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Abstract

Background

Brugada syndrome (BrS) is a rare genetic cardiac arrhythmia that can lead to sudden

cardiac death in patients with a structurally normal heart. Genetic variations in SCN5A
can be identified in approximately 20-25% of BrS cases. The aim of our work was to deter-

mine the spectrum and prevalence of genetic variations in a Spanish cohort diagnosed

with BrS.

Methodology/Principal Findings

We directly sequenced fourteen genes reported to be associated with BrS in 55 unrelated

patients clinically diagnosed. Our genetic screening allowed the identification of 61

genetic variants. Of them, 20 potentially pathogenic variations were found in 18 of the 55

patients (32.7% of the patients, 83.3% males). Nineteen of them were located in SCN5A,
and had either been previously reported as pathogenic variations or had a potentially

pathogenic effect. Regarding the sequencing of the minority genes, we discovered a

potentially pathogenic variation in SCN2B that was described to alter sodium current, and

one nonsense variant of unknown significance in RANGRF. In addition, we also identified

40 single nucleotide variations which were either synonymous variants (four of them had

not been reported yet) or common genetic variants. We next performed MLPA analysis of

SCN5A for the 37 patients without an identified genetic variation, and no major rearrange-

ments were detected. Additionally, we show that being at the 30-50 years range or exhibit-

ing symptoms are factors for an increased potentially pathogenic variation discovery

yield.
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Conclusions

In summary, the present study is the first comprehensive genetic evaluation of 14 BrS-

susceptibility genes and MLPA of SCN5A in a Spanish BrS cohort. The mean pathogenic

variation discovery yield is higher than that described for other European BrS cohorts

(32.7% vs 20-25%, respectively), and is even higher for patients in the 30-50 years age

range.

Introduction
Brugada syndrome (BrS) was identified as a new clinical entity in 1992 [1]. Six years later, the
first genetic basis for the disease was identified, with the discovery of genetic variations in
SCN5A [2]. Nowadays, more than 300 pathogenic variations in this first gene are known to be
associated with BrS [3]. SCN5A encodes for the α subunit of the cardiac voltage-dependent
sodium channel (Nav1.5), which is responsible for inward sodium current (INa), and thus plays
an essential role in phase 0 of the cardiac action potential (AP). Genetic variations in this gene
can explain around 20–25% of BrS cases [3].

Since BrS was classified as a genetic disease, several other genes have been described to con-
fer BrS-susceptibility [4–7]. Pathogenic variations have been mainly described in: 1) genes
encoding proteins that modulate Nav1.5 function, and 2) other calcium and potassium chan-
nels and their regulatory subunits. All these proteins participate, either directly or indirectly, in
the development of the cardiac AP. Although the incidence of pathogenic variations in these
BrS-associated genes is low [6], it is considered that, among all of them, they could provide a
genetic diagnosis for up to an extra 5–10% of BrS cases. Hence, altogether, a genetic diagnosis
can be achieved approximately in 35% of clinically diagnosed BrS patients.

Other types of genetic abnormalities have been suggested to explain the remaining percent-
age of undiagnosed patients. Indeed, multiplex ligation-dependent probe amplification
(MLPA) has allowed the detection of large-scale gene rearrangements involving one or several
exons of SCN5A in BrS cases. However, the low proportion of BrS patients carrying large
genetic imbalances identified to date suggests that this type of rearrangements will provide a
genetic diagnosis for a modest percentage of BrS cases [8–10].

BrS has been associated with an increased risk of sudden cardiac death (SCD), despite the
reported variability in disease penetrance and expressivity [11]. The prevalence of BrS is esti-
mated at about 1.34 cases per 100 000 individuals per year, with a higher incidence in Asia
than in the United States and Europe [12]. However, the dynamic nature of the typical electro-
cardiogram (ECG) and the fact that it is often concealed, hinder the diagnosis of BrS. There-
fore, an exhaustive genetic testing and subsequent family screening may prove to be crucial in
identifying silent carriers. A large percentage of these pathogenic variation carriers are clini-
cally asymptomatic, and may be at risk of SCD, which is, sometimes, the first manifestation of
the disease [13].

