation of a density f with respect to a given reference
measure P , is defined as

clrP (f)(x) = log f(x)− 1

P{Ω}

∫
Ω

log f(ξ) dP{ξ} , x ∈ Ω , (2)

where Ω is the measurable set where the density f is defined. In the present case, Ω is the
set of the D parts or categories of SD, namely ci, i = 1, 2, . . . , D. Therefore, the values of x
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in such an expression correspond to the ci’s. Since f is a density of a measure with respect
to the reference measure P , it can be identified with the density y = x/p , as introduced in
Section 2. With these identifications, the clrp-transformation of the simplex with respect to
the measure P , represented by p = (p1, p2, . . . , pD), is

clrp(y) =

(
log

y1

gp(y)
, log

y2

gp(y)
, . . . , log

yD
gp(y)

)
, gp(y) = exp

(
1

sp

D∑
i=1

pi log yi

)
, (3)

where sp =
∑D

i=1 pi, and gp(·) denotes a weighted geometric mean of the parts yi. It is
remarkable that p, the reference measure of the categories ci, is not closed to D, and that
P{Ω} = sp, while for P0 the uniform reference measure sp0 = D . Note also that y can be
closed or not, as Equation 3 is scale invariant.

An important characteristic of clrp(y) is that the weighted sum of its D components is zero,
that is

D∑
i=1

pi log
yi

gp(y)
= 0 , (4)

generalising the ordinary clr in SD, for which the sum of its components (weights equal to 1)
is zero. This has a geometric interpretation in the space RD, where a point has coordinates
log(y) = (log y1, log y2, . . . , log yD). As illustrated in Figure 1, which shows a scheme for
D = 2, to obtain the ordinary clr of a generic point log(y), the point is orthogonally projected
onto a hyperplane through the origin whose orthogonal vector is (1, 1, . . . , 1) (Aitchison 1986;
Pawlowsky-Glahn et al. 2015). When using a non-uniform p = (p1, p2, . . . , pD) the procedure
to get clrp(y) is to orthogonally project the point log(y) onto a hyperplane whose orthogonal
vector is p, as shown by the inner product in RD implicit in Equation 4. Summarising, clrp
is a projection of log(y) on a hyperplane whose normal vector is p.

●

●

●

●
log y1

log y2

(log y1,log y2)

(1,1)

clr

clrp

p

Figure 1: Generic 2-part composition (y1, y2), log-transformed into (log y1, log y2). Two reference measures
with densities (1, 1) (uniform, blue arrow) and p (red arrow) are considered. The point (log y1, log y2) is
projected, parallel to the reference arrow, on the clr-plane (blue) and on the clrp-plane (red), thus obtaining
the respective transformations.

A particular case of interest is that of

pi = 1 , i = 1, 2, . . . , D − 1 , pD = ε , (5)

for which P{Ω} = (D−1) + ε. When ε→ 0, the D-th part is down-weighted from 1 to ε� 1.
For small enough ε, the weighted geometric mean gp in Equation 3 approaches the ordinary
geometric mean of the first D−1 parts of y. A consequence is that the first D−1 components
of clrp(y) approach the ordinary clr of the subcomposition formed by (y1, y2, . . . , yD−1). This
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suggests that this kind of reference measures may approach the induced Aitchison geometry
on the subcomposition.

4. Metrics under change of reference

The clr transformation can be used to define the inner product in SD, as was done in Bayes
Hilbert spaces (Boogaart et al. 2014, Def. 2). There, the proposed definition was

〈y1,y2〉B2 =
1

P{Ω}
〈clrP (y2), clrP (y1)〉 ,

where 〈·, ·〉 is the ordinary inner product in RD. This definition leads to an inner product in
SD which, for a uniform reference measure P0, with weights p0 = (1, 1, . . . , 1), is

〈y1,y2〉a =
1

D
〈clr(y2), clr(y1)〉 , (6)

which is not the standard in compositional data analysis due to the factor 1/D. This inner
product is not suitable for compositional data analysis, as it does not fulfill the principle
of subcompositional dominance of distances. For instance, consider the 3-part compositions
u = (0.1, 0.7, 0.2) and v = (1/3, 1/3, 1/3). Their distance, in the geometry induced by
the inner product (6) in S3, is d3(u,v) = 0.805. Taking the subcomposition formed by
the first and second part and computing the distance in S2 according to (6), the result is
d2(u,v) = 0.973. Since d3(u,v) < d2(u,v), the principle of subcompositional dominance is
violated.

The discussion about the role of the constant 1/D in the inner product is related to the fact
that in Boogaart et al. (2014) the reference measure was assumed to satisfy P0{Ω} = 1. If
0 < P0{Ω} < +∞, the value P0{Ω} is irrelevant when one does not try to compare results
of an analysis using different reference measures, as was the case in that contribution. On
the contrary, in Egozcue et al. (2006) the reference is implicitly assumed to be proportional
to the length of the interval supporting the densities of the Hilbert space, that is P0{Ω} is
adapted for each support Ω. Here this second strategy has been adopted so that analytical
results using different references become comparable, fulfilling the subcompositional coherence
requirements. This strategy of normalizing the reference measures has a consequence which
might be uncomfortable for some readers, namely that p0, or in general p, are not only non-
closed compositions, but convey also information about the size of Ω, P{Ω} =

∑D
i=1 P{ci}.

In the following development, p or p0 appear to be closed when represented as elements of
the simplex, but retain their absolute values when the components are used as weights in
sums (integrals) along compositions or clr images.

To match the present definition to the standard practice in compositional data analysis
(Aitchison 1986; Aitchison and Egozcue 2005; Egozcue, Barceló-Vidal, Mart́ın-Fernández,
Jarauta-Bragulat, Dı́az-Barrero, and Mateu-Figueras 2011; Pawlowsky-Glahn et al. 2015)
and to the subcompositional dominance of distances, the factor 1/D in (6) is suppressed. Re-
member that multiplication by a real scalar in an inner product does not change its character.

