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Abstract

Nowadays, control of concentrations of elements is of crucial importance in industry. Con-
centrations are expressed in terms of proportions or percentages which means that they are
compositional data (CoDa). CoDa are defined as vectors of positive elements that represent
parts of a whole and usually add to a constant sum. Classical T 2 control chart is not appro-
priate for CoDa, for which is better to use a compositional T 2 control chart (T 2

C CC). This
paper generalizes the interpretation of the out-of-control signals of the individual T 2

C CC for
more than three components. We propose two methods for identifying the ratio of components
that mainly contribute to the signal. The first one is suitable for low dimensional problems and
consists on finding the log ratio of components that maximizes the univariate T 2 statistic. The
second one is an optimized method for large dimensional problems that simplifies the calculus
by transforming the coordinates into the sphere. We illustrate the T 2

C CC signal interpretation
with a practical example from the chemical and pharmaceutical industry.

Keywords: Composition, Hotelling’s Statistic, Log ratio, Mixture, Multivariate Process Control,
Signal Interpretation.
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1 INTRODUCTION

One of the most familiar tool for multivariate statistical process control is Hotelling’s T 2 control

chart (Hotelling 1947). In standard control procedure for individual observations the well known

Mahalanobis distance is plotted against time

T 2 = (x− µ)Σ−1(x− µ)′, (1)

where x is a row p-dimensional vector observed at time t and µ and Σ are the mean and the

variance-covariance matrix respectively. Usually µ and Σ are unknown and have to be estimated

from a historical data set. It is assumed that x are mutually independent and multivariate normally

distributed.

The T 2 control chart has the main advantage that enables monitoring multiple variables taking

into account both the univariate and the interrelationship effects between them (Tracy et al. 1992;

Montgomery 2009; Kenett et al. 2014). But it has an important disadvantage: it masks the cause

of the out-of-control signals due to the dimensionality reduction from a p-dimensional vector to a

unidimensional statistic. Identifying the cause of the anomaly is of crucial importance in order to

apply appropriate remedial measures. Many methods can be found in literature for interpreting

out-of-control signals in multivariate control charts (Das and Prakash 2008; Tan and Shi 2012 and

references therein).

This paper considers the case in which the quality characteristic being monitored is a composi-

tional vector x = (x1, . . . , xp). Compositions are vectors of positive elements describing quantita-

tively the parts of some whole and usually adding to a constant sum (for simplicity, often taken to

be 1) (Pawlowsky-Glahn and Buccianti 2011). Classical data units are weight or volume percent,

ppm, ppb, molarities, or any other concentration units. For this reason compositional data (CoDa)

are widely found in industries such as the chemical, pharmaceutical or asphalt and also in gas or

water analysis among others. Note that in industry, the term CoDa is commonly referred to as

mixture data or mixture composition (e.g., food, pharmaceutical,...). However, the term CoDa has

a more general sense and can also refer to non-mixture data, such as data from the use-of-time

surveys, household budgets, votes from elections or geochemistry among others.

The sample space of CoDa is the Simplex Sp, a restricted space, where p represents the number

of parts in the composition. When p = 3 the composition lies in an equilateral triangle in R3 (on

the plane x1 + x2 + x3 = 1, perpendicular to the vector (1, 1, 1)). It is more common to represent

S3 in the ternary diagram.
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Vives-Mestres et al. (2014a) proposed a T 2 control chart suitable for CoDa, denoted T 2
C control

chart (T 2
C CC). They demonstrated that applying the T 2 procedure to raw data after deleting

one component (hereafter referred as the classical method), is inconsistent with the definition of

CoDa. The T 2
C CC is based on a transformation of the data into log ratios of components (called

coordinates) that moves the data from restricted (Sp) to non-restricted real space. The authors

also furnished a simulation study comparing the average run length (ARL) of the classical and the

CoDa approach and show that T 2
C outperforms the T 2 control chart in terms of in-control ARL.

Signal interpretation for the T 2
C CC has been studied for the easiest case of p = 3 in Vives-

Mestres et al. (2014b). Authors showed that the interpretation of the conditional terms of the MYT

decomposition method (Mason et al. 1995, 1997; Mason and Young 2002) in terms of the original

components is misleading, and they proposed a method based on selecting the appropriate ilr basis,

for each signaling observation, so that the unconditional term is maximum. The maximization

function involved in the algorithm depends on the angle from the ilr basis to the abscissa. This

feature makes difficult to generalize the algorithm for p > 3 because, as the number of dimension

increases, also does the number of angles, and the maximization function gets trickier.

The main contribution of this paper is to present two generalized methods for interpreting the

T 2
C CC signals for p ≥ 3. The first one is suitable for low dimensional problems and is based on

computing the univariate T 2 statistic on all possible combinations of ratios of components and

retaining the maximum one. The second one transforms the coordinates into the sphere, where

the maximum logarithm of a product of components is easily identified, and it is approximated by

the closest log ratio of components. In both cases the selected log ratio of components is the main

contributor to the out-of-control signal of the T 2
C CC.

The rest of this paper is organized as follows. Section 2 reviews the basic concepts for analysing

compositional data based on the log-ratio transformation of components and describes the principles

of the T 2
C CC. Section 3 illustrates graphically the idea behind the proposed methods for p = 3,

develops those methods ans provides a performance analysis. An example of application of the

proposed methods is presented on Section 4, and the last section is devoted to final remarks.

2 CoDa TREATMENT AND T 2
C CONTROL CHART

Compositions provide information about relative values of components; its total sum is not informa-

tive. Therefore every statement about a composition can be stated in terms of ratios of components

(Aitchison 1986; Pawlowsky-Glahn and Buccianti 2011).

Aitchison proposed a new methodology based on a log-ratio transformation of components.
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Logratios enable representation of CoDa in real space where standard unconstrained multivariate

statistics can be applied. Inference therein is translatable back into compositional statements.

We use two main transformations: the centred logratio (clr), and the isometric logratio (ilr),

which will be denoted by z and y respectively. Hereafter we will refer to transformed data as

coordinates. The clr transformation (z = clr(x)), first proposed by Aitchison (1986), is defined

as the logarithm of the ratio of parts over the geometric mean of the composition. The inverse

transformation is clr−1(z) = x.

