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Abstract

Background: It is widely believed that the treatment of glioblastomas (GBM) could benefit from oncolytic virus
therapy. Clinical research has shown that Vesicular Stomatitis Virus (VSV) has strong oncolytic properties. In addition,
mathematical models of virus treatment of tumors have been developed in recent years. Some experiments in vitro
and in vivo have been done and shown promising results, but have been never compared quantitatively with
mathematical models. We use in vitro data of this virus applied to glioblastoma.

Results: We describe three increasingly realistic mathematical models for the VSV-GBM in vitro experiment with
progressive incorporation of time-delay effects. For the virus dynamics, we obtain results consistent with the in vitro
experimental speed data only when applying the more complex and comprehensive model, with time-delay effects
both in the reactive and diffusive terms. The tumor speed is given by the minimum of a very simple function that
nonetheless yields results within the experimental measured range.

Conclusions: We have improved a previous model with new ideas and carefully incorporated concepts from
experimental results. We have shown that the delay time τ is the crucial parameter in this kind of models. We have
demonstrated that our new model can satisfactorily predict the front speed for the lytic action of oncolytic VSV on
glioblastoma observed in vitro. We provide a basis that can be applied in the near future to realistically simulate in
vivo virus treatments of several cancers.

Reviewers: This article was reviewed by Yang Kuang and Georg Luebeck. For the full reviews, please go to the
Reviewers’ comments section.
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Background
Since early last century, viruses have been studied as
experimental agents for cancer treatment. The medical
interest in the field has fluctuated during this period,
reaching a fever pitch in the past two decades. It was
in the early 1990s, when recombinant DNA technol-
ogy became standard, that virus engineering could pro-
vide scientific furtherance to virotherapy. Then, oncolytic
viruses appeared to be a treatment of tremendous poten-
tial and scientists started manipulating them to target
cancerous cells more specifically. This culminated in the
first marketing approval of an oncolytic virus, granted by
the Chinese government in November of 2005 [1]. Very
recently, improvements in patient survival have led to
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endorsements of other oncolytic virus in Europe and the
US [2]. In parallel, mathematical models of virus treat-
ment of tumors have been developed [3–5]. However,
even with this new ability to engineer viral genomes, a
realistic therapeutic frontrunner has yet to emerge.

Experimental background
Among a variety of aggressive and deadly brain tumors we
could highlight the glioblastoma. GBM is the most com-
mon and malignant brain cancer. Usually, treatment relies
on chemotherapy, radiation and surgery. However these
treatments are ineffective and the median survival time
of a patient is no longer than 15 months (4 to 5 months
without health care), due to multifocality of the disease,
infiltrative growth and substantial tumor genotypic vari-
ability, among other factors [6, 7]. So, nowadays there are
no known medical or surgical approaches that constitute
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an effective treatment of GBM, and for this reason it is
widely considered that the treatment of GBM is likely to
benefit from oncolytic virus therapy.
Oncolytic viruses—including retroviruses, herpesviruses

and adenoviruses—are an emerging therapy tool for can-
cers that currently lack effective treatment [8]. The effi-
ciency of different viruses against various tumor cell lines
have been studied with in vitro and in vivo experiments
[9, 10]. Of these, vesicular stomatitis virus (VSV) has
been shown in laboratory studies to have excellent capa-
bilities to become one of the most valuable candidates
for virotherapy, due to its very fast lytic cycle and its
rapid oncolytic action. In addition, VSV is an enveloped,
negative-strand RNA rhabdovirus that can infect a wide
variety of species including mice and humans, though it is
usually asymptomatic for human beings [11]. Therefore,
the anticancer activity of mouse models can be transfer-
able to human trials [12]. This fact makes VSV a strong
oncolytic candidate and it has been used in preclinical
studies of numerous cancer types, like glioblastomas.
Hence, we focus our attention on the development of

a mathematical model of the VSV-GBM virus-tumor sys-
tem. In the absence of in vivo data, all of the parameter
values that we will introduce in the model are extracted
from in vitro VSV-GBM experiments. Our main objec-
tive is to develop a simple model that can reproduce the
VSV-GBM dynamics and explain satisfactorily the experi-
mental in vitro propagation speeds.