In the case of using a reference measure represented by the weights p, the appropriate defini-
tion of the weighted Aitchison inner product is

〈y1,y2〉p =

D∑
i=1

pi log
y1i

gp(y1)
log

y2i

gp(y2)
, (7)

where yk = y
(p)
k , k = 1, 2 are in SD. The expression in the right hand side of Equation (7) is

an inner product of the clrp as real vectors with respect to the measure P .
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The weighted Aitchison norm, derived from the inner product, is ‖y‖2p = 〈y,y〉p, and an
explicit expression of the distance is

d2
p(y1,y2) = 〈clrp(y1)− clrp(y2), clrp(y1)− clrp(y2)〉p =

D∑
i=1

pi

(
log

y1i

gp(y1)
− log

y2i

gp(y2)

)2

.

This expression of weighted distance can be written in matrix notation

d2
p(y1,y2) = (clrp(y1)− clrp(y2)) diag(p) (clrp(y1)− clrp(y2))> ,

where the clrp are row vectors and diag(p) is a diagonal (D,D)-matrix containing the weights
p. These definitions coincide with those of the ordinary Aitchison geometry of SD whenever
p = p0 = (1, 1, . . . , 1). When p 6= p0, the inner product differs from the ordinary Aitchison
inner product and, consequently, also norm and distance are different.

To get a further intuition of what is changing with p, it is instructive to build orthonormal
basis of the simplex according to the change of reference. It allows to show how these bases
appear under a change of p in particular cases.

A straightforward technique for obtaining orthonormal basis of the simplex and their respec-
tive coordinates (Egozcue, Pawlowsky-Glahn, Mateu-Figueras, and Barceló-Vidal 2003) is
that of sequential binary partitions (SBP) (Egozcue and Pawlowsky-Glahn 2005, 2006). Like
in the standard case (reference measure P0), when using a reference measure with the weights
p, the procedure is based on a partition coded as in Table 1, but the formulae to obtain the
contrast matrix are modified. Table 1 shows a generic sign code for an SBP, adding weights
p as column labels (second row) for further comment on the generalised technique.

Table 1: A generic table of an SBP for a five-part composition. Weights from the reference
measure are placed in the second row, under the part label. Rows are labelled as balances bi
for further reference.

parts y1 y2 y3 y4 y5

weights p1 p2 p3 p4 p5

b1 +1 −1 −1 −1 +1
b2 +1 0 0 0 −1
b3 0 +1 −1 −1 0
b4 0 0 +1 −1 0

Denote the entries of the matrix code as θij , i = 1, 2, . . . , D− 1, j = 1, 2, . . . , D. For the case
in Table 1, D = 5 and, for instance, θ32 = +1. When using the standard reference measure
p0 = (1, 1, . . . , 1), the clr coefficients of an element of the basis, that is of a balancing element,
are given by

ψij =


+ 1
n+
i

√
n+
i n

−
i

n+
i +n−

i

if θij = +1

− 1
n−
i

√
n+
i n

−
i

n+
i +n−

i

if θij = −1

0 if θij = 0 ,

(8)

where n+
i denotes the number of +1, respectively n−i of −1, in the i-th row of the code table.

When using the reference measure which weights pj are not unity, these formulas for the clrp
of balancing elements are the same except that n+

i , n−i are

n+
i =

∑
θij=+1

pj , n−i =
∑

θij=−1

pj .

The contrast matrix Ψ, with entries ψij , i = 1, 2, . . . , D, j = 1, 2, . . . , D − 1, fulfills the
conditions

Ψ diag(p) Ψ> = ID−1 , diag(p) Ψ>Ψ = ID −
1

D
p>1 , (9)
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where Im is the (m,m)-identity matrix; p and 1 = (1, 1, . . . , 1) are taken as row D-vectors,
and diag(p) is a (D,D) diagonal matrix with entries equal to the components of p. The first
condition is equivalent to saying that balancing elements are unitary compositions mutually
orthogonal. In fact, their clrp are unitary and orthogonal in the weighted Euclidean geometry.

Coordinates of a density y ∈ SD with respect to an orthonormal basis are found carrying out
the inner product of a balancing element in the basis with the density y = x/p. In general,
these coordinates are termed weighted isometric log-ratio coordinates and denoted by ilrp.
In the particular case in which they are obtained using an SBP, they are called weighted
balances. For simplicity, these weighted balances are denoted bi, i = 1, 2, . . . , D − 1, with no
reference to the weights associated with the change of measure (as shown in Table 1). The
ilrp coordinates can be obtained using the matrix expression

ilrp(y) = b = clrp(y) diag(p) Ψ> , (10)

where compositions and their clrp and ilrp transforms are considered row-vectors. Note that
each component of b = (b1, b2, . . . , bD−1) is a weighted inner product of clrp(y) with the
corresponding clrp of a balancing element. The inverse ilrp transformation is readily obtained
using the properties (9) of Ψ

Cy = C exp(ilrp(y)Ψ) , clrp(y) = ilrp(y)Ψ ,

being the first of these relations formally identical to the standard inverse ilr with reference
measure P0. The relationship of ilrp(y) and ilr(x) is developed in Appendix B.