The clr coordinates live in Rp but they lie on a hyperplane. The dimensionality of the clr

coordinates can be reduced by representing the data in Rp−1 by the use of one of the infinite

possible bases lying on the hyperplane. The ilr transformation (y = ilr(x)), first proposed by

Egozcue et al. (2003), allows this representation and provides an orthonormal basis that enhances

the interpretability of the data: the expression of the ilr coordinates represents ratios of components.

The ilr coordinates y and its respective orthonormal basis (e1, . . . , ep−1 in Sp) can be defined

through a sequential binary partition (SBP). An example on how to construct a SBP for the case

of p = 3 is illustrated in Vives-Mestres et al. (2014b). The orthogonal basis of the ilr coordinates

in Rp−1 is Ψ = (ψ1, . . . ,ψp−1)
′ = (clr(e1), . . . , clr(ep−1))

′. The coordinates of a composition in the

basis Ψ are called balances and the compositions of the basis (ei) are called balancing elements.

Each basis element ψi is a log-contrast, that is, a linear combination of logarithms of components

such as log(xα1
1 · · · ·x

αp
p ), where

∑
αi = 0, and defines a direction in Rp. Hereafter we will refer to

ψi as ilr direction. Note that given the composition x, it holds y = z ·Ψ′.

Figure 1 shows all possible ilr directions for p = 3 in R2 (ψ1,ψ2, . . . ,ψ6), and their corre-

sponding balancing elements in S3 (e1, e2, . . . , e6). In the simplex, some directions are represented

visually by curves because of the special geometry of the simplex.

The log-ratio methodology does not apply when the composition has some zero value. In

our context we consider that these possible zeros are values below a detection limit. According

to Palarea-Albaladejo and Mart́ın-Fernández (2015) those elements can be replaced with specific

techniques. Palarea-Albaladejo and Mart́ın-Fernández (2013) give a review of these techniques.

The general definition of the T 2
C CC is stated as follows: given x = (x1, . . . , xp) a p-part

composition and y = (y1, . . . , yp−1) its ilr coordinates, the T 2
C statistic is defined as:

T 2
C = (y − µy)Σ−1y (y − µy)′, (2)

where y is the ilr coordinate of the observed composition and µy and Σy are the mean vector

and the variance matrix of the ilr coordinates. In practice it is necessary to estimate both values in
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Figure 1: Representation in R2 (left) and in S3 (right) of all possible ilr directions defined through

a SBP with p = 3, where ψi = clr(ei).

Phase I as it is done in standard methods. It is assumed that the in-control observation vectors y

are i.i.d. multivariate normal random vectors N (µy,Σy) with common mean vector and covariance

matrix, thus compositions x follow a normal distribution on the simplex (Mateu-Figueras et al.

2013): NS(µy,Σy). In this article we assume that the covariance matrix remains in control.

Note that the T 2
C statistic (Equation 2) is not affected by the basis used to construct the ilr

coordinates. In practice the user would select a balance which is convenient for easy interpretation.

The T 2
C statistic can also be defined in terms of clr coordinates by replacing the y’s from Equation 2

by z’s after deleting one clr-component (it does not matter whichever it is), and replacing the mean

and the covariance matrix of the ilr coordinates by the clr ones, after deleting the same previous

component.

The T 2
C is consistent with CoDa definition because: (i) fits better the distribution of the data

set and encloses only values from the sample space, and (ii) fulfils the condition of subcompositional

coherence: inference about some components must be the same whether the whole composition or

a subcomposition is used (Vives-Mestres et al. 2014a, b).

3 INTERPRETATION OF T 2
C SIGNALS

Our approach is inspired by the MYT decomposition method (Mason et al. 1995, 1997; Mason

and Young 2002) that uses an orthogonal transformation to express the T 2 as the sum of two

independent terms named unconditional and conditional terms. The unconditional term (T 2
i )
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depends only on xi and is the univariate T 2 statistic of xi, and the conditional term (T 2
i.j) depends

on the conditional density of xi given xj . The decomposition is performed on each signaling

observation and conditional and unconditional terms are compared with its limiting values.

However, our method is different from the MYT because we are looking for the ilr coordinate

that has the maximum unconditional term, i.e. the closest to the global T 2
C . By decomposing the

T 2
C by the use of this coordinate, we obtain the highest weight on the unconditional term. Our

interest is on interpreting only the unconditional term, which has a clear interpretation in terms of

a log ratio of components responsible of the signal.

Another advantage of our method over the MYT is that no significance level of the decomposi-

tion terms is needed: we attribute the cause of the signal mainly to the ilr coordinate that has the

maximum unconditional term.

Our method avoids the joint interpretation problem of the terms of the MYT decomposition

because our focus is only on the unconditional term. Another problem with the MYT decompo-

sition method is that, for p variables, there are p! possible decompositions. Our method does not

compute all possible decompositions, but instead we need to calculate the unconditional terms of

all possible ilr coordinates and select the maximum one. To avoid the computational complexity for

high dimensional problems we propose the method described in section 3.2 based on a spherizing

transformation of the coordinates and a NN search.

We graphically illustrate the purpose of our method by the use of a simulated data set of 41

observations in S3 following a normal distribution on the simplex NS(µy,Σy) with parameters

µy = (0, 0) Σy =

 0.129 −0.011

−0.011 0.002


Under the assumption of known parameters, the UCL = χ2

p=2 = 7.81 with α = 0.05. We add

an extra observation A = (0.36, 0.36, 0.28) which is an outlier because T 2
C = 39.6 > UCL. The

simulated data set and observation A (�) are represented in Figure 2 together with the control

region of the T 2
C CC. It can be clearly seen that observation A is an outlier. Note that under

classical approach, observation A will not signal because T 2 = 3.93 < UCL.

Univariate limits of a ratio of two components are defined by the projection of the control region

from a vertex to the opposite edge (Figure 2a). For example, the projection of the control region

from the vertex x2 to the edge x3x1 represents the limits of the ratio x3/x1, where its maximum

value (x3/x1)max is on the side of vertex x3 and the minimum value (x3/x1)min is on the side of x1.

The same reasoning can be applied to the other limits of ratios of two components.