In the present work, we aimed to determine the spectrum and prevalence of genetic varia-
tions in BrS-susceptibility genes in a Spanish cohort diagnosed with BrS, and to identify varia-
tion carriers among relatives, which would enable the adoption of preventive measures to
avoid SCD in their families.
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Results

Study population
Overall, 55 unrelated Spanish patients clinically diagnosed with BrS were included in our
study. Table 1 shows the demographics of this cohort, and Table 2 and S1 Table show the clini-
cal and genetic characteristics of all the patients included in the study. The mean age at clinical
diagnosis was of 41.9±13.3 years. Although the majority of patients were males (74.5%), their
age at diagnosis was not different than that of females (41.8±12.1 years and 42.3±16.3 years,
respectively; p = 0.92). A type 1 BrS ECG was present spontaneously in 37 patients (67.3%),
and drug challenge revealed a type 1 BrS ECG for the remaining 18 patients (32.7%). Almost
half of the patients had experienced symptoms, including 2 SCD and 4 aborted SCD. Patients
who had not previously experienced any signs of arrhythmogenicity despite having a BrS ECG
were considered asymptomatic. Comparison of symptomatic vs asymptomatic patients evi-
denced a similar percentage of males (73.1% and 75.9%, respectively). However, the mean age
at diagnosis was different between the two groups of patients (37.7±14.3 and 45.7±11.4, respec-
tively; p<0.05).

Sequencing of genes associated with BrS
We performed a genetic screening of 14 genes (SCN5A, CACNA1C, CACNB2, GPD1L, SCN1B,
SCN2B, SCN3B, SCN4B, KCNE3, RANGRF,HCN4, KCNJ8, KCND3, and KCNE1L), which
allowed the identification of 61 genetic variations in our cohort. Of these, 20 were classified as
potentially pathogenic variations (PPVs), one variation of unknown significance, and 40 com-
mon or synonymous variants considered benign.

The 20 PPVs were found in 18 of the 55 patients (32.7% of the patients, 83.3% males;
Table 2). Sixteen patients (88.9%) carried one PPV, and two patients (11.1%) carried two dif-
ferent PPVs each. Nineteen out of the 20 PPVs identified were localized in SCN5A and one in
SCN2B.

The vast majority of the PPVs identified were missense (70%). We also detected 2 nonsense
variations (10%), 3 insertions or deletions causing frameshifts (15%), and one splicing variation
(5%). The three frameshifts (p.R569Pfs�151, p.E625Rfs�95 and p.R1623Efs�7) were identified
in SCN5A. These were not found in any of the databases consulted (see Methods), and were
thus considered potentially pathogenic (see below). The other 16 rare variations identified in
SCN5A had been previously described, and hence were also considered potentially pathogenic.
Fourteen of them had been identified in BrS patients. Of these, 6 had also been identified in
individuals diagnosed with other cardiac electric diseases (i.e. Sick Sinus Syndrome, Long QT
Syndrome, Sudden Unexplained Nocturnal Death Syndrome or Idiopathic Ventricular Fibril-
lation [2,15,16,20,21,25]). The other 2, p.P1725L and p.R1898C, had only been associated with
Long QT Syndrome or found in Exome Variant Server with a MAF of 0.0079%, respectively.
Furthermore, we identified a variation in SCN2B (c.632A>G in exon 4 of the gene, resulting in
p.D211G) which was considered pathogenic. This patient was included within our cohort, but
the functional characterization of channels expressing SCN2B p.D211G was object of a previ-
ous study from our group [7]. We also identified a nonsense variation in RANGRF which has
been formerly reported as rare genetic variation of unknown significance [29].

Additionally, we screened the relatives of those probands carrying a PPV. We analysed a
total of 129 relatives, 69 of which (53.5%) were variation carriers. Genotype-phenotype correla-
tions evidenced that 8 of the families displayed complete penetrance (S3 Table). Additionally,
no relatives were available for one of the probands carrying a PPV, thus hampering genotype-
phenotype correlation assessment. The other 12 families showed incomplete penetrance.
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Table 1. Demographics of the 55 Spanish BrS patients included in the study. The table shows the demographic characteristics of all the patients
included in the study. Numbers in parentheses represent the relative percentages for each condition. T1 ECG refers to Type 1 BrS diagnostic electrocardio-
gram (ECG), obtained either spontaneously, or after drug challenge. The information regarding both the electrophysiological studies (EPS) and the treatment
was not available for all the patients. Two of the patients that didn’t receive any treatment died, and were not taken into account for the calculations of percent-
ages (+2 dead). ICD, intracardiac cardioverter defibrillator.

