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Llúıs Pacheco for his help with the experimental part of this work.



Publications

The publications derived from this PhD thesis are the following:

Journals
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within an applied mobile robot summer course. IEEE International Conference on

Automation, Quality and Testing, Robotics (AQTR 2008) THETA 16th edition.

Proceedings of IEEE-TTTC International Conference on Automation. Quality &

Testing, Robotics, pp. 310-315 Cluj-Napoca. Rumania. 2008.
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Abstract

Complex systems are often subjected to uncertainties that make its model difficult, if not

impossible to obtain. A quantitative model may be inadequate to represent the behavior

of systems which require an explicit representation of imprecision and uncertainty. As-

suming that the uncertainties are structured, these models can be handled with interval

models in which the values of the parameters are allowed to vary within numeric inter-

vals. Robust control uses such mathematical models to explicitly have uncertainty into

account. Solving robust control problems, like finding the robust stability or designing a

robust controller, involves hard symbolic and numeric computation. When interval mod-

els are used, it also involves interval computation. The main advantage using interval

analysis is that it provides guaranteed solutions, but as drawback its use requires the

interaction with multiple kinds of data making its implementation by control engineers

complicated .

To deal with all these difficulties, in this thesis are presented two main contributions: a

methodology integrated in a solver and a framework, IRCAD, that combines symbolic and

numeric computation with modal interval analysis (MIA) to solve robust control prob-

lems. The methodology used reduces the task of checking the robustness of a controller

to verifying the positivity of the range of a set of functions. The framework IRCAD offers

an interactive environment that allows control engineers to solve robust control problems

using interval analysis (MIA) in a transparent way achieving as main advantages: sim-

plification in the computation of interval functions and semantic interpretation of the

results.
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As example of applicability, the contributions of this thesis have been implemented to

solve the problem of local path following. An intervalar PID controller has been designed

using the framework IRCAD and it has been implemented to a mobile robot.
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Resum

Els sistemes complexes sovint contenen incerteses que fan que sigui dif́ıcil obtenir-ne el

seu model i moltes vegades fins i tot ho fan impossible. Un model quantitatiu pot no ser

el més adequat per representar el comportament de sistemes que requereixen una repre-

sentació expĺıcita de la seva imprecisió i incertesa. Assumint que les incerteses que volem

tractar són estructurades, podem utilitzar models intervalars en els que els valors dels

paràmetres varien dins intervals numèrics. En problemes de control robust és habitual

utilitzar aquest tipus de models matemàtics per poder tenir en compte les incerteses. Un

dels problemes en que ens podem trobar en la resolució de problemes de control robust

com ara trobar l’estabilitat d’un sistema o dissenyar un controlador robust, és que aque-

sta resolució implica un alt cost computacional tan simbòlic com numèric. Si s’utilitzen

models intervalars a més a més caldrà tractar amb computació intervalar. La utilització

de l’anàlisi intervalar permet tractar amb aquests tipus de problemes obtenint solucions

garantides. La desavantatge és que quan treballem amb anàlisi intervalar cal tractar amb

múltiples tipus de dades complicant-se la seva implementació.per part de l’enginyer de

control.

Per tal de tractar amb aquest tipus de problemes, en aquesta tesi es presenten dos ti-

pus d’aportacions: una metodologia implementada en un solver i un framework anomenat

IRCAD que combina computació simbòlica i numèrica amb l’anàlisi intervalar modal (

MIA) per solucionar problemes de control robust. La metodologia implementada redueix

la tasca de testejar la robustesa d’un controlador a la verificació de la positivitat d’un

xvi



conjunt de funcions. El farmework IRCAD ofereix un entorn als enginyers de control que

els hi permet resoldre problemes de control robust utilitzant l’anàlisi intervalar ( MIA)

d’una forma transparent, aconseguint com a principals avantatges: una simplificació en

el càlcul de funcions intervalars i una interpretació semàntica dels resultats.

Com exemple d’aplicació, les contribucions d’aquesta tesi han estat implementades a

la resolució del problema de seguiment de trajectòries. S’ha utilitzat el framework IRCAD

per dissenyar un controlador intervalar tipus PID i s’ha implementat el controlador trobat

sobre un robot mòbil.
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Resumen

Los sistemas complejos a menudo contienen incertidumbres que provocan que la obtención

del modelo sea complicado e incluso muchas veces imposible. Un modelo cuantitativo

puede no ser el más adecuado para representar el comportamiento de sistemas que re-

quieren de una representación expĺıcita de su imprecisión e incertidumbre. Asumiendo

que las incertidumbres que queremos tratar son estructuradas, podemos utilizar modelos

intervalares en los que los valores de los parámetros vaŕıan dentro de intervalos numéricos.

En problemas de control robusto es habitual utilizar este tipo de modelos matamáticos

para poder tener en cuenta las incertidumbres. Uno de los problemas en que nos podemos

encontrar en la resolución de problemas de control robusto como encontrar la estabilidad

de un sistema o diseñar un controlador robusto, es que esta resolución implica un alto

coste computacional tanto simbólico como numérico. Si se utilizan modelos intervalares

además será necesario trabajar con computación intervalar. La utilización del análisis in-

tervalar permite tratar con este tipo de problemas obteniendo soluciones garantizadas. La

desventaja es que cuando trabajamos con análisis intervalar hay que tratar con múltiples

tipos de datos complicándose su implementación por parte del ingeniero de control.

Para tratar con este tipo de problemas, en esta tesis se presentan dos tipos de aporta-

ciones: una metodoloǵıa implementada sobre un solver y un framework llamado IRCAD

que combina computación simbólica y numérica con el análisis intervalar modal (MIA)

para solucionar problemas de control robusto. La metodoloǵıa implementada reduce el

problema de testear la robustez de un controlador a la verificación de la positividad de

xviii



un conjunto de funciones. El farmework IRCAD ofrece un entorno a los ingenieros de

control que les permite resolver problemas de control robusto utilizando el análisis in-

tervalar (MIA) de una forma transparente, consiguiendo como principales ventajas: una

simplificación en el cálculo de funciones intervalares y una interpretación semántica de

los resultados.

Como ejemplo de aplicación, las contribuciones de esta tesis han sido implementadas

en la resolución del problema de seguimiento de trayectorias. Se ha utilizado el frame-

work IRCAD para diseñar un controlador intervalar tipo PID y se ha implementado el

controlador encontrado sobre un robot móvil.

xix



Chapter 1

Introduction

The problem of parametric robust control is presented as background to the research work,

the goals of the thesis are enumerated, and the outline of the work discussed.

1.1 Introduction

The main objective of a control system is to make the output of a dynamic process behave

in a desirable way. The design procedure usually involves a specific or nominal mathe-

matical model of the dynamic process. However, many details of real plant behaviour

cannot be accurately captured within the model, leading to uncertainties.

Usually, high performance specifications are given in terms of the plant model. Thus,

characterisation of model uncertainties should be incorporated in the design procedure

to provide a reliable control system capable of dealing with the real process and assuring

fulfillment of the performance requirements. The term robustness is used to denote the

ability of a control system to cope with uncertainties.

Performance specifications are usually given for the regulation or tracking problem.

The former manipulates the plant input to counteract the effect of output disturbances.

The latter manipulates the input to keep controlled variables close to a given reference

level.
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The motivation for this thesis is how best to facilitate control methods and algorithms

for robustness, design robust controllers, and obtain performance specifications for these

models. These methods require the use of symbolic, numeric, and interval computations.

Uncertainty in complex systems can be represented in many cases by interval models.

To address this diversity, this work uses modal interval analysis (MIA), an extension of

interval analysis that simplifies the computation of interval functions while also allowing

semantic interpretation of the results.

The developed tools are integrated in a framework based on Matlab Simulink [54].

Symbolic computations are carried out using Maple routines [52], while numerical and

interval computations are implemented in C++. The aim was to build an environment

that would allow control engineers to address uncertain parametric systems by accessing,

in a user-friendly way, the developed tool set, even for those engineers who have no

knowledge about interval analysis. The framework includes analysis utilities to test

stability and analyse frequency response using parametric Bode plots, design utilities to

find a set of controllers that fulfill the design specifications, and tools to automatically

select the optimal controller from a list of possible controllers. This selected controller

can then be tested using the pot-design tools included within the framework.

1.2 The parametric robust control problem

Following the linear system of Fig. 1-1, where k is the parameter vector of the controller,

k = [k1k2 · · · kl]T , (1.1)

q is the parameter vector of the process,

q = [q1q2 · · · qm]T ; (1.2)
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Figure 1-1: Uncertain feedback system

and G(s, q) and C(s, k) are the transfer functions of the process and the controller

respectively. We define the uncertainty domains as the box

Q = {q = [q1q2 · · · qm]T |qi ∈
[
qi, qi

]
}. (1.3)

K = {k = [k1k2 · · · kl]T |kl ∈
[
qi, qi

]
}. (1.4)

This system G(s,q), can be defined as extending to the discrete G(z,q) where z is a

complex variable defined for discrete systems, or in state space forms. For the latter

case, state space form, a linear system with parametric uncertainty and static feedback

control was considered [47]. Its form in this case is:

ẋ(t) = A(q)x(t) + B(q)u(t) (1.5)

u(t) = Kx(t)
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where A(q) and B(q) are the space state matrices, x(t) ∈ Rn is the state vector,

u(t) ∈ Rm is the input vector, q is an unknown parameter vector in a compact set

Pq ⊂ Rj, and K ∈ Rm×n is the constant matrix.

This system has parametric uncertainty, i.e., its parameters are unknown. However,

the parameters are bounded and these bounded values may be represented by intervals.

Giving this, design specifications may be formulated in terms of closed loop system

stability and performances in the frequency domain. These specifications, such as band-

width, resonance peak, control effort, etc..., can be described as a set of N inequalities

of the type

fi(ω,q,k) > 0 ω ∈ Ω,q ∈ Q,k ∈ K, i = 1, ..., N , (1.6)

where ω is the frequency variable, Ω is a subset of R+ (usually an interval), and K and

Q are nondegenerate sets.

Robust design may then be formulated as follows: given a controller structure, C(s,k),

the aim is to find the values of k which conform to the robust control specifications. Using

this formulation some control problems can be proposed [88]:

1. Performance checking. Given the uncertain system, G(s,q), and uncertain domain,

Q, the problem is to show the designed controller, C(s,k0), achieves the robustness

specifications from 1.6,

fi(ω,q,k
0) > 0 (1.7)

2. Performance margin computation. Consider the plant, G(s,q), which is described

by a linear time invariant transfer function dependent on the parameter vector, q. The

value of q is known to belong to a box, Π, as a function of its radius, ρ [51],

Π(ρ) =
{
q :
∥∥q− q0

∥∥w
∞ ≤ ρ

}
, (1.8)

where ‖q− q0‖w∞ = maxiw
−1
i |qi − q0i | with q0i are the nominal values of the parameters

and wi > 0 are known weights. The aim is to find the maximal set, Π(ρ∗), so that the

designed controller, C(s,k0), achieves robust performances for all ρ belonging to Π(ρ∗).
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3. Robust controller design. Taking a particular structure for the controller and

specifying the uncertain domain where the parameters of the system Q can vary, find a

fixed structure controller, C(s,k0), such that the controlled closed loop system achieves

the robustness specifications

fi(ω,q,k
0) > 0 (1.9)

4. Obtain the set Kfor the robust controller problem. Given an uncertain plant,

G(s,q), the variation domain of the system parameters, Q, and the controller structure,

find the robust set K which allows C(s,k) to achieve the robustness specifications

fi(ω,q,k) > 0 (1.10)

5.Estimate the stability region problem for a given k0. Construct a set of all the

regions, ρ, giving closed loop stability given k0.

The framework allows us to deal with all these problems offering the control engineer

a useful environment to work with intervals in a transparent way.

1.3 Goals

The main goal of this thesis is to build a framework for robust control analysis and de-

sign, to deal with systems that involve uncertain parametric models with the parameters

modelled by intervals.

Obtaining a precise model for a physical system is difficult, and when available it is

often too complicated to be useful in a control context. Thus, an interval parametric

model is necessary to formulate such problems as robustness analysis, robust control

design, interval simulation, and controller implementation.

The developed framework, the Interval Robust Control for Analysis and Design (IR-

CAD), addresses uncertain parametric systems and allows engineers user-friendly access

to the control tools and methods. The goals of the thesis were achieved using interval
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analysis in a transparent way, and applied it to systems that involve uncertain paramet-

ric models, with the parameters modelled by intervals. IRCAD provides a user-friendly

environment to facilitate control engineers working with systems that involve intervals.

1.4 Outline of the Thesis

The thesis is structured as follows:

• Chapter 2: Interval analysis approach to robust control.

Reviews the literature concerned with the application of interval analysis meth-

ods to problems of control and overviews the most representative works. It also

describes frameworks that address robust control problems.

• Chapter 3: Robust control via modal interval analysis.

A short introduction to MIA and its implementation to improve outcomes for robust

control problems.

• Chapter 4: Parametric solver based on modal interval analysis.

The first contribution of this thesis. Algorithms based on MIA are presented and

the methods and tools generated to create a solver based on MIA that solves robust

control problems are described.

• Chapter 5: Parametric framework for robust control .

The second contribution of this thesis. The proposed parametric framework (IR-

CAD) to solve robust control problems is described. The framework uses MIA

based algorithms in a transparent way to achieve improved results on complex

robust control problems.

• Chapter 6: Design example using IRCAD.

Selected robust control problems with high complexity in both analysis and design

are addressed using the proposed framework.
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• Chapter 7: Applications of IRCAD to mobile robot control design.

Presents experimental work applying a control system developed with the IRCAD

framework to a mobile robot (PRIM) to an application of local path following.

• Chapter 8: Conclusions and further research.

Concludes the thesis, summarizing the work described, provides concluding re-

marks, and some proposals for further research.
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Chapter 2

Interval analysis approach to robust

control

We present an overview of approaches using interval analysis to treat the problem of para-

metric robust control, and approaches of computer aided control system design (CACSD)

providing a comparative analysis of these.

2.1 Introduction

This chapter concentrates on the major developments of interval analysis to robust control

problems. Robust control has generated a number of new research areas over the last few

decades. Faedo [18] first proposed stability analysis for uncertain coefficient polynomials.

However, his work is not considered an antecedent for the current work, because he did

not consider interval arithmetic. Misra [56] presented the first study of robust analysis

using interval analysis as a tool.

When setting the problem, it might be interesting to go back to Dorato [14], in

which, although none of the works summarized there are based on parametric methods,

Kharitonov polynomials are introduced. A definition of robust control can be extracted

from this work as being the problem of analysing and designing precise control systems
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given plants which contain significant uncertainties. Dorato and Yedavally [15] used

parametric methods, following Kharitonov’s results. Approaches in this field fall primar-

ily into two methods: polynomial and parametric methods. are Many researchers (e.g.

[7, 1, 9, 13]) have developed methods based on Kharitonov’s polynomials.

Interval arithmetic extends computation on real numbers to intervals in a natural

and intuitive way and is the natural tool to use when dealing with interval models. The

basis for the tool can be found in Moore [57, 58], followed by Alefeld [3]. As a result of

maturing interval analysis in the mathematical field, applications have been subsequently

developed using this tool, e.g. Hansen[34] suggests global optimization.

Time interval analysis was a well-established tool by 1990, and has been applied to

different control problems in all applied control fields. Thus, applications of interval

analysis to robust control have arisen, and, following the same evolution as paramet-

ric methods, the approaches were mainly centered on analysis with some later works

considering design.

This chapter discussed the most relevant methods used to apply interval analysis to

robust control. The increasing number of studies across many control fields testifies to

the importance of this field.

The last section of this chapter is centered on analysing the existing CACSD to solve

robust control problems.

2.2 Applications of interval analysis to robust con-

trol

The approaches to interval analysis for robust control fall into four groups: three gen-

eral control fields (parameter space, frequency, and discrete time methods), and ”other

applications”, which includes those that do not fit in any of the other three groups.
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2.3 Parameter space methods

The first approaches to robust stability under real parametric uncertainty, following the

introduction of Routh Hurwitz’s theorem, suggested that robust control problems for real

parametric uncertainties could be approached without conservatism or overbounding.

However, later works offered a more realistic vision of these approaches.

The main feature to consider when analysing parametric approaches is that the struc-

ture of the model to be treated should to be given. These structures can be expressed in

terms of a difference or differential equation of fixed order, or in terms of vector space.

Development of algorithms and tools to solve some classical control problems using para-

metric space approaches, implied a required preliminary task transforming the parameter

space model to interval functions. The transformed problems could then be solved using

parametric theory. Thus, we must consider the computation of the parametric stability

margin over a given uncertainty set, which in turn is a measure of the robust performance

of the system.

Another common control aim is to check the stability and its solution inside the pa-

rameter space. Some applications can also be found in the design field. Parameter spaces

of the controller are explored, finding the regions which fulfill a control specification, to

identify a controller that satisfies it.

The statement of the parametric robust control problem is introduced in section1.2.

Studies in this field have classified the parametric robust control problem into four main

categories: robustness analysis, robust design, state space, and the H2/H∞ approach.

These categories are below.

2.3.1 Robustness analysis

The parametric approach to robust stability analysis has received a great deal of attention

in the past few years. Piazzi et al. [75] had already conducted a survey based primarily

on robust stability. Several other approaches illustrate these problems. Walter et al. [94],
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proposed that characterization of the stability domain can be approached as a problem

of set inversion which can be solved with interval analysis tools. Garloff et al. [25],

proposed an algorithm which relies on the expansion of a multivariate polynomial into

Bernstein polynomials and was based on the inspection of the value set of the family of

polynomials on an imaginary axis. Jaulin et al. [39] used interval analysis to develop

an algorithm that proved the feasible set is included in the stability domain. Malan

et al. [51] provided an approach to finding global minima of multimodal optimization

problems. They proposed a Bernstein branch and bound algorithm (B3), which provided

an efficient and simple way to check if the polynomial reached its minimum on one of

the vertices of the domain. However, while many approaches to robustness analysis have

been developed, none of them have been illustrated with examples.

To conclude this section, an approach proposed by Didrit et al. [12] is presented

and their work will be used to illustrate the approaches presented above. The concept

underlying this example is to show the performance and the limitations of branch and

bound algorithms, including modifications based on modal intervals to improve their

effectiveness in non-monotonic regions [89, 88].

Example 1 Given the third-degree uncertain polynomial,

p(s, q) = 2 + r2 + 6q1 + 6q2 + 2q1q2 + (2 + q1 + q2)s+ (2 + q1 + q2)s
2 + s3,

We classify the parameter space in unstable regions, as regions with stability between 0

and 0.1, and regions with stability greater than or equal to 0.1.

The condition of stability greater than a is obtained by substituting s with s =

−a+ jα, α ≥ 0 in the characteristic polynomial and applying the classic Hurwitz test,

F (q) = −14q2a− 14q1a− 32a2 − r2 + 8a3 + 2q22a+ 4q1aq2 (2.1)

−8q1 + 24a+ 32 + q21 + q22 + 2q21a+ 8q1a
2 + 8q2a

2 − 8q2 > 0.
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For a = 0 and a = 0.1, the stability conditions are

32− r2 − 8q1 − 8q2 + q21 + q22 > 0, (2.2)

respectively, and

1.2
(
q21+q22

)
+34.08−9.32 (q1+q2)−r2+0.4q1q2>0. (2.3)

To calculate the absolute stability region (stability 0) and the region which reaches sta-

bility 0.1, a branch and bound algorithm based on modal intervals is used, analysing two

functions and generating four linked lists:

1. Unstable regions

2. Regions with stability between 0 and 0.1

3. Regions with stability greater than 0.1

4. Residual rectangles.

Figure 2-1 shows the results from an algorithm built on structures of algorithms based

on modal intervals. In Fig. 2-1 (a), the outer region has stability greater than 0.1 and the

inner region is unstable, whereas regions in the intermediate zone have stability between

0 and 0.1.

The particular case r = 0 is shown in Fig. 2-1 (b).The unstable region of parameter

space is a point. Thus there is a single, unique, unstable polynomial.

Note that, contrary to other methods, modal interval algorithms do not omit the

unstable point, as there is an undetermined region around it.

2.3.2 Robustness design

In terms of robustness design, the number of approaches is still very limited and they

largely concentrate on controller design. To illustrate this problem, we present an example
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Figure 2-1: Stability regions. (a) r = 0.5. (b) r = 0

suggested by Fiorio et al. [21], and later studied by Malan et al. [50], with the aim of

tuning a PI ( Proportional Integral) controller for an interval plant. Fiorio proposed a

method based on Bernstein’s polynomial expansion for the problem of designing robust

controllers of fixed structure dependent on some free design parameters. Modal intervals

have also been applied to this example [88]

Example 2 The plant is described by the transfer function

G(s,q) =
q1

1− s
q2

, (2.4)

where q1 and q2 are the uncertain parameters remaining inside an interval qi = [0.8, 1.25].

The PI controller is

C(s,k) =
k1

(
1 + s

k2

)
s

, (2.5)

where k = [k1 k2]
T is the design parameter vector.

The design aim is to find the parameter set, K, of the controller that completes the

performance specifications

1. Closed loop stability.
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2. Velocity error less than 2%.

3. Control effort less than 20.

4. Resonance peak of the closed loop transfer function less than 3 dB.

Given the initial range, Kinit, as a starting point, the algorithm computes the set of

controllers, K, which fulfill the performance specifications ( Fig 2-2).

a: absolute stability b: velocity error

c: resonance peak d: control effort

Figure 2-2: Feasible regions
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In this example, the regions of the feasible controllers for each of the specifications

are computed separately.

The parameter space region of the feasible controllers is the intersection of the four

regions determined by application of the four different specifications, as shown in Fig. 2-3.

The application of coercion theorems from MIA reduces computation time for the

most complex case to less than half.

Figure 2-3: Region of feasible controllers

Malan et al. [50] provided and overview of some of the main interval mathematical

algorithms to test their efficiency on several problems, such as robustness design. Fiorio

and Malan[21] directly considered the presence of parametric perturbations, which has

not been treated by many authors. Piazzi et al. [77] proposed a feedforward/feedback

synthesis design with the aim of minimizing the worst case settling time relative to the

transition. This method used feedback to reduce the sensitivity to parametric uncertain-

ties, and then system inversion to obtain a reference input corresponding to an arbitrarily

smooth output without oscillations. From there, it is only necessary to solve a simplified

optimization problem to complete the design.

15



2.3.3 State space

Misra [56], is considered as the first use interval arithmetic in an explicit form to study

stability analysis. He proposed the problem of finding the state feedback vector that

achieved stability for an interval coefficient polynomial.

A SISO (Simple Input Simple Output) system, represented by a transfer function,

g(s) = n(s)/d(s), can be described as the controllable realization

ẋ(t) =



0 1 · · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1

−a0 −a1 · · · −an−2 −an−1


x(t) +



0

0
...