Observation A will not signal on any of the unconditional terms defined by the ratio of a pair of
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where obser-

vation A is the furthest from the projected data

set.

Figure 2: Graphical interpretation of unconditional (left) and conditional (right) terms of the MYT

decomposition in the ternary diagram (p = 3).

components. However, if we consider the univariate limits on the direction log x3√
x1x2

(Figure 2b),

it is easy to see that point A is out of these limits. In fact, this is the direction in which the outlier

is the furthest from the data set according to the metric of the T 2
C control chart.

Using the ilr coordinates such that y1 =
√

2
3 log x3√

x1x2
and y2 =

√
1
2 log x1

x2
will produce a MYT

decomposition that will give the higher weight on the unconditional term T 2
y1 , and the lower to

T 2
y2.y1 that will be easily interpretable. In conclusion, the anomaly on A can be attributed to a bad

relation between component x3 with respect to the other two.

From now on, for simplicity, we will note a general ilr direction by ψ, without sub-index. We

propose two methods but, before applying them, it is necessary to have a list, denoted by L, with

all possible ilr directions for the given number of parts p. The size of L is equal to the number of

possible combinations of ratios of components (NC) in any SBP, which is given by

NC =

p∑
i=2

Cip(C
i−1
i + Ci−2i + · · ·+ C1

i ) for p ≥ 3, (3)

where Cnm is the number of n combinations from a set of m elements.

This list has to be calculated only once for each problem (for each p) and it can be reused many

times. The following scheme illustrates a simple procedure to generate this list. It can also be

available upon request to the authors or in www.compositionaldata.com.
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1. Generate a list with vectors of size p containing all possible combinations of 0, +1 and -1.

2. Delete the combinations that are not a partition: those whose elements are all non-strictly

positive or all non-strictly negative. Let r and s be, respectively, the number of +1 and -1 in

the combination.

3. For each list element (partition) calculate its balancing element ψ by

ψ = (ψ1, . . . , ψp)


ψj = +

√
s

r(r+s)

ψk = −
√

r
s(r+s)

ψ0 = 0

, (4)

where ψj is the coefficient for each part coded +1, ψk is the coefficient for each part coded

−1 and ψ0 is the coefficient for not involved parts. Note that ‖ψ‖ = 1.

3.1 Computing all unconditional terms

Given an outlier x = (x1, . . . , xp), and z its clr coordinates, the unconditional term T 2
ψ(z) on one

of the ilr directions ψ from the list L is calculated as

T 2
ψ(z) =

(z − µz)2

σ2z
, (5)

where z is the projection of the clr coordinates of the outlier z onto the ilr direction ψ and µz

and σ2z are the mean and the variance, respectively, of the clr coordinates of the historical data set

projected on the same direction. These elements can be calculated using the clr coordinates (z) or

via the ilr coordinates (y).

z = z ·ψ′ = y ·Ψ ·ψ′

µz = µz ·ψ′ = µy ·Ψ ·ψ′

σ2z = ψ ·Σz ·ψ′ = ψ ·Ψ′ ·Σy ·Ψ ·ψ′

where µz, µy and Σz, Σy are respectively the mean and the covariance matrix of the clr and

ilr coordinates. The matrix Ψ is the orthogonal base of the ilr coordinates (y).

Note that z from Equation 5 is the same whichever is the base used to construct the ilr coor-

dinates, so it is the T 2
ψ(z) term, which means that our method is invariant to rotation of the ilr

coordinates. The unconditional term in two opposite direction vectors is the same, so the list L
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can be reduced to the half by deleting those directions that are opposite. The resulting list L2 is

of dimension NC/2× p.

After computing the T 2
ψ(z) for all elements of the list L2, the direction in which the T 2

ψ(z) is

maximum indicates the ratio of components responsible of the signal. To obtain the ratio from

a general direction ψ, write the components of the positive coefficients in the numerator and the

components of the negative coefficients in the denominator. Null coefficients indicate that the

component is not involved in the ratio.

When p = 4 the number of T 2
ψ(z) terms to compute is NC/2 = 25, for p = 7 it is 966, and for

p = 10 is 28501. Because NC/2 grows exponentially with p, this method is not very efficient for

large p. For p = 10 the time for computing all unconditional terms in R-3.1.2 (R Core team 2013)

is about 13 seconds, for p = 11 about 40 seconds and for p=12 about 131 seconds, using a personal

computer with a 1. 1GHz Intel Core i7 processor. For p ≥ 11 we suggest to use the second method

described in the following section.

3.2 Spherizing the coordinates

Let a spherical distribution be the one with mean centred at the origin of real space and with

covariance matrix equal to the identity matrix. Under this distribution, data are inscribed in a

sphere. Spherical or spherized clr coordinates will be noted with the subscript s, and are calculated

as follows

zs = (z− µ)Σ−1/2, (6)

where µ and Σ are the mean and the variance of the clr coordinates. Note that the global T 2
C

for a given observation is the same whether we use original coordinates or spherized coordinates

(clr or ilr): T 2
C(z) = T 2

C(zs) = T 2
C(y) = T 2

C(ys). From now on, for simplicity, we will develop

the method using clr coordinates (z) although the covariance matrix of Equation 6 is singular. In

practice we would use ilr coordinates.

The advantage of working with spherized coordinates is that, following Equation 5, the uncon-

ditional term on any direction of the spherized space ψs = ψΣ−1/2 reduces to

T 2
ψs

(zs) = (zs)
2 (7)

where zs is the projection of the clr coordinates of the spherized outlier onto ψs, so that: zs = zs·ψ′s.

The global T 2
C of the spherized coordinate zs is T 2

C(zs) = ‖zs‖2 (Equation 2), and it is equal to
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Figure 3: Graphical interpretation of the proposed procedure for interpreting out of control signals

of the T 2
C CC when p ≥ 11.

the unconditional term (Equation 7) when zs is maximum. The maximum value of zs is achieved

when the clr coordinates of the spherized outlier is projected onto the direction ϕ∗ (‖ϕ∗‖ = 1)

pointing from the origin to zs, that is, when ϕ∗ = zs/‖zs‖ it holds T 2
C(zs) = (zs·z′s

‖zs‖ )2 = T 2
ϕ∗(zs)

(see demonstration in Appendix A).