Characteristic/Clinical presentation Overall Symptomatic Patients Asymptomatic Patients

Number of Probands 55 26 (47.3%) 29 (52.7%)

Age at diagnosis, years 41.9±13.3; range 5–68 37.7±14.3; range 5–63 45.7±11.4; range 24–68

Males 41 (74.5%) 19/26 (73.1%) 22/29 (75.9%)

Females 14 (25.5%) 7/26 (26.9%) 7/29 (24.1%)

T1 ECG—spontaneous 37 (67.3%) 20/26 (76.9%) 17/29 (58.6%)

T1 ECG—drug challenge 18 (32.7%) 6/26 (23.1%) 12/29 (41.4%)

Family history of BrS 25 (45.5%) 11/26 (42.3%) 14/29 (48.3%)

Positive EPS 18/45 (40%) 8/18 (44.4%) 10/27 (37%)

Negative EPS 27/45 (60%) 10/18 (55.6%) 17/27 (63%)

ICD 32/46 (69.6%) 20/23 (87%) 12/23 (52.2%)

No treatment 12/46 (26.1%); +2 dead 1/23 (4.3%); +2 dead 11/23 (47.8%)

doi:10.1371/journal.pone.0132888.t001

Table 2. Characteristics of the Spanish BrS patients carrying rare genetic variations. The table shows the clinical characteristics of the probands who
carried rare genetic variations in SCN5A, SCN2B, or RANGRF. All of them are potentially pathogenic except that found in RANGRF, which is of unknown sig-
nificance (see discussion). All the potentially pathogenic variations (PPVs) that had been previously reported, except p.P1725L and p.R1898C, had been
identified in BrS patients. p.P1725L had been associated with Long QT Syndrome and p.R1898C was found in Exome Variant Server with a MAF of
0.0079%. No rare variations were identified in the control population. Patient’s age is expressed in years. Bold identifies the patients carrying variations that
had not been described previously. M, male; F, female; S, syncope; ICD, intracardiac cardioverter defibrillator; UK, unknown; EPS, electrophysiological stud-
ies (+, positive response;-, negative response; N/P, not performed). The two patients who carried two PPVs each are identified by a and b, respectively.

Proband
Age/sex

Baseline
ECG

Symptoms ICD EPS Family
historySCD

Family
historyBrS

Gene Aminoacidic
change

Nucleotidic
change

Reference

28/M Type 1 S Yes + No Yes SCN5A p.R121W c.361C>T [14,15]

36/F Type 1 S UK UK No No SCN5A p.R222* c.664C>T [3,16]

44/Ma Type 1 None Yes + No No SCN5A p.P336L c.1007C>T [17]

45/M Type 1 S Yes - No No SCN5A p.D356N c.1066G>A [18]

37/F Type 1 S Yes - Yes Yes SCN5A p.R367H c.1100G>A [19–21]

33/M Type 1 None Yes - No Yes SCN5A p.G386R c.1156G>A [3]

41/M Type 3 None No - No No SCN5A p.R569Pfs*151 c.1705dupC Not
reported

8/M Type 1 S Yes N/P No Yes SCN5A p.Q573* c.1717C>T [3]

51/M Type 1 None No - Yes Yes SCN5A p.E625Rfs*95 c.1872dupA Not
reported

31/M Type 1 S Yes - No Yes SCN5A p.I890T c.2669T>C [22]

49/M Type 2 None No - No Yes SCN5A p.S910L c.2729C>T [23]

43/M Type 1 None Yes + No Yes SCN5A p.R1232W c.3694C>T [2,24]

48/M Type 2 S Yes + No Yes SCN5A p.D1243N c.3727G>A [3]

38/Mb Type 1 None Yes - No Yes SCN5A intronic c.3840+1G>A [3]

31/M Type 1 S Yes N/P No No SCN5A p.R1623Efs*7 c.4867delC Not
reported

44/Ma Type 1 None Yes + No No SCN5A p.I1660V c.4978A>G [17,25]