0

1


u(t), (2.6)

y(t) =
[
b0 b1 · · · bn−2 bn−1

]
x(t),

where ai and bi are the i-th order coefficients of the numerator and denominator, respec-

tively. Because this system is controllable, a control u(t) = −kTx(t) will always exist,

which gives the closed loop system the desired eigenvalues. Therefore, given an interval

polynomial,

d(s) = [a0, a0] + [a1, a1]s+ [a2, a2]s
2 + · · ·+ sn; (2.7)

and a state feedback polynomial, kT =
[
k0 k1 · · · kn−1

]
; the characteristic closed

loop polynomial will be

dCL(s) = [1, 1]sn + [an−1 + kn−1, an−1 + kn−1]s
n−1 + · · · (2.8)

...+ [a0 + k0, a0 + k0].

The solution proposed by Misra uses Routh’s table for the feedback interval poly-
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nomial and computes the elements of the first column via the evaluation of its natural

extension. Computing the elements of Routh’s table using interval arithmetic overes-

timates the exact range, so sufficient conditions for stability are obtained. To find the

natural extension of the Routh table elements, Misra used symbolic computation. A

sufficient condition for stability is that the lower bounds of the interval result for the

first column be all larger than zero. This gives a nonlinear system of algebraic inequal-

ities that, if they have a solution, yield k. If the system has no solution, this does not

necessarily mean that k does not exist, because of overestimation when computing the

elements of Routh’s table.

Thus Misra addresses a problem with many restrictions, but only considers the case

of polynomials with interval coefficients and, hence, only obtains a partial solution. That

is, it is not certain that a state feedback vector stabilizing the plant will be found, even

if such a feedback vector exists. The problem can be solved more simply using the

Kharitonov theorem. However, this is only a starting point based on an interval form

from Faedo’s proposition [18].

Another interesting approach, following the same approach on state space but more

general than Misra’s, was proposed by Kwon and Cain [47, 48]. They consider the

problem of finding a state feedback vector for an uncertain system with two matrices, A

and B, which depend on an uncertain parameter vector.

They proposed a linear system with parametric uncertainty and a static state feedback

control, given by

ẋ(t) = A(p)x(t) + B(p)u(t) (2.9)

u(t) = Kx(t),

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input vector, p is an unknown

parameter vector and K ∈ Rm×n is the constant matrix. The purpose is to find a constant

matrix which can stabilize the perturbed system against all parametric perturbations over
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a variation domain, Q.

By letting k = vec(K), and calling g(k,q) the vector formed by the coefficients of

the characteristic polynomial, Kwon and Cain show that the problem of robust pole

location is equivalent to finding a vector k∗, such that g(k,q) > 0, ∀q ∈ Q. The problem

can then be formulated and solved as an NP-hard optimization. The algorithm used to

implement this optimization was based on interval analysis and the theory of semi-infinite

programming. Although the algorithm can be theoretically applied to any nonlinear

dependency between the uncertain parameters and the coefficients of the plant, in the

Kwon and Cain example, the uncertainty exists only in the A matrix and as an interval

form.

2.3.4 H2/H∞

To treat problems in the context of a state space description of the process, researchers

have proposed to cast them in an H2/H∞ optimization framework. Classical techniques

are usually applied to solve these, such as the Ricatti equation. Searching for more

innovative techniques to solve H2/H∞ fixed structure controller design problems leads to

a design method based on a global optimization approach to a single input, single output

(SISO) H2/H∞ problem. Another approach based on unity feedback systems and genetic

procedures can also be usefully applied.

Optimal H2/H∞ controller design aims to find a k∗ such that a feedback controller

C(s; k∗) internally stabilizes the plant while minimizing a nominal H2 cost, subject to

the robust closed loop stability constraint, (H∞).

With the aim of determining a global minimizer, k∗ , an effective option is a global

optimization algorithm with hybrid features. This is based on a genetic algorithm at the

upper level and an interval procedure at the lower level to handle semi-infinite constraints.

Another possibility is to use a technique based on the partially elitist genetic algo-

rithm. Using this method, computation of some terms makes a special interval procedure

necessary, i.e., a deterministic algorithm that uses concepts of interval analysis. An al-
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gorithm of this kind was presented by Guarino et al. [26].

Considering the problem of calculating compensators, Weinhofer et al. [96] presented

a new H∞ approach that, after converting the original problem into a suboptimal Nehari

problem, builds the compensator using interval arithmetic to avoid numerical problems.

Thus, it obtains a precision bound on the results, i.e., each result lies within a known

interval. This approach uses frequency domain methods for the design process which offer

a minimal degree for the compensators. Consequently, a numerically stable design tool

was presented [30]where the obtained interval could be adjusted dynamically, making it

possible to calculate results with a predefined precision.

Haas et al. [32] proposed an approach for the case of design methods for H2 compen-

sators (two parameter compensators) for linear multivariable plants. The aim of these

methods was to find an optimal fixed structure controller that minimizes a nominal H2

cost. The proposed method had two main advantages over most published H2 design

methods: decoupling of the design of reference tracking and disturbance rejection, and

optimization of a cost function with respect to non-square integrable deterministic sig-

nals. Interval arithmetic was introduced to obtain a bound on the precision of the results.

This makes it possible to avoid numerical obstacles and obtain a numerically stable design

tool.

Once approaches H2 and H∞ were proposed, a mixed study between H2 and H∞ was

presented by Guarino et al. [29], where they proposed a solution to a H2/H∞ fixed-

structure controller design problem via a global optimization approach. To implement

this approach, a necessary preliminary step was to convert the H∞ constraint into a

semi-infinite inequality over a real bound interval. Thus, the optimization problem was

reduced to a bound constrained problem. To solve this new problem, the genetic/interval

algorithm [26] was proposed. In a previous study by these authors [27], interval analysis

was also applied to a global optimization problem. In that case, via an ad hoc interval

procedure incorporating concepts of interval analysis to obtain convergence with certainty

within the specified numerical tolerance.
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The approach by Haas et al.[30], presented a control toolbox which implemented the

most common algorithms used in the frequency domain. Thus, its implementation is

relevant to all the approaches presented above.

2.4 Frequency methods

Another approach to the robust control of parametric models consists of frequency meth-

ods. Classical frequency control has been largely focused on the frequency domain prop-

erties of control systems and design methods based on simple but powerful graphical tools

such as the Nyquist plot, Bode plots, and the Nichols chart. For multivariable systems,

it is necessary to extend these classical methods to families of polynomials.

The family of polynomials is

P (s,K) = {p(s, k) | k ∈ K}, (2.10)

which in turn have been generated by an uncertain polynomial

p(s, k) = a0(k) + a1(k)s+ a2(k)s2 + · · ·+ an(k)sn, (2.11)

where a0(k), a1(k), ...., an(k) are real and dependent on a constant but unknown real

parameter vector, k = [k1k2 · · · kl]T . Independent bounds are in the form ki ∈ [ki, k̄i] for

parameter. Consequently, the set of possible parameter vectors is

K =
{
k = [k1k2 · · · kl]T | ki ∈ [ki, k̄i], i = 1, 2, ..., l

}
. (2.12)

For robust analysis of multivariable systems in the frequency domain, the number of

parameters increases, and new methods must be found. In these cases the complex value

taken by a polynomial when it is evaluated at s = jw will be called its value at frequency

w. Computing and plotting the value of a polynomial for all non-negative frequencies
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creates the polynomial frequency plot. The most representative methods in this sense

are based on these parameterized sets and their aim is to determine the complex plane

images of the sets.

Two methods are presented to generate the sets. In the first method the sets are

called value sets and the proposed problem to be solved is value set computation. In the

second method the sets are called templates and the objective is to solve the template

generation problem and is studied as a QFT problem.

2.4.1 Value sets

Some gridding approaches have the drawback of the length of time it takes to compute

the set of frequency plots. An alternative and faster technique [1], is to compute the

frequency plot, p(jw,k) , w ≥ 0, for each k on a grid of K. That is, to compute the value

set for each w on a grid of frequencies from 0 to +∞,

P (jw,K) = {p(jw,k) ∈ C | k ∈ K}. (2.13)

The value set problem is usually considered as a graphical control tool for analysis

using frequency plots, and a analysis problem is checking stability. In the case of a family

of polynomials, the stability test is based on repeating the construction of the value set

for a grid of frequencies to give the set of all possible frequency plots. The collection of

value sets would then indicate stability or instability depending on how the zero exclusion

theorem is formulated.

Theorem 1 (Zero exclusion). Given a polynomial family

P (s,K) = {p(s, k) | k ∈ K}. This set is robustly stable if and only if

1. A stable polynomial p(s,k) ∈ P (s,K) exists and

2. 0 /∈ P(jw,K) for all w ≥ 0.
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Ackermann [1] presents three methods for robust stability analysis. The first checks

stability with a root set construction, and can only be approximated by use of a suffi-

ciently accurate parameter set grid, which is effective despite the drawback of a too high

computational time. The second is an algebraic approach which provides a useful tool,

but has the disadvantage of excessive complexity in computation which may occur even

when the uncertainties are relatively simple in form. With the third method, the pa-

rameter space approach, the main difficulty is the need to deal with singular frequencies.

Even though the graphical information concerning stability is very appealing and highly

informative, its application is restricted to two uncertain parameters.

Some authors have focused their studies on finding methods which allow the value

sets to be expressed in a form that made it possible to apply the zero exclusion theorem

simply. Otha et al. [66] introduced polygon interval arithmetic (PIA). This powerful

tool solves robust controller design (and robust stability analysis) more efficiently than

other classical methods. Ohta et al. [67] subsequently proposed an improvement on this

tool to reduce computing time. In the same year, Ohta proposed two design methods as

applications of PIA. The first [71] was based on the gain phase shaping approach, with the

main advantage of guaranteeing the worst case performance. The second [68] proposed a

method of computing an almost exact gain margin. Another field of control where Ohta

applied PIA was efficiently solving zero exclusion problems [69], where PIA was used to

estimate the value sets of multi-linear functions. Ohta et al. [70] subsequently proposed

an extension called non-convex polygon interval arithmetic (NPIA), where the arithmetic

was defined within the set of all polygons in the complex plane.

It is very useful to compute estimates of value sets of transfer functions including

uncertain physical parameters in a reasonable computing time. Ohta et al. [72], in a

more applied paper, proposed a method to compute a region of parameters of a PID (

Proportional Integral and Derivative) controller which guarantees robust stability and

several robust performances for systems with uncertain parameters. Again in the field of

PID controllers, Ohta et al. [65] address the design of a two degrees of freedom robust
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PID controller by solving minimization problems. Since in this last approach the obtained

regions are not convex, set operations are used to compute level sets of the minimization

problems.

For nonlinear control systems with uncertain parameters and constant reference inputs

(Lur’e systems), the possibility of a shift in the equilibrium state or loss of stability

increases. Wada et. al [93] check conditions for parametric absolute stability for this

case by computing value sets using the PIA algorithm, because it significantly simplifies

computation.

Other approaches have been focused on more applied fields. For example Hedrich et al.

[35] formulated a possible verification technique of linear analog circuits with parameter

tolerances based on a curvature driven bound computation for value sets using interval

arithmetic. The advantage of this tool compared to other studies that also compute

performance characteristics from an actual circuit and compare this to specifications, is

the capability of an exact test of the correctness of the design.

2.4.2 Quantitative feedback theory

While value sets are largely concerned with analysis, when the aim is finding a com-

pensator to satisfy design specifications, quantitative feedback theory (QFT) is the most

important frequency approach. This can be considered as a natural extension of clas-

sical frequency domain design approaches. One of the main objectives is to design a

simple low order controller where the bandwidth of the feedback controller is as small as

possible. For a fixed frequency, the plant’s frequency response set is called a template.

In the bound generation step of QFT design procedure, the plant template is used to

translate the supplied robustness specifications in domains in the Nichols chart where

the controller gain phase values are allowed to lie.

To perform frequency response analysis and design incorporating robustness with

respect to parameter uncertainty, we need to be able to determine the complex plane

images of various parameterized sets.
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For QFT, the sets are called templates and the problem of computing the template at

a given frequency is the template generation problem. Plant uncertainty is represented

as a template of possible complex values of the plant transfer function, G(jw), at a given

frequency, w. The actual loop gain at any given frequency is a set of values given by the

nominal gain plus the template of possible plants. The solution is then based on shaping

the nominal loop gain so that the feedback system stays robustly stable and satisfies

various design objectives, such as input-output accuracy and/or noise rejection, among

others.

In several applications of QFT, templates of non-rational transfer functions must be

numerically generated. Sardar et al. [80] proposed an algorithm to generate templates

of uncertain non-rational transfer functions which avoids the requirement of rational

transfer function approximation. Nataraj et al. [60] introduced an algorithm based on

the Moore-Skelboe global optimization technique of interval mathematics to generate

Bode plot envelopes for uncertain transfer functions. Subsequently, Nataraj et al. [61]

proposed quadratic constraint (QC) algorithms for computing QFT bounds to achieve

robust sensitivity reduction and gain phase margin specifications. These algorithms im-

prove on existing algorithms where discrete controller phase values are used, and can

generate bounds over intervals of controller phase values solving the difficulty that, at

the non-selected phase, the bound values are not actually computed. Thus, Nataraj et al.

[62] proposed algorithms which use interval analysis to build plant templates, achieving

important improvements, including reducing safety problems associated with the phase

discretization process in QFT bound generation, and improving the security of computed

results. Moreover, they can generate bounds over intervals of controller phase values, as

opposed to just the discrete controller phase values of existing algorithms.

24



2.5 Discrete time control

The processes are generally assumed to use continuous time. However, the ever increasing

availability of computers has allowed breaking the processes into discrete time models

for many domains. Numerical simulation of discrete time models is much simpler and

quicker, which makes them well suited to real time process control. However, they may

engender some loss of information on the behaviour of the underlying continuous time

system.

It should be noted that since discrete time models are simpler to simulate numerically,

it is possible to push the experimental study of their properties much further. On the

other hand, they impose constraints on measurement times, which must correspond to

the discrete times for which the model output is computed, and they may hide oscillations

of the associated continuous time system. Furthermore, their parameters generally do

not have any clear physical meaning. In particular, the parameter values of a model

obtained by discretizing a continuous time model depend on the sampling period chosen.

Some known issues with discrete time models are:

• Model conversion.

Conversion is needed in both senses, from a continuous time interval state space

model to a discrete time interval model and vice versa.

• Schur stability test.

The problem of checking the stability of a discrete- time system is reduced to deter-

mination of whether or not the roots of the characteristic polynomial of the system

lie strictly within the unit disc, i.e., whether or not the characteristic polynomial

is a Schur polynomial. If

P (z) = pnz
n + pn−1z

n−1 + ...+ p1z + p, (2.14)

where zi are the n roots of P (z), then, if P (z) is Schur, all these roots are located
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inside the unit circle, |z| < 1, so that when z varies along the unit circle, z = ejθ,

the argument of P (ejθ) increases monotonically. For a Schur polynomial of degree

n, P (ejθ) has a net increase of argument of 2nπ, and thus the plot of P (ejθ) encircles

the origin n times. This can be used as a frequency domain test for Schur stability

[8]

• Non-linear discrete-time control of uncertain systems.

This problem can be formulated as: Find one c,

c ∈ Sc = {c ∈ C | ∀p ∈ P, f(c, p) > 0}, (2.15)

where f is a vector function that can be evaluated using algorithms based on interval

analysis. This problem is both quite complex because it involves a quantifier, and

at the same time very simple because the only objective is to find a single feasible

vector. This makes the consideration of a larger number of tuning parameters

corresponding to the guaranteed tuning problem [42] possible. Thus it is possible

to combine nonlinearity and structured uncertainty with guaranteed results.

• Robust analysis.

Given a plant assumed to be described by the uncertain discrete time transfer

function [91]

G(z−1, q) =
B(z−1, q)

A(z−1, q)
=
b1(q) z

−1 + b21(q) z
−2 + · · ·+ bm(q) z−m

1− a1(q) z−1 − · · · − an(q) z−n
, (2.16)

which depends on a structured perturbation characterized by (1.1)- (1.4) .

MIA [23] can be introduced here, showing that incorporating it in the analysis of the

robustness of predictive controllers allows us to convert the robust stability problem

into a problem of checking the positivity of a rational function, i.e., a problem where

the aim is to verify the positiveness of the range of a set of functions.
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• Modelling uncertainties through interval values.

Consider the plant to be controlled is described by the nonlinear time-varying state

space model [10]

x(k) = f(x(k − 1), u(k)p(k)) (2.17)

y(k) = g(x(k)),

where u(k) is a vector of inputs or manipulated variables, x(k) is a vector of state

variables, p(k) is a vector of uncertainties, and y(k) is a vector of controlled variables

or outputs.

The problem to be solved at each sampling time may be stated as

min
u

J(u(k), y(k), w(k), θ(k)), (2.18)

subject to

C1(u(k)), C2(y(k)), C3(θ(k)), (2.19)

where J is an objective function over a finite control horizon, w(k) is the set point

sequence, and Ci(k) are sets of nonlinear constraints.

Thus, the problem to be solved is defining u(k) in an interval mathematics form so

that it minimizes J while satisfying the sets of constraints Ci(k).

• Guaranteed characterization .

The aim is to achieve guaranteed characterization [43] of the set of all possible

solutions in a nonlinear and discrete time context. A control sequence, v, of length

m is feasible if

g(v) ∼= f ( f (· · · (f(x(0), u(0)), · · · ), u(m− 2)), u(m− 1)) ∈ Xt. (2.20)
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Thus, the set of all feasible input sequences of length m is

V = g−1(Xt), (2.21)

where g−1 is the reciprocal function of g in a set-theoretic sense. If f is polynomial

in x and u, then g is polynomial in v. When Xt is a singleton solving (2.21) for V ,

the problem is to find all the solutions required for a set of polynomial equations

with several unknowns.

Methods of model conversion, from a continuous time uncertain system to an equiv-

alent discrete time interval model, have not yet been thoroughly established. Shieh et

al. [82] proposed an approach converting from a continuous to an enclosing discrete

time interval model which used an interval arithmetic tool and its inclusion theorem to

avoid numerical problems. They also focused on the digital redesign process consisting

of converting a designed continuous time controller into an equivalent discrete time con-

troller. This is not a trivial problem because hybrid control specifications for sampled

data uncertain systems are difficult to predetermine and the closed loop inter-sampling

behaviour is difficult to control. However, with this new method, they achieved very

good results because a digital controller may need redesigning to modify the sampling

period to achieve robust stability of the system.

In a further study, Shieh et al. [83] proposed a method whose function is exactly the

inverse of the previous one [82], i.e., a method to convert a discrete time into an equivalent

continuous time uncertain model to ensure that well-developed analog robust control

techniques can be applied to the converted analog model for indirect robust control of

sampled data uncertain systems. Interval analysis was also used for the construction of

the proposed procedure based on an interval geometric series method.

The robust Schur stability problem is introduced in Section 2.2 of this thesis, as a

problem of discrete time domain. An approach was proposed by Garloff et al. [24], in

which they consider the robust Schur stability of polynomials with coefficients depending
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polynomially on parameters varying in given intervals. They proposed an algorithm based

on Bernstein expansion of the symmetric and anti-symmetric parts for the polynomial

family to obtain verification of stability.

Many design problems, including control and signal processing, can be formulated

within the framework of guaranteed tuning. Jaulin and Walter [42] considered guaranteed

tuning and proposed a prototype numerical algorithm based on interval analysis. This

was a very useful tool in this case, because the algorithm must characterize sets defined by

inequalities, and for this function interval analysis is the best tool. Thus, these problems

can be solved in a guaranteed way.

Because interval analysis is a useful tool to solve problems of set characterization in-

volving optimization, the same authors[43] computed all the sequences of controls driving

a deterministic nonlinear discrete time state space system from a given initial state to a

given desired set of terminal states. Interval analysis provides guaranteed characteriza-

tion of the set of all possible solutions in a nonlinear discrete time context. This method

takes into account nonlinearities such as saturations and thresholds.

Concerning robustness in the discrete time domain, Vehi et al. [91] applied interval

techniques to the analysis of robustness of predictive controllers. The basic tool was MIA

[23]. The authors based their approach on the affirmation that checking the robustness

of a predictive controller is equivalent to verifying the positiveness of the range of a

set of functions. As some studies show (referenced in [91]), robust stability and most

robust performance problems can be stated in this form. Therefore, methods to study

the positiveness of functions are essential tools for robustness analysis. The positivity

conditions can be expressed using modal intervals, but the preliminary step of presenting

the uncertain domain as a suitable set of modal intervals is required. Formulating the

problem in this way simplifies the evaluation of interval functions by taking advantage

of monotonicity.

Model Predictive Control (MPC) is one of the most popular control strategies. An

improved MPC strategy was proposed by Bravo et al. [10], called interval model pre-
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dictive control (IMPC). This approach appeared to complete the MPC strategy in the

case where the process or the constraints were nonlinear or the cost function was not

quadratic. To solve these special cases, global optimization algorithms, which use inter-

val analysis, were introduced as the best tool. Giving a plant described in the discrete

domain, IMPC strategy can be used in a large number of cases, including linear and

nonlinear models, linear and nonlinear constraints, quadratic or non-quadratic objective

function(s), and bounded uncertainties, to name a few.

2.6 Other applications of intervals

Not all control problems concerned with robust control have been treated. Some other

problems have also been analysed in the literature, showing how interval analysis can be

a very useful tool.

As stated in Section 2.2, there are a few other problems that do not fit with any

of the control subjects discussed up to now, but also use interval analysis. Estimation

of unknown parameters of a model, and gain scheduling problems are two important

subjects in that context. Rather than just theoretical problems, there are a number

of practical examples of applied control problems (robotics) which show how interval

analysis can be a very useful tool when applied.

2.6.1 Estimation

Bounded error parametric estimation approaches have been promoted over the last decade,

largely because

• these approaches can address deterministic structural errors not adequately de-

scribed by random variables, and

• they are well suited to the guaranteed characterization of parameter uncertainty.
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Some researchers have based their approach to these control problems on applying

interval techniques to obtain improvements over classical methods. For example, Walter

and Pronzato [95] propose the criteria:

Given a model structure, one problem is the choice of the criterion to be

optimized in order to find the best model in the class be defined. That is to

say, the criterion for this selection is the optimization of a scalar cost function

j(ρ) with respect to the model parameters p.

Some classic approaches for comparing parameter values are based on criteria includ-

ing

• Least squares.

• Least modulus.

• Maximum likelihood.

• Maximum a posteriori (minimum risk).

Using any of these methods provides an estimator. An estimator is said to be robust

if its performance does not deteriorate significantly when the base hypotheses are not

completely satisfied. Some approaches to obtain robust estimators have been studied in

[95].