Once ϕ∗ is found , it is transformed back to the non spherized space (ϕ) to interpret it. The

transformation is done by ϕ = ϕ∗Σ−1/2 because it assures that both the unconditional term on

the spherized and non spherized space are the same. It can be proved by developing Equation 5.

T 2
ϕ(z) =

((z− µ)ϕ′)2

ϕΣϕ′
=

(zsΣ
1/2ϕ′)2

ϕΣϕ′
=

(zsϕ
∗′)2

ϕ∗ϕ∗′
= T 2

ϕ∗(zs) (8)

Figure 3 shows the procedure described up to here. Figure 3a shows the original coordinate space

together with the control region and the outlier z and Figure 3b shows the spherized coordinate

space with the circular control region and the spherized outlier zs. The direction ϕ∗ pointed by zs

(dashed line on Figure 3b) is transformed back to the original coordinate space ϕ = ϕ∗Σ−1/2 and

results on the dashed line of Figure 3a.

The direction ϕ is a log-contrast and indicates the cause of the out of control signal. A general

log-contrast is not easily interpretable in terms of original components, thus we propose to approx-

imate ϕ by an ilr direction (representing a balance). The selected ilr direction has to have the
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property that the unconditional term on this ilr direction is maximum. To fulfill this requirement,

the approximation has to be done in the spherized coordinate space, because there the unconditional

term is simply the projection of zs on a given direction (Equation 7).

To perform the approximation, the ilr directions ψ from the list L have to be transformed into

the spherized space such that ψ∗ = ψΣ1/2. Then we propose to use a nearest neighbour (NN)

search algorithm to find the closest (in terms of angle) direction ψ∗ to ϕ∗, which is equivalent to

find the closest direction (in terms of euclidean distance) of the normalized set ψ∗ to ϕ∗

Our aim here is not to provide a deep discussion on the NN search. We have used a kd-tree from

the library “Approximate Nearest Neighbor Searching” in www.cs.umd.edu/~mount/ANN/ with the

option of exact nearest neighbour search implemented in C++ and also available under R (R Core

team 2013). The computing time of the NN search for p = 12 is 0.55 seconds, using a personal

computer with a 1. 1GHz Intel Core i7 processor.

In the example of Figure 3, ϕ∗ would be approximated by ψ∗6. Note that, on the coordinate

space, ψ6 does not corresponds to the closest direction to ϕ because following Equation 5, the

unconditional term also implies the variance.

To summarize, the procedure to interpret the cause of the out-of-control signal in a T 2
C CC

when p ≥ 11 stands as follows:

1. Compute the mean and the variance of the clr coordinates (µ and Σ).

2. Compute the clr coordinates of the atypical observation: z.

3. Calculate the spherized clr coordinates of the outlier: zs = (z− µ) ·Σ−1/2

4. Apply a NN search algorithm to find the closest ilr direction ψ∗ to zs in the normalized

set L∗ = LΣ1/2

LΣL′ . The log ratio represented by this ilr direction is the responsible of the

out-of-control signal.

Repeat steps 2 to 4 for each signaling observation. Note that given a dimension p, the number

of points to query again zs is NC, defined in Equation 3. The set L∗ has to be calculated for each

particular process and updated at each time the covariance matrix of the process changes.

3.3 Procedure performance

The two previously presented procedures always find the sample ilr coordinate that shifted most,

that is, the ilr coordinate (ψ) that has the larger T 2
ψ(z). It can easily be seen in the method of

Section 3.1 because all T 2
ψ(z) values are checked and the maximum one is retained for each outlier.

11
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The second method (Section 3.2) also finds the ilr coordinate that shifted most, as it has been

demonstrated mathematically. We have indeed checked that both methods give the same results

when applied to a given problem.

However, there is a need to show how the methods can help on identifying the population raw

components that shifted, and its performance. We suggest to check not only the ilr (ψ) that shifted

most but also the following k ilr directions (i.e. k = 5, 10): in the first method it can be easily done

by ordering the ilr directions by their T 2
ψ(z) and in the second one by looking for a subset of k

nearest neighbours. The components shared by the first k ilr directions are indicators of the main

responsible of the signal. To check the direction of the shift we suggest to compare the outlier with

the geometric mean of the raw data.

To show the performance of the methods, we use a simulation example, inspired in Section 6.1

of Tan and Shi (2012), with p = 12. The known in control mean of the ilr coordinates taking the

default ilr base of the R package ’compositions’ (van der Boogart et al 2014) is µ0 = 0 and the

known covariance matrix Σ is taken from Appendix B of Tan and Shi (2012).

Different out-of-control means µi are defined on the original composition so that

ilr−1(µi) =
(
δi

1

p
, . . . , δi

1

p
,︸ ︷︷ ︸

i elements

1

p
, . . . ,

1

p

)

where δi corresponds to an increase of i∆ times the variance of the log ratio of the ith compo-

nents against the other ones. For example, when i = 2 we shift to µ2 which in terms of the original

compositions it is equivalent to perturb the two first raw parts, for i = 3 it is a perturbation of

the first three parts, etc. Following Tan and Shi (2012) we change ∆ = 0.6, 1, 1.4 for each µi,

i = 1, . . . , 4 according to the experimental design of Table 1 and we replicate each run in the design

100 times. For each replicate, we simulate an out of control signal from a N(µi,Σ) and apply the

spherizing method.

Note that when there is a shift in one component, due to the constant sum restriction of CoDa,

there is also a necessary change in some of the other components, which means that the responsible

log ratio of the signal will include the shifted component together with other ones. Similarly, when

we perturb i > 1 components with the same amount (δi), it does not necessary mean that the i

components are responsible of the shift because it depends on the correlation structure between

the ratios of the shifted components against the others as well as the correlation structure within

the ratios of the shifted components. Based on these notes, we define three performance indicators

as follows:
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• P1: Cases in which the i shifted components appears in the maximum T 2
ψ(z).

• P2: Cases in which at least one of the shifted components appears in all the k = 5 highest

T 2
ψ(z).

• P3: Minimum of the positions in which only non shifted components appear in the ordered

list of T 2
ψ(z).