38/Mb Type 1 None Yes - No Yes SCN5A p.D1690N c.5068G>A [26]

38/M Type 1 S Yes - No No SCN5A p.P1725L c.5174C>T [27]

47/M Type 3 S Yes + No No SCN5A p.R1898C c.5692C>T [28]

47/F Type 1 S Yes + No No SCN2B p.D211G c.632A>G [7]

42/M Type 2 None Yes + Yes Yes RANGRF p.E61* c.181G>T [29]

doi:10.1371/journal.pone.0132888.t002
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MLPA analysis
The 37 patients with negative results after the genetic screening of the 14 BrS-associated genes
underwent MLPA analyses of SCN5A. This technique did not reveal any large exon deletion or
duplication in this gene for any of the patients.

SCN5A p.R569Pfs*151 (c.1705dupC), a novel PPV
A 41-year-old asymptomatic male presented a type 3 BrS ECG which was suggestive of BrS.
Flecainide challenge unmasked a type 1 BrS ECG (Fig 1A, left), which was also spontaneously
observed sometimes during medical follow up. Sequencing of SCN5A revealed a duplication of
a cytosine at position 1705 (c.1705dupC; Fig 1A, right), which originated a frameshift that lead
to a truncated Nav1.5 channel (p.R569Pfs�151). The proband’s sister also carried this duplica-
tion, but had never presented signs of arrhythmogenesis. The proband’s twin daughters were
also variation carriers, displayed normal ECGs and, to date, are asymptomatic (Fig 1A, mid-
dle). Thus, p.R569Pfs�151 represents a novel genetic alteration in the Nav1.5 channel that
could potentially lead to BrS, but with incomplete penetrance.

SCN5A p.E625Rfs*95 (c.1872dupA), a novel PPV
A 51-year-old asymptomatic male was diagnosed with BrS since he presented a spontaneous
ST segment elevation in leads V1 and V2 characteristic of type 1 BrS ECG (Fig 1B, left). The
sequencing of SCN5A evidenced an adenine duplication at position 1872 (c.1872dupA, Fig 1B,
right). This genetic variation results in a truncated Nav1.5 channel (p.E625Rfs�95). The genetic
analysis of the proband’s relatives proved that only her mother carried the variation (Fig 1B,
middle). She was asymptomatic, but a BrS ECG was unmasked upon ajmaline challenge. The
proband’s sister was found dead in her crib at 6 months of age, which suggests that her death
might be compatible with BrS. Therefore, the p.E625Rfs�95 variation in the Nav1.5 channel
represents a novel genetic alteration potentially causing BrS.

SCN5A p.R1623Efs*7 (c.4867delC), a novel PPV
The proband, a 31-year-old male, was admitted to hospital after suffering a syncope. His base-
line 12-lead ECG showed a ST segment elevation in leads V1 and V2 that strongly suggested
BrS type 1 (Fig 1C, left). A deletion of the cytosine at position 4867 (c.4867delC) was observed
upon SCN5A sequencing (Fig 1C, right). This base deletion leads to a frameshift that originates
a truncated Nav1.5 channel (p.R1623Efs�7). Genetic screening of his parents and sisters evi-
denced that none of them carried this novel variation (Fig 1C, middle). None of them had pre-
sented any signs of arrhythmogenicity, nor had a BrS ECG. Nevertheless, in utero genetic
analysis of one of his daughters proved that she had inherited the variation. She died when she
was 1 year of age of non-arrhythmogenic causes. Hence, the p.R1623Efs�7 variation in the
Nav1.5 channel is a novel genetic alteration originated de novo in the proband that could poten-
tially lead to BrS.

Synonymous and common genetic variations portrayal
In our cohort, we identified 40 single nucleotide variations which were common genetic vari-
ants and/or synonymous variants (S2 Table). Twenty-nine had a minor allele frequency (MAF)
over 1%, and were thus considered common genetic variants.

We also identified 11 variants with MAF less than 1%. Of them, 9 were synonymous vari-
ants, what made us assume that they were not disease-causing. Four of these synonymous vari-
ants were not found in any of the databases consulted, and thus their MAF was considered to
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be less than 1%. Each of these synonymous variations was identified in 1 patient of the cohort.
A similar proportion of individuals carrying these novel variations was detected upon sequenc-
ing of 300 healthy Spanish individuals (600 alleles). The remaining 2 variants were missense,
and although they had either a MAF of less than 1% or an unknown MAF according to the
Exome Variant Server and dbSNP websites, they were common in our cohort (29.2 and 50%,
respectively; S2 Table), and a similar MAF was detected in a Spanish cohort of healthy individ-
uals (26.7% and 48.8%, respectively).

