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Abstract

Like the statistical analysis of compositional data in general, spatial analysis

of compositional data requires specific tools. An historical overview of their

development is presented in three steps: (a) the recognition of the problem,

known as spurious spatial covariance, (b) first attempts to use the logratio ap-

proach, and (c) the application of the principle of working in coordinates using

isometric logratio representations. Also mentioned are the use of matrix-valued

variation-variograms as a tool to model crossvariograms, and the simplicial ap-

proach to indicator kriging, that solves inconsistencies in the standard approach

to indicator kriging.
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1. Introduction1

According to Chilès and Delfiner (2012), the term Geostatistics was intro-2

duced by Matheron (1962) to designate his own methodology for ore reserve3

estimation. Since then, Geostatistics expanded amazingly, as the methodology4

finds application in many fields, not only in geo- and environmental sciences.5

Independently, in the 1980’s, J. Aitchison started developing compositional data6

analysis (CoDa) (Aitchison and Shen, 1980; Aitchison, 1982, 1986) introduc-7

ing what nowadays is known as the log-ratio approach. Although most type of8

data to which Geostatistics is applied are compositional, like ore grade, chemi-9

cal or mineralogical composition of rocks, contaminants in air or water, it was10

not recognized until 1984 that spurious spatial correlation might be at work11

(Pawlowsky, 1984). We summarise in what follows the steps that have been12

undertaken since then to solve the problems derived from the compositional13

character of some spatially dependent data. We limit our contribution to the14

historical development, omitting most formal derivations which can be found in15

the references cited.16

2. Spurious spatial covariance17

The problem of spurious spatial covariance of regionalized compositions, or18

r-compositions for short, was first stated in Pawlowsky (1984). The results are19

illustrative, and are therefore briefly exposed.20

According to our present understanding, a random vector, Z, with D strictly21

positive components representing parts of a whole, is a composition if it carries22

only relative information (Pawlowsky-Glahn et al., 2015c). Note that the term23

relative information is equivalent to information lies in the ratios between com-24

ponents, not in the absolute values. The same definition holds for a spatially25

distributed random vector, Z(x), at any point x of a spatial domain R.26
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In 1984, r-compositions were still understood as random vectors subject to27

a constant sum constraint, or closed r-compositions. We know now that compo-28

sitions in general, and r-compositions in particular, are equivalence classes, and29

that a closed composition is just a representation. This means, that the results30

obtained under this assumption hold for any representation of the equivalence31

classes.32

For the understanding of spurious spatial covariance or correlation, it is33

mathematically easier to work with a closed representation. Therefore, in what34

follows, we work with a closed r-composition, i.e. with a spatially distributed35

random vector, Z(x), with D strictly positive parts or components, that is36

subject to a constant sum constraint for all x ∈ R,37

D∑
i=1

Zi(x) = κ , (1)

with κ a given positive constant depending on the units of the random vector.38

The constant κ is usually 1 (parts per unit), 100 (percentages), or 106 (parts39

per million).40

Following Matheron (1965), Geostatistics can be used with regionalized vari-41

ables satisfying stationarity conditions. Second order stationarity requires re-42

gionalized variables to have a constant mean and the autocovariance only de-43

pending on the lag between pairs of variables Z(xi) and Z(xj); a less stringent44

condition is the intrinsic hypothesis, which assumes that the first order differ-45

ences are second order stationary. Under these kind of assumptions, Geostatis-46

tics builds on modelling the mean and the spatial autocovariance, or related47

parameters, like the variogram. The following development handles the com-48

ponents of the closed r-composition Z(x) = (Z1(x), Z2(x), . . . , ZD(x)) at two49

spatial locations, say x and x+ h in R, where h denotes the lag between them.50

3



From Eq. (1), for any lag h it holds51

D∑
i=1

(Zi(x)− Zi(x+ h)) =
D∑
i=1

Zi(x)−
D∑
i=1

Zi(x+ h) = κ− κ = 0 . (2)

Hence, multiplying both sides of Eq. (2) by (Zj(x)− Zj(x+ h)),

D∑
i=1

(Zi(x)− Zi(x+ h)) (Zj(x)− Zj(x+ h)) = 0 ,

for any j = 1, 2, . . . , D. Taking expectations,52

D∑
i=1

cov [(Zi(x)− Zi(x+ h)) , (Zj(x)− Zj(x+ h))] = 0 . (3)

Given that a variance is always positive, Eq. (3) can be rewritten for any53

j = 1, 2, . . . , D, as54

var [(Zj(x)− Zj(x+ h)) (Zj(x)− Zj(x+ h))]