Previous mathematical approaches
The most basic mathematical model of the competition
between populations was constructed by Alfred J. Lotka
and Vito Volterra in 1925 and 1926 independently [13].
For years their model was improved and adapted to dif-
ferent parasite-host systems, including virus infections
[14–17]. Nevertheless, we are interested in a specific
model which studies the dynamics of an oncolytic virus
through a tumor cell population.
In Ref. [5], Wodarz et al. noted that the few pre-

vious reaction-diffusion models of oncolytic virus spread
[18, 19] include, in addition to basic spatial dynamics,
one or more additional assumptions that introduce fur-
ther complexity. In contrast, they opt for a very simple
approach to the infection process with spatial dynamics.
The process of adsorption of a virus V by a susceptible
tumoral cell T (with rate k1), and replication of Y viruses
that leave each infected cell I (with rate k2), is essentially
described by the reactions

V + T k1−→ I k2−→ Y · V . (1)

Wodarz et al. study the behavior of an in vitro
adenovirus in human embryonic kidney epithelial cells,
experimentally and computationally, developing a simple
model with two equations (see Eqs. (5) and (6) below),

one for susceptible tumoral cells and one for infected cells.
They make use of partial differential equations (PDEs) to
model the virus-tumor system, because PDEs provide effi-
cient information on the spatial and reactive mechanisms
affecting the wave propagating fronts and PDEs can be
used to compute their speeds.
The model by Wodarz et al. [5] is a two-equation sys-

tem that was derived from a three-equation model due
to Nowak and May [20]. Including diffusion and logistic
growth, the Nowak-May model is

∂[V ] (r, t)
∂t

= DV
∂2[V ] (r, t)

∂r2
+ k2Y [ I] (r, t)

− k3[V ] (r, t),
(2)

∂[T] (r, t)
∂t

= DT
∂2[T] (r, t)

∂r2

+ a[T] (r, t)
{
1 − [I] (r, t)+[T] (r, t)

k

}

− k1[V ] (r, t)[T] (r, t),
(3)

∂[I] (r, t)
∂t

= DI
∂2[I] (r, t)

∂r2
− k2[I] (r, t)

+ k1[V ] (r, t)[T] (r, t),
(4)

where [T], [I] and [V ] are the concentrations of sus-
ceptible tumoral cells, infected tumoral cells and viruses,
respectively; DT , DI and DV are their diffusion coeffi-
cients, a the tumor growth rate, k its carrying capacity, k3
the decay rate of free viruses, t the time and r the radial
coordinate (assuming radial symmetry, as explained in
detail below). Some authors [20] have argued that, in some
situations, it may be assumed that ∂[V ]

∂t = 0 and therefore,
in homogeneous systems

(
∂2[V ]
∂r2 = 0

)
, Eq. (2) implies that

[V ] (r, t) = k2Y
k3 [I] (r, t). However, this assumption (free

virus in steady-state) could only be applied if the decay
rate of virus k3 is much larger than the decay rate of the
infected cell population k2 [20]. From these arguments,
they obtain the two-equation system used by Wodarz
et al. [5], namely

∂[T] (r, t)
∂t

= DT
∂2[T] (r, t)

∂r2

+ a[T] (r, t)
{
1 − [I] (r, t)+[T] (r, t)

k

}

− b[I] (r, t)[T] (r, t),
(5)
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∂[I] (r, t)
∂t

= DI
∂2[I] (r, t)

∂r2
− k2[I] (r, t)

+ b[I] (r, t)[T] (r, t),
(6)

where b = k1k2Y
k3 .