Fig 1. Characteristics of the probands carrying non-reported potentially pathogenic variations (PPVs) in SCN5A and their families. Left:
Electrocardiograms of the probands: (A) patient carrying the p.R569Pfs*151 variation, showing the ST elevation characteristic of BrS in V1 at the time of the
flecainide test; (B) patient carrying the p.E625Rfs*95 variation, showing the spontaneous ST elevation characteristic of BrS in V1 and V2; and (C) patient
carrying the p.R1623Efs*7 variation, showing the spontaneous ST elevation characteristic of BrS in V1 and V2.Middle: Family pedigrees. Open symbols
designate clinically normal subjects, filled symbols mark clinically affected individuals and question marks identify subjects without an available clinical
diagnosis. Plus signs indicate the carriers of the PPVs and minus signs, non-carriers. The crosses mark deceased individuals and arrows identify the
proband. Right: Detail of the electropherograms obtained after SCN5A sequence analysis of a control subject (left panels) and of the probands (right panels).

doi:10.1371/journal.pone.0132888.g001
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Influence of phenotype and age on PPV discovery
To assess if a connection existed between the probands’ phenotype and the PPV detection
yield, we classified the patients in our cohort according to their ECG (spontaneous or induced
type 1), the presence of BrS cases within their families, and the presence/absence of symp-
toms. Even though the overall PPV detection yield was 32.7%, it was even higher for symp-
tomatic patients (Fig 2). Indeed, in this group of patients, having a family history of BrS was
identified as a factor for increased PPV discovery yield. In the case of absence of BrS in the
family, the variation discovery yield was almost double for those patients having a spontane-
ous type 1 BrS ECG than for patients with drug-induced type 1 ECG (45.5% vs 25%, respec-
tively). In addition, we identified a PPV in 44.4% of the asymptomatic patients who
presented family history of BrS and a spontaneous type 1 BrS ECG. When the patient pre-
sented drug-induced type 1 ECG or in the absence of family history of BrS, the PPV discovery
yield was of around 15%.

We also investigated the role of age on the PPV occurrence. No significant age differences
were observed between variation carriers and non-carriers (38.6±10.3 and 43.5±14.4, respec-
tively, p = 0.16). However, the PPV discovery yield was higher for patients with ages between
30 and 50 years: out of the total of patients carrying a PPV, 83.3% of the patients were in this
age range, while 11.1% were younger and 5.6% were older patients (Fig 3A, upper panel). The
PPV discovery yield was significantly higher for symptomatic than for asymptomatic patients
(42.3% vs 24.1%, respectively; Fig 3A, lower panels).

Noteworthy, in the 30–50 age range, 52.9% (9/17) of the symptomatic patients and 35.3%
(6/17) of asymptomatic patients carried one PPV (Fig 3B, middle). Additionally, 40% (2/5) of
the symptomatic young patients (< 30 years) were variation carriers, while no PPVs were iden-
tified in asymptomatic patients within this age range.

Discussion
To the best of our knowledge, this is the first comprehensive genetic evaluation of 14 BrS-sus-
ceptibility genes and MLPA of SCN5A in a Spanish cohort. Well delimited BrS cohorts from
Japan, China, Greece and even Spain have been genetically studied [24,30–32]. Additionally,
an international compendium of BrS genetic variations identified in more than 2100 unrelated
patients from different countries was published in 2010 [3]. However, all these studies screened
SCN5A exclusively. In 2012, Crotti et al. reported the spectrum and prevalence of genetic varia-
tions in 12 BrS-susceptibility genes in a BrS cohort [5]. However, this study included patients
of different ethnicity. Here, we report the analysis of 14 genes which has been conducted on a
well-defined BrS cohort of the same ethnicity.