Although Equation 10 is useful from a computational point of view, an explicit expression of
balances gives a deeper insight into the meaning of weighted balances. Consider a sign code
of a step in an SBP, for which n+

i , n−i are given. The corresponding weighted balance is

bi =

√
n+
i n
−
i

n+
i + n−i

log

∏(θij=+1) y
pj/n

+
i

j∏
(θij=−1) y

pj/n
−
i

j

 , (11)

where the products span over the parts corresponding to the sign code θij . When the weights
pj = 1, the balance reduces to the standard balances, as n+

i , n−i are then the number of +1
and −1 in the i-th row of the sign code, respectively. The main feature, when the reference
is not p0, is that the ratios within the logarithm are ratios of a kind of weighted geometric
means. Note that, in general, n+

i , n−i are not integers and each part is powered to the weight
corresponding to that part. When some pj is small, relative to other weights, it plays a
minor role in these weighted geometric means. Furthermore, the weighted balances are scale
invariant log-contrasts, that is, if the composition y is multiplied by a positive constant, the
weighted balance remains unaltered.

Expressing inner products, norms, and distances as functions of weighted coordinates ilrp can
be useful, because they are exactly those of the standard Euclidean geometry. For the inner
product and square-distance they are

〈y1,y2〉p = 〈ilrp(y1), ilrp(y2)〉 , d2
p(y1,y2) = d2(ilrp(y1), ilrp(y2)) , (12)

where 〈·, ·〉, d(·, ·), are the ordinary Euclidean inner product and distance.

Whenever there is a change in the geometry of compositions, the subcompositional dominance
of distances is a critical point. In the standard approach, the distance between any two compo-
sitions x1, x2 ∈ SD is da(x1,x2). After taking a given subcomposition in Sd, d < D, the dis-

tance between the respective subcompositions, x
(d)
1 ,x

(d)
2 , satisfies da(x

(d)
1 ,x

(d)
2 ) ≤ da(x1,x2).

In this case, both spaces have integer reference measures with P{ΩD} = D and P{Ωd} = d
and, for D = 3, d = 2 the corresponding weights are (1, 1, 1) and (1, 1, 0), respectively. When
changing the reference measure by down weighting some of the weights, a dominance of dis-
tances is expected, as it occurs when taking subcompositions. The dominance of distances
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Figure 2: Evolution of weighted square-distances between three measures represented by the
compositions x1 = (0.1, 0.7, 0.2),x2 = (0.5, 0.3, 0.2),x3 = (0.9, 0.08, 0.02) ∈ S3 with respect to
the reference measure P0 with weights p0 = (1, 1, 1). With yi = xi/p, square-distance curves
are dp(y1,y2) (black), dp(y1,y3) (blue), dp(y2,y3) (red). Reference measure is p = (1, 1, ε)
and x-axis is scaled as P{Ω} = 1 + 1 + ε. The three square-distances monotonically increase
from P{Ω} = 2 to P{Ω} = 3. The end points of the curves at P{Ω} = 2 and P{Ω} = 3 are
equal to standard Aitchison square-distances in S2 and S3 respectively.

y1 y2

y3

Figure 3: The unit circle (black, full line) in the uniform reference. After change of origin to
(1, 1, ε), ε = 0.5 (black, dashed), 0.1 (green), 0.05 (blue), and 0.01 (red), the circle is shifted
towards the vertex y3.
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can be stated as follows.

Proposition (dominance of distances) Let x1, x2 be two compositions in SD, endowed
with the reference measure P0, with weights p0 = (1, 1, . . . , 1). Consider two reference
measures, P1 and P2, represented by their respective weights p1 = (p11, p12, . . . , p1D) and
p2 = (p21, p22, . . . , p2D), such that all their components are 0 < pki ≤ 1, for k = 1, 2,

i = 1, 2, . . . , D and Pk{Ω} =
∑D

i=1 pki. Define y
(pk)
j = xj/pk for k = 1, 2 and j = 1, 2. Then,

p1i ≤ p2i, i = 1, 2, . . . , D ⇒ dp1(y
(p1)
1 ,y

(p1)
2 ) ≤ dp2(y

(p2)
1 ,y

(p2)
2 ) .

It is worth to remark that the notation of distances like dp1(y
(p1)
1 ,y

(p1)
2 ) could be changed to

dp1(x1,x2), as distances assigned to shifted y’s are equal to those of the original compositions
x’s. This is due to the fact that x and y are densities of the same measure, namely µx, with
respect to different reference measures.

Figure 2 shows the evolution of square-distances between three compositions x1 = (0.1, 0.7, 0.2),
x2 = (0.5, 0.3, 0.2), x3 = (0.9, 0.08, 0.02) with respect to the uniform reference in S3 when the
reference measure changes progressively. The reference measure is (1, 1, ε), with ε going from
0 to 1. The plot is scaled according the P{Ω} = 1+1+ε. The square-distances increase mono-
tonically, from distances corresponding to the subcomposition (y1, y2) to square-distances with
the standard reference p0 = (1, 1, 1). This result is expected after the previous proposition.

An experiment has been conducted to show how the changes of reference modify distances and
shapes. Five different reference measures p = (1, 1, ε) have been considered with ε equal to 1,
0.5, 0.1, 0.05, 0.01, so that they approach progressively the geometry of the subcomposition
of the two first parts. The unit circle centered at the neutral element was shifted by the five
reference measures. Figure 3, shows this unit circle (black) and the sequence of perturbations
as a consequence of the change of origin. Note that the transformed circle is shifted to the
vertex which weight is reduced, as expected after dividing each part by the corresponding
weight.

After the change of origin, each point on the circles was ilr-transformed using the correspond-
ing weights according to the SBP sign code

y1 y2 y3

+1 −1 −1
0 +1 −1

,

which has been selected to avoid a balance representing the subcomposition (y1, y2). Figure
4 (left panel) shows the coordinates of the circles, to show the changes of the distances
between points on the same circle. Note that the centers of the ellipses do not coincide, as
they correspond to the closure of the reference measure (1, 1, ε). The main feature is the
progressive stretch of the original circle. For very small ε the ellipse tends to degenerate into
a segment following the direction of the subcomposition (y1, y2). Similarly, Figure 4 (right
panel) shows the deformation of a grid originally at −1, 0, 1 in both axes (black). The new
references are ε = 0.1 (blue), and 0.01 (red). The grid is progressively tilted and distances
between nodes decrease as ε decreases. Although straight-lines are preserved, their angles
change, thus showing the change of geometry when changing the reference.