Following the same line of study, Jaulin and Walter [40, 41, 44] followed this approach

and cast nonlinear bounded error estimation into the framework of set inversion, and pro-

posed a solution algorithm incorporating interval analysis. They expressed the problem

as the estimation of unknown parameters of a model from experimental data collected on

a system under known experimental conditions. Solving this problem as a set inversion

problem is relatively easy when the model output depends linearly on the parameters to

be estimated. However, the nonlinear case is much more complicated, and the tools pro-

vided by interval analysis seem very promising because they provide guaranteed global
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results. Another important feature of interval analysis for set inversion is the capability

of rapidly eliminating large portions of the parameter space before concentrating on the

indeterminate region. Thus, the method is interesting as an initial procedure before using

more local approaches. Set inversion via interval analysis (SIVIA) [44] was proposed as

an adapted algorithm from [40], and characterizes the set of all values of the parameter

vector to be estimated which in turn are consistent with the hypotheses:

• The error between the model output and output data which should lie between

some prior bounds.

• The factors characterizing the experiments already carried out are uncertain, and

should also lie between prior bounds.

Using this approach, convergence analysis shows that in almost any situation, the set

of feasible parameter vectors can be characterized with accuracy that is only limited by

the effect of rounding.

Jaulin et al.[38] applied interval analysis to bounded error parametric estimation for

discrete event systems (DES), whose behaviours are governed by occurrences of different

types of events rather than by clock ticks. Problems involving DES systems are generally

nonlinear, non-convex and non-differentiable, so classic methods often fail to give reliable

results. The aim of this approach was to show interval analysis could address these

problems in a guaranteed global way, producing more reliable outcomes than classic

methods.

In the same line, Kieffer et al. [45] proposed an approach addressing recursive non-

linear state estimation in the context of bounded state perturbation and measurement

noise. A new state estimator was obtained which evaluated a set estimate guaranteed to

contain all the values of the state consistent with the available observations, given the

noise bounds, and a set containing the initial value of the state. The generation of this

estimator was based on interval analysis and the concept of set inversion. As in classic

Kalman filtering, this state estimator alternates prediction and correction based on the

32



SIVIA algorithm.

Another algorithm for parameter estimation was proposed by Feng et al. [19]. A

recursive algorithm was presented to calculate axis aligned orthotopes, or boxes, which

bound the set of feasible parameters. They showed that interval mathematics could

provide an efficient tool to calculate these orthotopic bounds for each iteration, providing

very accurate estimates.

Markov et al. [53] considered the problems of interpolation and curve fitting in the

presence of unknown but bounded errors in the output measurements using generalized

polynomials under bounded measurement uncertainties. They considered the task of find-

ing the interpolation interval function, incorporating two constrained linear optimization

problems, and obtained a modeling function that interpolated a set of m data.

2.6.2 Robotics

Remaining with estimation approaches, but applied them to robot localization, Kieffer

et al. [46] introduced a methodology to compute a set guaranteed to contain all values

of the parameter vector, and ensure that an upper bound on the number of fault tests is

available. The estimator used was obtained from an adaptation of the SIVIA algorithm

[45].

A typical problem of robot control, where interval analysis can be applied, is minimum

time trajectory planning. This is a critical problem for automated industrial environ-

ments and space robotics, but has been studied by a few researchers.

Guarino et al. [28] attempted to compute optimal robot trajectory planning. Their

approach combined stochastic optimization using a genetic algorithm, and deterministic

optimization using an interval algorithm to derive a feasibly certain estimation of the

global solution. Later papers from Piazzi et al. [76, 78] also considered the same planning

problem, but used a global deterministic approach based on a procedure incorporating

interval analysis tools to build a solution. In their first study [76], the aim was to

compute the total traveling time required to perform the robotic task, stated as an
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optimal trajectory planning problem with a minimum time criterion.

On the other hand, the second study [78] was concerned with jerk constraints, since

joint position errors increase as the jerk increases, and to limit excessive wear on the

robot and the excitation of resonances, thereby extending robot life span. In general,

the minimum jerk is desirable to provide greater similarity to human joint movements.

The resulting minimum jerk trajectory planning was shown to be a global constrained

minimax optimization problem solved with an algorithm incorporating interval analysis.

Two key outcomes can be observed from the prior research. Minimizing the maximum

jerk in joint space has a beneficial effect in reducing the actuator and mechanical strain.

This is because, considering the manipulator dynamics, the derivative of vector torque

depends on the typically dominant term of the inertia matrix multiplied by the vector

joint jerk. In addition, using trigonometric splines provides the advantage of allowing easy

alteration of the planned trajectory in mid-course, if necessary, e.g. to avoid unexpected

obstacles in real time environments.

Another basic robot control problem is computing the actuating torques required

to make the robot follow a desired trajectory. Vehi et al. [90] considered take a non-

holonomic mobile robot as a prototype and obtained a velocity control based on an

estimated model. They proposed a method to design and implement an interval model

based on a PI controller using MIA [23], which provided tools to solve the interval

equations that appear during the design process and compute control laws as interval

functions.

2.6.3 Gain Scheduling

Finally, we should consider the case of Gain Scheduling ( GS) controller approaches which

incorporate interval analysis. Gain scheduling compensators are normally used in closed

loops to achieve good performance in spite of large parameter variations. Fadali et al. [17]

used a linear time invariant (LTI) system and proposed a robust design synthesis approach

based on the solution of a Diophantine equation. Interval analysis extended the synthesis
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procedure proposed by Fadali et al. to systems containing uncertain transfer function

coefficients. Consequently, a satisfactory controller or family of controllers for bounded

parameter uncertainty were obtained. Following the same line of controller design, Fadali

et al. [16] proposed a methodology to control nonlinear systems with slowly varying

dynamics using gain scheduling. GS is a common design method for slowly varying

systems which places the system poles near a desired location by designing controllers at

a set of linearized operating points and linearly interpolating controller values between

those operating points. Again, interval analysis was used to extend this approach.

McNichols and Fadali [55] used an interval arithmetic tool to determine intervals that

restricted the closed loop poles of the system to regions around ideal transfer function

coefficients. The aim of their design was to determine a minimal set of design points that

connected with GS. Consequently, they obtained the ideal controller coefficients, which

in turn placed the closed loop poles at their nominal design locations. This approach

was applied for each sampled value of the scheduling variable.

2.7 Computer aided control system design for Ro-

bust Control

2.7.1 Parametric computer aided control system design

Control theory is widely used to describe, control, and optimize industrial processes. A

large number of theoretical results have led to a variety of computational approaches

and numerical algorithms to solve system analysis and design problems. Subsequently,

these approaches have resulted in several generic computer aided control system design

(CACSD) software packages to solve practical control problems. All CACSD packages

have the common feature of providing tools to manage numerical computations. Most

control software commercially available from such as the Numerical Algorithms Group,

Ltd. (NAG) [59], and The Mathworks, Inc. [54] to name but two. However, many
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research outcomes developing new algorithms and associated robust numerical CACSD

software are freely available electronically, such as Scilab [81] from the Institute National

de Recherche en Informatique et en Automatique (INRIA) and the SLICOT libraries [63]

from the Numerics In Control Network (NICONET), which are available via ftp. Some

well-known and useful control applications are embedded inside these control packages,

such as the robust control toolbox [11] by Chiang and Safonov, and the µ -analysis and

synthesis toolbox [6] by Balas et al.

Considering generic frames, there are other frames for more specific control problems.

The study is particularly interested in tools for solving robust parametric control prob-

lems of ever increasing importance in control engineering. This importance has resulted

in the emergence of different tools and software to assist control engineers.

We present a review of the existing tools, and concentrate on the yynomial toolbox,

Paradise, Frequency Domain toolbox and Robust Control Synthesis Toolboxes. Our aim

is to provide an overview of each, focusing on their main features, the format of their

input parameters, and the type of algorithms used, including, in some cases, the functions

provided.

2.7.2 Polynomial toolbox for Matlab

The polynomial toolbox 2.0 (Fig. 2-4) developed by the Czech Technical University in

Prague is a registered trademark of The MathWorks, Inc. [87]. This is a package for

systems, signals, and control analysis/design based on advanced polynomial methods.

This package offers all the tools needed for systems described by polynomial matrix

fraction (PMF), a format commonly adopted in control problems to express transfer

matrices. In addition, it provides a wide range of macros to test various robustness

measures for systems with parametric uncertainties, including single parameter stability

margins, interval polynomials, and polytopic uncertainties.

A number of classical design methods in the frequency domain are also provided and

many other design routines can be developed based upon the polynomial matrix macros.
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Figure 2-4: Polynomial toolbox [87]

The most important features of the toolbox are:

• Input, manipulation, and display of polynomials and polynomial matrices based on

a polynomial matrix object.

• Solvers for numerous linear and quadratic matrix polynomial equations for over-

loaded operations and functions.

• Polynomial matrices with complex coefficients for applications in signal processing.

• Continuous time and discrete time systems and signal models based on polynomial

matrix fractions.

• Classical and robustness analysis for LTI systems and filters.

• Conversion to and from LTI objects in the control system toolbox and polynomial

objects defined in the symbolic math toolbox.

• A Simulink [54] block set for LTI systems described by polynomial matrix fractions.

The polynomial toolbox provides several routines to solve typical design tasks. Their

modifications, as well as polynomial solutions for many other design problems, can be
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built with the basic tools in the polynomial toolbox. It includes basic control routines

to:

• Stabilize the plant and to parametrize all stabilizing controllers.

• Place closed loop poles by dynamic output feedback.

• Design deadbeat controllers for discrete-time systems.

• Implement H∞ optimization.

• Implement H2 optimization.

• Achieve robust control with parametric uncertainties: single parameter, interval

polynomials and polytopic polynomials.

• Develop numerical methods for polynomial matrices. Some types of numerical

techniques included in this toolbox can be mentioned here, such as: methods based

on equating indeterminate coefficients, polynomial reduction based on elementary

row and column operations, interpolation methods and state space methods.

2.7.3 Paradise toolbox for Matlab

The PArametric Robustness Analysis and Design Interactive Software Environment (Par-

adise) (Fig. 2-5) toolbox developed by the Institute of Robotics and Mechatronics of

Germany[2, 84] is intended to assist the control engineer develop for robust parametric

controls. The required input for the package is a Simulink model, which removes the

requirement for a parametric plant model. From this graphical input, Paradise com-

putes the symbolic closed loop model using the extended symbolic toolbox. This frees

the control engineer from symbolic calculations, and offers him a graphical, user-friendly

interface. Moreover, if Simulink is not available, the closed loop system equations (state

space or transfer function representation) could be used as an input.

Three classes of parameters can be used in Paradise:
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Figure 2-5: Paradise toolbox [2, 84]

1. Varying parameters. Plant parameters which are uncertain and assumed to vary

within given intervals defined by upper and lower bounds.

2. Fixed parameters. Parameters assumed to be constant. Their initial value is zero.

3. Controller parameters. Parameters to be determined by the design process.

Some algorithms included in the Paradise toolbox are:

• Algorithms to determine the set of stabilizing parameters in a two-dimensional

parameter space. These can be applied to different problems, such as the design of

fixed gain or gain scheduled controllers, and robustness analysis.

• Algorithms for designing an invariant two-dimensional space. For a nominal plant,

an m−dimensional cross-section in controller parameter space is determined so

that only m eigenvalues are shifted while the remaining eigenvalues remain at their

locations.

• Algorithms for constructing value sets and evaluation of tree structures. The use

of a tree structure to build the value set allows one to handle systems with a large

number of uncertain parameters, which can be analysed quickly.
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• Algorithms for the construction of Popov sets. The Popov criterion then allows the

engineer to check stability of some types of control loops.

• Algorithms for design by contraction of stability regions. In general, the set of

Γ−stabilizing parameter vectors of a polynomial is bound by regions (hypersurfaces

in the case of Hurwitz stability).

• Algorithms for calculating stability radius, defined as the smallest number, ρ, such

that the polynomial, p(s, q), is stable for all q with ‖q‖ < ρ.

Some additional features included in the toolbox are:

• A graphical editor for the construction of Γ-regions.

• A simplification of entries in case a term appears more than once in the system

equations, specifying a substitute term in the Simulink model.

• Performance specifications for a specific control problem can be specified via the

closed loop eigenvalue location.

2.7.4 Frequency Domain toolbox for Matlab

In contrast to the previous toolboxes, the frequency domain toolbox developed by the

University of Linz (Austria) [31, 33] uses interval arithmetic for frequency domain analysis

and design of control systems. Numerical algorithms are based on polynomial or transfer

matrices, unlike other toolboxes in Matlab , which use numerical algorithms based on

state space methods.

Numerical problems are avoided by using polynomial arithmetic based on interval

arithmetic. To develop a numerical toolbox based on frequency domain methods, polyno-

mials are a reasonable basic data type to be used. The toolbox deals with polynomials of

the type p =
∑

i ais
i, ai ∈ R represented by intervals of type rfloat, the basic data type

provided by interval arithmetic. Taking the data type polynom as the development base,
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the toolbox includes a class structure implemented in C++ including rational transfer

functions, polynomial and transfer matrices, with operators and overloading functions.

Polynomial arithmetic not only provides a numerical method for the implementation

of frequency domain methods, it also increases accuracy by using a variable length of the

mantissa of the bounds. This length can be changed dynamically, increasing accuracy

and automatically verifying the results.

The most interesting algorithms included in this polynomial toolbox, on which most

controller design algorithms in the frequency domain are based, are:

• Coprime factorization.

Each transfer matrix, P (s), can be expressed as the ratio, P (s) = N(s)D−1(s),

of two right coprime polynomial matrices, N(s), D(s). This can be solved using a

canonical form of transfer matrices called the Smith-McMillan form.

• Spectral and inner-outer factorization.

This can be solved using a canonical form of polynomial matrices, called the Smith

form and an iterative algorithm for the spectral factorization of a polynomial.

• Solution of Diophantine equations.

The task is to compute the solution, X(s) and Y (s), of polynomial equations such

as Z(s) = X(s)N(s) + Y (s)D(s) , in which D(s), N(s), and Z(s) are given.

2.7.5 Robust Control Synthesis toolbox for Matlab

Parameter space approaches based on symbolic quantifier elimination (QE), have been

proposed for these types of problems. QE based methods provide an organized approach

to addressing the parameter space of fixed structure robust controller synthesis problems

[37, 36, 79]. The QE-based approach can uniformly deal with a lot of important design

specificatons such as stability margin( gain/phase), stabilty radius. The toolbox offers to

control engineers a graphical interface to achieve multi-objective robust controller design
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smoothly. The toolbox implements a method of parameter space deign for robust control

synthesis which guarantees the real stability radius specification using QE.

2.8 Summary

Some key approaches concerned with robust control were surveyed to illuminate the

advantages provided by interval analysis. Interval analysis is a very useful tool that

allows avoidance of numerical problems. In addition, it can be very helpful for problems

of set characterization involving optimization, nonlinear inequalities and quantifiers, due

to its ability to produce guaranteed results even in a nonlinear context.

Interval analysis was also shown to be very powerful in bounding the ranges of func-

tions efficiently while providing mathematically rigorous results. This capability is es-

pecially welcome in robust control since a variety of analysis and design problems can

be cast in the evaluation of the range of functions over intervals. The rising importance

of this tool is shown by the number of approaches being developed to achieve a perfect

match with the corresponding problem, including interval analysis variants, such as PIA,

NPIA, MIA, etc. We note the lack of approaches concerned with design. Most works are

focused on the space state approach, which encourages this research approach, because

there remains a lot of work to do.

Considering the exposed parametric CACSDs, all of them solve robust parametric

control problems and have specific data structures, which are transparent for the user.

The CACSDs all assist control engineers in a user-friendly manner, but the polynomial

and Paradise toolboxes offer a more attractive input environment than the frequency

domain toolbox. In spite, frequency domain toolbox is the only one which uses interval

arithmetic to address the real numbers represented by intervals.

The useful and clever approach of Paradise is to allow direct Simulink input. In

contrast, the engineer must obtain the model before using the other toolboxes, a task

which not can always be performed easily due to the symbolic calculations required.
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Chapter 3

Robust Control via Modal Interval

Analysis

Modal Interval Analysis (MIA) is introduced as an extension of interval analysis, and its

application to the field of robust control is discussed.

3.1 Introduction

In general, classical methods employed to deal with interval models use interval analysis.

Techniques and methods of robust control, for example, have been implemented using

interval analysis, as discussed in Chapter 2. MIA is an extension of interval analysis,

and provides an essential tool to implement the methods and algorithms included in the

proposed package. MIA provides an improvement over interval analysis because it sim-

plifies interval function computation and allows semantic interpretation of the outcomes.

Some applications of MIA to robustness analysis and to the design of robust controllers

are presented, and the achieved improvements discussed.
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3.2 Modal Interval Analysis

MIA [23, 22, 86] extends real numbers to intervals, identifying the intervals by the pred-

icates the real numbers fulfill, whereas classical interval analysis identifies the intervals

with the set of real numbers they contain.

Given the set of closed intervals of R, I(R) = {[a, b]′ | a, b ∈ R, a≤b}, and the set of

logical existential and universal quantifiers, {E,U}, a modal interval is the pair

X := (X ′, QX), (3.1)

where X ′ ∈ I(R) is the extension and QX ∈ {E,U} is the modality. The set of modal

intervals are denoted by I∗(R). A modal interval, ([a1, a2]
′, E), is called an existential or

proper interval, and ([a2, a1]
′, U) is called a universal or improper interval.

The modal quantifier, Q connects every real predicate P (.) ∈ Pred() with a unique

interval predicate, i.e., for a variable x ∈ R and a modal interval (A
′
, QA) ∈ I∗(R),

Q(x, (A′, QA)) := QA(x,A′). (3.2)

The set of real predicates accepted by a modal interval is

Pred((A
′
, QA)) := {P (.) ∈ Pred(R) | Q(x, (A

′
, QA))P (x)}, (3.3)

and inclusion for modal intervals can be introduced in a similar way as for classic intervals:

for A,B ∈ I∗(R),

A ⊆ B ⇐⇒ Pred(A) ⊆ Pred(B). (3.4)

The modal interval can be stated in canonical notation as

[a, b] :=

 ([a, b]′, E) if a ≤ b

([b, a]′, U) if a ≥ b

 , (3.5)
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and the inclusion is then characterized by

[a1, b1] ⊆ [a2, b2]⇐⇒ ( a1 ≥ a2, b1 ≤ b2). (3.6)

It is also possible to define the set of predicates rejected by a modal interval in an

alternate, equivalent, manner as

Copred((A
′
, QA)) := {P (.) ∈ Copred(R) | Q̄(x, (A

′
, QA))P (x)}. (3.7)

There is complementarity between Pred and Copred through the duality operator,

Dual([a1, a2]) = [a2, a1], (3.8)

and

A ⊆ B ⇐⇒ Dual(A) ⊇ Dual(B)⇐⇒ Copred(A) ⊇ Copred(B). (3.9)

The structure (I∗ (R) ,⊆) is a lattice and the minimum and maximum for a family of

modal intervals, A(i) =
[
a (i), a (i)

]
, i ∈ I, are called meet and join, respectively, where:

• Meet: ∧ (i, I) A (i) =

[
max
i∈I

a (i),min
i∈I

a (i)

]
.

• Join: ∨ (i, I) A (i) =

[
min
i∈I

a (i),max
i∈I

a (i)

]
.

The dual formulation of the modal intervals allows the definition of two semantic

interval functions, f ∗ and f ∗∗, which have a very important role in the theory, because

they are closely related to the modal interval extensions and provide meanings to the

interval computations.

Definition 1 (* and ** semantic functions) If f is an Rn to R continuous function

45



and A ∈ I∗ (Rn), then

f ∗ (A) = ∨
(
ap, A

′
p

)
∧ (ai, A

′
i) [f (ap, ai) , f (ap, ai)] =

=

[
min
ap∈A′p

max
ai∈A′i

f (ap, ai) , max
ap∈A′p

min
ai∈A′i

f (ap, ai)

]
, (3.10)

f ∗∗ (A) = ∧ (ai, A
′
i) ∨

(
ap, A

′
p

)
[f (ap, ai) , f (ap, ai)] =

=

[
max
ai∈A′i

min
ap∈A′p

f (ap, ai) , min
ai∈A′i

max
ap∈,A′p

f (ap, ai)

]
, (3.11)

where a = (ap, ai) is the component split corresponding to A = (Ap, Ai), with Ap

a subvector containing the proper components of A; and Ai a subvector containing the

improper components of A.

The following theorem expresses the meaning of the interval results f ∗ and f ∗∗.

Theorem 2 (f ∗ semantic theorem) Given a modal interval vector A ∈ I∗(Rn), a

function f : Rn → R continuous in A
′
, and a modal interval F (A) ∈ I∗(R),

f ∗(A) ⊆ F (A)⇔ U(ap, A
′

p)Q(z, F (A))E(ai, A
′

i)

so that z = f(ap, ai). (3.12)

The following theorem establishes a dual semantic for proper and improper modal

intervals.

Theorem 3 (f ∗∗ semantic theorem) Given a modal interval vector A ∈ I∗(Rn), a

function f : Rn → R continuous in A
′
, and a modal interval F (A) ∈ I∗(R),

f ∗∗(A)⊇F (A)⇔ U(ai,A
′

i)Q(z,Dual(F (A)))E(ap,A
′

p)

so that z = f(ap, ai). (3.13)
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Generally, computing the semantic extensions f ∗ and f ∗∗ is a difficult challenge.

When the continuous function f is rational, it can be operationally extended to a modal

rational function using the syntactical tree of the expression of the function, where the

real operators are transformed into their * or ** semantic extensions. Both semantic

extensions are equal for any class of operators. In this case there is a modal rational

function, fR(A), associated with the syntactical tree of f where the real operators are

transformed into their semantic extensions. However, fR(A) is not interpretable. The

interpretation problem for a modal rational function consists of relating it to the cor-

responding semantic functions which have standard meanings defined by the semantic

theorems.

On the other hand the interpretable rational interval program, fR(A), may neverthe-

less result in a loss of information far more important than that produced by numerical

rounding. Thus, it is very important to determine criteria to characterize the rational

interval functions. Fundamentally, fR(A) with an ideal computation (infinite precision)

has the property that

f ∗(A) = fR(A) = f ∗∗(A), (3.14)

and in this case, fR(.) is said to be optimal for A.

There are several coercion and partial coercion theorems which characterize the op-

timality of a modal rational function according to its monotonicity. These theorems are

demonstrations of the construction shown in this section as well as other recent research

on MIA related to rational functions [86, 91].