Our results confirm that SCN5A is still the most prevalent gene associated with BrS. Indeed,
SCN5A-mediated BrS in our cohort (30.9%) is higher than the proportion described in other
European reports [3,23], where a potentially causative variation is identified in only 20–25% of
BrS patients. The reason for this discrepancy is unclear but could point towards a higher preva-
lence of SCN5A PPVs in the Spanish population or to selection bias. Additionally, we identified
a genetic variation in SCN2B (c.632A>G, which results in p.D211G). We have formerly pub-
lished the comprehensive electrophysiological characterization of this variation, and showed
that indeed this variation could be responsible of the phenotype of the patient, thus linking
SCN2B with BrS for the first time [7]. Also, we identified a variation in RANGRF. This variation
(c.181G>T leading to p.E61X) had been previously reported in a Danish atrial fibrillation
cohort [33]. Surprisingly, the authors reported an incidence of 0.4% for this variation in the
healthy Danish population, which brought into question its pathogenicity. Our finding of this
variation in an asymptomatic patient displaying a type 2 BrS ECG also points toward
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considering it as a rare genetic variation with a potential modifier effect on the phenotype but
not clearly responsible for the disease [29].

No PPVs were identified in the other genes tested. Certainly, it is well accepted that the con-
tribution of these genes to the disease is minor, and thus should only be considered under spe-
cial circumstances [13,34]. In addition, recent studies have questioned the causality of
variations identified in some of these minority genes [35].

We also used the MLPA technique for the detection of large exon duplications and/or dele-
tions in SCN5A in patients without PPVs, and no large rearrangements were identified. This
is in accordance with previous reports, which revealed that such imbalances are uncommon
[8–10].

Kapplinger et al. [3] reported a predominance of PPVs in transmembrane regions of
Nav1.5. Indeed, it has been proposed that most rare genetic variations in interdomain linkers
may be considered as non-pathogenic [36]. In contrast, PPVs identified in this study are
mainly located in extracellular loops and cytosolic linker regions of Nav1.5 (Fig 4). Addition-
ally, 2 of our non-previously reported frameshifts are located in the DI-DII linker. These 2

Fig 2. Influence of the phenotype on PPV discovery yield. Bar graph comparing the PPV detection yield in 8 different clinical categories (stated below the
graph). Each bar shows the total number of patients for each clinical category divided in those with a PPV (black) and those without an identified PPV (white).
The number of patients (in brackets) and percentages are given. Pos, positive; Neg, negative; Spont, spontaneous type 1 BrS ECG; Drug, drug-induced type
1 BrS ECG; n, number of patients.

doi:10.1371/journal.pone.0132888.g002
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Fig 3. Influence of the age on PPVs discovery yield. (A) Pie charts showing the distribution of patients in the overall population as well as in the categories
of symptomatic and asymptomatic patients regarding PPV discovery. The percentage and the number of patients (in brackets) are given for each group. The
small pie charts correspond to the age distribution of patients with an identified PPV. (B) Bar graphs of the PPV detection yields obtained for each of the age
groups (< 30 years, 30–50 years and > 50 years). Numbers inside each bar correspond to the number of patients carrying a PPV for each category and the
percentages represent the variation detection yield.

doi:10.1371/journal.pone.0132888.g003
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genetic variations lead to truncated proteins, which would lack around 75% of the protein
sequence, and thus are presupposed to be pathogenic.

In our cohort, we have identified 40 synonymous or common genetic variations, 4 of which
have not been previously reported. These variations are gradually becoming more and more
important in the explanation of certain phenotypes of genetic diseases. Only a few common vari-
ations identified here are already published as phenotypic modifiers [37,38]. The effect of these
and other common variants identified in our cohort on BrS phenotype should be further studied.

Unexpectedly, almost 40% (7/18) of the PPV carriers did not present signs of arrhythmo-
genicity. We also performed genotype-phenotype correlations of the PPVs identified in the
families (S3 Table). These studies uncovered relatives, most of whom were young individuals,
who carried a familial variation but had never exhibited any clinical manifestations of the dis-
ease. This is in agreement with Crotti et al. and Priori et al. [5,23], who postulated that a posi-
tive genetic testing result is not always associated with the presence of symptoms. Indeed, the
existence of asymptomatic patients carrying genetic variations described to cause a severe
Nav1.5 channel dysfunction has been reported [39]. The identification of silent carriers is of
paramount importance since it allows the adoption of preventive measures before any lethal
episode takes place. Unknown environmental factors, medication and modifier genes have
been suggested to influence and/or predispose to arrhythmogenesis [11]. Hence, this group of
patients has to be cautiously followed in order to avoid fatal events.