= −
∑
i ̸=j

cov [(Zi(x)− Zi(x+ h)) , (Zj(x)− Zj(x+ h))] . (4)

Note that Eq. (4) depends only on the fact that Z(x) is the closed representation55

of an r-composition, and not on the type of spatial dependence of its components.56

Equation (4) implies that non-stochastic factors determine the value of cross-57

covariances. They cannot be all null simultaneously, as the variance is, by58

definition, always positive. Also, if the closed r-composition was generated by59

closure of independent random variables, a dependence will appear, which is60

spurious, as it is not generated by the phenomenon itself (Pawlowsky, 1984).61

This result is well known for compositional data in general as the closure problem62

(Chayes, 1960). It has many implications in standard multivariate analysis63

which can be directly extended to r-compositions.64
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For a closed intrinsic r-composition Z(x), Eq. (4) can be written in terms of65

variograms, γj(h), and crossvariograms, γij(h),66

γj(h) = −
∑
i ̸=j

γij(h) , j = 1, 2, . . . , D . (5)

for any lag h. As stated in Pawlowsky (1984), the obvious conclusion is the67

need of non-zero cross-variograms for r-compositions, some of which have to68

be negative—as the variogram is, by definition, positive. It is clear that the69

only case in which cross-variograms could be all null or all positive is that the70

variogram is null, i.e. the r-composition is constant. The fact that variograms71

and cross-variograms of r-compositions are subject to non-stochastic controls72

leads to the conclusion that, when based on raw data, they are spurious.73

Under the assumption that the sample space is the whole real space endowed74

with the standard Euclidean space structure and geometry, or a subset with the75

induced structure and geometry, for Z(x) satisfying the second order stationary76

hypothesis, the following equalities hold:77

D∑
i=1

Zi(x) = κ ,

D∑
i=1

E(Zi(x)) =
D∑
i=1

mi = κ ,

D∑
i=1

(Zi(x)−mi)) = 0 , (6)

with E(Zi(x)) = mi, the expected value of Zi(x), i = 1, 2, . . . , D. Multiplying78

both sites of Eq. (6) by (Zj(x)−mj) and taking expectations, it holds79

D∑
i=1

cov [(Zi(x)−mi) , (Zj(x)−mj)] = 0 , j = 1, 2, . . . , D , (7)
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and therefore, for any lag h,80

Cj(h) = −
∑
i ̸=j

Cij(h) , j = 1, 2, . . . , D , (8)

where Cj(h) stands for the auto-covariance of component j, and Cij(h) for the81

cross-covariance of components i and j. Consequently, also the cross-covariances82

cannot be all null, and some of them have necessarily to be negative. Being83

subject to non-stochastic controls, they are spurious.84

As summarized in Pawlowsky-Glahn and Burger (1992), the problems de-85

rived from the nature of spatially distributed compositional data, when the raw86

data are analysed, are87

1. The mathematical necessity of at least one non-zero cross-covariance.88

2. The bias towards negative cross-covariances.89

3. The singularity of the cross-covariance matrix for any lag h.90

4. The distorted description and interpretation of the spatial dependence91

between the compositional variables under study.92

Nowadays we know that the problem of spurious spatial covariance or correla-93

tion is generated by the fact that compositional data are analysed as real data,94

with the usual Euclidean geometry. In fact, most statistical methods have been95

developed for real data without constraints under the implicit assumption that96

the Euclidean geometry holds. This means that the difference between obser-97

vations is measured as an absolute difference, that the sum and its opposite98

make sense. This holds even with constraints, i.e. restricting the support of the99

sample to a subset of real space without changing the geometry.100
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3. The beginning — 1986: The additive log-ratio approach101

The initial approach (Pawlowsky, 1986; Pawlowsky-Glahn and Olea, 2004)

was to use the additive log-ratio (alr) transformation (Aitchison, 1982, 1986).