5. Elementary statistics

The change of reference measure and its associated weighting have consequences in the defi-
nitions of elementary concepts of compositional statistics. Variability and center are the two
main concepts examined below. Both concepts are redefined following previous developments
in the statistical analysis of compositional data, just looking for the influence of the weighting.
These new definitions are intended to match the standard concepts whenever the weights are
unity over the categories defining the composition.
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Figure 4: Left panel: the five circles in Figure 3 after weighted ilr-transformation. Reference
measures are (1, 1, ε), ε = 1 (black), ε = 0.5 (brown), 0.1 (blue), 0.05 (green), and 0.01 (red).
Right panel: a regular grid at points −1, 0, −1 in both axes after change of origin and
weighted ilr transformation. Weights are (1, 1, ε), ε = 1 (black), 0.1 (blue), and 0.01 (red).

Let X be a random composition (density) in SD (Pawlowsky-Glahn et al. 2015, ch. 6) which,
for some selected ilr coordinates denoted X∗ in RD−1, is absolutely continuous with joint
probability density (pdf) f∗X. Therefore, f∗X(x) is a function defined on RD−1, the space
of the ilr coordinates, with the standard definitions from probability theory. Assume also
that a new reference measure is chosen and it is represented by a set of positive weights p.
Accordingly, the random composition Y = X	p corresponds to the change of reference and
its distribution only differs from that of X in a shift of the center. The ilrp coordinates of
Y, denoted Y∗, are also random, but their distribution on RD−1 is a transformation of the
previous pdf f∗X, here denoted as f∗, where the subscript is dropped when it corresponds to
the composition Y. In Appendix B it is shown that the transformation from X∗ = ilr(X) to
Y∗ = ilrp(Y) is a linear (affine) transformation. For instance, this means that, if X has a
normal distribution on the simplex (Mateu-Figueras, Pawlowsky-Glahn, and Egozcue 2013;
Pawlowsky-Glahn et al. 2015) and, thus, X∗ is multivariate normal on RD−1, the distribution
of Y∗ is also a multivariate normal on RD−1. As a conclusion, the normality of ilrp coordinates
is maintained when the weights p of the reference measure change.

Following the general formalism developed by Fréchet (1948) for metric spaces, the first
milestone to be defined is the (total) variability of Y with respect to an arbitrary point
η ∈ SD. It is defined as

totVarp[Y;η] = E[d2
p(Y,η)] ,

provided that the expectation exists. The distance d2
p(Y,η) is a function of the coordinates

Y∗ = ilrp(Y) and the expectation E[·] is taken with respect to their pdf f∗. Since d2
p(Y,η) =∑

(Y ∗i −η∗i )2 (Equation 12), the minimum of Varp[Y;η] is attained for η∗ = E[Y∗], a standard
result in real multivariate statistics. Based on this result, the weighted center and total
variance are

Cenp[Y] = ilr−1
p (E[Y∗]) = clr−1

p (E[Y∗]) , totVarp[Y] = E[d2
p(Y,Cenp[Y])] . (13)

Note that this kind of approach has been used in Pawlowsky-Glahn and Egozcue (2001) and
in Boogaart and Tolosana-Delgado (2013), but total variance is there called metric variance.

Despite the previous expression of Cenp[Y] in Equation 13, the weighted center of a random
composition only depends on the weights in p through the shift applied, that is

Cenp[Y] = Cen[X]	 p , or, equivalently, Cen[X] = Cenp[Y]⊕ p ,
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where Cen and ⊕ are the ordinary center and perturbation of random compositions, respec-
tively, and Y = X	 p, thus enhancing the linearity of expectations.

Decompositions of total variance underlays many standard statistical methods, thus remarking
its upmost importance. Equation 13 leads to decompositions of the total variance when the
reference measure p is not p0. Similarly to those described in Egozcue et al. (2011), we obtain

totVarp[Y] =
D−1∑
i=1

Var[ ilrp,i(Y) ]

=
D∑
i=1

piVar[ clrp,i(Y) ]

=
1

2sp

D∑
i=1

D∑
j=1

pipjVar

[
ln
Yi
Yj

]
,

(14)

where sp =
∑D

i=1 pi, ilrp,i(Y) = y∗i and clrp,i(Y) is the i-th component of clrp(Y). Note that
the decomposition of totVarp[Y] into ilrp variance components points out that totVarp[Y]
is the trace of the covariance matrix of ilrp(Y), and that totVarp[Y] is not the sum of clrp
variances, but a weighted sum of them.

The decompositions of the total variance are closely related to the relationships between the
covariance matrices of the ilrp coordinates and the clrp coefficients. These relationships can
be summarized as

Σp = Ψ diag(p) Σc
p diag(p) Ψ> , Σc

p = Ψ ΣpΨ> ,

where Ψ is the (D− 1, D)-contrast matrix of the ilrp, Σp is the covariance matrix of Y∗ and
Σc
p is the covariance matrix of clrp(Y).