The performance indicator P3 is a kind of Type I error because it looks for responsible log ratios

including only in control means (non shifted components) which means that they are incorrectly

identified as out of control. The results of the simulation study are presented on Table 1.

Shifted mean Shift ∆ P1 (%) P2 (%) P3

µ1 0.6 100 98 2

1.0 100 100 21

1.4 100 100 644

µ2 0.6 92 97 90

1.0 100 100 2434

1.4 100 100 > 4000

µ3 0.6 67 92 1957

1.0 74 100 > 4000

1.4 77 100 > 4000

µ4 0.6 62 79 161

1.0 65 96 2198

1.4 66 97 > 4000

Table 1: Performance indicators of the proposed procedure.

From Table 1 it can be seen that when there is a shift in only one component the proposed

procedure clearly identifies that the problem is with that component, even checking only for the

maximum T 2
ψ(z). When the size of the shift is small (∆ = 0.6) in µ1, the minimum position where

the signal is attributed to only non shifted components is 2. However, this is the worst case, and

along the 100 replications of this experimental design we obtain a median of the position of 404.5,

that is, only in 2% of cases a log ratio including only non shifted components appears in one of the

five highest T 2
ψ(z).

For i > 1 the percentage of cases in which all shifted components appear in the first responsible

13



log ratio decreases, but by checking the k = 5 largest T 2
ψ(z) we can get to the cause of the signal

in a high percentage of cases. For all shifted means, as it would be expected, the performances

increases as it does the shift size ∆. The minimum position where the signal is attributed to non

shifted components is higher as the shift size increases and for i > 1 is located far enough so that

the user will not check them to attribute the cause of the signal.

4 EXAMPLE

We analyse in this section an example of industrial application using the data from Gonzalez-de la

Parra and Rodriguez-Loaiza (2003). The data describe the impurity profile of seven major organic

impurities (denoted A to G) of a crystalline drug substance. The impurity profile, or impurities, are

directly related to the chemical and physical method of manufacture thus is an important quality

characteristic of the product.

The level of each impurity is reported in ppm, so it is a compositional data set not adding to a

constant sum because not all components are measured. The authors provide a historical data set

(HDS) of 30 observations and an evaluation data set (EDS) of 167 observations. Both data sets

are reproduced in Table B1 and Table B2 respectively in Appendix B.

A clear advantage of the CoDa method over the classical one is that the former enables moni-

toring the proportion between components and check they keep within the expected range without

taking into account if the total amount of components is high or low. In this example we as-

sume that the total amount of impurities is not an important issue because is neither analysed not

mentioned in the original article (Gonzalez-de la Parra and Rodriguez-Loaiza 2003).

Firstly, we applied the compositional T 2
C control chart to the HDS to determine the in-control

state of the process and to identify a reference sample, which is known as Phase I. Secondly, we

used the estimates computed from the reference sample to define the control limits to which the

EDS was compared during Phase II.

Phase I The 30 observations from preliminary data set were considered to represent the impurity

profile under the best monitored manufacturing operating conditions. Prior to consider them as the

HDS, the authors Gonzalez-de la Parra and Rodriguez-Loaiza (2003) evaluated the raw data set

for the presence of outliers, autocorrelation and multicollinearity. There were no univariate outliers

but a significant first-order autoregressive model for impurities C and F was found, so the lag-one

variables of this impurities, denoted by Ct−1 and Ft−1, were added to the HDS. No multicollinearity

problem was found, so the HDS composed of the raw data together with Ct−1 and Ft−1, were used

as a baseline to evaluate new observations using the classical method.
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We use a compositional T 2
C control chart by means of the clr transformation of the data,

the impurity levels of each lot x = (A,B,C,D,E,F,G) were transformed into z = clr(x) =

(zA, zB, zC, zD, zE, zF, zG).

There was one out of control observation in the preliminary data set. The Hotelling’s statistic of

the coordinates of lot 20 is T 2
C = 17.58 which is higher than the control limit UCL=16.70 obtained

from the beta distribution with p = 6, n = 30 and α = 0.001. Using univariate techniques we can

verify that the value of zF of observation 20 (-2,52) is at more than 3 standard deviations from the

mean. Lot 20 was removed from the preliminary data set and not included in the HDS.

We used the method described in Section 3.1 to identify the cause of the anomaly in lot 20

because p < 11. The decomposition of the T 2
C was computed on all ilr directions (NC/2 = 966)

using Equation 5. The direction in which the T 2
ψ was maximum is the one defined by the ratio

∝ log F
(ABCE)1/4

. The decomposition on this direction equals to 16, which is a similar value to the

global T 2
C .

Raw data on Table B1 shows that, in lot 20, the quantity of impurity F is very low while there are

a lot of impurities A and B. If we look at the univariate values of the log ratio
√

4
5 log F

(ABCE)1/4
, we

see that the mean and the standard deviation calculated on the HDS are -0.14 and 0.56, respectively.

On lot 20, the value of this log ratio is 2.11, which is at more than 3σ from the mean.

No significant autocorrelation was found on the clr coordinates and neither a strong relationship

among the predictor coordinates. Under this conditions we set the Phase I T 2
C control chart with

critical value UCL=16.52 (p = 6, n = 29 and α = 0.001). The T 2
C control chart of the HDS is

drawn in Figure 4 and do not present any out of control signal (once removed lot 20).
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Figure 4: Compositional T 2
C control chart for the historical data set from Gonzalez-de la Parra and

Rodriguez-Loaiza (2003). Observation 20 was removed because it is an outlier.
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Phase II The estimates of the mean vector and the covariance matrix of the clr-transformed

HDS, were used to control the process in Phase II. The limit for testing new observations was

calculated using the Fisher distribution (Tracy et al. 1992): UCL=42.68 for α = 0.001. We used

the clr-transformed data of the EDS of the impurity levels from Table B2 to plot the T 2
C control

chart.

The EDS contains a zero in lot 116: impurity B is not present. We believed that this zero does

not correspond to an absolute absence of this impurity, but corresponds to a low value below the

detection limit, which means that this is a rounded zero. Palarea-Albaladejo et al. (2014) proposed

to use a multiplicative replacement when the number of these null values is less than 10% and

replace them by 2/3 of the threshold value. From the raw data we see that the minimum value

in all impurities is 10 ppm, which we considered to be the detection limit. The missing value of

impurity B in lot 116 was replaced by 20/3.