Our studies on the connection between patients’ phenotype and the PPV detection yield
highlighted the presence of symptoms as a factor for an increased variation discovery yield.
Within the group of symptomatic individuals, a PPV was identified in a higher proportion of
patients displaying a spontaneous type 1 BrS ECG than for patients showing a drug-induced
ECG. Likewise, within the asymptomatic patients with family history of BrS, those who pre-
sented spontaneous type 1 BrS ECG carried a PPV more often than those with a drug-induced
ECG (Fig 2). Referring to age, the vast majority (17/20, 85%) of the PPVs were identified in
patients around their fourth decade of age (30–50 years). This is in accordance with the
accepted mean age of disease manifestation. Moreover, in this age range, more than 50% of the
patients who presented symptoms carried a variation that could be pathogenic (Fig 3). Impor-
tantly, 35.3% of asymptomatic patients of around 40 years of age also carried one of such varia-
tions. These data highlight the importance of performing a genetic test even in the absence of

Fig 4. Nav1.5 channel scheme showing the relative position of the SCN5A PPVs identified in our cohort.Open symbols indicate already described
variations and closed symbols locate novel variations reported in this study. DI to DIV designate the 4 domains of the protein, and numbers 1–6 identify the
different segments within each domain. Crosses mark the voltage sensor.

doi:10.1371/journal.pone.0132888.g004
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clinical manifestations of the disease, and particularly when in the 30–50 years range, which is
in accordance with consensus recommendations [13,34].

In conclusion, we have analysed for the first time 14 BrS-susceptibility genes and performed
MLPA of SCN5A in a Spanish BrS cohort. Our cohort showed male prevalence with a mean
age of disease manifestation around 40 years. BrS in this cohort was almost exclusively SCN5A-
mediated. The mean PPV discovery yield in our Spanish BrS patients is higher than that
described for other BrS cohorts (32.7% vs 20–25%, respectively), and is even higher for patients
in the 30–50 years age range (up to 53% for symptomatic patients). All these evidences support
the genetic testing, at least of SCN5A, in all clinically well diagnosed BrS patients.

Study Limitations
First of all, drug challenge tests were not performed for all the relatives who were asymptomatic
variation carriers. This fact hampered their clinical diagnosis and represents an impediment to
definitely assess the link between PPVs and BrS. These patients are nowadays under follow-up.

New PPVs have been identified in our cohort. The clinical information available for the
families suggests that these new variations could be pathogenic. Still, in vitro studies of these
variations are required in order to evaluate their functional effects and verify their pathogenic
role. Additionally, genotyping in an independent cohort would help reduce the likelihood of
type I (false positive) error in genetic variant discovery.

We have to acknowledge that the study set is relatively small. Consequently, the classifica-
tion of patients according to the different clinical categories rendered rather small sub-groups,
which may lead to over-interpretation of the results. Future studies will be directed to the
genetic screening of additional Spanish BrS patients, which will probably reinforce the signifi-
cance of the tendencies observed here.

Also, the generally small size of the families limits the genotype-phenotype correlations per-
formed. Incomplete penetrance could not be firmly assured in some families which include
some young members that are PPV carriers. Although these individuals have not presented
symptoms of BrS yet, they could be clinically diagnosed with BrS in the future. In addition,
more family members should be studied to fully endorse complete penetrance in families with
only one member currently diagnosed with the disease.

Finally, several BrS patients of our cohort carry no PPVs in any of the studied genes, but
may carry genetic alterations either in the other genes that have been recently described to be
associated with the disease or in other genes still to be associated with BrS. Furthermore, we
cannot dismiss the presence of variations within gene regulatory regions, or the presence of
large genomic rearrangements in genes other than SCN5A.