Also, the variation matrix (Aitchison 1986) plays an important role in the statistics of com-
positional data. Its entries are variances of simple log-ratios, ln(Xi/Xj). At least, it has two
important uses: (a) it constitutes a simple and interpretable representation of the variability
(second order moments) of the random composition, identifying the binary sources of vari-
ability relative to the total variance; and (b) each entry of the variation matrix is a measure
of the compositional dissociation, as opposite of association, between the two parts involved.
Point (a) is reflected in the fact that the covariance matrices of ilr-coordinates and clr coef-
ficients can be retrieved from the variation matrix (Pawlowsky-Glahn et al. 2015, Appendix
A). Concerning point (b), large entries, relative to other entries, point out most dissociated
pairs of parts. The measurement of compositional association of two parts, understood as
proportionality between them, is motivated by the fact that Var[ln(Xi/Xj)] = 0 implies that
Xi and Xj are strictly proportional (Egozcue, Lovell, and Pawlowsky-Glahn 2013a; Lovell,
Pawlowsky-Glahn, Egozcue, Marguerat, and Bähler 2015).

Inspired by the third decomposition of weighted total variance in Equation 14, a weighted
variation matrix can be defined as a (D,D)-matrix Tp with entries

tp,i,j = pipjVar

[
ln
Yi
Yj

]
, i, j = 1, 2, . . . , D .

The relationship of Tp with the covariance matrix of ilrp coordinates is

Σp = −1

2
ΨTpΨ> .

The decomposition of weighted total variance and the relationships between covariance matri-
ces reduce to the standard ones whenever the reference measure is P = P0, that is, whenever
p = (1, 1, . . . , 1).
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Table 2: Weights, p (second row) and p
(sub)
i (third row), for each part used in the analysis

of the Cat10 data set. Weights p
(sub)
i are only used in an example of biplot. Center of the

composition, expressed in percent, for the original composition (forth row), and for the shifted
composition Y = X	 p (fifth row).

party abs nota null C’s CiU ERC ICV PSC PP other

pi 0.1 0.3 0.3 1 1 1 1 1 1 0.5

p
(sub)
i 0.001 0.001 0.001 1 1 1 1 1 1 0.001

Cen[X] (%) 38.9 1.9 0.5 0.9 27.6 5.5 3.0 9.6 5.2 6.8
Cenp[Y] (%) 84.1 1.4 0.4 0.2 6.0 1.2 0.6 2.1 1.1 2.9

6. Exploratory tools

In compositional data analysis, the main specific exploratory tools are the variation matrix
(Aitchison 1986), principal component analysis of the clr transformed compositional sample
(Aitchison 1983) and its corresponding biplots (Aitchison and Greenacre 2002), and the com-
positional dendrogram (Pawlowsky-Glahn and Egozcue 2011). These three tools take slightly
different forms when taking a reference measure different from P0. In order to show how to
use and interpret the weighted versions in an exploratory analysis, the data from the Catalan
parliament (Spain) elections in November 2010 (Cat10) have been selected. This data set
was previously analysed in Egozcue and Pawlowsky-Glahn (2011) (see also Pawlowsky-Glahn
et al. 2015).

The data set Cat10 contains the number of votes obtained by several parties, including ab-
stention (abs), null (null) and none of the above or blank votes (nota) in n = 41 electoral
districts. The major parties contesting the elections were Convergència i Unió (CiU), Par-
tit dels Socialistes de Catalunya (PSC), Ciutadans-Partido de la Ciudadańıa (C’s), Esquerra
Republicana de Catalunya (ERC), Iniciativa per Catalunya Verds-Esquerra Unida i Alterna-
tiva (ICV) and Partit Popular (PP). Other minor parties are amalgamated in other. The
present analysis focusses on the whole composition of votes, that is, the D = 10 parts of the
composition: abs, nota, null, CiU, C’s, ERC, ICV, PP, PSC, other.

A first step in exploratory analysis is to choose suitable weights for the 10 parts involved. The
situation in most political elections is that votes to parties show a homogeneous preference
to a given party, meanwhile “abs”, “nota”, “null” and “other” mix non-homogeneous support
to democratic elections or other situations, thus suggesting to weight them differently. Well
defined parties were weighted by 1. The abstention is the more heterogeneous group of electors
and the choice for its weight was 0.1. The electors that choose blank vote (nota) and null vote
(null) can be considered less heterogeneous than abstention, as they express something similar
to “I want to vote, but none of the contesting parties convinced me”; these two categories have
been weighted by 0.3. Votes to parties included in “other” are well defined, but directed to
different parties with different programmes; there is a well defined intention in the vote, but
the amalgamation of different parties makes the group heterogeneous; the category “other”
is weighted by 0.5. The vector of weights p chosen is shown in the second row of Table
2. These weights have been chosen to show the effects of weighting, and not to carry out
a sound analysis of the data set. Methods to establish suitable weights should be object of

further research. The third row of Table 2 shows an alternative set of weights p
(sub)
i that

will be used only for illustrating how these weights make the analysis to be close to that of
a subcomposition of the well defined parties. The forth row of Table 2 shows the center of
the composition, expressed in percent. The fifth row is the center Cenp[Y] (also in percent),
which is not useful for interpretation, but for comparison with Cen[X]. Note how the percent
of “abs”, with weight 0.1, increased when dividing by the weight. The same fact may occur
for all parts with weights less than one, but closure hides this fact. Note that the center is
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Table 3: Weighted variation matrix for Cat10 data. Last column: weighted clrp variances,
piVar(clrp,i[Y]), adding to weighted total variance. Upper triangle: elements of the weighted
variation matrix (values greater than or equal to 0.30 are highlighted in boldface). Lower
triangle: product of weights pipj . Two last rows: weighted total variance and total variance
(uniform reference).