However, we find two drawbacks in the model (5)–(6)
to explain our VSV-GBM system. First, Wodarz assumes
∂[V ]
∂t = 0, and thus [V ] ∝ [I]. As said before, this may

be valid when k3 � k2 and in some non-spatial models
[20] but this is in general not valid for the spatial propa-
gation of virus infections. In such cases, at points located
far away from the initially infected area, before the arrival
of the infection front we have [V ] = 0, when the infection
arrives [V ] �= 0, and after all viruses (and infected cells)
have decayed, we have again [V ] = 0. Therefore, when
dealing with spatial infection fronts we have ∂[V ]

∂t = 0 only
at early and late times, but ∂[V ]

∂t > 0 when the first viruses
arrive and ∂[V ]

∂t < 0 after the passage of the infected front.
Moreover, our experimental data (see “Parameter values”
section) suggest that in our system k3 is very close to
k2 and therefore, the assumption k3 � k2is not satis-
fied here either. Therefore, in contrast to Ref. [5], we
cannot assume ∂[V ]

∂t = 0, thus we deal with three differen-
tial equations (for viruses, susceptible tumoral cells, and
infected tumoral cells).
Our second objection to the model (3)–(2) [and its

simplification (5)–(6)] is that, according to the first reac-
tion in Eq. (1), virus adsorption causes not only the
same decrease in susceptible tumor cells [last term in
Eq. (3)] as the increase in infected cells [last term in
Eq. (4)], but also the same decrease in viruses. Thus a
term −k1[V ] (r, t)[T] (r, t) is missing in the right side of
Eq. (2), in agreement with many previous works on virus
infections [15–17, 21].
In the next section we develop a model which takes both

points into account, as well as other important effects
(namely, time-delay effects).

Methods
Mathematical models
Here we want to develop a simple, but complete model
to understand the dynamics of a virus-tumor system. The
theoretical model should be able to explain an in vitro
experiment where a virus injected into the center of a
tumor spreads through the tumor cell population in a basi-
cally two-dimensional geometry. Therefore, we can think
of the virus-tumor system as formed by two fronts of
propagation, which could be represented as two concen-
tric circles if we assume radial symmetry. The diagram in
Fig. 1 illustrates this idea. The outer circle represents the
tumor cells, which spread to the outside through a non-
specific medium. The inner circle represents the viruses

Fig. 1 Two circles representing the two propagation fronts of VSV
and GBM. A front of tumor cells spreads radially (outer circle). After
some time, viruses are inoculated at the center, and a virus front
spreads (inner circle). If the inner circle expands faster than the outer
one (cVSV > cGBM), the viruses will eliminate the tumor

spreading within the tumor. Viruses diffuse through the
medium before infecting tumor cells. When infected cells
die, a new generation of viruses is created and the process
begins anew.
The main idea and experimental laboratory data come

from Ref. [9], where Wollmann et al. compare nine types
of viruses with strong oncolytic potential and conclude
that four of them, VSV included, would be worthy of more
rigorous studies. Because in subsequent papers [11, 22]
they worked with VSV and its recombinant variants or
strains, we decided to focus solely on VSV and use these
data as experimental basis.
Below we present three increasingly complete (and

complicated) models.

Model 1
As a first approach, we adapt the model by Wodarz et al.
[5] to the conditions in our VSV-GBM systems, i.e., we do
not assume dV

dt = 0, and therefore [V ] is not proportional
to [I] and we need to include the virus dynamics explicitly
in the model.
Now the evolution of the virus-tumor system is

described by

∂[V ] (r, t)
∂t

= DVSV
∂2[V ] (r, t)

∂r2
+ F(r, t), (7)
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∂[T] (r, t)
∂t

= DGBM
∂2[T] (r, t)

∂r2

+ a[T] (r, t)
{
1 − [ I] (r, t)+[T] (r, t)

k

}

− k1[V ] (r, t)[T] (r, t),
(8)

∂[I] (r, t)
∂t

= k1[V ] (r, t)[T] (r, t) − k2[ I] (r, t). (9)

The first equation describes the evolution of the virus
population over time. The viruses can spread ruled by the
diffusion coefficient DVSV and the Laplacian (or second
space derivative). The function F(r, t) in Eq. (7) incorpo-
rates all processes of infection, replication and death and
is defined by

F(r, t) = −k1[V ] (r, t)[T] (r, t)
+ k2Y [I] (r, t) − k3[V ] (r, t).