Materials and Methods

Patients
Spanish patients diagnosed with BrS were collected over the past 10 years. The clinical diagno-
sis was accepted as positive when the patients had a diagnostic (type 1) BrS ECG spontaneously
or after the administration of intravenous sodium blockers, plus at least one of the following
clinical criteria: occurrence of documented ventricular arrhythmia, family history of SCD or
BrS, and/or symptoms secondary to arrhythmia [4]. Patient relatives were clinically diagnosed
with BrS when they fulfilled the requirements stated above. All patients included in the genetic
study had signed a written informed consent. The study complied with the requirements of the
1975 Declaration of Helsinki and was approved by the ethical committee of the institution
(Hospital Josep Trueta, Girona, Spain).

Genetics of Brugada Syndrome in Spain

PLOS ONE | DOI:10.1371/journal.pone.0132888 July 14, 2015 11 / 15



Sequencing of genes associated with BrS
Total genomic DNA was isolated from blood samples of the 55 patients and of 300 healthy
Spanish individuals (individuals not related to any patient and of the same ethnicity; 600
alleles) using the Puregene DNA purification kit (Gentra Systems, Minneapolis, MI, USA).
The genetic study was performed both in patients and in controls, and comprised the direct
sequencing of SCN5A (NM_198056.2), CACNA1C (NM_001129827.1), CACNB2
(NM_201596.2), GPD1L (NM_015141.3), SCN1B (NM_001037.4 for isoform a; and
NM_199037.3 for isoform b), SCN2B (NM_004588.4), SCN3B (NM_018400.3), SCN4B
(NM_174934.3), KCNE3 (NM_005472.4), RANGRF (NM_001177801.1), HCN4
(NM_005477.2), KCNJ8 (NM_004982.3), KCND3 (NM_004980.4), and KCNE1L
(NM_012282.2) [40]. The exons and exon-intron boundaries of each gene were amplified
(Verities PCR, Applied Biosystems, Austin, TX, USA), the PCR products were purified (Exo-
sap-IT, Affymetrix, Inc. USB Products, Cleveland, OH, USA) and they were directly
sequenced in both directions (Big Dye Terminator v3.1 cycle sequencing kit and 3130XL
Genetic Analyzer, both from Applied Biosystems). The DNA sequences obtained were com-
pared with their respective reference sequences (stated above). All variants detected were veri-
fied in an independent sequencing reaction from a new PCR product of the DNA of interest.
The identified variations were compared with DNA sequences from the control patients, and
contrasted with HGMD BioBase [41], HapMap [42], 1000 genomes project [40], NHLBI
Exome Sequencing Project [28] and The Exome Aggregation Consortium (ExAC) [43].
Sequence changes altering coding regions were defined as genetic variations. Minor allele fre-
quencies (MAFs) were checked in Exome Variant Server-NHLBI Exome Sequencing Project
and dbSNP [44] databases. Genetic variations with a MAF in all populations <1% were con-
sidered rare variants. Genetic variations with a MAF >1% were considered common variants.
Sequence variants were described following the HGVS rules [45], and checked in Mutalyzer
[46]. All rare (MAF<1%) variants that had been previously described to be associated with
BrS or other cardiac diseases were considered potentially pathogenic variations (PPVs). Stop
and frameshift variants were always considered PPVs given their potential effects on ion
channel function.

Samples were obtained for relatives of the patients who carried PPVs. DNA was extracted
and it was screened for the presence of the PPV identified in the patients following the direc-
tions described above.

Multiplex ligation-dependent probe amplification (MLPA) analysis of
SCN5A
MLPA analysis was carried out in the 37 samples without an identified PPV using the com-
mercially available SALSA MLPA P108 SCN5A probemix (MRC-Holland, Amsterdam, The
Netherlands). This kit contains one probe for each exon of SCN5A and one probe upstream
of the gene (isoform NM_198056.2). Remarkably, for exon 1 the probe is intronic, but very
close to the exonic region, and for exon 28 two probes are included. The MLPA DNA detec-
tion and quantification were carried out according to the manufacturer’s protocol
(MRC-Holland). After the multiplex PCR reaction, electrophoresis was performed using the
ABI310 genetic analyzer with Liz 500 size standard (both from Applied Biosystems, CA,
USA), and results were analysed using Coffalyser.Net (MRC-Holland). A reduction or
increase in the relative signal strength of>30% was considered as a deletion or duplication of
the locus, respectively.
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Statistics
Statistical comparisons were performed using the unpaired Student’s t-test in OriginPro 8.
Results were considered statistically significant when p<0.05.
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