Abs Nota Null C’s CiU ERC ICV PSC PP other clrp var.
Abs 0.002 0.005 0.029 0.007 0.020 0.008 0.006 0.011 0.007 0.001
Nota 0.03 0.008 0.164 0.009 0.027 0.040 0.031 0.073 0.017 0.014
Null 0.03 0.09 0.238 0.022 0.015 0.078 0.064 0.111 0.020 0.039
C’s 0.10 0.09 0.30 0.563 0.870 0.270 0.320 0.160 0.303 0.308
CiU 0.10 0.30 0.30 1.00 0.077 0.157 0.142 0.268 0.034 0.054
ERC 0.10 0.30 0.30 1.00 1.00 0.249 0.262 0.459 0.052 0.153
ICV 0.10 0.30 0.30 1.00 1.00 1.00 0.101 0.189 0.085 0.051
PSC 0.10 0.30 0.30 1.00 1.00 1.00 1.00 0.122 0.133 0.051
PP 0.10 0.30 0.30 1.00 1.00 1.00 1.00 1.00 0.193 0.113
other 0.05 0.15 0.15 0.50 0.50 0.50 0.50 0.50 0.50 0.054
totVarp 0.836
totVar 1.020

a composition of a “mean electoral district”, and that variability around this center may be
large. This can be checked, for instance, on C’s, which minimum percentage is 0.3% and
its maximum is 2.8% across the sample of electoral districts, what in turns may represent a
number of electors from 3046 up to 1,572,425 for the surroundings of Barcelona. Therefore,
reporting mean values or centers needs to be complemented with the analysis of variability.

The weighted variation matrix is shown in the upper triangle of Table 3. In the lower triangle
of Table 3, the cross products of weights pipj are specified. When the entries of the weighted
variation matrix are divided by the corresponding pipj they result in the corresponding entry
of the traditional variation matrix with reference P0. Terms in the weighted variation matrix
larger than or equal to 0.30 are highlighted in boldface. They constitute the larger sources
of variability in the data set. Most of them correspond to C’s, whose votes are irregularly
distributed over electoral districts. This fact is confirmed by the weighted clrp variances,
as the largest value corresponds to C’s as well. Small values in the weighted variation ma-
trix suggest association between parts, i.e. approximate proportionality, although this needs
further analysis to be confirmed (Egozcue et al. 2013a; Lovell et al. 2015). The strongest as-
sociations appear between abs, nota, null, with traditionally nationalist parties in Catalonia,
i.e. CiU, ERC, and even with PSC. Compared to the variation matrix published in Egozcue
and Pawlowsky-Glahn (2011), the possible associations appear stronger in Table 3. This is
due to the fact that the 2011 analysis was performed without any weighting in the reference.
Differences in the variances of simple log-ratios of not down-weighted parts are the conse-
quence of dividing entries in Table 3 by n−1 = 40, while in 2011 the divisor was n = 41. The
weighted total variance is 0.836, smaller than that obtained with unit weights (1.020), using
in both cases the same divisor (n− 1 = 40).

In compositional data analysis, principal component analysis (PCA) is commonly performed
using the singular value decomposition (SVD) of the clr-transformed data set (Aitchison
1983). The scores, multiplied by the singular values, are proportional to ilr-coordinates, such
that their variances are proportional to the square singular values. The loadings matrix
contains the clr representation of the principal directions. The last singular value is zero,
as the clr data sum to zero for each data point. Similar features are expected for a PCA
performed on a weighted composition using its weighted clrp transformed values. However,
when the clrp-transformed data set is SVD-decomposed, the square singular values are no
longer proportional to ilrp variances and they do not provide a decomposition of the weighted
total variance. The way proposed here consists of dividing the clrp data previous to SVD, so
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that resulting square singular values add to the total variance.

LetX be a compositional data set in SD; therefore, X is a (n,D)-matrix and n is the size of the
sample. After selecting some positive weights, p, each row of the data matrix is accordingly
shifted and is written as Y = X 	 p. Applying the clrp transformation to each row yields
clrp(Y ). This clrp-transformed data set is centered and weighted with the square-root of the
weights in p, that is

A = [clrp(Y )− (clrp(Y ))] diag(
√
p) ,

where clrp(Y ) denotes the average by columns of clrp(Y ). The SVD of A,

A = UΛV > ,

has the standard properties of an SVD. Among these properties, some of them are reinter-
preted in the compositional framework. The singular values contained in the diagonal matrix
Λ = diag(λ1, λ2, . . . , λD−1, 0) are positive and in decreasing order of magnitude; the last one is
zero due to the property of the clrp(Y ) that the weighted sum of its components adds to zero
(Equation 4). The non-standardized scores UΛ are ilrp-coordinates whose sample variances

are λ2
i /(n− 1). The sample total variance is totVarp(Y ) =

∑D−1
i=1 λ2

i /(n− 1). The D− 1 first
columns of V > contain the contrast matrix corresponding to the ilrp. The loadings are given
by the columns of diag(1/

√
p)V Λ, where diag(1/

√
p) appears to compensate the previous

weighting in A.

A covariance biplot (Aitchison and Greenacre 2002) is a simultaneous projection of U (scores)
and V Λ (loadings) onto two principal directions, usually the first two. The percent of weighted
total variance explained in such a projection is given by

100
λ2

1 + λ2
2∑D−1

i=1 λ2
i

.

This kind of biplots have been obtained for the data set Cat10. Figure 5 shows four different
cases: top-left panel shows the biplot when the reference is p0 = (1, 1, . . . , 1); top-right panel

adopts the weights pi shown in Table 2; bottom-left panel shows the biplot when using p
(sub)
i

also shown in Table 2 (third row). Finally, the bottom-right panel shows the biplot obtained
using the subcomposition of individual parties, excluding “abs”, “nota”, “null”, and “other”,
and using the reference p0 for the subcomposition.