3.3 Robust control

3.3.1 Introduction

Effective control of practical time varying systems with parametric uncertainties and

external disturbances is a main focus in the design of robust control systems.
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The usual objective in robust control of interval processes is to achieve stability and

robustness of the closed loop system based upon some suitable trade-off. In general,

robust control of uncertain systems is achieved using fixed nonlinear feedback control

functions which operate effectively over a specified wide range of class of system parameter

variations (i.e., parametric intervals). This deterministic approach contrasts sharply with

many other adaptive control schemes where online identification and global parameter

convergence properties are required, and statistical information must be provided to yield

the desired robust dynamic behaviour.

3.3.2 Robustness analysis

Checking the robustness of a controller is equivalent to verifying the positiveness of the

range of a set of functions [5, 50]. Therefore, methods used to study the positiveness of

functions are essential tools for robustness analysis [92, 91].

Definition 2 F (q) is positive over Q if F (q) > 0 for all q ∈ Q.

To formulate the positivity conditions using modal intervals, the uncertainty domain

should be represented as a suitable set of modal intervals. An uncertainty domain means

that every parameter qi has an unknown value between qi and qi. Thus, every uncertain

parameter must be considered as a proper or existential modal interval,

qi = ([qi, qi], E)⇒ qi = [qi, qi], qi ≤ qi. (3.15)

From Definition 2, the semantic interpretations of f ∗ and f ∗∗ are very closely related

to the concept of positivity of the range [88]. Thus, * and **semantics can be used

for testing positivity non-positivity, respectively, and optimality implies necessary and

sufficient positivity conditions. Outer approximations of f ∗ will yield sufficient positivity

conditions and necessary conditions will be obtained by inner approximations of f ∗∗.

We will also show that the application of Theorem 3 provides for faster and simpler

computations.
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A straightforward translation of Theorems 2 and 3 to the interval function by substi-

tuting proper modal intervals for the uncertain parameters provides the following theo-

rem.

Theorem 4 Consider the function F (q), dependent on an uncertain parameter vector,

q, belonging to an uncertainty domain, Q. The function F (q) is positive over Q if, and

only if, F ∗(Q) > 0.

Since the * and ** extensions are not always calculable, some properties of modal

intervals applied to rational functions must be employed in order to work with computable

functions. Theorem 4 may be reformulated for modal rational extensions as follows.

Theorem 5 Let FR(Q) be an optimal modal rational extension of F (q), thenF (q) is

positive over Q if, and only if, FR(Q) > 0.

The key problem is finding such an optimal extension. As shown in section 3.2,

optimality is closely related to monotonicity. When F (q) is monotonic for all or some

of its variables, MIA provides conditions of optimality, or at least interpretability, of

FR(Q).

If F (q) is uniformly monotonic for each variable and for all its incidences, then the

coercion theorem can be applied to obtain an optimal extension.

The following examples consider the robust stability of uncertain polynomials.

EXAMPLE 1:

Consider the family of polynomials P described by

p(s, q) = a0(q) + a1(q)s+ a2(q)s
2 + a3(q)s

3 + s4,

a0 = 1− 3q21q
2
2,

a1 = 6 + 6q1 − 8q2,

a2 = 6 + 3q1q2 − 4q2,

a3 = 5 + 0.2q1q2 + 0.1q1 − 0.1q2,
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with uncertainty bounds 0 ≤ qi ≤ 0.5 for i = 1, 2. The objective is to determine whether

P is robustly stable.

The critical stability condition is obtained from the third Hurwitz determinant:

F (q)=−266.6q2−3.2q32+8.8q1q
3
2+.03q41q

2
2+1.8q31q2

+69.5q21q
2
2+6.6q31q

2
2−7.8q21q

3
2+5.9q31q

3
2+.1q41q

3
2

+.12q41q
4
2+96.5q21q2−130.5q1q

2
2+103.1q22+119

+110.6q1+60.4q1q2−32.4q21−.1q31q42+.03q42q
2
1.

Applying classical interval arithmetic, inclusions of the range of this function can be

obtained, for example, by using the natural extension

FR([0, 0.5], [0, 0.5]) = [−39.36, 232.59]. As the range is overbound and contains zero, this

computation does not provide a conclusion regarding positivity. Applying the coercion

theorem, it is possible to obtain an optimal expression for F (q), if it is monotonic with

respect to each variable qi. This may be checked by computing the partial derivatives of

the Hurwitz determinant following Theorem 4,

(
∂F

∂q1

)∗
([0, 0.5],[0, 0.5])⊆ [44.5693686, 210.066391],(

∂F

∂q2

)∗
([0, 0.5],[0, 0.5])⊆ [−335.74993,−86.74788].

From Theorem 2, these inclusions mean that for every q1 and q2 in [0, 0.5], the values

of both derivatives do not change their sign, so F (q) is uniformly monotonic in both

variables. Moreover, F (q) is also monotonic for every incidence of q1 and q2 and it is

possible to apply coercion theorem to evaluate the optimal modal rational extension of
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F (q),

FR(QD) =0.03Q4
1Dual(Q2)

2+69.56Q2
1Dual(Q2)

2

+1.8Q3
1Dual(Q2)+8.8Q1Dual(Q2)

3+110.6Q1

+0.12Q4
1Dual(Q2)

3+0.03Dual(Q2)
4Q2

1−3.2Q3
2

+96.56Q2
1Dual(Q2)−130.56Dual(Q1)Q

2
2+119

+60.42Q1Dual(Q2)−0.12Dual(Q1)
3Q4

2

+5.9Q3
1Dual(Q2)

3−266.6Q2+0.12Q4
1Dual(Q2)

4

+6Q3
1Dual(Q2)

2−32Dual(Q1)
2−7Dual(Q1)

2Q3
2

+103.19Dual(Q2)
2|Qi=[0,0.5] =[11.0975, 166.1975].

The resulting interval is the optimal solution for FR(Qi = [0, 0.5]), and is positive.

Hence, F (q) is positive, and the polynomial family P is robustly stable.

Obviously, bounds of a monotonic function in all variables can be computed with-

out using intervals. This example was provided to illustrate modal intervals, and the

application of the coercion theorem for proper arguments.

Generally, without monotonicity it is not possible to compute the exact result. The

usual case is a function which is totally monotonic for only some of its variables.

EXAMPLE 2:

Consider the family of polynomials P described by

p(s, q) = 1− 3q21q
2
2 + (1 + 2q3 − q2)s

+(6− 3q1q2 − 4q2q
2
4)s2 + s3,

with uncertainty bounds 0 ≤ qi ≤ 0.5. for i = 1, ..., 4. The objective is to determine

whether P is robustly stable.
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The critical stability condition is given by the determinant

F (q) = 5 + 12q3 − 6q2 − 3q1q2 − 8q2q
2
4q3

+3q21q
2
2− 6q1q2q3+ 3q1q

2
2− 4q2q

2
4+ 4q22q

2
4.

Computing the partial derivatives, Theorem 3 shows that

(
∂F (q)

∂q1

)∗
([0,0.5],[0,0.5],[0,0.5],[0,0.5])⊆[−3,1.5],(

∂F (q)

∂q2

)∗
([0,0.5],[0,0.5],[0,0.5],[0,0.5])⊆[−11,−2.75],(

∂F (q)

∂q3

)∗
([0,0.5],[0,0.5],[0,0.5],[0,0.5])⊆[9.5,12],(

∂F (q)

∂q4

)∗
([0,0.5],[0,0.5],[0,0.5],[0,0.5])⊆[−4,1].

In this case, from Theorem 2 and the inclusions above, uniform monotonicity can only

be assured in q2 and q3.

Applying the partial coercion theorem for q2 and q3, one gets a sub-optimal form of

FR(Q),

FR(QDT ∗) = 5 + 12Q3 − 6Q2 − 8Q2Q
2
4Dual(Q3)

−6Q1Q2Dual(Q3)+ 3Q1[Dual(Q2)]
2− 4Q2Q

2
4

+4[Dual(Q2)]
2Q2

4+ 3Q2
1[Dual(Q2)]

2− 3Q1Q2.

For Qi = [0, 0.5], Dual(Q2) = [0.5, 0] and Dual(Q3) = [0.5, 0], the computed range is

[0.75, 11], which is positive. Hence, F (q) is positive and the polynomial family P is

robustly stable.

Remark: The same bounds can be computed using FRl and FRu, obtained by

replacing q3 with q3 in FRl and q3 in FRu and vice versa for q2 [34]. In this case,

two interval functions must be computed. However, using the MIA formalism, only one
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interval function is computed. This result is more relevant in the context of splitting

domain algorithms so that when k monotonicities are found, partial coercion theorem

converts the initial function of l variables to a single, simpler, interval function of the

l − k variables.

When F (q) is not totally monotonic for any variable, Theorems 3 and 4 can be applied

to obtain the following general conditions.

Theorem 6 F (q) is positive over Q if FR(QT ∗) > 0.

Theorem 6 provides only a sufficient positivity condition. To implement a suitable

positivity testing algorithm, certain necessary conditions are needed, as provide in the

following.

Theorem 7 Consider the function F (q) as described in Theorem 6. Let FRk(QT ∗∗),

k = 1, . . . , N be the set of the N possible results obtained by transforming, for every

multi-incident parameter, all incidences but one into its dual.

The function F (q) is non-positive over Q if the lower bound of the interval[
FRk(QT ∗∗), FRk(QT ∗∗)

]
is not positive for some k.

To illustrate the importance of Theorem 7, we will analyse the interpretation provided

by Theorem 3 applied to the result of Theorem 4, according to the modality of the result.

Suppose that FRk(QT ∗∗) is proper. Thus, for every value, c, in the interval[
FRk(QT ∗∗), FRk(QT ∗∗)

]
, there is a point q ∈ Q such that F k(q) = c, i.e., every

negative or zero value of the result corresponds to an unstable case.

Suppose now that FRk(QT ∗∗) is improper. The semantic interpretation is that there

is a value c ∈
[
FRk(QT ∗∗), FRk(QT ∗∗)

]
and a point q ∈ Q such that F k(q) = c.

Because FRk(QT ∗∗) is improper, FRk(QT ∗∗) ≤ 0 implies FRk(QT ∗∗) ≤ 0, so c ≤ 0 and

at least one unstable case exists.
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3.3.3 Robust control design

The results obtained in Section 3.2 can be combined in an algorithm to check the per-

formance for a given set, Q. The implementation splits Q into sub-boxes, distinguishing

three types of regions according to their monotonicity:

1. Regions with uniform monotonicity for all variables : none of the ranges for par-

tial derivatives contain zero. Necessary and sufficient positivity conditions can be

checked using Theorem 5.

2. Regions with uniform monotonicity for k variables : k partial derivatives do not

contain zero. The partial coercion theorem is applied to the monotonic variables.

The original function of l variables is converted into a function of l − k variables.

3. Regions without monotonic variables : all of the ranges for partial derivatives contain

zero. Sufficient and necessary conditions for positivity are provided by Theorem 6

and Theorem 7, respectively.

To analyse the monotonicity of each box, the range of every first order partial deriva-

tive is computed using classic interval methods, and positivity and non-positivity checked

for each case.

Since most performance specifications can be stated as a set of inequalities to be

satisfied, Fi(q) > 0; i = 1, . . . , l, the following robustness problems, which are standard

in the analysis and control design systems, can be addressed by means of this algorithm.

1. Robustness checking : Given a perturbed plant G(z−1, q), and an uncertainty set

Q, check whether the controlled system achieves robust performances:

Fi(q) > 0; ∀q∈Q; i = 1, . . . , l.

2. Robust margin assessment : Given a nominal plant, G(z−1, q0), find the larger set
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Qm around q0 such that the designed controller achieves robust performances:

Qm = max{Q|Fi(q) > 0; ∀q∈Q; i = 1, . . . , l}.

3. Robust control design: Assuming a controller structure, find a fixed controller

C(z−1,k0) so the closed loop controlled system achieves robust performances:

Fi(q,k
0) > 0; ∀q∈Q; i = 1, . . . , l.

4. Robust K set estimation: Given a perturbed plant, a specification set and a con-

troller structure, find the largest set K such that C(z−1,k) achieves robust perfor-

mances:

Fi(q,k) > 0; ∀q∈Q, k∈K; i = 1, . . . , l.

3.4 Summary

In this chapter we introduced MIA in the field of robust control. The set of the modal

intervals is an extension of the set of classical intervals. An important characteristic of

modal intervals is that intervals are not referred to a set of values but to the properties

that the set fulfills. This provides association with one of two quantifiers: universal or

existential, introducing a dual formulation and semantic interpretation to the outcomes.

Semantic theorems to continuous functions provide criteria to interpret computational

outcomes, and determine how to round the results.

Finally, MIA for rational functions provides methods to compute the exact range of

a function, or, in defect, external and internal rounding.
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Chapter 4

Parametric solver based on modal

interval analysis

An important contribution of the thesis is presented consisting of the development of a

solver incorporating MIA. The solver is based on an algorithm that checks the positivity

of a function as the criterion to classify the regions of the user defined parameter space.

4.1 Introduction

MIA provides a number of advantages, as discussed in Chapter 3, the most important of

which is that it provides guaranteed solutions. In this chapter we propose a solver based

on MIA as an original outcome the thesis.

To build the MIA solver, we employed a modular design structure based on the

development of

• new methods,

• a set of algorithms, and

• a set of tools.
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The resultant solver is reliable and allows the control engineer to find guaranteed

results with no explicit knowledge of intervals or modal intervals.

4.2 Methods and algorithms

The first step to build the solver is to develop a set of MIA based methods [86] to man-

age robust control problems with parametric uncertainties. The starting point is the

requirement of interval and extensive symbolic numeric computations. Existing methods

summarized in Section 2.2 have several limitations. Most studies concerned with robust-

ness tests are based on extreme point results. This is a problem because the main concept

is to extract properties (for example stability) for a family of plants from a finite subset

of polynomials, and the size of the input set is not sufficient in all the cases. Another pro-

blem is that existing methods are very conservative and are generally based on analytic

results which provide sufficient but not necessary conditions for robust stability. To solve

or improve on these problems amongst others, it is necessary to develop new methods.

Our MIA based proposal ( chapter 3) addresses the most common robust control prob-

lems. Its semantic interpretation, and existential (∃) and universal (∀) solutions offer a

high guarantee of achieving a solid base to build the algorithms and tools of the new

robust control toolbox. The goal is to build a set of functions using MIA as a numerical

method that will compare favourably to the classical methods.

The methods detailed above and also in Chapter 3, involve building a set of algorithms

also based on MIA. They also consider the operators ease of use issues for symbolic,

numeric, and interval computations. Incorporating MIA produces simple, efficient, and

fast algorithms. Simple algorithms allows them to be shorter and more versatile, and

efficiency is essential in achieving a reliable framework. Speed is always desirable, because

almost all problems to be solved will involve iterations to achieve the outcomes. For

example, if the problem consists of checking a closed loop system for stability, it will
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be necessary to execute the same algorithm along the whole range of variations of the

uncertain parameters of the plant. Hence, fast algorithms are essential from the point of

view of execution time when assessing parametric uncertain systems.

An assessment of monotonicity is part of MIA, and this will influences the overall

computation speed to a large degree since it will allow directly discarding iterations

without needing to completely analyse the case. The MIA based algorithm is significantly

simplified since they incorporate many improvements to achieve the optimal result.

Another aspect to be considered in developing the algorithms is the stop condition.

MIA solves this point by incorporating coercion theorems [86], which provide necessary

and sufficient stop conditions for the algorithms. Moreover, lineal operations and the f ∗∗

function( theorem 3) also provide stop conditions for the algorithms.

The most important algorithms developed are summarized as follows.

• Single controller design specification (SCDS).

In the case we have a single controller design specification, this algorithm graphi-

cally shows three types of regions in the parameter space: the region that fulfills

the proposed specification; the region does not achieve the specification; and the

undetermined region, where it is not possible to say anything. We have developed

this algorithm based on an algorithm developed by J.Veh́ı [88]. The new algorithm

is independent of C++, but still requires Maple [52] to input the functions (spec-

ifications) to be checked. Thus, at the moment the algorithm could be considered

to be semi-automated.

• Single square stability (SSS).

As already commented above, parametrically uncertain systems have a range of

parameters. If all the possible values of the parameters are shown as little squares,

this algorithm would take into account only one single square. This algorithm

checks the stability of a single parameter over its full range.

• Find specified controller (FSC).
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Given a single specification, the concept is to find the set of controllers that fulfills it.

The algorithm has different aspects, for example, it may be applied to an individual

parameter range (or ranges), rather than applying it to the full parameter space.

• n-functions version (NFV).

The concept is to solve the robust control design problem using an improved strat-

egy that checks not only an individual function (specification), but also checks the

entire set of n functions (specifications).

• Controller parameter space points (CPSP).

This centres the computations and checks a single specific point in the parameter

space. During the controller design stage, this algorithm provides greater speed

in solving the proposed robust control problems, since rather than considering the

complete parameter space, it considers only an individual point inside each square,

e.g. the center point, or a point in a specific, user defined, location, which corre-

sponds to using a grid.

The preceding work of J.Veh́ı [88] has implemented some of the proposed algorithms.

The original contribution of the developed solver is to automate the algorithms, which en-

tails designing completely new algorithms with completely new data structures. Aspects

this automation include integrating interval and extensive symbolic numeric computa-

tion, making the use of Maple and C++ transparent to the user, and conforming all the

inputs (functions, controller parameters, system parameters, etc.) into the same format

(using, for example, Matlab).

Table 4.1 summarizes the algorithms, showing the features:

• The number of functions (or specifications) the algorithm evaluates.

• The scope of application of the algorithm (the strategy), i.e., if and when the

algorithm is applied to the full parameter space or over a more reduced area.

• The control action, i.e., the goal of the algorithm.
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Algorithm NoFs Scope Control action Current state

SCDS 1 Full P.S. Control design Semi-automated

NFV n Full P.S. Control design full-automated

FSC 1 Full P.S. Set control design full-automated

SSS 1 Single square of P.S. Stability check full-automated

CPSP 1 Grid Control design full-automated

1P.S.: Parameter Space
2NoFs: Number of Functions

Table 4.1: Algorithms

• The current state, level of automation.

4.3 Parametric solver for single design specifications

The solver built can manage multiple design specifications, It incorporates sorting tech-

niques to check the specifications from the easier computational cost to the higher. The

specifications are tested as single specifications using this sorting in order to accelerate

the computation. Therefore the solver developed is for single design specifications.

SCDS is proposed as the prototype solver. Its routines are largely dedicated to solv-

ing a specific control problem defined by the user. Depending on the control problem,

the solver requires different specific operations. To accommodate this, the algorithms

incorporate different programming strategies, i.e., the same problem can be solved fol-

lowing several strategies. In the SCDS algorithm, a single function is evaluated, whereas

the NFV algorithm evaluates n functions at the same time. It is useful to offer different

strategies and let the control engineer decide which algorithms to use depending on the

specific type of problem.

The SCDS algorithm can be considered as the second generation to the original algo-

rithm [88] which provided a useful tool to compute some specifications of an uncertain

system, but had the drawback of requiring manual inputs for execution. Fully automated

tools require a completely new design, structurally and functionally, of the algorithm, and
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Figure 4-1: Symbolic methodology

the SCDS algorithm incorporates only the concept of building a set of tools to solve robust

control problems using modal interval methods from the preceding algorithm.

Symbolic algorithms

The symbolic environment permits conversion of a control problem into a set of matrices

suitable for use by Matlab. The global process is shown in Fig. 4-1.

An uncertain plant and a control design problem can usually be defined in terms of

transfer functions and design specifications, respectively. Control specifications, such as

absolute stability, velocity error, control effort, and resonance peak, can be expressed as

functions of variables, with feasible values between lower and upper bounds. The main

problem is how to pass the symbolic information contained in these functions to the

C++ routine, SCDS, etc.; to check these conditions; and to provide information about

the actual regions of the full parameter space. For the SCDS routine, these checks are
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made over a single specification. This has some advantages, because the control engineer

can obtain information about the role of each specification individually, and thus put

stronger constrictions on the corresponding function, if necessary, to obtain a better

controller. However, in further work, an extended version of the SCDS algorithm (NFV)

will check all specifications at the same time over the full parameter space to achieve a

quicker and more efficient algorithm. Two steps are needed to achieve the proposed aim:

1. Place the functions into the simplest and most suitable form.

The math package Maple V [52] is used to obtain the functions. This provides many

tools to obtain the functions in their most simplified form, as well as following

a specific structure. The function must be expressed as a set of addends, each

containing a product of its coefficient and a number of variables with its exponent.

The final form of a specification might be (for example):

fi = a1X
2
0X

3
1X2X3 + a2X2X

2
3 + a3X1

As commented above, all the variables of these functions are symbols, some of them

have values only inside the C++ routine where they vary over the full parameter

space, and others have a fixed interval value. To obtain a graphic control interpreted

result, and thus help the control engineers in their design tasks, it is usual to

limit the number of variables to two or three which vary over the full parameter

space, and fix all the others. In the examples used in the SDCS algorithm, only

two parameters were allowed to vary over the parameter space to obtain an easily

interpretable result on a two-dimensional plane.

2. Obtain a set of matrices suitable to be passed to C++ routines.

Once the functions are in simplified form, it remains to convert all the information

to be passed to the C++ routines. The Matlab symbolic math toolbox, has its a

function sym that provides a symbolic representation of the input scalar or matrix.

Using this tool, all the data derived from the problem functions, including the
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symbolic data, are transformed to a matrix structure which can then be passed

to the C++ routine for checking. The resultant matrix structure, discussed in

Section 4.3, includes three types of matrices: symbolic, interval and numeric, in a

suitable form for C++ code.

Matrix structure

The symbolic matrix provided by the Matlab symbolic math toolbox [4] for each speci-

fication function contains all the information, and has the structure

X0 X1 ... .. Xn

a0 e00 e01 ... ... e0n

a1 e10 e11 ... ... e1n

... ... ... ... ... ...

... ... ... ... ... ...

am em0 em1 ... ... emn


,

where Xi are the variables (symbols), aj are the coefficient values (numeric) of the

summand j, and eij are the exponent values (numeric) that the variable i has in the

summand j. The number of variables is n and the number of summands m.

We employ Maple to convert the specification data into a matrix whose size depends

on the number of variables of the function and the number of summands, i.e., an m× n

matrix, and this matrix is used inside the C++ algorithms to reconstruct the original

function and compute its value over the range of operation, and build the matrices

corresponding to the first and second order derivatives.

For the SCDS algorithm, three smaller matrices are passed as input parameters rather

than the larger matrix, avoid working with large matrices in C++, which is not explicitly

devised to manage matrix elements (as is Matlab), and thereby make programming in

C++ easier and clearer. Also, independent matrices for independent concepts produces

simpler and more understandable code.
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We employ Matlab to convert the large matrix into three matrices or vectors with

structures:

• Vector of variables.

A symbolic column vector of dimension n, consisting of the names (symbols) of the

variables contained in the function to be checked, with structure

conj(X1)

conj(X2)

...