Figure 5 shows the compositional T 2
C control chart for the EDS together with the classical T 2

as described in Gonzalez-de la Parra and Rodriguez-Loaiza (2003). There are 22 lots above the

control limit in the T 2
C control chart whereas there are 50 in the classical T 2: 20 lots are found as

out-of-control signals under both approaches, 2 only appear in the T 2
C and 30 only in T 2.

Many out of control signals appear at the beginning of the evaluation period, while at the

end, the process returns to the baseline conditions specified by the HDS. This is because the

quality assurance personnel looked for the reasons of the bad performance and found two factors

contributing to the variability, which were fixed during the period of manufacture corresponding

to lots 135 through 167. The vertical dashed line from Figure 5 indicates lot 135, from which the

manufacturing conditions where improved.

The out-of-control signals found using the classical method are assigned to three instability

periods (Gonzalez-de la Parra and Rodriguez-Loaiza 2003): period I is comprised of signals located

in lots 20 through 47, period II from 63 to 80 and period III from 93 to 120. The three periods are

shaded in Figure 5. Three isolated signals are not grouped within those periods.

Figure 5 shows that the out-of-control signals of the compositional T 2
C control chart are present

only in periods I and III. There is only one lot in period II and two lots that cannot be grouped.

Table 2 compile the information of the 22 signaling lots of the T 2
C control chart. The third and

four columns are the T 2 statistic under the classical approach (UCLT 2 = 68.29) and the cause of

the anomaly using the MYT decomposition method. Columns five to seven give the T 2
C statistic,

the maximum value of the statistic projected into an ilr direction (T 2
ψ) and the ratio represented

by this direction. We have used the method described in Section 3.1 to identify the causes of the
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Figure 5: Hotelling’s T 2 control chart (up) and compositional T 2
C control chart (down) for the

evaluation data set from Gonzalez-de la Parra and Rodriguez-Loaiza (2003). Three instability

periods are found under the classical approach (Periods I, II and III) while there are only two

under the CoDa approach.

signaling lots because p < 11.

From Table 2 we conclude that most signaling lots have in common a high level of impurities A

and C, and a low level of impurities D and F. When impurity B appears in the responsible ratio,

this is because it has a high level, and when impurity G appears in the ratio, it is because of a

low level. Lot 24, for example, has a slightly different signaling ratios: it has the lowest value of

impurity G while impurities A, B, C and E are high: all lie in the higher quartile (Q4). Similarly,

lot 38 has values of impurities A, B, C, and E on the Q4 while the quantity of impurities D and G

are low.

As stated before, the CoDa method enables monitoring that the ratio between components

remains in control while the classical method focuses on the absolute quantities of each component.

Lot 68 is a good example to show the difference between both approaches. The Hotelling’s statistic

under classical approach of this lot is T 2 = 418.33. By the use of the MYT decomposition method,

the signal is attributed to a high level of impurities A and C. Indeed, the level of impurity A is 170,

which is the third maximum value. This observation does not appear as an out of control signal in

the T 2
C control chart because it also have high levels of all other impurities: all appear to be in Q4

except from impurity D which is located in Q2. That means that, in this lot, the total amount of

impurities is high, but the relationship between them is within the expected range.

Finally we discuss the case of lot 107 because under classical approach the cause of the anomaly
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Period Lot T 2 Cause of T 2 T 2
C T 2

ψ Responsible ratio

I 22 197.60 A 69.23 63.35 A/F

I 23 398.12 A 46.11 40.03 AC/DF

I 24 135.93 A(BG)(CFt−1)(GB) 85.78 69.23 ABCE/G

I 30 423.85 A 43.57 35.17 AC/DF

I 31 327.85 A 58.56 43.36 AC/DF

I 34 330.06 A 47.50 43.06 AC/DF

I 37 344.58 A 73.62 53.96 AC/DF

I 38 494.68 A 55.37 43.10 ABCE/DFG

I 46 348.66 A 47.65 32.69 AC/DF

I 47 140.19 A 52.12 38.56 AC/DF

- 55 21.86 - 45.37 32.63 AC/F

II 73 136.56 A 52.73 35.57 ABC/FG

III 95 54.94 - 57.97 39.59 ACG/DF

III 97 100.71 F(CFt−1)(Ct−1F)(Ct−1Ft−1) 71.23 52.79 AC/DF

III 101 340.34 A 43.97 31.80 ABC/FG

III 104 235.01 AB 51.38 35.98 ABC/FG

III 107 432.04 G 48.29 31.00 AC/DF

III 114 77.74 A 54.60 39.88 ACG/DF

III 117 361.77 A 60.73 44.31 AC/DF

III 118 501.05 A 48.39 38.86 AC/DF

III 119 345.39 A 49.58 36.17 AC/DF

- 131 136.11 C 72.98 69.29 ACG/DF

Table 2: Signal interpretation of the 22 signaling observations of the T 2
C control chart. The left

hand side shows the information of the analysis using the classical method, and the right hand side

the analysis using the CoDa method.
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is attributed mainly to impurity G (although it also appears as an out of control observation in the

unconditional terms of impurities A, B and C), while under CoDa approach impurity G does not

appear in the ratio. Indeed, lot 107 has the highest value of impurity G, but also has high levels of

A, B, C and F. In fact, this is the lot with more impurities: the sum of the impurities in lot 107 is

3440 ppm while on average there are 1908 ppm (or better we would say that the geometric mean

of the total sum of impurities is 1853 ppm). The problem is not on the level of impurity G but on

the log ratio between AC and DF.

To sum up, main attention has to be paid on the process to achieve a good relationship between

the components A and C over D and F. We suggest to analyse the process in order to identify

which modifications to the method of manufacture imply a bad relation between the impurities A

and C over D and F on the final product.