The first impression is that the two biplots in the upper part of Figure 5 appear to be quite
similar, as the main features are preserved. In fact, the clr-variables corresponding to well
defined parties are projected very similarly. For instance, the first principal axis is dominated
by the clr-variables corresponding to C’s on one side, and CiU and ERC on the opposite side,
which can be identified with a balance of non-nationalist versus nationalist Catalan parties;
this fact was previously observed in the weighted variation matrix. The second principal
axis is mainly influenced by the links between PP-ICV and PSC-ICV, leading to identify
the second principal axis with a balance of right versus left wing parties. In fact, the three
parties involved are perceived by electors as right wing (PP), very moderate social-democratic
(PSC) and left wing (ICV). However, when looking at the clr-variables corresponding to down-
weighted parts (abs, null, nota, other), the shortening of the corresponding parts proportional
to
√
pi is apparent. For example, the role of clr-other in the projection has been reduced in

an appreciable way.

In the bottom-left panel of Figure 5, the weights p
(sub)
i (Table 2) have been used in order to

approach a subcompositional analysis of the parties C’s, CiU, ERC, ICV, PP, PSC. As the
rest of the parts are severely down-weighted, they appear as very short rays from the origin
(labels are overlapping). Compared with the subcompositional analysis (bottom-right panel,
Figure 5), it is clear that, exception made of these short rays, the rest is almost identical
in the two bottom biplots. See, for instance, that the total variance of the two cases are,

respectively, 0.7020 (weights p
(sub)
i ) and 0.7016 (unit weights in the subcomposition) and
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Figure 5: Covariance biplots of Cat10 dataset. Top-left panel: uniform reference p0 =
(1, 1, . . . , 1), total variance 1.020. Top-right panel: weights given in Table 2, weighted to-
tal variance 0.836. Bottom-left panel: extreme weighting, given in Table 2, weighted total
variance 0.7020. Bottom-right panel: subcomposition of parties, total variance 0.7016.

the corresponding proportions of explained total variance in the two dimensional projections
are very close. This illustrates the fact, that down-weighting some parts is a path towards
subcompositional analysis.

The fact that the projection changes only slightly from top to bottom of Figure 5 indicates
that most of the variance introduced by “abs” is small (see Table 3) and that of “nota” and
“null” is not well represented in the first and second principal axes. A feature that is clear
in the weighted biplot (top-right panel) is that the link “null-other” is almost parallel to the
second axis and to the link PSC-ICV: the variance of this two log-ratios are mainly included in
the second principal component. The “nota” and “null” votes are quite associated one to each
other across electoral districts as the rays appear almost parallel (see also Table 3). When
they are down weighted (top-right panel) the main effect is that the corresponding rays are
equally shortened as the weights were equal for these two parts.

The so called balance-dendrogram is not discussed here in detail, as the changes to be in-
corporated when using weights are quite obvious. Firstly, a balance-dendrogram presents
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a hierarchical structure describing an SBP, which in the weighted case is identical to the
standard case. The decomposition of the total variance changes quantitatively with weight-
ing, as indicated in Equation 14 (second member). Finally, the position of mean balances is
substituted by the new mean weighted balances. However, the qualitative structure of the
dendrogram remains the same.

The present study of different exploratory tools for compositional data analysis is only pre-
liminary. Details on interpretation and methods to assess weights require further study.

7. Conclusions and further research

A weighting strategy for the analysis of compositions is proposed. It is based on the theory
of Bayes Hilbert spaces. However, some modifications have been introduced to fulfill the
principle of dominance of distances when down-weighting some parts of the composition.
When the weights considered are unitary in each part, that is, when there is no down or
up-weighting, the approach is reduced to the standard compositional data analysis. If some
parts are down-weighted approaching zero, the weighted geometry of the simplex tends to the
ordinary Aitchison geometry of the corresponding subcomposition.

In order to use the proposed weighting approach, it is advisable to deal with compositional
data as usual for linear operations, using the standard perturbation and powering. When
distances or inner products are involved in the analysis, they are computed in two steps:
first, shifting the compositional data by 	p, that is, dividing each part by the corresponding
weight; and second, computing clrp (Equations 3 or 16) or ilrp (Equation 10) to find the
required distances or inner products in a straightforward way.

Statistical consequences of weighting compositions need to be studied in the future. Standard
tools of exploratory analysis, as variation matrix, biplots or balance-dendrogram, clustering
and others, will be influenced by weighting. The reason is that distances between compositions
and computation of variances-covariances are influenced as well. Thus, the proposed weighting
approach is only a first step towards developing effective weighting techniques applicable to
compositional data analysis.
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A. Dominance of distances under change of reference

In Section 4 the following proposition was stated:

Proposition (dominance of distances). Let x1, x2 be two compositions in SD, endowed
with the reference measure P0, which weights are p0 = (1, 1, . . . , 1). Consider two refer-
ence measures, P1 and P2, represented by their respective weights p1 = (p11, p12, . . . , p1D)
and p2 = (p21, p22, . . . , p2D), such that all their components are 0 < pki ≤ 1, for k = 1, 2,

i = 1, 2, . . . , D and Pk(Ω) =
∑D

i=1 pki. Define y
(pk)
j = xj/pk for k = 1, 2 and j = 1, 2. Then,

p1i ≤ p2i, i = 1, 2, . . . , D ⇒ dp1(y
(p1)
1 ,y

(p1)
2 ) ≤ dp2(y

(p2)
1 ,y

(p2)
2 ) .