The r-composition is transformed into log-ratios as

W(x) =

(
ln

Z1

ZD
, ln

Z2

ZD
, . . . , ln

ZD−1

ZD

)
,

thus obtaining a regionalized vector of D− 1 components which can be treated102

using cokriging. As we are aware nowadays, this was done under the implicit103

assumption that the Euclidean geometry holds for alr transformed vectors.104

Under this assumption the alr-transformation leads to BLU (Best Linear Un-105

biased) estimates (Pawlowsky-Glahn and Egozcue, 2002). Nevertheless, soon106

problems appeared, like the fact that cokriging seamed to lead to worse re-107

sults than kriging, a fact that stands in contradiction with theoretical results108

(Pawlowsky-Glahn and Olea, 2004, p. 160-161). The reasons for these problems109

could not be explained in a consistent way until the algebraic-geometric struc-110

ture of the sample space of compositional data was recognized (Aitchison et al.,111

2002; Billheimer et al., 2001; Pawlowsky-Glahn and Egozcue, 2001) and the alr112

was understood within this framework. Essentially, the problem was the com-113

putation of variances and covariances using the alr coordinates, which at that114

moment was not clear.115

The covariance structure of compositional data can be described by the so-116

called variation matrix (Aitchison, 1982, 1986). This matrix contains the vari-117

ances of each possible log-ratio of pairs of compositional parts. It was shown that118

the variation matrix completely describes the covariance structure of the compo-119

sition, independently of which transformation is used to analyse the data. These120

facts inspired the introduction of the spatial structure of r-compositions, first121

defined in Pawlowsky (1986) and summarised in Pawlowsky-Glahn and Burger122
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(1992) and (Pawlowsky-Glahn and Olea, 2004, p. 29):123

Definition 3.1 [Spatial covariance structure] The spatial covariance structure

of a D-part r-composition is defined as the set of functions of the lag h

σij·kℓ(h) = Cov

(
ln

Zi(x)

Zk(x)
, ln

Zj(x+ h)

Zℓ(x+ h)

)
, i, j, k, ℓ ∈ 1, 2, . . . , D, x ∈ D, .

At a first glance, the geostatistical analysis of W(x) can be performed as a124

cokriging. This means that variograms and cross-variograms have to be fitted125

to their empirical versions. However, the spatial covariance structure allows the126

modelling of each component of σij·kℓ(h) by a simple variogram, thus avoiding127

modelling of cross-variograms. A matrix transformation can transform the spa-128

tial covariance structure into the cross-variograms required for a cokriging of129

W(x).130

As stated in Pawlowsky-Glahn and Burger (1992), the most difficult part—131

compared to a spatial analysis of several variables—is that, in addition to the132

usual difficulties, problems have to be reformulated in terms of logratios, and133

interpretation and description of spatial dependencies have to be made in the134

same terms.135

4. The breakthrough 2000...136

Around the year 2000, compositional data analysis attains a further maturity137

level. The achievements can be summarized in two main points: (1) The sim-138

plex, as sample space of compositional data, is endowed with a Euclidean space139

structure, called Aitchison geometry (Pawlowsky-Glahn and Egozcue, 2001);140

and (2) compositional data are no longer conceived as vectors constrained to141

a constant sum but as equivalence classes of proportional vectors with positive142

components (Barceló-Vidal et al., 2001). These new points of view influenced143
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the way of identifying and analysing r-compositions and they are briefly de-144

scribed in the following sections.145

Subsequent developments (Tolosana-Delgado, 2006), based on the sample146

space approach and the Principle of Working in Coordinates (Mateu-Figueras et al.,147

2011; Pawlowsky-Glahn, 2003), proved the potential for the log-ratio approach148

within the Aitchison geometry of the simplex, setting the foundations for a149

rigorous theory. Based on the principles of scale invariance, subcompositional150

dominance, and permutation invariance, the operations of perturbation, power-151

ing, and the inner product associated to the distance introduced by Aitchison152

(1982, 1986, 1997), provide, as mentioned, the simplex with a Euclidean space153

structure (Billheimer et al., 2001; Pawlowsky-Glahn and Egozcue, 2001), differ-154

ent, but nonetheless isometric to the Euclidean space structure of real space.155

The Euclidean space structure of the simplex was termed Aitchison geometry156

in Pawlowsky-Glahn and Egozcue (2001). It opened up the door to a deeper157

understanding of the nature of compositional data, of the available methods to158

analyse them, and of the problems linked to different approaches. In particu-159

lar, the advantage of using isometric log-ratio transformations was recognised.160

Within this family of transformations, those known as balances (Egozcue et al.,161