...

conj(Xn)


,

where conj denotes that variables X1, X2, ... are symbolic.

• Vector of coefficients.

A column vector of dimension m, consisting of the numerical elements correspond-

ing to the coefficients of each summand of the function to be evaluated, with struc-

ture



a1

a2

...

...

am


.

• Matrix of exponents.

An m×n numeric matrix where the eij element is the exponent of variable i in the
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addend position j, with structure

e00 e01 ... ... e0n

e10 e11 ... ... e1n

... ... ... ... ...

... ... ... ... ...

em0 em1 ... ... emn


In appendix A is presented the essential routines of the algorithm SCDS as sample of

the developed programs.

4.4 Development of new tools

The diversity of data (symbolic, numeric, and interval) results in complex algorithms

and processes, as discussed above. To avoid discouraging control engineers from using

the algorithms, we developed a set of tools which together form the framework IRCAD

framework, an original outcome of this thesis.

The tools were created to make interval methods more convenient for control engi-

neers. It is essential to create a package that can be used by engineers with little or no

knowledge of intervals. These tools and the IRCAD framework are presented in Chapter

5.

4.5 Summary

A solver is presented in this chapter as the first contribution of this work . It is based

on MIA and has been built integrating a diversity of routines though to solve specific

robust control problems defined by the users. The building trade of this solver involves

the generation of routines designed to integrate symbolic, interval and numerical data in

a transparent way for the control engineer. Constraints related to these diversity of data,
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results on the use of suitable software packages that fit with the aim of the routines ( for

example to have faster processes is used C++). In addition It has also been exposed how

the interactions between the different kind of data are processed using matrices ( Maple

package is used in this case). To end this summary is significant to stand out the use of

different strategies to solve robust control problems.
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Chapter 5

Parametric framework for robust

control

We present the second contribution of this thesis: the parametric framework interval

robust control for analysis and design (IRCAD). This framework uses the proposed MIA

solver to solve robust control, analysis and design, problems of intervalar systems.

5.1 Introduction

The analysis and design of robust controllers has been one of the major outcomes of

linear control theory, as discussed above. A common feature of most advanced robust

control algorithms is that the parameters are posed in terms of an uncertainty description.

Solving such problems that involve uncertain parameters is difficult for control engineers.

In Chapter 2, we presented an overview of approaches for applications of interval anal-

ysis to robust control. In most cases, the studies focused on a single problem. However,

in practice there are numerous problems that vary widely. Thus there are different sets of

tools to solve each problem and the control engineer must be familiar with a large number

of different techniques and methods to be able to apply the most adequate solution to

the specific problem being considered. Using such a wide set of tools can be complicated
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because the problem type has a significant impact on how to input the functions, input

uncertain parameters, write control structures, as well as interpret the results.

To cope with this diversity, we propose the construction of a set of interval based tools

[20], or a toolbox for robust control following the concepts of the parametric CACSD,

described in Chapter 2.

The main contribution of this work is the development of a common methodology

which will allow the control engineer to solve control problems based on MIA.

A framework has been developed to isolate interval theory from control theory. The

development of the framework was broken into two steps: first to develop the set of new

tools, and second integrate the tools into a user-friendly framework. This framework

provides the user (usually a control engineer) an interface to solve robust control prob-

lems that involve interval parameters, i.e., problems where the solution requires interval

analysis, where the interval analysis methods are transparent to the user.

5.2 General description of the framework

5.2.1 Menu composition

The main window of the toolbox is shown in Fig. 5-1.

Figure 5-1: IRCAD framework
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The framework application consists of a pop-up menu with eight menu options:

• File

• Input

• Analysis

• Design

• Solver

• Representation

• Optimal controller

• Post Design

Some of these options are focused on input of the data of a control system into the

framework, others on representation of the framework outcomes, and there are specific

tools to solve robust control problems. The IRCAD framework also includes a set of post

design tools that allows the user to verify that the controller proposed by the framework

fulfills the design specifications without needing to leave the framework.

5.2.2 Integration of numeric, interval and symbolic computa-

tion

In contrast to current parametric CACSDs, the proposed toolbox incorporates specific

tools for robust control functions developed using MIA, which provides a number of

advantages for the reliability of the result (Chapter 3) but has the drawback of needing

to be able to deal with a diversity of data. A schematic of the toolbox is shown in

Fig. 5-2, detailing the different tools included.

We employed C++ to develop procedures for numeric interval computation and in-

corporated modal interval arithmetic libraries [86] as required. C++ also provided tools

69



Figure 5-2: IRCAD. Data integration

to interface with Matlab toolboxes using DLL and MEX functions. The Maple package

was employed to allow symbolic data input, such as transfer functions or problem speci-

fications. Matlab allows these symbolic inputs through the Symbolic Math toolbox, and

provides integration of numeric, interval, and symbolic data, transforming them into a

suitable format for, and passing them to, C++ routines, and finally collecting the re-

turned data. The last step, the user interface block in Fig. 5-2, incorporates showing the

results in a way suitable for control applications using the GUI tools of Matlab.

Clearly, Matlab is the center of the proposed environment, and most were developed

in that environment, due to Matlab has:

• high computational power for problems that involve matrix data;

• facility to deal with high level languages; and

• ease of connection with other commercial packages, such as Maple.

The IRCAD framework solves robust control problems. Thus, generally all problems

will require a high level of computation. This aspect would be a bottleneck if we only

solved them using Matlab scripts. However, for efficiency, computation routines were
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implemented in C++. This allows inclusion of tools from interval analysis libraries [23]

and provides procedures for numeric interval computation that execute significantly faster

than the same outcomes can be achieved within Matlab. The high level C++ functions

were compiled using Borland, obtaining a set of DLL functions, which may be accessed

from within Matlab using CMEX within suitable Matlab commands and/or scripts.

5.2.3 Data input

The starting point to use the framework is to input the transfer function of the plant.

Since we consider uncertain systems, the plant is defined as a family of transfer functions.

To input them into the framework, the user defines a transfer function with undefined

parameters and defines their uncertain values range (interval values).

This may be achieved by loading a previously saved control system, or can be defined

directly as a transfer function for a family of plants, defining the system, G(s,q) with

the uncertain parameter q = [q1, q2].

The data input menus are:

• File: Allows studying any example using different formats (Fig. 5-3):

– ’New input’: Build a new problem in the framework.

– ’Load workspace’ Load a previous created problem.

– ’Initialise workspace: Clear all the current variables located in the workspace.

– ’Quit’: Exit from the framework and optionally save the created example using

the Matlab option ’save workspace’.

• Input menu: Enter data represented in the control block diagram: intervalar trans-

fer functions, and their interval values (Fig. 5-4). The transfer functions that

include the standard block diagram are:

– Pre-filter F(s, m),
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Figure 5-3: IRCAD. File menu.

– Controller C(s, k),

– Plant G(s, q), and

– Sensor H(s, l),

where m, k, q, l have interval values.

Figure 5-4: IRCAD. Data menu.

It is also possible to enter configuration parameters from this menu for the solver
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and other algorithms included on the framework. These options are:

– The coefficient to compute the stability margin. This is the starting point of

the computation when the option of computing the stability margin is selected.

– The desired graphical resolution for x and y axes to represent the feasible

controllers on the parametric space.

– Depth of the algorithm to cut the branch of the solver tree and accelerate the

computation (Chapter 4). If the depth is not limited, the solver may never

finalise an undetermined region an require high computation to obtain a result

in a reasonable period of time.

All the blocks of the control block diagram. Pre-filter, Sensor, and Plant are input

in this manner. The Controller block can be similarly input or input directly by

accepting the proposed controller from the optimal controller tool (Fig. 5-5)

Figure 5-5: IRCAD. Input of the recommended controller

• Solver. Allows selection of the desired solver. The framework is built in a flexible

manner, and allows the use of any solver chosen by the user (Fig. 5-6). In the

examples presented for this thesis, we used the solver designed in Chapter 4.

5.2.4 Representation of the results

For any problem, it is essential to analyse the results obtained. The control design com-

putation produces a classification of the parameter space in a set of intervalar controllers
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Figure 5-6: IRCAD. Solver menu.

that fulfill all the selected design specifications, another region of intervalar controllers

that don’t fulfill any or all the specifications, and a region classified as undetermined

because the problem required high computation effort and the branch and bound algo-

rithm was stopped before its state was determined. The framework provides to methods

to visualize the controllers (Fig 5-7):

• Graphical (Colormap): A two-dimensional representation of the parameter space.

Assuming a two parameter controller ( as a PI controller), x axis shows one of the

controller parameters and the y axis the other. Each (x,y) pair is represented as a

colored square corresponding with the solver result, where the colors are chosen as

follows:

– Red denotes a region where the controller fulfills the specifications.

– Yellow denotes a region where the controller does not fulfill the specifications

– Blue denotes a region where the controller outcome is undetermined.

• Numeric: A set of intervals. The list of the intervalar pairs from the parameter
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space classified by the solver as controllers that fulfills the specifications are reported

in a table.

Figure 5-7: IRCAD. Representation of the results.

5.3 New tools

The robust control tools of the IRCAD framework can be categorised as three sets of

problems.

1. Robust analysis problems. Problems such as testing the stability of a system to

find the stability margin.

2. Robust design problems. The main tool is an application that allows selection of

the design specifications the control system must achieve.

3. Post design tools. These allow a selected controller to be applied to the system

without leaving the IRCAD framework.
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5.3.1 Tools for robust analysis

The IRCAD framework includes a set of tools to solve robust analysis problems. The

Analysis menu includes the following functions for an uncertain system with the transfer

function defined as a family of plants qi (Fig 5-8):

Figure 5-8: IRCAD. Analysis menu

• Stability test. To calculate the absolute stability region, we employ a MIA based

branch and bound algorithm. The tool shows the stable and unstable regions.

Regions where the depth of the algorithms was limited (to accelerate computation)

can appear as undefined. If there are no computation time issue, e.g. the computer

has high computation resources, it is possible to omit limiting the depth of search

and then only stable and unstable regions result.

• Stability margin computation. The parametric stability margin is defined as the

length of the smallest perturbation, ∆q, which destabilizes the closed loop. This is

a quantitative measure of the robustness of the closed loop system with respect to

parametric uncertainty evaluated at the nominal point q0.
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In control problems, the characteristic polynomial coefficients generally do not per-

turb independently. At the first level of detail every feedback system is composed

of at least two subsystems, controller and plant, connected in a feedback loop. The

characteristic polynomial coefficients of such a system are functions of plant and

controller parameters. Both parameters influence the coefficients, but their natures

are quite different.

– The plant contains parameters that are subject to uncontrolled variations

depending on the physical operating conditions, disturbances, modeling errors,

etc.

– The controller parameters are often fixed during the operation of the system.

Figure 5-9: Standard feedback system

Consider a standard feedback system, as shown in Fig. 5-9, where the plant transfer

function includes that the real parameter vector q belongs to the plant transfer

function, and the controller is characterized by the real vector k.

Problem statement Suppose that q0 = is the nominal value of the plant parameter

vector q, K0is a fixed controller, K0 is a parameter of controller K0 that stabilizes

the nominal plant, G(s, q0) and ∆p = p−p0 is a perturbation of the plant parameter

vector from the nominal q0.
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Then we define the Parametric stability margin as a bound on the size of ∆q for

guaranteed loop stability. It is useful as it provides us a region parameter space over

which the parameters can freely vary without destroying closed loop stability. This

is especially useful in controller design as a means of comparing the performance

of proposed controllers, and is used as a quantitative measure of the robustness of

the closed system with respect to parametric uncertainty evaluated at the nominal

point q0.

• Stability margin optimized. An improved computation of the stability margin that

provides the minimum and maximum value rather than only a point value.

• Parametric Bode plots. From frequency domain analysis methods, one might con-

jecture that it is not necessary to check all frequencies. Thus, it is common to

construct Bode plots using only a grid of w values. However, cases of singular

frequencies occur, which require special attention in all frequency domain methods

for robustness analysis.

Problem statement. When an uncertain polynomial, p(s,q), is evaluated at a fre-

quency w, it equals a complex number

p(jw, q)=h(−w2,q) + jw.g(w2, q). Separating the real and imaginary parts,

h(−w2,q) = a0(q)− a2(q)w2 + a4(q)w
4 − ... (5.1)

wg(−w2, q) = a1(q)w − a3(q)w3 + a5(q)w
5 − ... (5.2)

Associated with these functions is a Jacobian matrix,

J(w,q) =

 δh(−w2,q)
δq1

δh(−w2,q)
δq2

... δh(−w2,q)
δql

δwg(−w2,q)
δq1

δwg(−w2,q)
δq2

... δwg(−w2,q)
δql

 .

The Jacobian and the real and imaginary parts are employed to provide the alge-

braic definition of singular frequencies.

78



Definition. The nonnegative frequency, ws is a singular frequency of the uncertain

polynomial, p(s,q), if there exists a q0 ∈ <l such that the three following conditions

are simultaneously satisfied.

h(−w2
s ,q

0) = 0, (5.3)

wsg(−w2
s ,q

0) = 0, (5.4)

and

rank[J(ws, q
0)] < 2. (5.5)

5.3.2 Tools for robust design

The IRCAD framework has a powerful set of tools to design controllers for parametric

control systems. The menu allows selection of one or more than one specification (Fig. 5-

10) for an uncertain system with transfer function defined as a family of plants qi.

Figure 5-10: IRCAD. Design menu

The specifications incorporate the temporal and frequency domains and include: sta-

bility degree, absolute stability, resonance peak, velocity error, settling time, control
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effort, and overshoot.

Once the specifications have been selected, they are translated to an interval function,

converted into matrix structures and passed to the (C++) solver. The outcomes are

returned in matrix format as a set of controllers that fulfill the selected specification or

set of specifications. The controllers are a set of interval values. Using Matlab GUI tools,

the resultant matrix, which contains all the information about the valid controllers, is

passed to the user.

The framework allows the user to choose the format to show the set of valid controllers.

It is possible to visualise them graphically or numerically. The decision often depends on

the number of parameters selected for the controller. If the controller contains two or less

parameters, graphical format might be the most appropriate, and the parameter space

will be ranged by the parameters of the controller. Valid controllers will be shown as

a red region (Fig. 5-11), unfeasible controllers as a yellow region, and undefined regions

as blue. If the user chose the numeric format, then the framework produces a table

containing the set of intervals for k1, k2, . . . , ki that allows the system to fulfill all the

specifications.

Figure 5-11: Example of a parameter space classified by the IRCAD design tool

• Overshoot
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The Matlab routine Oversho.m computes the function ( or constraint ) to be

tested by the solver.

Given the transfer function for the plant, G(s,q), the aim is to design a controller,

C(s,k), that fulfills a step response with an overshoot equal or less than an specific

value (OV).

1. Compute the characteristic polynomial 1 +G(s,q)C(s,k).

2. Compute the damping ratio ξ,

ξ =

√
ln(OV

100
)2

ln(OV
100

)2 + π2
.

3. Find the lines of constant damping. A feasible parametrization by the param-

eter α was proposed by Ackermann [1] in example 9.1, page 235,

s = α + j
α
√

1− ξ2

ξ
.

4. Substitute the variable s of the characteristic polynomial with the above ex-

pression of s.

5. Putting the resultant equation in complex format (Re + j Im), the condition

to be tested is

p1(α, q, k) + j p2(α, q, k) 6= 0.

CONDITION: This will be true if p1and p2 have no common roots.

6. TEST:

(a) Remove α in the equation p2(α, q, k).

(b) Compute the determinant of the resultant matrix using p1(α, q.k) and the

new p2.

(c) If the determinant of the resultant matrix is different from zero then p1and

p2 have no common roots, and so the specification of overshoot is fulfilled
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and the determinant of the resultant matrix is assigned to the function to

be returned.

(d) Return the function to be tested.

• Absolute stability in the feedback loop

The Matlab routine EstaAbs.m computes the function ( or constraint ) to be

tested by the solver.

Given the transfer function for the plant, G(s,q), the aim is to design a controller,

C(s,k), that obtains a step response that fulfills the specification of absolute sta-

bility.

1. Compute the feedback transfer function,

M(s) =
G(s)C(s)

1 +G(s)C(s)
.

2. Extract the characteristic polynomial, 1 +G(s,q)C(s,k).

3. Compute the determinant of the characteristic polynomial.

4. Return the expression of the determinant as the function to be tested.

• Stability degree

The Matlab routine StaDegr.m computes the function ( or constraint ) to be

tested by the solver.

Given the transfer function for the plant, G(s,q), the aim is to design a controller,

C(s,k), that obtains a step response that fulfills the specification of relative stability

selected on a specific value (Degr).

1. Compute the characteristic polynomial with s.

2. Substitute s = Degr + j ∗ w for the characteristic polynomial and build the

limits of stability (a translation of the zero vertical axis).
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3. Expressing the obtained equation in a complex format (Re + j Im ),

p1(w, q, k) + j p2(w, q, k) 6= 0.

(a) Remove w in the equation p2(w, q, k).

(b) Compute the determinant of the resultant matrix using p1(w, q, k) and

the new p2.

(c) The function to be returned is the determinant of the resultant matrix.

(d) Return the function to be tested.

• Resonance peak. In the frequency domain, the user can find the regions of the

parameter space where a controller fulfill a maximum decibel for the control system.

The Matlab routine RessoPeak.m which computes the frequency response from

the feedback system.

Given the transfer function for the plant, G(s,q), the aim is to design a controller,

C(s,k), that obtains a step response that fulfils the specification for the resonance

peak.

1. Compute the characteristic polynomial with s.

2. Substitute s = j ∗ w, corresponding to the system stable response for a sinu-

soidal input.

3. Compute the polynomial. The function (or constraint) to be tested is obtained

by requiring that the polynomial be less than Resin.

4. Return the function to be tested.

• Velocity error. The user enters the maximum velocity error allowed for the control

system. The framework returns the set of all the possible intervalar controllers that

fulfill this constraint.
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The Matlab routine ErrVelo.m computes the function (or constraint ) to be tested

by the solver.

1. The expression for the velocity error is

| ev | =
1

| Kv |
=

1

| lims−>0 sG(s,q)C(s,k) |
.

2. Compute the open loop systemG(s,q)C(s,k).

3. Compute the expression for ev imposing that it be less than an specific value

(ErrVelo). The resultant function is the constraint to be passed to the C++

routines.

4. Return the function to be tested.

• Settling time (T S2%). The user introduces the maximum time until the response

settles into a band of 2% of its final response. The framework gives the intervalar

controller set from the specified parameter space that fulfills it.

The Matlab routine SetTime.m calculates the settling time , and requires com-

puting

R(s,q,k) =
C(s,k)G(s,q)

1 + C(s,k)G(s,q)

1. Compute the characteristic polynomial with s.

2. Considering T S2%= 4
a
≤ SetT in (where SetT in is the specific settling time

chosen by the user), then set a = 4
SetT in

and substitute (s = −a + j ∗ w) into

the characteristic polynomial to build the limits of stability (a translation of

the zero vertical axis).

3. The resultant equation in complex format is

p1(w,q,k) + j p2(w,q,k) 6= 0.

4. Remove w in the equation p2(w, q, k).
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5. Compute the determinant of the resultant matrix using p1(w, q, k) and the

new p2.

6. The function to be returned is the determinant of the resultant matrix.

7. Return the function to be tested.

• Control effort. If the user selects this specification, he must introduce a value

(con in) so the control system will not pass this limit when computing the control

signals.

The Matlab routine ContEff.m calculates the module and requires computing the

frequency response of

R(s,q,k) =
C(s,k)

1 + C(s,k)G(s,q)
.

1. Compute the characteristic polynomial.

2. Substitute s = j ∗ w.

3. Imposing that the polynomial be less than con in produces the function (or

constraint) to be tested.

4. Return the function to be tested.

5.3.3 Post design tools

To assist control engineers, IRCAD offers a powerful set of post design functions. These

functions allow the user to complete the design by selecting an interval controller from the

feasible controller set. They also allow verification that the selected controller achieves

the specifications, without exiting from the framework.

Optimal controller

The outcomes of the robust control problem design are returned as a set of controllers

that fulfill the specification(s) in the design process. To choose the optimal controller
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among this set is sometimes a difficult task. To offer a more reliable framework, the

package allows choosing a criterion to select the optimal controller (Fig. 5-12).

Figure 5-12: IRCAD. Post design tools

This process comprises two steps:

• Choose the criterion to compute the optimal controller. The user can select three

criteria to choose the optimal controller from all the possible controllers in the set

of interval controllers that fulfill the design specifications:

– Minimum norm

– Maximum robustness

– Neighboring

Selecting one of these techniques has two outcomes. A graphic is opened corre-

sponding to the last design selection executed (with the parameter space classified

by stable, unstable, and undetermined regions). The optimal controller, computed

following the selected criteria, is marked as a bold color in the stable region. A
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numeric list where the selected interval optimal controller is presented in a text box

attached to the graphical representation (Fig. 5-13).

Figure 5-13: IRCAD. Choosing the optimal controller using neighboring criterion

The criteria are:

– Minimum norm: Given a graphical region of feasible controllers in the pa-

rameter space delimited by the parameters of the controller k1 and k2, this

criterion selects the intervalar controller (k1,k2) that fulfilling the specifica-

tions with the minimum norm. The norm is calculated from the parameter

space origin to the square defined by the interval (k1,k2). The selected con-

troller is presented graphically, marked in bold red, and numerically as shown

in Fig. 5-14.

– Maximum robustness: The framework computes the stability margin over each

square, and selects the square with the maximum value as the controller. The

selected controller is presented graphically, marked in bold red, and numeri-

cally as shown in Fig. 5-15.
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Figure 5-14: IRCAD. Choosing the optimal controller using minimum norm criterion

Figure 5-15: IRCAD. Choosing the optimal controller using maximum robustness crite-
rion
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– Neighboring: The framework computes the number of neighbors for each fea-

sible intervalar controller. The square with the maximum number of neighbors

is selected as shown in Fig. 5-13.

• Input optimal controller. The recommended value for the controller can be intro-

duced as an entry using the input menu, or it can be introduced automatically

using the post design tools as shown in Fig. 5-16.

Figure 5-16: IRCAD. Input optimal controller

The framework allows the parameters of the recommended controller, obtained us-

ing one of the techniques discussed above, can be directly input. This way to insert

controller parameters, allows the execution of post design tasks without exiting

from the framework.
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Post design tools

The final IRCAD menu is the post design tool that allows the user to verify the

specification (or set of specifications) selected for the design.

It is not necessary to move to a simulation environment to check the results of

the design process, because the selected controller can be simulated using IRCAD

directly (Fig. 5-17).

Figure 5-17: IRCAD. Post design tools

The tools of this block provide facilities to check that a designed controller fulfill

a set of specifications among the following: Stability degree, Absolute stability,

Resonance peak, Velocity error, Settling time 2%, Control effort and Overshoot.