5 FINAL REMARKS

The T 2
C CC is suitable for monitoring a process in which the monitored quality characteristic is

a composition, that is, a vector of components representing parts of a whole. In that case, it is

necessary to transform data from the restricted sample space to the real space by the use of log

ratios (coordinates): both the ilr and the clr coordinates can be used. The T 2
C statistic is defined

by the distance from each coordinate to the centre of the coordinates (geometric mean of the

composition) by taking into account the correlation among them.

Two methods for identification of the main cause of the individual T 2
C out-of-control signals

have been proposed. The first method is based on computing the univariate T 2 statistic (uncon-

ditional term) of all ilr directions, that is, of all combinations of ratios of components: the largest

unconditional term indicates the ratio responsible of the anomaly.

The second method transforms the coordinates onto the sphere such that the mean is centred

at the origin and the covariance matrix is equal to the identity matrix. In that case, the maximum

unconditional term equals the global T 2
C when it is computed on the direction going from the origin

to the spherized outlier. Interpreting this direction in terms of ratio of components may not be easy,

thus it is approximated by the nearest log ratio using a nearest-neigbour (NN) search algorithm.

Both approaches provide the closest univariate T 2 statistic of a log ratio to the global T 2
C such

that the decomposition using this ratio will give the highest weight to the unconditional term. The

first method is more intuitive and requires a single generation of the list of all possible log ratios

that can be reused for other problems of the same dimension (p). As p increases, this method
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performs slower because the number of combinations of log ratios is hight. This is why we suggest

to use the second method for p ≥ 11. However, the second method requires to update the list of

all possible log ratios for each problem, that is, each time that the covariance matrix of the process

changes. So we suggest to use the first method for low dimensional problems (p < 11).

More current signal interpretation methods, for example, based on Bayesian approaches like the

one presented in Tan and Shi (2012), may be of interest for the case of the T 2
C control chart. We

leave this improvement for a further development.

The T 2
C control chart is useful to detect out-of-control ratios of components. In some applica-

tions, the quality characteristic of the process is a composition, but not all elements of the sample

are measured, that is, the vector of components do not add to a constant. In those cases, the vector

of components is a subcomposition (also known as a not closed composition). If there is an interest

not only on the ratio of components but also on the total amount, then it may be necessary to

include in the composition the remainder or include a new variable with the total.
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Appendix A

Let z be a point in Rp. Consider a normal distribution with mean µ and variance Σ. The

direction ϕ in Rp is the one in which the decomposition of the T 2 of point z is maximum, that is

T 2(z) = T 2
ϕ(z).

The T 2 of the projection of point z on the direction ϕ where ‖ϕ‖ = 1 is (from Equation 5)

T 2
ϕ(z) =

(zi − µi)2

σ2i
=

((z− µ)ϕ′)2

ϕΣϕ′

The point z can be spherized by computing zs = (z − µ)Σ−1/2. The same projection of the

spherized point zs is calculated taking into account that the mean of the spherized distribution is

a vector of zeros and the variance is the identity matrix

T 2
ϕ(zs) =

(zsϕ
′)2

ϕϕ′
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Both expressions are equivalent if we consider the linear transformation h(ϕ) = ϕ∗ = Σ1/2ϕ.

We are looking for the maximum of

T 2
ϕ(z) = T 2

ϕ∗(zs) =

(
zsϕ

∗′
)2

ϕ∗ϕ∗′
= T 2

h(ϕ)(zs)

Applying the chain rule

∂T 2
ϕ(z)

∂ϕk
= Dk(T

2
ϕ(z)) = Dk(T

2
h(ϕ)(zs)) = DT 2

h(ϕ) ·Dk(h(ϕ))

The term Dk(h(ϕ)) is a constant. The first term has to be equal to zero.

DT 2
ϕ∗(zs) =

(ϕ∗ϕ∗
′
)zs − (zsϕ

∗′)ϕ∗

(ϕ∗ϕ∗′)2

The numerator is equal to zero only in the case in which zs = ϕ∗ thus T 2(z) = T 2
ϕ(z) = T 2

ϕ∗(zs)

in the direction pointed by the spherized point zs.

The direction ϕ∗ in Rp is the one in which the decomposition of the T 2 of point zs is maximum,

that is T 2(zs) = T 2
ϕ∗(zs).

Appendix B
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Table B1: Historical data set of the impurity levels (ppm) from Gonzalez-de la Parra and Rodriguez-
Loaiza (2003).

Lot A B C D E F G

1 30 140 550 790 350 170 1110
2 30 10 420 500 220 200 730
3 20 210 540 380 210 180 900
4 10 170 550 390 260 190 580
5 30 10 540 660 190 60 610
6 20 10 230 670 160 70 380
7 30 20 200 840 210 140 280
8 20 40 370 500 20 100 1210
9 40 40 230 800 160 100 480

10 10 30 390 690 10 90 340
11 10 10 440 660 240 60 510
12 20 110 410 960 90 110 780
13 20 210 520 810 280 120 1200
14 20 20 450 520 70 120 640
15 10 20 310 500 110 100 520
16 10 180 520 510 20 110 620
17 20 110 360 560 50 60 730
18 10 50 190 570 60 20 710
19 10 160 200 770 320 70 1190
20 40 140 160 610 140 10 620
21 20 40 320 730 70 70 480
22 40 20 360 700 130 120 640
23 30 10 280 810 120 70 410
24 40 30 310 610 90 70 480
25 20 60 150 590 320 110 900
26 20 140 230 460 220 130 1000
27 30 60 260 460 40 100 740
28 30 100 220 520 50 120 510
29 40 50 360 590 80 110 440
30 20 20 180 610 240 110 780

Table B2: Evaluation data set of the impurity levels (ppm) from Gonzalez-de la Parra and
Rodriguez-Loaiza (2003).