2003; Egozcue and Pawlowsky-Glahn, 2005) have shown a high potential based162

on their interpretability, and can be used for spatial analysis of compositional163

data.164

4.1. Compositions are representatives of equivalence classes165

In Aitchison (1986), the so called principle of scale invariance of composi-166

tions was formulated. It states that the analysis of a composition must remain167

invariant when the composition is multiplied by any positive constant. This was168

the motivation for preconising the use of log-contrasts as the main tool in the169

analysis. Log-contrast are combinations of the logarithms of the parts such that,170
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when all parts of the composition are multiplied by a positive constant, the value171

of the combination remains unaltered. Also, vectors of positive components are172

reduced to constant sum by using the closure operation. These concepts were173

clear from the beginning of compositional data analysis, but there was a lack of174

mathematical formulation reflected in the wording of compositional data anal-175

ysis. For instance, when referring to the closure problem as the only origin of176

pitfalls in compositional data analysis.177

The progress consists in thinking that all vectors having proportional positive178

components are equivalent and convey the same compositional information. A179

composition is then an equivalence class which can be represented by choosing an180

arbitrary element of the class. Equivalence classes can be represented in many181

ways and each choice defines a potential sample space, whether constraint to182

a constant sum or not (see explanations in Pawlowsky-Glahn et al., 2015c, ch.183

2). When compositional data are represented as data subject to a constant sum184

constraint, their sample space is a simplex, and the simplex is nothing else but a185

choice of one out of all the possible sample spaces of compositions. This choice is186

not only convenient because it is the usual choice in practice, but also because187

it is mathematically easy to define a meaningful and interpretable Euclidean188

vector space structure in the simplex (Pawlowsky-Glahn and Egozcue, 2001).189

Other representations of compositions are possible. For instance, when com-190

positions of air pollutants are expressed in µg/m3 or solutes are given in Mol per191

liter, concentrations do not add to a constant and they are not represented in192

the simplex. Simply, the representative of the equivalence class has been taken193

in another way, but still the ratios of the parts are the relevant information. In194

these kind of representations, perturbation is also easily interpretable. Other195

possibilities are less intuitive, for instance, when compositions are represented196

in an orthant of a hypersphere (e.g. Wang et al., 2007).197

10



It is remarkable that this interpretation of compositions as equivalence classes198

only arose in 2000. This may be the reason why, in the decade from 1980 to199

1990, concentrations in units like mol/litre, concentration of a single element,200

or just removing a large component, were considered to be non-compositional201

and, consequently, free of the difficulties of analysing compositional data.202

The influence of these new concepts in geostatistics is reflected in the iden-203

tification of what is an r-composition, independently of whether the collected204

data are closed to a constant or not.205

4.2. Aitchison geometry of the simplex and consequences206

The simplex endowed with perturbation (the compositional sum), powering207

(compositional multiplication by real numbers) and Aitchison distance, con-208

stitute a (D − 1)-dimensional Euclidean vector space (Billheimer et al., 2001;209

Pawlowsky-Glahn and Egozcue, 2001). The Euclidean space structure of the210

simplex was termedAitchison geometry in Pawlowsky-Glahn and Egozcue (2001).211

The value of this mathematical result is supported by the fact that perturbation212

is an interpretable operation in most compositional scenarios. In fact, perturba-213

tion can be interpreted as filtering in geochemistry or particle size analysis; or214

as the Bayes formula for probabilities (for details, see Pawlowsky-Glahn et al.,215

2015c, ch. 2).216

The Aitchison geometry points out that orthonormal basis of the space ex-217

ist, and that the corresponding (Cartesian) coordinates can efficiently repre-218

sent compositions; orthogonal projections are possible; the concepts of linear219

combination, linear dependence, Euclidean distances, and all the typical geo-220

metrical elements are available. All these tools are readily used once composi-221

tions are represented by their coordinates with respect to a basis of the space,222

as perturbation is the sum in coordinates, powering is scaling in coordinates,223

and the Aitchison distance is the standard Euclidean distance between coor-224
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dinates. This constitutes the core of the Principle of Working in Coordinates225

(Mateu-Figueras et al., 2011).226

An important step ahead is the construction of orthonormal (Cartesian)

coordinates in the simplex. The function assigning orthonormal (Cartesian)

coordinates to a composition has been named isometric log-ratio transformation

(ilr) (Egozcue et al., 2003). The ilr-transformation is not unique, as there are

infinitely many basis of the space. As a consequence, it was clear that the

alr-transformation is an assignation of coordinates with respect to an oblique

basis (Egozcue et al., 2003), while the centered log-ratio transformation (clr)

(Aitchison, 1986)

clr(Z(x)) =

(
ln

Z1(x)

g(Z(x))
, ln

Z2(x)

g(Z(x))
, . . . , ln

ZD(x)

g(Z(x))