These provide a user-friendly environment to develop robust control problems, with

the security that the outputs are guaranteed solutions.

As an example, suppose the user selects the design specification of absolute stability.

Then the post design tool available by IRCAD to verify the controller calculated

by the framework, fulfills the specifications is a graphical tool. The result is a zero
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pole map for all the parameters of the plant (Fig. 5-18).

Figure 5-18: IRCAD. Zero pole map for absolute stability in the post design tool.

5.4 Summary

MIA [85] provides necessary and sufficient conditions of stability that can be implemented

via algorithms which verify stability for a given uncertain domain. This chapter showed

the integration of MIA based algorithms developed to solve problems of robust control

into a user-friendly framework called IRCAD. The aim of this framework is to offer to

the control engineer automated tools to study robust control analysis and design of a

system on the parameter space.
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Chapter 6

Design example using IRCAD

We present an application of the IRCAD framework extracted from literature to illustrate

how a complete example of design is implemented.

6.1 Introduction

We chose the most representative case from the set of examples implemented during the

thesis development. This example was proposed by Fioro et al [21] and corresponds to a

simple but complete example in the area of robust control design.

6.2 Statement of the general problem

To illustrate how the solver builds and manages the data, we used the example presented

in Section 2.3.2, as suggested by Fiorio et al. [21] and later studied by Malan et al. [50].

The aim of the example is tuning a PI controller for an interval plant.

The transfer function of the plant is

G (s,q) =
q1

1− s
q2

, (6.1)

where q is the vector of uncertain parameters, q = [q1 q2] ; q1 = q2 = [0.8, 1.25]. The
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PI controller is

C (s,k) =
k1

(
1 + s

k2

)
s

, (6.2)

where k is the vector of the design parameters, k = [k1 k2].

The design aim is to find the set K of controller parameters that fulfill the performance

specifications:

1. Absolute stability.

2. Velocity error lower than 2%.

3. Resonance peak lower than 3 dB.

4. Control effort lower than 20.

6.3 Problem design using IRCAD

The aim is to tuning the PI controller using IRCAD framework, i.e., we want to com-

pute the two parameters for the intervalar controller. To start the designing process by

IRCAD, we need to select the design specifications to be fulfilled, as shown in Fig. 6-1
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Figure 6-1: IRCAD. Selection of design specifications

The framework manages each one of the specifications, transforming them via the

Symbolic Toolbox into a set of polynomial interval functions (Eqs. (6.3)–(6.6)). Matlab

transforms these to matrix structure and passes the functions to the solver. This trans-

formation is performed within IRCAD, and is transparent to the user. The solver tests

the positivity of the functions over the parameter space, as determined by the controller

parameters. In this case the parameter space is determined by k1 and k2. IRCAD allows

presentation of the results graphically, or as a set of intervals.

For this example, the parameter space to be checked is limited by providing initial

interval values k1 = [−200, 0] and k2 = [0, 10]. To work with positive intervals, k1 = −k1
has been substituted.

As explained in Section 3.3.2, to test if one specification or a set of specifications are

fulfilled using MIA it is enough to test if a function or a set of functions are positive. In
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our example it is enough to test the positivity of the following functions:

1. For the specification of absolute stability, the resultant function is

f1 = −k2 + q1k1. (6.3)

2. For the specification of velocity error less than 2%, the resultant function is

f2 = q1k1 − 50. (6.4)

3. For the specification of resonance peak lower than 3 dB, the resultant function is

f3 = 2k22w
4
1 − 4k22w

2
1k1q1q2 + k1

2
q21q

2
2k

2
2 + 2k22w

2
1q

2
2 − 4k2w

2
1q

2
2k1q1

+ k1
2
q21q

2
2w

2
1. (6.5)

4. Finally, for control effort lower than 20, the resultant function is

f4 = 400k22w
4
1 − 800k22w

2
1k1q1q2 + 400k1

2
q21q

2
2k

2
2 + 400k22w

2
1q

2
2

+ 400k1
2
q21q

2
2w

2
1 − k1

2
k22q

2
2 − k1

2
w4

1 − k1
2
k22w

2
1 − k1

2
w2

1q
2
2

− 800k2w
2
1q

2
2k1q1. (6.6)

The specification of absolute stability (6.3) depends only on q1, k1 and k2, and for the

velocity error specification (6.4) only depends on q1 and k1. Thus an analytical solution

is possible.

The other two other expressions, (6.5) and (6.6) have a more complicated computa-

tion due their dependence on five parameters: two plant parameters, two PI controller

parameters, and the frequency. The theoretical range of variation is w = [0,∞], but for

practical purposes it is enough to consider w = [0, 100] since the bandwidth will be of the

order of 15 rad/s. Expressions for f3 and f4 may be simplified by substituting α = w2
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Parameter value
q1 [0.8, 1.25]
q2 [0.8, 1.25]
k1 [0, 200]
k2 [0, 10]
α [0, 10000]

N(divk1) 40
N(divk2) 40
Maxlist variable

Table 6.1: IRCAD: Parameters for the example

With these considerations, using the parameters shown in Table 6.1, the regions of

fulfilling controllers are computed for each one of the four specifications. The resolution

is 5 unities for parameter q1 and 0.25 unities for parameter q2.

The resultant feasible regions for each specifications using IRCAD are shown in Fig. 2-

2. Specifications f3 and particularly f4 have high computation cost due the high number

of summand components and also the large number of plant and controller variables.

However, the computational cost is significantly reduced for f1 and f2, because some

regions are discarded by the application of least cost..

The parameter space area of the fulfilling controllers is the intersection of the four

regions of Fig. 2-2, which is shown in detail in Fig. 2-3

6.3.1 Computation of the set of controllers that fulfill design

specifications

To simplify the problem. The computation will be made using three of the four specifi-

cations.

• Absolute stability.

• Resonance peak lower than 3 dB

• Control effort lower than 20.
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This computation can be made following different strategies:

• SCDS algorithm.

• NFV algorithm.

k1 = [−70,−65] k2 = [2.75, 3]
k1 = [−75,−65] k2 = [3, 3.25]
k1 = [−80,−65] k2 = [3.25, 3.5]
k1 = [−85,−65] k2 = [3.5, 3.75]
k1 = [−90,−65] k2 = [3.755, 4]
k1 = [−95,−65] k2 = [4, 4.25]
k1 = [−100,−65] k2 = [4.25, 4.5]
k1 = [−100,−75] k2 = [4.5, 4.75]
k1 = [−105,−80] k2 = [4.75, 5]
k1 = [−110,−85] k2 = [5, 5.25]
k1 = [−110,−95] k2 = [5.25, 5.5]
k1 = [−110,−100] k2 = [5.5, 5.75]
k1 = [−110,−105] k2 = [5.75, 6]

Table 6.2: Set of feasible controllers

Design example using the single controller design specification(SCDS) algo-

rithm

This example has been reduced to three specifications, so the process below must be

repeated three times, one for each specification. Only the first specification is reported

in detail.

Specification

The condition of absolute stability obtained for this specification must be expressed

in its most simplified format, in our case obtained with the help of Maple.

substituting k̃1 = − k1, the transfer function of the closed loop system is

M(s,q,k) =
k̃1(k2 + s) q1q2

k2s2 + (−k2q2 + k̃1q1q2) s+ k̃1q1q2k2
,
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and the characteristic polynomial is

pc(s,q,k) = k2s
2 + (−k2q2 + k̃1q1q2) s+ k̃1q1q2k2.

The absolute stability condition is obtained from the coefficient of the s term,

f1(q,k) = −k2 + k̃1q1 > 0.

Constrain

Substituting X1 = k2, X0 = k̃1, X2 = q1, the constraint is

f1 = −X1 +X0X2.

Matrix structure

Using the Matlab routine included in Appendix A, the constraint is transformed into
0 X0 X1 X2

−1 1 0 0

1 0 1 1

 ,

which is split into three smaller matrices

• matrix (vector) of variables: 
X0

X1

X2


• matrix of coefficients:  −1

1


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• matrix of exponents:  1 0 0

0 1 1


Results

This algorithm individually tests each one of the specifications. Graphical represen-

tations of the outcomes for each specification are shown in Fig. 6-2.

a: absolute stability

b: resonance peak c: control effort

Figure 6-2: Feasible regions
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The colors for each box are:

• Yellow: Regions which are not feasible.

• Red: Regions which are feasible.

• Blue: Undetermined regions.

Execution of the three specifications produces three matrices of dimension 40×40 that

can be represented within, and also saved as part of the Matlab workspace.

Example using the multiple specification algorithm NFV

The algorithm includes the same three specifications, but here only one execution is

required to achieve the regions which fulfill the three specifications simultaneously.

Specifications

Following the same process as in the single specification algorithm, the specifications

obtained are in Eqs (6.3), (6.5) and (6.6).

Constraints

Substituting X1 = k2, X0 = k̃1, X2 = q1, the three constraints are

f1 = −X1 +X0X2, (6.7)

f3 := 2X2
1X

2
4 + 4X2

1X4X0X2X3 + 2X2
1X4X

2
3 + 4X4X1X

2
3X0X2 +X4X

2
3X

2
2X

2
0 , (6.8)

f4 := 400X2
1X

2
4 − 800X2

1X4X0X2X3 + 400X2
0X

2
2X

2
3X

2
1 + 400X2

1X4X
2
3 ,

−800X1X4X
2
3X0X2 + 400X2

0X
2
2X

2
3X4−X2

0X
2
1X

2
3 −X2

0X
2
4 −X2

0X
2
1X4−X2

0X4X
2
3 ; (6.9)
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Matrix structure

For our example of three specifications, the sorting criterion followed to evaluate the

constrains is presented in the Matlab script of Appendix A. The justification for this

sorting method is summarized in Table 6.3 using the following three functions:

1. First function ==> The function of absolute stability regions(2 addends - 3 vari-

ables - 2 controller parameters).

2. Second function =>The function of regions with resonance peak less than 3 dB (6

addends - 5 variables - 2 controller parameters).

3. Third function ==>The function of regions with control effort less than 20 (10

addends - 5 variables - 2 controller parameters).

Function Addends Variables Controller parameters
absolute stability regions 2 3 2
resonance peak < 3 dB 6 5 2

control effort < 20 10 5 2
... ... ... ...

Table 6.3: IRCAD: Parameters for the example

The matrix structure is composed by three matrices:

• COEF: Matrix that contains the coefficients of the constraints 6.7, 6.8, 6.9.

• VARI: Matrix that contains the variables of the constraints 6.7, 6.8, 6.9.

• EXPO: Matrix that contains the exponents of the variables of the constraints 6.7,

6.8, 6.9.

The COEF matrix is formed by the juxtaposition of N + 1 vectors where N is the

number of functions (or specifications). In our example with three specifications, there
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are four columns with empty elements filled by zeros,



2 −1 2 400

3 1 −4 −800

6 0 1 400

5 0 2 400

10 0 −4 −800

5 0 1 400

0 0 0 −1

0 0 0 −1

0 0 0 −1

0 0 0 −1


In column 1, positions 1 & 2 correspond to the number of rows (number of addends)

and number of columns (number of variables), respectively, of the first function (specifi-

cation), positions 3 & 4 correspond to the number of addends and number of variables

for the second function, respectively, and positions 5 & 6 correspond to the number of

addends and variables for the third function. Column 2, 3, and 4 are the coefficients of

functions 1, 2, and 3, respectively.

The EXPO matrix is formed by the juxtaposition of N matrices, each one with their

own dimension. In our example:

• Matrix of exponents for the first specification: 0 1 0

1 0 1


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• Matrix of exponents for the second specification:

0 2 0 0 2

1 2 1 1 1

2 2 2 2 0

0 2 0 2 1

1 1 1 2 1

2 0 2 2 1


• Matrix of exponents for the third specification:



0 2 0 0 2

1 2 1 1 1

2 2 2 2 0

0 2 0 2 1

1 1 1 2 1

2 0 2 2 1

2 2 0 2 0

2 0 0 0 2

2 2 0 0 1

2 0 0 2 1


• The global matrix EXPO is the juxtaposition of the three matrices with zeros to
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fill the empty positions:



0 1 0 0 2 0 0 2 0 2 0 0 2

1 0 1 1 2 1 1 1 1 2 1 1 1

0 0 0 2 2 2 2 0 2 2 2 2 0

0 0 0 0 2 0 2 1 0 2 0 2 1

0 0 0 1 1 1 2 1 1 1 1 2 1

0 0 0 2 0 2 2 1 2 0 2 2 1

0 0 0 0 0 0 0 0 2 2 0 2 0

0 0 0 0 0 0 0 0 2 0 0 0 2

0 0 0 0 0 0 0 0 2 2 0 0 1

0 0 0 0 0 0 0 0 2 0 0 2 1


Similarly, the VARI matrix is formed by the juxtaposition of three matrices:

• The matrix of variables for the first specification (which has three variables) is:


X0

X1

X2


• The matrix of variables for the second specification (which has five variables) is:



X0

X1

X2

X3

X4


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• The matrix of variables for the third specification (which has five variables) is:



X0

X1

X2

X3

X4


• Thus, VARI is the juxtaposition:

X0 X0 X0

X1 X1 X1

X2 X2 X2

0 X3 X3

0 X4 X4


Results

We obtain the set of regions of the parameter space from which the controller can be

chosen. It corresponds to the intersections of the red ( fulfilled) three parameter areas.

The result, shown in Fig. 6-3, is obtained by intersecting the three matrices.

6.3.2 Selection of one controller using post design tools

IRCAD offers a set of post design tools that allows the user to choose the optimal con-

troller from the set of the automatically proposed controllers. The framework chooses

the controller following the criteria the user has selected among:(Section 5.3.3).

• Minimum norm

• Neighboring

• Maximum robustness
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Figure 6-3: Region of feasible controllers for the three specifications defined

In this example, we suppose the user select the criterion of minimum norm. The

controller suggested by IRCAD is [−67.5, 2.875], as shown in Fig. 6-4.

6.3.3 Validation of the proposed controller using post design

tools from IRCAD

To validate the controller, the user must input the suggested controller in the controller

transfer function. This action can be performed in two ways:

• Manually: The user can type in the optimal parameters of the controller, the

controller obtained by IRCAD.

• Automatically: When the controller is suggested by IRCAD, there is an option that

allows it to be inserted on the closed loop in an automatic way.

Whatever is the way selected, the effect is the same. The PI controller obtained by

IRCAD, k1 = −67.5 and k2 = 2.875 is introduced to the transfer function of the controller

C(s) for the closed loop system (Fig. 6-5) . Its expression is:
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Figure 6-4: Minimum norm criteria

Figure 6-5: Closed loop system with the controller suggested by IRCAD

C (s) =
−67.5

(
1 + s

2.875

)
s

(6.10)

IRCAD also offers a set of tools that allows validation of the suggested controller

without exiting from the framework (see Fig. 6-6):
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• Apply an input to the control system to check if the specifications are actually

fulfilled.

• Draw the temporal response of the control system.

• Check design specifications. In our example this option is taken to check the three

design specifications: absolute stability, resonance peak and control effort.

Figure 6-6: Post design tool to check specifications in IRCAD

The result is in Figure . 5-18.

6.4 Summary

This chapter presents an example of design with a high computation level and its resolu-

tion using IRCAD . Three specifications of robust control design are taken into account
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to illustrate the whole process. IRCAD take the specifications, transform them into

constraint problems. The solver transform these constraints into matrices, computes its

positivity and classify the parameter space into regions that fulfill the specifications, re-

gions that don’t fulfill the specifications and into undetermined regions. From the region

that fulfills, IRCAD offers tools to select the optimal controller, thus the problem of

robust control design has been solved.
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Chapter 7

Application of IRCAD to mobile

robot control design

In this chapter is presented the experimental application of a control law, developed using

IRCAD, to an educational and research mobile robot.

7.1 Introduction

Path following is an important aspect of robotics. Computation of control laws required

for a robot to perform this task is reported in many works. In this chapter we show how

these laws may be computed using the IRCAD design tools.

We first detail the robot that the derived control laws are implemented upon. The

robot has three models corresponding to three different velocities at which it can operate

(low, medium and high). In a classical control design this structure corresponds to the

computation of three control laws: one each for low, medium, and high velocities, which

in turn requires a commuted controller.

We propose an alternative solution to the control of the robot, consisting of designing

a single intervalar controller to covers the three velocities. The design of this controller

was accomplished using the IRCAD framework.
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Path following outcomes using a classical commuted PI controller are compared to

the single intervalar controller for the robot following the same path.

7.2 The robot PRIM

PRIM is a mobile robot built at the University of Girona to provide the platform as an

open educational tool, as well as an available research platform. Educational outcomes

cover electronics, control and modeling, sensor fusion, and computer science, among other

areas. Research activities from the mutual interaction and integration between subjects,

and high level control strategies have also been developed. The use of open platforms

allows development of understanding in a multidisciplinary context.

7.2.1 Mechanical description

The robot structure is made from aluminum, with parts distributed on different levels.

On the first level are two differential driven wheels, controlled by two DC motors, and

a third omni-directional wheel providing the third contact point with the floor. On the

second level is the PC computer, and on the third level the specific hardware and sonar

sensors. The forth level could be used, extending the flexibility of the system, to place

machine vision system and/or multimedia set ups depending on the platform application.

Table 7.1 summarizes the basic mechanical description of PRIM.

7.2.2 System architecture

This section introduces the wheeled mobile robot (WMR) system architecture used in

PRIM. The main decision system resides within the PC that controls the hardware. Data

gathering and control frequency is 100 ms. The platform allows connection to other PCs

through a LAN, which facilitates multimedia point of information and machine vision,

as an advanced sensor system (Fig. 7-1).
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Features of robot PRIM
Wide 580mm
Large 400mm
Height 1200mm

Distance between wheels 560mm
Diameter of the wheels 160mm

Weight 20Kg
Maximal speed 0.48m/s

Motor max. cont. torque 131mNm
Gear reduction 86 : 1

Total robot force 141N

Table 7.1: Robot PRIM mechanical properties

Figure 7-1: Decision architecture for PRIM
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The multimedia system is composed of a PC with a tactile screen that allows in-

teraction with humans. The computer is configured with the software that the various

user applications demand. A wireless internet connection allows communication with the

whole world, and provides multiple possibilities.

The machine vision system is composed of a remote camera with motorized focus,

iris, and zoom control by a serial port, two stepper motors that control the pan and tilt

position of the camera, and specific hardware boards running on a PC exclusively used by

the machine vision system. The system is connected to the main control system through

a LAN.

The control laws, computed in any method, to control PRIM, must be implemented

as a part of the code consisting of the generation of straight line trajectory tracking in

C under Windows XP on the high level PC system.

7.3 Mobile robot kinematic and dynamic systems

PRIM is a differentially driven WMR with a free rotating wheel, as shown in Fig. 7-2,

designed for indoor navigation.

Figure 7-2: Wheeled mobile robot architecture for PRIM
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Kinematic system

The WMR is a rigid body, and consequently non-deforming wheels are required. The

vehicle is assumed to move without slipping on a plane, so that there is pure rolling

contact between the wheels and the ground.

Denoting the position and orientation coordinates by (x, y, θ), and the velocity vector

by u = [v, w], where v and w are the tangential and angular velocities respectively, the

kinematic model of the WMR can be stated as

dx = vcosθ,

dy = vsinθ,

and

θ = w,

Using a discrete time representation (with T being the sampling period and k the time

instant) and Euler’s approximation, the following discrete time model can be obtained

for the robot dynamics

x(k + 1) = x(k) + v(k)cosθ(k)T,

y(k + 1) = y(k) + v(k)sinθ(k)T,

and

θ(k + 1) = θ(k) + w(k).

The WMR platform uses incremental encoders to obtain the position and orientation

coordinates. We can describe the positioning of the robot as a function of the radius of

the left and right wheels ( equations 7.1, 7.2), (Re and Rd), respectively, and the angular

incremental positioning (θe, θd), where E is the distance between the two wheels and

dS is the incremental displacement of the robot. The position and angular incremental
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displacements can be expressed as:

dS =
Rddθd +Redθe

2
, (7.1)

and

dθ =
Rddθd −Redθe

E
. (7.2)

The (x, y, θ) coordinates can be expressed as:

x(k + 1) = x(k) + dscos(θ(k) + dθ),

y(k + 1) = y(k) + dssin(θ(k) + dθ),

and

θ(k + 1) = θ(k) + d(k).

Thus, the incremental position of the robot can be obtained using the odometer and the

encoder information.

7.4 System identification for PRIM: Transfer func-

tions

The aim of this section is to present a set of dynamic models for high (0.9 m/s), medium

(0.6 m/s), and slow (0.3 m/s) velocities suitable for controlling the velocity of each wheel

using PID controllers. The models are obtained using a set of linear transfer functions

which represent the nonlinearities of the whole system.

The parametric identification process is based on black box models ([49], [64]). The

nonholonomic system of PRIM is considered initially to be a multiple input multiple

output (MIMO) system, as shown in Fig. 7-3, because of the dynamic influence between

the two DC motors. This MIMO system is composed of a set of single input single output
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(SISO) subsystems with coupled connections.

Figure 7-3: Structure of a multiple input multiple output system

Parameter estimation is performed using a pseudo-random binary signal (PRBS),

such as an excitation input signal. This guarantees the correct excitation of all dynamic

sensible modes of the system along the whole spectral range, resulting in accurate high

precision parameter estimation. The experiments be performed consisted of exciting the

two DC motors at various speed ranges (low, medium, and high).

An autoregressive with external input (ARX) structure was employed to identify the

system parameters. The problem consists of finding a model that minimizes the error

between the real and estimated data. Expressing the ARX equation as a lineal regression,

the estimated output is

ŷ = λφ, (7.3)

where ŷ is the estimated output vector, λ is the vector of estimated parameters, and φ is
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the vector of measured input variables. Using the coupled system structure, the transfer

function of the robot can be expressed asYD
YE

 =

GDD GED

GDE GEE

 .

UD
UE


,

where YD and YE represent the speed of the right and left wheels, and UD and UE

the corresponding speed commands, respectively.

To obtain information about the coupled system, the transfer function matrix must

be identified. The process of identification was developed by Pacheco, Ll. [73], and

comprise four transfer functions corresponding to the four possible interrelations between

the wheels. GDD is the right wheel transfer function, GEE is the left wheel transfer

function, and GDE and GED are the dynamic influence between the left and right wheel

DC motors. The system is identified using the Identification toolbox of Matlab (’ident’

command), employing the PRBS signals as inputs. Table 7.2 shows the continuous

transfer functions obtained for the three different lineal speed models.