Lot A B C D E F G

1 30 240 580 580 100 190 1310
2 10 130 710 730 260 260 1120
3 40 110 750 610 130 160 800
4 20 20 430 550 210 120 270
5 20 260 1090 360 130 190 620
6 10 50 500 520 80 110 830
7 20 70 760 490 100 80 920
8 20 100 570 400 60 130 1300
9 30 310 720 480 130 110 690

10 10 240 670 530 110 50 1080
11 30 230 680 410 130 60 1190
12 40 50 570 540 200 120 1230
13 30 180 710 710 80 90 980
14 10 10 280 470 20 20 530
15 40 90 480 310 150 90 620
16 30 90 620 250 240 100 660
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17 30 30 470 370 230 80 370
18 40 10 440 520 150 130 490
19 40 50 470 450 70 110 470
20 140 100 400 540 250 140 830
21 100 110 450 310 160 110 720
22 140 10 130 400 90 10 480
23 160 60 490 380 170 70 940
24 70 210 730 360 270 120 100
25 30 40 250 440 120 140 360
26 50 290 370 400 170 210 900
27 10 10 300 350 110 100 550
28 40 40 400 310 210 180 830
29 10 30 430 370 130 40 670
30 160 170 670 440 180 100 1130
31 140 70 620 250 180 80 800
32 70 90 470 320 60 110 770
33 110 40 610 430 100 80 490
34 140 10 710 380 90 60 740
35 110 130 430 400 60 140 490
36 70 180 370 290 70 100 500
37 150 260 720 320 80 50 700
38 170 270 690 410 230 140 460
39 20 200 620 470 240 50 740
40 90 10 190 370 80 20 580
41 40 20 310 550 140 130 600
42 10 10 250 540 50 10 630
43 30 30 520 370 60 90 500
44 10 150 350 380 90 30 550
45 40 170 620 270 100 70 530
46 140 210 780 340 50 120 640
47 90 200 430 270 140 60 420
48 20 180 350 250 50 80 290
49 30 110 310 340 90 90 400
50 20 200 270 360 120 50 250
51 10 30 350 390 100 140 290
52 40 350 320 480 80 60 730
53 10 10 430 290 120 130 550
54 30 30 380 380 230 30 360
55 40 30 240 540 110 10 330
56 40 50 260 410 90 60 450
57 30 180 290 350 120 20 740
58 10 190 220 410 70 110 430
59 10 230 190 440 100 70 1140
60 40 110 200 380 290 40 730
61 20 10 340 450 40 70 1120
62 30 20 180 530 40 80 520
63 160 10 400 390 10 140 490
64 20 30 440 380 30 50 920
65 40 60 580 510 20 140 670
66 40 80 580 500 10 60 550
67 60 190 80 540 30 90 710
68 160 160 890 420 120 180 1180
69 40 10 360 480 40 90 660
70 80 230 400 310 10 80 560
71 50 10 490 490 120 40 730
72 120 30 660 460 30 110 790
73 80 310 770 470 130 50 540
74 110 150 730 430 50 110 840
75 70 320 780 470 70 140 1160
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76 40 60 630 360 30 110 560
77 20 20 440 610 20 40 450
78 10 40 380 600 40 80 540
79 20 80 540 370 40 330 1400
80 40 40 350 550 30 50 570
81 10 30 360 650 10 90 280
82 40 10 490 510 40 110 910
83 40 10 600 700 40 100 830
84 20 30 350 670 10 140 330
85 10 20 750 550 110 120 770
86 10 10 840 740 80 80 800
87 30 30 190 550 120 110 610
88 40 20 120 690 110 90 260
89 10 20 400 510 70 30 990
90 10 10 290 1320 100 60 770
91 20 40 240 520 130 10 900
92 20 30 340 310 70 40 730
93 130 10 320 490 740 60 350
94 10 40 240 530 60 20 570
95 30 30 400 320 160 10 600
96 10 30 790 510 110 50 630
97 40 20 710 440 140 10 610
98 30 60 830 330 80 90 780
99 130 70 490 360 120 110 580

100 170 130 600 500 140 110 660
101 160 280 730 620 60 120 440
102 90 330 810 470 50 90 610
103 120 340 820 580 90 110 640
104 110 380 790 540 120 100 370
105 60 330 840 500 40 120 350
106 50 80 700 450 140 100 860
107 150 330 820 360 30 140 1610
108 10 80 560 620 90 70 1130
109 70 150 710 470 160 140 980
110 80 70 610 530 140 70 790
111 10 140 190 450 80 30 470
112 30 10 170 510 140 10 500
113 120 80 360 560 10 50 840
114 70 100 280 260 10 20 670
115 10 100 190 320 30 50 1060
116 10 0 560 440 10 130 900
117 170 200 450 380 10 50 870
118 180 100 630 420 310 110 610
119 150 240 570 380 30 80 1390
120 80 160 430 450 60 40 570
121 40 10 150 420 10 30 740
122 10 20 290 380 40 80 500
123 30 40 460 470 50 70 370
124 20 20 350 250 30 80 260
125 10 10 310 390 10 60 670
126 20 10 660 370 20 70 430
127 10 30 460 440 50 90 400
128 30 10 280 410 90 50 490
129 10 10 390 390 80 80 720
130 40 20 530 370 20 20 630
131 40 10 830 410 10 10 960
132 10 30 330 410 30 30 620
133 10 160 630 520 70 80 630
134 20 30 180 700 60 30 320
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135 10 20 360 640 70 20 460
136 40 40 190 970 40 10 530
137 10 20 230 740 80 40 480
138 30 10 690 520 110 180 610
139 10 40 760 480 10 70 580
140 10 160 190 470 50 80 720
141 20 140 230 450 40 100 570
142 10 50 180 540 50 50 430
143 20 10 300 430 40 10 700
144 20 40 270 360 30 30 720
145 40 20 340 380 20 40 800
146 10 40 360 590 140 80 640
147 40 40 440 360 60 230 580
148 30 20 390 500 50 70 530
149 10 30 430 600 100 150 590
150 40 20 430 660 60 100 360
151 40 20 210 370 70 70 560
152 10 10 160 620 90 130 540
153 40 60 450 480 50 110 420
154 20 10 320 370 110 80 430
155 10 40 580 410 90 80 700
156 30 20 200 480 160 220 550
157 10 10 370 350 80 50 460
158 40 20 240 580 70 100 480
159 30 10 190 620 90 130 690
160 10 40 260 470 70 90 620
161 40 230 330 440 150 160 500
162 10 70 700 470 90 140 320
163 10 180 440 400 70 100 590
164 20 170 770 550 90 100 510
165 10 180 490 530 190 140 970
166 30 20 310 590 170 80 740
167 10 30 280 330 70 70 580
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