Proof: The change of reference from p2 to p1 with p1i ≤ p2i, i = 1, 2, . . . , D, can be
conceived as a sequence of intermediate changes of reference for which only one weight p2i

is changed to p1i at each step. These steps can be ordered, for instance, with the index
i = 1, 2, . . . , D. The sequence of weights can be the following.

step initial reference final reference

1-st p2 = (p21, p22, . . . , p2D) to q1 = (p11, p22, . . . , p2D)
2-nd q1 = (p11, p22, . . . , p2D) to q2 = (p11, p12, . . . , p2D)
. . . . . . . . . . . .
i-th qi−1 = (p11, p12, . . . , p1,i−1, p2i, . . . , p2D) to qi = (p11, p12, . . . , p1i, p2,i+1, . . . , p2D)
. . . . . . . . . . . .
D-th qD−1 = (p11, p12, . . . , p1,D−1, p2D) to p1 = (p11, p12, . . . , p1D)

As one weight decreases at each step, the statement is proven if the distance dqi(y
(qi)
1 ,y

(qi)
2 ) is

less than or equal to dqi−1(y
(qi−1)
1 ,y

(qi−1)
2 ), for i = 1, 2, . . . , D, where qD = p1. The i-th step

consists of changing the weight p2i into p1i, while all other weights remain equal. Consider
that ilrqi corresponds to a partition (SBP) that separates the i-th part of the composition

http://dx.doi.org/10.1371/journal.pcbi.1004075
http://dx.doi.org/10.1371%2Fjournal.pcbi.1004075
http://dx.doi.org/10.1371%2Fjournal.pcbi.1004075
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from the other D − 1 parts. For both sets of weights qi and qi−1 all weighted balances are

equal except the first one, denoted b
(qk)
i , k = i− 1, i. Equation 12 implies that

d2
qi−1

(y
(qi−1)
1 ,y

(qi−1)
2 )− d2

qi
(y

(qi)
1 ,y

(qi)
2 )

=
[
b
(qi−1)
i (y

(qi−1)
1 )− b(qi−1)

i (y
(qi−1)
2 )

]2
−
[
b
(qi)
i (y

(qi)
1 )− b(qi)

i (y
(qi)
2 )

]2
. (15)

Using the expression of balances (11), it holds

b
(qk)
i (y

(qk)
` ) =

√
qkin

−
i

qki + n−i
log

y`i∏
j 6=i y

qki/n
−
i

`j

, k = i− 1, i, ` = 1, 2,

where qki = p2i if k = i − 1, and qki = p1i if k = i. Moreover, the values of the parts of the
compositions are y`j = xj/p2j if j < i and y`j = xj/p1j if j > i. As a result, the differences
of balances in Equation 15 simplify to

b
(qk)
i (y

(qk)
1 )− b(qk)

i (y
(qk)
2 ) =

√
qkin

−
i

qki + n−i
log

(
x1ix2i∏

j 6=i(xj/qkj)
qkj/n

−
i

)
,

where the closure constants associated with the change x` = y`⊕qk cancel within the balance,
as it is scale invariant. Remarkably, the logarithmic term does not depend on k, as the weights
qkj , j 6= i, are equal for qk, k = i−1, i. Substituting these differences of balances in Equation
15 it yields

d2
qi−1

(y
(qi−1)
1 ,y

(qi−1)
2 )− d2

qi
(y

(qi)
1 ,y

(qi)
2 ) =

p2in
−
i

p2i + n−i
−

p1in
−
i

p1i + n−i
=

n−i (p2i − p1i)

(p2i + n−i )(p1i + n−i )
≥ 0 ,

since it was assumed that p2i ≥ p1i. This proves the statement. �

B. Relationship between ordinary and weighted clr and ilr

In this appendix the relationship between ordinary and weighted clr and ilr is studied. The
main goal is to prove that this relationship is linear up to additive terms. The expressions ob-
tained are not central in the developed theory but they help to understand how the probability
distributions of random compositions change under change of reference.

Let x be a composition in SD, taken as a density of a measure µ with respect to the uniform
reference measure P0, given by p0 = (1, 1, . . . , 1). An alternative reference measure repre-
sented by the weights p = (p1, p2, . . . , pD) is considered, and the corresponding density of µ
is then y = x/p. The weighted centered log-ratio of y (Equation 3) is

clrp(y) = logy − log(gp(y))1 ,

where gp(·) denotes the weighted geometric mean of the arguments (Equation 3), 1 is a row
vector of D ones and logx, logy and logp are taken as row vectors. Then, log(gp(y))1 is
a row vector with all components equal to gp(y). Moreover, log(y) = log(x) − log(p) and
log(gp(y)) = (1/sp)

∑
pi(log xi− log pi), with sp =

∑
pi. Using matrix notation this leads to

log(gp(y))1 =
1

sp
(logx− logp)p>1 .

Substitution into the definition of clrp(y) yields

clrp(y) = (logx− logp)

[
ID −

1

sp
p>1

]
, (16)
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where ID is the (D,D)-identity matrix. Equation 16 shows that clrp(y) is a linear transfor-
mation of logx up to additive terms depending on p. The ordinary clr(x) can be written

clr(x) = logx

[
ID −

1

D
1>1

]
,

which can be substituted into Equation 16. The resulting expression is

clrp(y) = clr(x)− log(p)− log(gp(x))1 + log(gp(p))1 + log(g(x))1 . (17)

In order to relate ordinary and weighted ilr, assume that ilr-coordinates of x are

ilr(x) = clr(x) Ψ>0 , with Ψ0Ψ>0 = ID−1 , Ψ>0 Ψ0 = ID −
1

D
1>1 ,

that is, Ψ0 is an ordinary contrast matrix (Egozcue et al. 2011). The weighted ilrp-coordinates
are computed as in Equation 10 using the weighted contrast matrix Ψ,

ilrp(y) = clrp(y) diag(p) Ψ> .

Substituting Equation 17 and taking into account that 1 diag(p) Ψ> = 0, it yields

ilrp(y) = (clr(x)− logp) diag(p) Ψ> .

Inserting ID = Ψ>0 Ψ0 + (1/D)1>1 after clr(x), the desired relationship is

ilrp(y) = ilr(x) Ψ0 diag(p) Ψ> − logp diag(p) Ψ> , (18)

which shows that ilrp(y) is a linear transformation of ilr(x), up to additive terms depending
only on p and the selected weighted contrast matrix Ψ.
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