Linear trans.function High velocities Medium velocities Low velocities

GDD
0.20s2−3.15s+9.42
s2+6.55s+9.88

0.20s2+3.10s+8.44
s2+6.17s+9.14

0.16s2+2.26s+5.42
s2+5.21s+6.57

GED
−0.04s2−0.60s−0.32
s2+6.55s+9.88

−0.02s2−0.31s−0.03
s2+6.17s+9.14

−0.02s2−0.20s+0.41
s2+5.21s+6.57

GDE
−0.01s2−0.08s−0.36
s2+6.55s+9.88

0.01s2+0.13s+0.20
s2+6.17s+9.14

−0.01s2−0.08s−0.17
s2+5.21s+6.57

GEE
0.031s2+4.47s+8.97
s2+6.55s+9.88

0.29s2+4.11s+8.40
s2+6.17s+9.14

0.25s2+3.5s+6.31
s2+5.21s+6.57

Table 7.2: Second order wheeled mobile robot model
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As shown in Fig. 7-3, the MIMO system is composed of a set of SISO subsystems with

coupled connections. A set of reduced order dynamic transfer functions can be obtained

if the coupling effects due to the influence between the two DC motors of the wheels can

be described. Table 7.2 shows that the dynamics of the DC motors are different and the

steady gains of the coupling terms are relatively small (less than 20% of the gains of main

diagonal terms). Thus, it seems reasonable to neglect the coupling dynamics to obtain

a simplified mode, and this has been verified experimentally by Pacheco, Ll.[73]. The

functions considered for each velocity are summarized in Table 7.3, and following this

assumption, we only consider the transfer functions of the left and right wheels directly,

GEE and GDD.

Linear trans.function High velocities Medium velocities Low velocities

GDD
0.95

0.42s+1
0.92

0.41s+1
0.82

0.46s+1

GEE
0.91

0.24s+1
0.92

0.27s+1
0.96

0.33s+1

Table 7.3: The reduced wheeled mobile robot model

7.5 Statement of the experiment

The aim is to design an intervalar PID controller using the IRCAD framework and

implement this controller on a mobile robot (PRIM) to solve the problem of local path

following.

The same experiment is also performed applying a classical PID controller. For PRIM,

the classical controller must be considered a commuted controller, because there are three

different models depending on the velocity (Section 7.4), i.e., for each model (speed) a

different controller is applied.
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The path-following algorithm

Path following is accomplished by tracking a sequence of fixed points consisting of po-

sitions and orientations. Feedback of orientations and cartesian coordinates reduces the

path deviation. The required motion to follow the desired path is composed by a sequence

of straight and turning actions. Figure 7-4 shows a path defined by three waypoints where

the path between two consecutive waypoints is a straight line. To perform a straight path

following action, both wheels must have the same velocity, and the heading angle must

remain constant.

Right and left turning actions are performed by the following algorithms:

UR(k + 1) = UR(k) +KR(θd − θ(k))±∆UPD, (7.4)

UL(k + 1) = UL(k) +KL(θ(k)− θd)∓∆UPD, (7.5)

where UR and UL denote the required speed for the right and left wheels, respectively;

θd denotes the desired orientation; θ is the WMR’s heading (Fig. 7-4); and KR and KL

are tuning factors for right and left turning of the wheels, respectively.
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Figure 7-4: Example of a path described by a set of waypoints (Pxk−1
, Pyk−1

) (Pxk , Pyk)

and (Pxk+1
, Pyk+1

)

Thus, when a straight path is followed, the difference between θd and θ is zero, and

straight path following is accomplished by commanding the same velocity to each wheel.

When left turning is required, θd is larger than θ and Eqs. 7.4 and 7.5 increase UR while

UL is decreased. Conversely, when right turning is required, θ is larger than θd and

Eqs. 7.4 and 7.5 increase UL while UR is decreased. ∆UPD is a turning parameter that

reduces the path deviation when cartesian coordinates are considered. It is applied with

different sign to both wheels with the aim of creating a difference of velocities. Path

deviation is given by the Euclidean distance between the WMR coordinates, (Rx, Ry),

and the straight line defined by the consecutive waypoints that define the path to be

followed, (Fig. 7-4). ∆UPD is considered an heuristic parameter:

• ∆UPD = 0 when the path deviation is very small.
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• ∆UPD produces a slight turn when the path deviation is small.

• ∆UPD produces a turn when the path deviation is significant.

Euclidean path deviations are reduced by using turning actions that return the vehicle

to the path. Thus, turning actions depend on the segment being followed and the relative

WMR position.

The proposed algorithms consider five motion types to perform local path following:

(straight, wide left turn, slight left turn, wide right turn, and slight right turn).

PRIM path following experiment

The path following experiment for PRIM was based on a path defined by a set of twelve

points with a shape similar to a dodecagon, as shown in Fig. 7-5.

Figure 7-5: Clockwise dodecagon path
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This path allows us to test both right and left turns with PRIM at different velocities.

Thus, it is necessary to use different controllers during the experiment. To analyse path

deviation, two consecutive points are joined by a straight line. When the WMR is close

to a required point, a reduction in velocity is produced and the next point of the sequence

is produced as the subsequent objective.

In following sections, we report on the experimental outcomes for a classical com-

muted PID controller and a controller based on intervalar techniques, developed using

the proposed IRCAD framework.

The steps in designing the controller set using IRCAD were:

• Select the design specifications.

A set of specifications was devised that the model must fulfill:

– Setting time 6 2s

– Overshoot < 10%

• Select a controller structure to achieve the specifications.

To achieve the specifications, we chose a PI structure with a proportional and

integral control actions:

C (s) = KP +
KI

s
. (7.6)

• Tune the controllers to obtain a continuous PI controller.

The tuning process consists of computing the parameters, KP and KI , of the PI

structure. This process could be executed in different ways, and the set of con-

trollers (in the case of the desired commuted controller) allows the system to achieve

the specifications.

• Convert the continuous controller to a discrete controller to be implemented on

PRIM.
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Discrete transfer functions were obtained by applying a transformation based on a

zero order holder (zoh) method to the controllers transfer functions. These discrete

functions were then ready to be applied to PRIM.

7.6 Classical commuted PI controller for PRIM

In Section 7.4, three different models were obtained for PRIM, for high, medium, and

low velocities. Since each model requires a different controller, this implies a commuted

controller for implementation.

Tuning the controllers requires computing the three PI continuous controllers then

transforming them to discrete controllers to be implemented on PRIM. Pacheco, Ll. and

Luo, N. [74] explain the processing detail, and the results are summarized in Tables 7.4

and 7.5 for the continuous and discrete controllers, respectively.

High velocities Medium velocities Low velocities

Right wheel 0.59s+3.36
s

0.7s+3.65
s

1.02s+4.59
s

Left wheel 0.04s+2.16
s

0.33s+2.4
s

0.33s+2.81
s

Table 7.4: Continuous PI controller transfer functions

High velocities Medium velocities Low velocities

Right wheel 0.59−0.25z−1

1−z−1
0.7−0.54z−1

1−z−1
1.−0.54z−1

1−z−1

Left wheel −0.04+0.54z−1

1−z−1
0.33s+2.4

s
0.33s+2.81

s

Table 7.5: Discrete PI controller transfer functions

Considering PRIM to be modeled by the three transfer functions of the reduced WMR

model, corresponding to the three velocities (Table 7.3), a commuted PI controller also
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comprising three transfer functions (Table 7.5) is required to control the robot. In the

high level code there is a switch structure with three options for the three velocities.

Thus, the controller employed at any moment changes depending on the velocity.

7.6.1 Clockwise dodecagon path following for a commuted PID

The six control laws ( three for each wheel), were input in the control code for clockwise

dodecagon path following. The controller is commuted, depending on the robot velocity.

PRIM was then activated to follow the path of the clockwise dodecagon, with the result as

shown in Fig. 7-6, where the dashed trajectory is the set points, and the green trajectory

corresponds to PRIMs actual path using the commuted PI controller.

Figure 7-6: Clockwise dodecagon trajectory tracking using a PID commuted controller
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7.7 Clockwise dodecagon path following for the pro-

posed Intervalar based PI controller

IRCAD allows the control engineer to obtain a single controller rather than three com-

muted classical PID controllers (see Section 7.6).

This section shows how the intervals based controller is obtained and its path following

performance tested. These results are compared with those obtained using a commuted

PI controller following the same path in Section 7.8.

7.7.1 Obtaining the intervalar controller using IRCAD

The process to compute the intervalar controller is summarized in this section. An

extended tutorial detailing the computation of the controller using IRCAD is presented

in Appendix B.

Translation of the transfer functions to interval format

The first order transfer functions shown in Table 7.3 that represent the three reduced

WMR models for each wheel are translated to a format suitable for IRCAD input, i.e.,

to interval format, as shown in Table 7.6.

Left wheel Right wheel

Interval transfer function GEE(s,q) = q1
q2s+1

GDD(s,q) = q1
q2s+1

Interval parameter q1 q1 = [0.91, 0.96] q1 = [0.82, 0.95]

Interval parameter q2 q2 = [0.24, 0.33] q1 = [0.41, 0.46]

Table 7.6: Interval models for PRIM
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Finding a set of feasible controllers for PRIM using IRCAD

To design the intervalar controller, we must provide the IRCAD framework with the

following data (see Appendix B for details of how this data was obtained):

• Transfer functions of the model in interval format (Table 7.6).

• Interval values for the parameters of the intervalar transfer functions (Table 7.6).

• The specifications that must be fulfilled by the system when the controller is incor-

porated (Section 7.5).

• The structure of the controller. A PI controller structure was selected (Table 7.7,

K1 and K2 have interval values).

• The parameter space of the controller parameters. The parameter space was K1 =

[0, 100] and K2 = [0, 100], which corresponds to the region IRCAD searches for the

set of feasible controllers.

• Selection of the solver. For this experiment we employed the solver developed in

chapter 4.

IRCAD controller

Right wheel
K1(1+

s
K2

)

s

Left wheel
K1(1+

s
K2

)

s

Table 7.7: Structure for the PI intervalar controller

Results from the intervalar controllers computed by IRCAD

The IRCAD design tools produce a sequence of algorithms following the process detailed

in Appendix B. IRCAD provides a set of feasible controllers that fulfill the design spec-
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ification in graphical (Figs. 7-7 and 7-8 for the right and left wheels, respectively), and

numerical (Table 7.8) format .

Figure 7-7: Set of feasible controllers of right wheel using IRCAD

The question remains, then, which is the best controller among all the possibles. This

depends in the system to be implemented. IRCAD includes tools to assist the control

engineer to make this selection. Three possible criteria may be employed in IRCAD

(Section 5.3.3): neighboring, minimum norm, and maximum robustness. The proposed

controller will be different depending on the criterion used, because each criterion em-

phasizes different aspects when choosing the best controller. It is important to note that

the results of these criteria are not intervalar. The parameters of the recommended PI

controller, returned by these criteria, are point real numbers, non-interval parameters.

However, it is this format that the control engineer needs to obtain the information. The

selected intervalar controller is summarized in Table 7.9.
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Set of feasible intervalar controllers

Right wheel K1 = [2.5975, 100], K2 = [0, 2.5975]

K1 = [5.095, 100], K2 = [2.5975, 5.095]

K1 = [25.075, 100], K2 = [5.095, 7.5925]

K1 = [52.5475, 100], K2 = [7.5925, 10.09]

K1 = [92.5075, 100], K2 = [10.09, 12.5875]

Left wheel K1 = [2.5975, 100], K2 = [0, 5.095]

K1 = [0, 100], K2 = [5.095, 7.5925]

K1 = [25.075, 100], K2 = [7.5925, 10.09]

K1 = [50.05, 100], K2 = [10.09, 12.5875]

K1 = [80.02, 100], K2 = [12.5875, 15.085]

Table 7.8: Set of feasible controllers

Criterion PI controller for right wheel PI controller for left wheel

Minimum norm K1 = 3.8563, K2 = 1.8488 K1 = 3.8563, K2 = 1.8488

Neighboring K1 = 61.2888, K2 = 6.3438 K1 = 53.7963, K2 = 8.8412

Maxim.robustness K1 = 3.8563, K2 = 1.8488 K1 = 3.8563, K2 = 1.8488

Table 7.9: PI controllers proposed by IRCAD from the feasible set depending on the
criterion selected
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Figure 7-8: Set of feasible controllers for the left wheel using IRCAD

Validation of the controllers computed by IRCAD

IRCAD includes a set of tools that allow simulations of the system to verify the con-

trollers. The simulation results for the right wheel are shown in Figs. 7-9 and 7-10 for

the neighboring and minimum norm criteria, respectively. Figures 7-11 and 7-12 show

the same results, respectively, for the left wheel.

The simulation responses are better with for controllers proposed using the neigh-

boring criterion. Thus these controllers were implemented on PRIM to execute the

experiments reported here.
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Figure 7-9: System response of the right wheel using the neighboring criterion

7.7.2 Clockwise dodecagon path following using the IRCAD

PI controller

We implemented the controllers recommend by IRCAD onto PRIM to perform the path

following task presented in Section 7.5.

To achieve this, we built the control law (the controller) and transformed it to C code

to implement on PRIM. In contrast to the implementation of Section 7.6, which included

three different controllers (one for each velocity), this case there is a single controller

covering all the velocities (see Appendix B for details)). Table 7.10 shows the selected

controllers, computed using the neighboring criterion for each wheel. Implementing the

controller structure of Table 7.7, the final controllers for each wheel are shown in Ta-

ble 7.11, and the discrete format controller is shown in Table 7.12

Thus, the control laws for each wheel as function of the error, e(z) are as follows.
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Figure 7-10: System response of the right wheel using the minimum norm criterion

Criterion PI controller for right wheel PI controller for left wheel

Neighboring K1 = 61.2888, K2 = 6.3438 K1 = 53.7963, K2 = 8.8412

Table 7.10: Selected PI controllers (”NEIGHBORING” criterion)

For the right wheel

u(z) = u(z − 1) + 9.67e(z)− 3.54e(z − 1), (7.7)

and for the left wheel,

u(z) = u(z − 1) + 6.09e(z)− 0.71e(z − 1). (7.8)

These two control laws were input in the C code built for clockwise dodecagon path

following, with results as shown in Fig. 7-13.

131



Figure 7-11: System response of the left wheel using the neighboring criterion

7.8 Comparing the commuted and intervalar PI con-

trollers

The proposed IRCAD controller implementation produces a resultant path (Fig. 7-13)

very similar to that of the commuted controller (Fig. 7-6).

Figure 7-14 directly compares these paths to allow a more accurate assessment. The

dashed green line shows the path when using the commuted PI controller, the dashed

IRCAD controller

Right wheel 9.67s+61.3
s

Left wheel 6.09s+53.8
s

Table 7.11: Continuous PI controller obtained from IRCAD
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Figure 7-12: System response of the left wheel using the minimum norm criterion

red line is that when using the IRCAD PI controller. Path tracking accuracy is slightly

improved using the commuted controller.

IRCAD controller

Right wheel 9.67−3.54z−1

1−z−1

Left wheel 6.09−0.71z−1

1−z−1

Table 7.12: Discrete PI controller obtained from IRCAD

Figure 7-15 concentrates on a single segment of the path the robot must to follow

corresponding to a right turn, and the specific responses of the left and right wheels are

shown in Figs. 7-16 and 7-17, respectively. Control of the left wheel is less abrupt using
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Figure 7-13: Clockwise dodecagon path following using a PID controller based on inter-
valar techniques

the intervalar based controller, whereas that of the right wheel is less abrupt using the

commuted controller. However, PRIM follows the set point with good accuracy regardless

of the controller used.

Figure 7-18 shows the path error from the two controllers. Overall, the path error

resulting from the intervalar controller (red) is superior to that from the commuted

controller (green), especially in the case of the left wheel.

Figure 7-19 shows the control signal generated for PRIM as it executed the path

following experiment. The signal is smoother for the intervalar controller (red) than the

commuted controller (green), especially for the left wheel.

Finally, the time required for PRIM to complete the dodecagon path was similar

(approximately 70 s) for both control strategies.

In addition to the quantitative improvements using the proposed IRCAD controller

(improved error and smoother control), there are several qualitative improvements:

• A clear gain in simplicity and ease of design, due to the IRCAD framework.
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Figure 7-14: Clockwise dodecagon path following using a commuted controller (dashed
green line) and an intervalar controller (dashed red line)

• Easier to validation of candidate controllers, because a single controller is imple-

mented rather than one controller for each velocity.

• Easier to implement into high level code and more time effective.

The proposed IRCAD framework facilitates control of a complex system, such as

the robot PRIM, with a single controller whatever PRIMs velocity. In contrast, the

commuted PI controller is necessarily more complex because the control law changes

with PRIMs velocity.

Thus, the interval controller is a valid implementation for PRIM to solve the path

following problem, and is an improvement over the (classical) commuted PI controller.
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Figure 7-15: Trajectory of a right turn using two control strategies

7.9 Summary

We have shown the application of controllers obtained using the design tool of the frame-

work IRCAD to a real system, the robot PRIM. Two controllers were obtained, for the

left and right wheels.

An experiment consisting of clockwise path following around a dodecagon form was

performed and analysed. This served to illustrate the process to design a controller using

the IRCAD framework and also how to manage the interval information during the design

process.

The control laws obtained from IRCAD were verified in simulation then implemented

on PRIM and path following performance was compared with a classical commuted con-

troller. Path following was a little more accurate using the commuted PID. However,

overall the simplicity of the IRCAD single controller and its smoother control signal is a

significant improvement over the commuted controller.
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Figure 7-16: Left wheel response during a right turn
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Figure 7-17: Right wheel response during a right turn
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Figure 7-18: Error for clockwise dodecagon path following using the PID commuted and
IRCAD controllers
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Figure 7-19: Control signal for clockwise dodecagon path following using the PID com-
muted and IRCAD controllers
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Chapter 8

Conclusions and further research

We present a general summary of the outcomes and a specific statement of the original

contributions of this thesis. Some directions for future research on robust control are also

discussed.

8.1 Summary

This work proposes a solution to solve robust control problems using interval parametric

models. Complex systems are often subject to uncertainties that make modeling difficult,

if not impossible. A quantitative model may be inadequate to represent the behavior of

systems which require an explicit representation of imprecision and uncertainty. Assum-

ing the uncertainties are structured, models can be constructed using with modal interval

methods where the parameters are allowed to vary within numeric intervals. Robust con-

trol uses such mathematical models to explicitly incorporate uncertainty. Solving robust

control problems, such as finding the robust stability or designing a robust controller,

involves difficult symbolic and numeric computation. However, if interval models are em-

ployed, this allows interval computations. The main advantage of using modal interval

analysis is that it provides guaranteed solutions, but as drawback its requires interaction

with multiple data types. We propose a methodology and framework that combines sym-
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bolic and numeric computation with interval analysis to solve robust control problems.

8.2 Original contributions of this work

The original contributions of this thesis work are:

• A control toolbox for systems with parametric uncertainties.

A set of tools based on interval methods to solve robust control problems, in the

case of parametric uncertain systems. These methods are based on Modal Interval

Analysis.

• Integration of symbolic, interval, and numeric data.

– The IRCAD toolbox, developed using the GUI tools of Matlab, allows user-

friendly input of the system transfer functions in a symbolic manner, with easy

input of the numerator and the denominator from their respective polynomials.

– The IRCAD toolbox allows input of interval values for the uncertain parame-

ters of the transfer functions.

– Development of a matrix structure to pass the set of constraints (symbolic

data) obtained from Matlab to the solver (a C++ executable program) that

requires numeric data.

– The solver returns interval and numeric data that are converted to symbolic

to be displayed in the Matlab environment.

• Build uncertain constraints to solve robust control problems.

Given a robust control problem, the IRCAD toolbox transforms it into a function

(or constraint) with interval parameters. Thus, the toolbox reduces a set of different

problems (shown in the following list) to a unique constraint.

– Analysis. Build the constraint corresponding to testing for:
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∗ open loop stability, and

∗ Closed loop stability.

– Design. Find the set of possible controllers that fulfill the defined specifica-

tions, and build the constraint for that specification:

∗ Stability degree.

∗ Absolute stability.

∗ Resonance peak.

∗ Velocity error.

∗ Settling time 2%.

∗ Control effort.

∗ Overshoot.

– Stability margin. Build the algorithm corresponding to the computation of

the stability margin.

– Parametric bode plot. Build the constraints corresponding to the phase and

magnitude interval functions.

Once these constraints are obtained, the problems are reduced to check positivity.

• Application of sorting techniques to check multiple uncertain constraints ( specifi-

cations) at the same time.

• Use of Modal Interval Analysis methods to build algorithms used by the IRCAD

framework.

– Development of a solver. This algorithm is used to check the positivity of a

function.

– Stability conditions.

– Parametric Bode plot representation. Use the f* algorithm to solve the para-

metric Bode representation.

143



• Capability of the toolbox to incorporate existing solvers based on parametric uncer-

tainties ( section 5.2.3). This allows the toolbox to be used as an open framework.

8.3 General Conclusions

The main goal of this thesis has been achieved: to build a framework for robust con-

trol analysis and design to deal with systems that involve uncertain parametric models

with the parameters modeled by intervals. The robust control tools included in the

proposed IRCAD framework provide and improvement over other interval based robust

control frameworks through the incorporation of state of the art modal interval analysis.

Many researchers working with parametric models use interval models to represent the

uncertainty, but use classical interval analysis to build their models. This has the draw-

back of producing solutions that cannot be guaranteed valid for the problem, whereas

model interval analysis applied to parametric interval models provides guaranteed valid

solutions.

8.4 Further work

This section illuminates research areas that remain open or have been instigated by this

thesis.

• 3-Dimensional parameter space. The IRCAD framework is currently limited to con-

trollers with 2 parameters. Extending the framework dimensionality, and providing

an appropriate graphical method to represent the feasible controllers on parame-

ter spaces of the extended dimensionality, would facilitate the application to many

real-world problems

• Extension to discrete systems. Discrete systems deserve a full and thorough study.

• Application to other problems of control engineering. The IRCAD framework could
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include tools for predictive calculation horizon for uncertain systems, controllability,

observability, etc.

• Intervalar simulation. Giving a family of intervalar systems, the IRCAD framework

could incorporate a tool to compute MIA based envelopes of their response.

• Application of contraction techniques to reduce the initial controller parameter

space. To obtain the set of controllers that fulfill some specifications, it is neces-

sary to input the initial interval values of the parameter space to start the search.

Frequently, these data are difficult to ascertain. Thus, applying contraction tech-

niques localizes and reduces the initial parameter space.
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Appendix A

Routines for the developed solver.

SCDS algorithm

Description of the appendix

In this appendix are presented the essential components of the SCDS algorithm, show-

ing the principal functions of the main procedures which comprise the algorithm in a

schematic pseudocode format. Stability conditions included in the procedures are dis-

cussed, emphasizing their importance in the overall toolbox building process.

Routines

There are three C++ routines in the SCDS structure, Main, Ivalunix and Interes2 2,

as shown in Fig. A-1, which must be compiled to obtain the final executable.

1. Main

• Definition: This is the main procedure.