)
,

where g(Z(x)) is the geometric mean of the Z(x) components, gives coordinates

with respect to a generating system of the simplex. The clr-transformation

was not used for geostatistical analysis, as its covariance matrix is always sin-

gular. It is, nevertheless, extremely useful for computation in compositional

data analysis. For example, the ilr-coordinates are readily obtained through a

clr-transformation as

ilr(Z(x)) = V clr(Z(x)) ,

where V , called contrast matrix (Egozcue et al., 2011; Pawlowsky-Glahn et al.,227

2015c), is a (D,D − 1)-matrix satisfying the property that V ′V is the identity228

matrix. An easy way of building coordinates, called balances, was introduced229

in (Egozcue et al., 2003; Egozcue and Pawlowsky-Glahn, 2005). The procedure,230

called sequential binary partition (SBP), provides such contrast matrices, and231

the resulting ilr-coordinates are called balances (Egozcue and Pawlowsky-Glahn,232

2005).233
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It is remarkable that ilr, alr, and clr transformations are different assig-234

nations of coordinates to a composition more than different transformations235

leading to different approaches. An important point is that, within the Aitchi-236

son geometry of the simplex, the predictors used in all classes of kriging are237

linear, as they are linear combinations of coordinates. However, in the case238

of alr-coordinates distances and covariances should be handled very carefully,239

paying special attention to the fact that they are representations in an oblique240

coordinate system. This explains the problems detected when using cokriging241

on alr-coordinates (Pawlowsky-Glahn and Olea, 2004, p. 108), where this fact242

was not taken into account.243

4.3. Cokriging of regionalized compositions244

Initially, the problems for cokriging of r-compositions appeared to be centred245

on the modelling of cross-variograms of log-ratio transformed data, although it246

was known that a simple matrix transformation leads from the matrix-valued247

variation-variogram, the matrix of variograms of all possible simple log-ratios, to248

any log-ratio representation (Pawlowsky, 1986; Pawlowsky-Glahn and Burger,249

1992; Pawlowsky-Glahn and Olea, 2004; Tolosana-Delgado, 2006; Tolosana-Delgado et al.,250

2011). Later, Tolosana-Delgado and Boogaart (2013) recognised the potential251

of the matrix-valued variation-variogram, specially to model cross-variograms252

using first a Linear Model of Coregionalisation for the matrix-valued variation-253

variogram, followed by a matrix transformation to obtain the corresponding254

variograms and cross-variograms for the coordinates chosen by the scientist to255

represent the available data. Note that the matrix-valued variation-variogram is256

a matrix with all its entries simple variograms and no cross-variogram. Standard257

cokriging can then be applied to obtain the desired predictions. In summary,258

spatial compositional data analysis consists in the following steps (Tolosana-Delgado and Boogaart,259

2013):260
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1. transform the D-part compositional vectors into (D− 1)-dimensional real261

vectors by means of a convenient isometric log-ratio (ilr) transformation;262

2. apply any standard geostatistical technique to the vectors obtained;263

3. back-transform interpolated and/or simulated scores back using the ilr264

inverse.265

To model necessary variograms and cross-variograms266

• compute the matrix-valued variation matrix and adjust a Linear Model of267

Coregionalisation;268

• apply the corresponding matrix transformation to obtain the desired matrix-269

valued variogram (containing variograms in the diagonal and cross-variograms270

off-diagonal) of the ilr transformation used before.271

Details of the procedure can be found in Tolosana-Delgado and Boogaart (2013).272

Note that, as stated in Tolosana-Delgado et al. (2008a), the proposed pro-273

cedure leads to BLU estimators when performing cokriging.274

4.4. Simplicial Indicator Kriging275

The recognition of the Euclidean vector space structure of the sample space276

of compositional data and the understanding that probabilities can be con-277

sidered to be a composition allowed to solve the problems intrinsic to Indicator278

Kriging (Pawlowsky-Glahn et al., 2006; Tolosana-Delgado, 2006; Tolosana-Delgado et al.,279