• Function: Collect the input data from the interval, numeric, or symbolic ma-

trices and pass them as a parameters to Interes2 2. Collect the outcomes

into a matrix accessible from Matlab.
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Figure A-1: Interval algorithms

• Structure: The body of this routine is located inside a mexFunction structure

with the format:

void mexFunction

(a) Assign the input parameter matrices obtained from the Matlab environ-

ment to local variables.

(b) Use the Interes2 2 routine without any symbolic data.

(c) Pass the output parameter matrix returned by Interes2 2 to the Matlab

environment.

end mexFunction

2. Ivalunix

• Definition: This is the procedure that contains the modal interval arithmetic.

• Function: Because we are working with uncertain models where the parame-

ters are usually defined by intervals, it is necessary to have a tool to perform

interval operations.

• Data Structure: All the parameters declared by Ival <FL> are intervals. They
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are composed of a lower bound (Infim) and an upper bound (Suprem), which

can be accessed in two forms: for the lower bound (interval.ii or Inf(interval))

and for the upper bound (interval.ss or Sup(interval))

• Structure: Each interval function is defined as a template. The relationships

between the most important functions included in this interval arithmetic are

as follows:

– Unary operators.

Ival<FL> operator-( const Ival <FL> );

Ival<FL> Inf(const Ival<FL > a);

Ival<FL> Sup(const Ival<FL > a);

Ival<FL> Du( const Ival<FL > );

Ival<FL> Pro( const Ival<FL > );

Ival<FL> Impr( const Ival<FL > );

– Relational.

operator<=( const Ival<FL>, const Ival<FL> );

operator>=( const Ival<FL>, const Ival<FL> );

operator<( const Ival<FL>, const Ival<FL> );

operator>( const Ival<FL>, const Ival<FL> );

operator<<( const Ival<FL >, const Ival<FL> );

operator>>( const Ival<FL >, const Ival<FL> );

operator==( const Ival<FL>, const Ival <FL> );

– Binary inner operators.

Ival<FL> operator+( const Ival <FL>, const Ival<FL> );

Ival<FL> operator-( const Ival <FL>, const Ival<FL> );

Ival<FL> operator*( const Ival <FL>, const Ival<FL> );

Ival<FL> operator/( const Ival <FL>, const Ival<FL> );

Ival<FL> operator&&( const Ival<FL>, const Ival<FL> ); /* Meet*/

Ival<FL> operator| |( const Ival<FL>, const Ival <FL> ); /* Join*/

148



Ival<FL> operatorˆ( const Ival <FL>, int );

– Lineal operations for the sum and the product. Constructed overloading

standard C++ operators:

Lineal sum ==> +=

Lineal product ==> *=

• Interes2 2

– Definition: This is the procedure containing the body of the control ac-

tions: stability check and so forth.

– Function: In summarizing the function of this routine, it can be said that

it takes the transfer function, corresponding with problem specifications,

and checks it over the whole range of interval variation input parame-

ters - both transfer function and interval parameters are passed as input

parameters of the routine.

To check all parameter space, an algorithm of the branch-and-bound fam-

ily is used, implemented in the ’splitty’ function. In addition, monotonic-

ity and stability conditions are considered to help the checking. As a

result, the routine gives a matrix with the full parameter space classified

in three regions: stable regions, unstable regions and undefined regions.

– Data structure: Each element obtained in the branch-and-bound process

is defined as a structure with format:

∗ Ivfloat variab[...] /* Interval defined by its lower and upper bounds */

∗ int nvar[...] /* number of variables */

∗ int monot[...] /*monotonicity of the first order derivatives */

∗ int monot2[...][...] /*monotonicity of the second order derivatives */

The result obtained by checking each box over the parameter space is

defined as a structure with format:

∗ Ivfloat x[...] /* first interval of the box */
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∗ Ivfloat y[...] /* second interval of the box */

∗ int type[...] /* type of result: positive, negative or undefined */

– Structure: This routine is composed of a set of functions. Among them,

interes is the function called by the Main routine which, in turn calls

on all the others. The routines and their functions are:

(a) void interes (...parameters...)

i. Compute first differentiation matrices. /* The result is a set of ma-

trices */.

ii. Compute second differentiation matrices. /* The result is another set

of matrices */.

iii. .for ( x=0; x<lim1; x += in1)

for ( y=0; y< lim2; y+=in2)

{

(Give the values of the parameter variation range to the

symbolic variables to check each region, then put each one inside an

array of nItem elements).

}

iv. Call on the recursive function calcula to check full parameter

space. /* The result returned by this function is a vector containing the

checking result for each box of the full parameter space */

v. Convert the result vector in a vector of colors( color). /* The

vector is the return parameter of this routine, ready to be interpreted

and plotted by Matlab */

end interes

(b) void calcula (...parameters...)

for ( i=0; i < nItems-1; i++ )/* for each member of the array */
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i. Initialization of the node to be checked.

ii. Initialization of the monotonicities of the first order derivatives.

iii. Initialization of the monotonicities of the second order derivatives.

iv. items[i].type =buclePrincipal (...parameters...). /* Call on the re-

cursive function buclePrincipal to check the stability. */

end calcula

(c) void buclePrincipal (...parameters...)

for ( i=0; i < nItems-1; i++ ) /*for each member of the array*/

i. ypmeani = CalculaDerivades (... parameters...)/* compute func-

tion in the center of the interval */

ii. yp = (avalua1 (... parameters...&& ypmeani) /* Meet between the

value of the function and the value of the function on the center of the

interval */

iii. yl = avalua lin (... parameters...) /* compute function with lineal

operations */

iv. If it is possible to determine the stability with this information,

est = assignaEstabilitats ( val, yp, yl, Sup(ypmeani)) /*it

is assigned to the variable est*/

return est /* return est and end this routine */

v. Else /* Check the possibility of iterating another time */

{

Call the function splitty /* to divide the current interval in two

*/

Call the function buclePrincipal recursively with the first in-

terval obtained by splitty

Call the function buclePrincipal recursively with the second

interval obtained by splitty

If the results in both cases check positive
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return 1 /* return positive and end this routine */

end buclePrincipal

(d) void calculaDerivades (...parameters...)

i. Compute the second order derivatives.

ii. Assign monotonicities brought about by second order differentia-

tion.

iii. Compute the function taking the values of the center of the interval

ypmeani.

end calculaDerivades

(e) void assignaEstabilitats (...yp, yl, ycentre...) /* Three input param-

eters are needed to check the stability yp=interval result to compute the

function //, yl=interval result to compute the function with lineal opera-

tions //, ycentre=interval result to compute the function using the interval

center and the centered form */

i. If ( yp.ss <=0 | | ( yp.ii <=0 && num mons == numvar ) || (

ycentre<=0 || ( yl.ii <= 0 || yl.ss <=0 ))

ii. return -1; /* unstability cases */

iii. If ( yp.ii >0 && yp.ss > 0 )

iv. return 1; /* stability cases */

v. else Return 0; /* undefined cases */

end assignaEstabilitats

(f) void splitty (...parameters...) /* A type of branch and bound algo-

rithm */

i. Compute the largest interval in the set of interval variables.

ii. Split this interval down the center into two intervals without touch-

ing the others.
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iii. These two smaller squares of parameter space are returned to be

checked recursively.

end splitty

Stability conditions

A good definition of stability and instability conditions for the full parameter space is

considered a goal and also a bottleneck in the algorithm. The more accurately they are

defined, the earlier a stability condition can be decided. When a box composed of interval

variables that bound variates throughout the full parameter space is evaluated in a first

iteration for the SCDS algorithm, the result can be:

• Stable. —> The evaluation of the box is finished.

• Unstable. —> The evaluation of the box is finished.

• Undefined. —>The stability conditions checked by the algorithm (SCDS or other)

are not sufficient to decide if the full box is stable or unstable, so the algorithm con-

tinues to divide the box into two parts with the splitty algorithm and recursively

check the stability of both parts.

The undefined case usually generates a numerous set of sub-boxes, each of which need

their stability to be examined, which rapidly increases the depth of recursion. To solve

this bottleneck, the algorithm includes a depth limit to avoid infinite recursion. When

there is a reduced number of variables, the results are not very important, but when the

size of the problem increases (five or more variables) it is essential to decide the stability

condition as quickly as possible. To achieve this, the algorithm must include:

• Speed: The number of iterations needed to define a condition is reduced. In this

sense, the most expensive computation time is caused by the undefined case.
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• Efficiency: If stability is not determined by the recursion depth limit, the algorithm

returns undefined, whereas the ideal situation is to have stability defined across the

full parameter space.

A first approach to the algorithm considered the result of computing a function (cor-

responding to one specification problem) whose modalities had previously been changed

(cases in which it would be necessary), and computing the monotonicity. The conditions

obtained were:

• Unstable cases

1. (yp.ss <= 0 ) /* When Suprem of the specification function is <= 0, without

checking the Infim */

2. (yp.ii <= 0 && num mons == nvar ) /* In the case that all the variables are

monotonous and the Infim of the function specification is <=0 */

• Stable cases

1. (yp.ii > 0 && yp.ss > 0 ) /* When both Infim and Suprem of the specification

function are > 0 */

Considering only these cases, the computation time for five variables is very long and

the number of undefined boxes at the end is too large. To improve the algorithm, it

appears necessary to compute the original function using the centered form interval tool.

This form gives an interval which is added to the interval center obtaining an interval

called, in the SCDS algorithm, ypmeani . The conditions added to these new results

mean a refined find of unstable boxes.

• Unstable cases

1. ypmeani.ss <= 0 )/* When the Suprem of the interval computed by the centered

form is <= 0 */
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2. To further improve efficiency, the algorithm computes the original function

(corresponding to a specification problem) using lineal rather than interval

operations. This computation produces an interval, yl, which adds the follow-

ing constraint to instability cases:

(yl.ii <= 0 || yl.ss <= 0 ) /* When one or both functions with lineal operations

are <= 0 */

Comparing the initial case, where only the first two conditions of instability are used,

with the final version of the SCDS algorithm, where the four conditions are used, over an

example of five variables, the computation time was reduced by almost 40%. However,

efficiency depends not only on stability conditions, but also on the right choice of recursion

depth limit to accomplish the stability test of the full parameter range with the minimum

number of undefined boxes.
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Appendix B

Application of IRCAD tools to

PRIM

Description of the appendix

In this appendix chapter are presented the steps to follow in order to use IRCAD Design

tools. It wants to be used as manual of execution, guiding control engineers to use design

tools of IRCAD. The example illustrated is robot PRIM.

Translation of the transfer functions to interval format

The first-order transfer functions shown in Table 7.3, representing the three reduced

WMR models for each wheel, must be translated to a format suitable for the IRCAD

framework.

The parameters of the left wheel transfer function (GEE) are assumed to be uncertain

variables, q1 and q2, and the interval transfer function is then

GEE (s,q) =
q1

q2s+ 1
,

where q1 and q2 are uncertain parameters with values that include high, medium, and

low velocities ( table 7.3), i.e.,
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q1 = [0.91, 0.96]

q2 = [0.24, 0.33]

Similarly, the right wheel interval transfer function is

GDD (s,q) =
q1

q2s+ 1
,

where in this case

q1 = [0.82, 0.95]

q2 = [0.41, 0.46]

Table B.1 summarizes these format changes for PRIM.

Left wheel Right wheel

Interval transfer function GEE(s,q) = q1
q2s+1

GDD(s,q) = q1
q2s+1

Interval parameter q1 q1 = [0.91, 0.96] q1 = [0.82, 0.95]

Interval parameter q2 q2 = [0.24, 0.33] q1 = [0.41, 0.46]

Table B.1: Interval models for PRIM

Finding a set of feasible controllers for PRIM using IRCAD

One of the most important utilities of the IRCAD framework is to assist control engineers

to design a controller that satisfies the predetermined system specifications. To design

the controller, the following data must be input to the framework:
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• Transfer function of the model in interval format

• Interval values for the parameters of the intervalar transfer function.

• Definition of the system specifications that must be fulfilled.

• A structure for the controller.

• The region of parameter space for the controller parameters.

Transfer function in interval form.

The previous sections prepared the parametric models for PRIM in a suitable format to

be used by IRCAD. These transfer functions on the IRCAD framework are:

GEE(s,q) =
q1

1− s
q2

, (B.1)

and

GDD(s,q) =
q1

1− s
q2

. (B.2)

Interval values for the parameters of the interval transfer function.

The interval values, q1 and q2, of the two transfer functions are defined in Table B.1. The

values were computed by merging the set of transfer functions from Table 7.3.

In the case of the left wheel,

• High velocity: q1 = 0.91

• Medium velocity: q1 = 0.92

• Low velocity: q1 = 0.96

Thus, q1 = [0.91, 0.96].

For q2,

• High velocity: q1 = 0.24
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• Medium velocity: q1 = 0.27

• Low velocity: q1 = 0.33

Thus, q2 = [0.24, 0.33].

In the case of right wheel,

• High velocity: q1 = 0.95

• Medium velocity: q1 = 0.92

• Low velocity: q1 = 0.82

Thus, q1 = [0.82, 0.95].

For q2

• High velocity: q1 = 0.42

• Medium velocity: q1 = 0.41

• Low velocity: q1 = 0.46

Thus, q2 = [0.41, 0.46].

Specifications that the system must fulfil

In any problem of design is necessary to define a set of specifications that the system,

robot PRIM in this example, must fulfill when the controller is incorporated. As is

detailed in section 7.5, the selected specifications are

• Overshoot ≤ 10%, and

• Settling time within 2% ≤ 2sec.

These specifications are introduced to the framework, as shown in Fig. B-1.
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Figure B-1: Selection of the specifications using IRCAD

A structure for the controller

The IRCAD design tool requires a PID structure to be chosen, and allows the user to

define the structure of an intervalar controller in an easy manner. In the robot PRIM

example, the controller structure includes two specifications: a proportional action and an

integral action, i.e., a PI controller. The same controller was also used for the commuted

controller (Section 7.6), which was used as the comparator.

The transfer function for the two controllers was input to IRCAD (Fig. B-2) in the
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format :

C(s,k) =
k1

(
1 + s

k2

)
s

, (B.3)

where k = [k1 k2]
T is the design parameter vector.

Figure B-2: Definition of the PI structure for IRCAD

Since there are two models, one for each wheel (right and left), two controllers are

required.
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Definition of the parameter space for the controller

IRCAD requires the definition of a parameter space region within which to start searching

for a suitable controller (Fig. B-3) . This is input using the parameter vector k =

[k1 k2]
T , i.e., the parameters space to search for a controller that will fulfill the required

specifications.

The initial parameter space for the controller for our example was

k1 = [0, 100]

k2 = [0, 100]

Figure B-3: Defining the parameter space on IRCAD
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Definition of the solver

IRCAD allows the user to select a solver (Fig. B-4). In our case, we selected a basic

solver is based on a branch and bound algorithm.

Figure B-4: Selection of the solver on IRCAD

Results obtained in the case of right wheel

Once all the inputs to IRCAD are completed, it only remains to run the design tool.

When the user starts this tool, the framework executes a set of algorithms included

in the selected solver that divide the parameter space into rectangles. The number of

rectangles the parameter space is divided into is configurable using IRCAD options. In

this example the resolution was chosen to be 40 ×40. Each of these intervals (rectangles)

are scanned by the algorithm until it has been classified as one of either unfeasible

(yellow), or feasible (red) region. The outcomes for our example are shown in Fig. B-5.

Most of the parameter space is classified as unfeasible (yellow), with only a few regions

classified as feasible (red).
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Figure B-5: Set of feasible controllers for the right wheel

Any of the controllers included on the red area could be chosen as the intervalar

controller, because they all allow the system to achieve the design specifications. The

list of feasible controllers (Fig. B-5) is a set of intervals, and the feasible values are:

K1 = [2.5975, 100], K2 = [0, 2.5975]

K1 = [5.095, 100], K2 = [2.5975, 5.095]

K1 = [25.075, 100], K2 = [5.095, 7.5925]

K1 = [52.5475, 100], K2 = [7.5925, 10.09]

K1 = [92.5075, 100], K2 = [10.09, 12.5875]

Although all candidate controllers are valid, is necessary to select a single one, and it

is important to select the best one to achieve a good control for the robot. There is no
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unique criterion to select the best controller from a set, and so IRCAD offers a utility to

help the user select the best controller from a set of feasible controllers, using one of the

neighboring, minimum norm, or maximum robustness criteria.

The outcomes for our example for PRIM are:

1. Minimum norm criterion. The PI controller proposed by IRCAD using the mini-

mum norm criterion is K1 = 3.8563 and K2 = 1.8488, as shown in Fig. B-6. IRCAD

presents the proposed values in graphical form, putting in bold red color in the pro-

posed square on the feasible region of the parameter space ; and also in numerical

form, showing the result in a pop-up window that appears in the center of Fig. B-6

containing the pair of real numbers.

Figure B-6: Minimum norm criterion: recommended controller for the right wheel
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2. Neighboring criterion. The PI controller proposed by IRCAD for the right wheel

using the neighboring criterion is K1 = 61.2888 and K2 = 6.3438, as shown in

Fig. B-7. The proposed values for the controller are presented in a graphical form,

putting a bold red color in the proposed square on the feasible region of the param-

eter space; and numerical form, in a window that appears in the center of Fig. B-7

containing the pair of real numbers.

Figure B-7: Neighboring criterion: recommended controller for the right wheel

3. Maximum robustness criterion. The PI controller proposed by IRCAD using the

maximum robustness criterion is the same for the Minimum Norm criterion, K1 =

3.8563 and K2 = 1.8488. This is because, in this example, the conditions that are

satisfied are the same.
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Results obtained in the case of left wheel

The process to obtain the controller for the left wheel is identical to that for the right

wheel, and the outcomes are shown in Fig. B-8.

Figure B-8: Set of feasible controllers for the left wheel

Similar to the case for the right wheel, most of the parameter space is classified as

unfeasible (yellow), with only a few regions classified as feasible (red). The blue region,

is undetermined, where. the branch and bound algorithm was unable to determine the

feasibility of the parameters.
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Figure B-9: Set of feasible controller for the left wheel, with blue regions omitted

Eliminating the undetermined zones will increase the reliability of the design. Fig-

ure B-9 shows the same execution as for Fig. B-8, but the depth of checking was increased

so that all the regions could be successfully classified. Just as for the right wheel, these

feasible controllers are a set of intervals, and provide feasible values for the PI controller

K1 = [2.5975, 100], K2 = [0, 5.095]

K1 = [0, 100], K2 = [5.095, 7.5925]

K1 = [25.075, 100], K2 = [7.5925, 10.09]

K1 = [50.05, 100], K2 = [10.09, 12.5875]

K1 = [80.02, 100], K2 = [12.5875, 15.085]

Similarly, the outcome for the three criteria for selecting the best controller are
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1. Minimum norm criterion. The PI controller proposed by IRCAD using the mini-

mum norm criterion is K1 = 3.8563 and K2 = 1.8488, as shown in Fig. B-10. The

proposed values for the controller are presented in graphical form, putting a bold

red color in the proposed square on the feasible region of the parameter space; and

in numerical form, showing the result in a pop-up window that appear on the center

of Fig. B-10 containing the pair of real numbers.

Figure B-10: Minimum norm criterion: recommended controller for the left wheel

2. Neighboring criterion The PI controller proposed by IRCAD for the left wheel using

the neighboring criterion is K1 = 53.7963 and K2 = 8.8412, as shown in Fig. B-11.

As usual, the proposed values are presented in graphical form, a bold red color in

the proposed square of the feasible region of the parameter space; and numerical

form as the pair of real numbers.

3. Maximum robustness criterion. The PI controller proposed by IRCAD for the left

wheel using the maximum robustness criterion is the same as for the minimum
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Figure B-11: Neighboring criterion: recommended controller for the left wheel

norm criterion, K1 = 3.8563 and K2 = 1.8488.

Validation of the controllers proposed by IRCAD

Once the controllers have been designed, IRCAD provides a tool to test them, in simu-

lation, to establish if the resultant system fulfills the design specifications.

The right wheel

For the right wheel, selecting the neighboring criterion, the PI controller is

C(s) =
61.3

(
1 + s

6.34

)
s

. (B.4)

Three inputs corresponding to the different velocities (low (0.3 m/s), medium (0.6

m/s), and high (0.9 m/s) were applied and the system control simulated to analyse the

system response, as shown in Fig. B-12.
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Figure B-12: System response of the right wheel using the neighboring criterion

This choice of criterion produces a system where:

• Low velocity: Overshoot = 8.67%, settling time < 2%.

• Medium velocity: Overshoot = 8.5%, settling time < 2%

• High velocity: Overshoot = 8.56%, settling time < 2%

Thus, all the design specification are fulfilled, and the controller defined in (B.4) is valid.

In the case of the minimum norm criterion, the PI controller is

C(s) =
3.84

(
1 + s

1.85

)
s

. (B.5)

We apply the same inputs as the previous criterion case, as shown in Fig. B-13.

This controller is also valid because all the specifications are also fulfilled. However, the

171



overshoot and settling time, while within the design specifications, are slightly inferior

to those achieved using the neighboring criterion ( Fig. B-12).

Figure B-13: System response of the right wheel using the minimum norm criterion

The left wheel

For the left wheel, selecting the best controller from the set of controllers that fulfill the

specifications using the neighboring criterion, the PI controller is the same as that for

the right wheel,

C(s) =
53.8

(
1 + s

8.84

)
s

. (B.6)

Applying the same inputs as the right wheel case, the results are shown in Fig. B-14.:
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Figure B-14: System response of the left wheel using the neighboring criterion

The resulting system has:

• Low velocity: Overshoot = 9%, settling time < 2%.

• Medium velocity: Overshoot = 9.17%, settling time < 2%

• High velocity: Overshoot = 9.11%, settling time < 2%

Thus, the controller defined in (B.6) is valid, because it fulfills all the design specifications.

Selecting the minimum norm criterion, the PI controller is

C(s) =
3.84

(
1 + s

1.85

)
s

. (B.7)

Applying the same inputs as previously, we have the outcomes as shown in Fig. B-15.

Even though the controller is the same as for the right wheel, the simulation is not

identical because the transfer function (model) is different for the wheels.

The resulting system has:
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Figure B-15: System response of the left wheel using the minimum norm criterion

• Low velocity: Overshoot= 9.8%, settling time < 2%

• Medium velocity: Overshoot = 9.2% , settling time < 2%

• High velocity: Overshoot= 9.6%, settling time < 2%

Thus, for the left wheel, the simulation is superior for controllers using the neighboring

criterion. Accordingly, we have chosen controllers obtained using this criterion for both

the left and the right wheels.
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[22] E. Gardeñes and H. Mielgo. Modal intervals: functions. In Proc. Of the Polish

Symposium on Interval and Fuzzy Mathematics. Zamenkhov’s University of Pozna,

1986.
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