2008c,b). By construction, Simplicial Indicator Kriging avoids all the known280

problems associated with usual Indicator Kriging (Journel, 1983), namely neg-281

ative predictions, order relation violations, or predictions larger than one.282

4.5. Further developments — 2015: Cokriging r-compositions with a total283

As mentioned before, compositional data are multivariate positive real data284

that carry only relative information, and can be represented simply taking clo-285

sure, i.e. taking proportions or concentrations. In this case, the information286
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about their total sum is lost. In some cases, additionally to the composition,287

the sum of some of the positive variables, called total, can be informative or288

of interest. Consequently, the need of a joint analysis of composition and to-289

tal arises. Some possibilities where studied in Pawlowsky-Glahn et al. (2015a)290

which concluded that the chosen total can be included as an additional coor-291

dinate to those coming from the composition. This applies to r-compositions292

where some regionalized total is of interest. The geostatistical analysis can be293

conducted by cokriging of compositional ilr-coordinates, jointly with the coor-294

dinate of the total.295

A first application of this procedure was performed in Pawlowsky-Glahn et al.296

(2015b) although the main goal was dimension reduction of a geochemical data297

set. The problem appears when applying compositional techniques of dimension298

reduction since, after orthogonal projections, the original units of the compo-299

sition are lost. In order to recover original units, cokriging of ilr-coordinates300

of the composition is carried out jointly with the sum of initial concentrations.301

This joint cokriging of ilr-coordinates with supplementary real variables appears302

to be a promising technique in compositional geostatistics.303

5. Other approaches304

Not many attempts have been made to find spatial interpolation meth-305

ods for regionalized compositional data. Methods that comply with nonneg-306

ativity and the representation as data constraint to a constant sum include307

nearest neighbor interpolation, triangulation, local sample (arithmetic) mean,308

and inverse distance interpolation, which are described in Isaaks and Srivastava309

(1989). Another approach, called compositional kriging, was introduced by310

Walwoort and de Gruijter (2001). All of them are implicitly based on the as-311

sumption that the sample space of compositional data is the simplex as a con-312
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straint subset of real space, and that they obey the induced geometry, i.e. the313

standard Euclidean geometry. This fact implies the assumption that composi-314

tional data carry absolute and not relative information, a decision that lies with315

the researcher analysing the data. Furthermore, as stated byWalwoort and de Gruijter316

(2001), the former methods do not take the spatial structure into account, but317

neither does compositional kriging completely, as it does not take into account318

cross-correlations, and thus cross-variograms, to avoid problems with spurious319

correlation. As shown by Pawlowsky-Glahn and Egozcue (2002), even using320

the alr representation of compositional data leads to BLU estimators within the321

Aitchison geometry of the simplex (Pawlowsky-Glahn and Egozcue, 2001), and322

numerical comparisons of results based on different assumptions for the struc-323

ture of the sample space make no sense. Whichever is the assumption made324

by the scientist, spatial interpolation using cokriging will be optimal within the325

assumed geometry.326

6. Conclusions and comments327

Reviewing the early developments in the spatial analysis of compositional328

data, and in the analysis of compositional data in general, one can see the329

evolution of the way of thinking on that type of data. One typical example is330

the statement in Pawlowsky (1984) that Z(x)−Z(x+h) is an r-composition for331

any x ∈ R and any lag h. This is clearly not true, as it always yields at least332

some non-positive numbers.333

Another hurdle were the problems related to the alr transformation. After334

understanding that the alr represents the data in an oblique basis of the sim-335

plex, one can recognise two ways of proceeding: (1) to avoid the alr and use336

only isometric log-ratio transformations, or (2) to take into account the oblique337

nature and use appropriate matrix transformations to obtain consistent results.338
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The first approach is straightforward and safe, the second requires more care.339

It is up to the researcher to choose which transformation is better suited for the340

case he or she is dealing with.341

One of the characteristics of cokriging ilr-coordinates is that the modelling342

of cross-variograms can be afforded modelling the variation variograms, thus343

avoiding the always difficult cross-variogram modelling.344

The main conclusion is that analysing compositional data, regionalized or345

not, is nowadays summarised by the principle of working on coordinates; it346

transforms the compositional analysis into a standard geostatistical problem347

where well known procedures can be applied without additional difficulties.348
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Barceló-Vidal C, Mart́ın-Fernández JA, Pawlowsky-Glahn V. Mathematical377

foundations of compositional data analysis. In: Ross G, editor. Proceedings378

of IAMG’01 – The VII Annual Conference of the International Association379

for Mathematical Geology. Cancun (Mex); 2001. p. 20 p.380

Billheimer D, Guttorp P, Fagan W. Statistical interpretation of species compo-381

sition. Journal of the American Statistical Association 2001;96(456):1205–14.382

Chayes F. On correlation between variables of constant sum. Journal of Geo-383

physical Research 1960;65(12):4185–93.384

Chilès JP, Delfiner P. Geostatistics - Modeling Spatial Uncertainty. 2nd ed.385

Probability and Statistics. United States of America: Wiley, 2012.386

18
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