(10)

Note that the first term was not included in the mod-
els by Nowak-May and Wodarz [Eq. (2)] (see our sec-
ond objection in “Previous mathematical approaches”
section).
Equation (8) describes the change in the number of

tumor cells over time. Similarly to viruses, glioblastoma
cells can also move, characterized by their own diffusion
coefficient DGBM.
Finally, Eq. (9) represents the evolution of infected

tumoral cells. We assume that these cells do not move,
in agreement Fig. 3D of Ref. [9], where the experiment
shows how the infected cells (U-87MG glioblastoma cells)
initially introduced do not move through the host layer
throughout the observation period.

Model 2
As we shall see in “Results and discussion” section, model
1 needs further improvements. In model 2 we take into
account that infected tumoral cells do not die instan-
taneously, instead there is a time delay before the cell
dies and releases the new progeny of viruses. We will
denote this delay or eclipse time as τ and include it into
the terms related to the death of infected cells. Thus
infected cells will not die proportionally to the density
of infected cells at the present time, k2 [I] (r, t), but pro-
portionally to the density of infected cells at a previous
instant t − τ , k2 [I] (r, t − τ), to properly include this time
delay effect on the decay process. It has been shown that
the term −k2 [I] (r, t − τ) agrees well with experimental
data in a different context (infections of non-tumor cells)
[23]. Other reaction-diffusion models do also apply t − τ ,
although in an alternative way [24, 25]. The differences
between their approach and ours is analyzed in Ref. [23].

Therefore, when introducing the delay in the death of
infected cells, Eqs. (9) and (10) are modified directly and
Eq. (7) changes because the function F(r, t), Eq. (14), is
also modified. We do not modify the growth term in
Eq. (8) because the reproduction of tumoral cells depends
on the total number of tumor cells (infected and suscep-
tible) at that precise instant t. So, we consider the model

∂[V ] (r, t)
∂t

= DVSV
∂2[V ] (r, t)

∂r2
+ F(r, t), (11)

∂[T] (r, t)
∂t

= DGBM
∂2[T] (r, t)

∂r2

+ a[T] (r, t)
{
1 − [I] (r, t)+[T] (r, t)

k

}

− k1[V ] (r, t)[T] (r, t),
(12)

∂[I] (r, t)
∂t

= k1[V ] (r, t)[T] (r, t) − k2[I] (r, t − τ), (13)

where now

F(r, t) = −k1[V ] (r, t)[T] (r, t)
+ k2Y [I] (r, t − τ) − k3[V ] (r, t).

(14)

This second model is, actually, an approximation of our
next model (see Model 3 below).

Model 3
Model 2 takes into account a delay time in the reactive
process I → Y · V , but here we shall see that the delay
time also has a very important diffusive effect. The dif-
fusion dynamics of the virus concentration in Eq. (11) is
Fickian, whichmeans that it does not take into account the
effect of the time delay τ . In year 2002 it was shown [26]
that it is very important to take into account that τ is the
time interval during which a virus does not move in space
(because it is inside an infected cell), thus the delay time
should affect the model by slowing down the spread of
viruses. Therefore it is necessary to incorporate also this
effect to reach a realistic model. For this reason, Eq. (11)
must be replaced by an equation with second-order terms
to include this diffusive time-delay effect [17, 26, 27].
Thus, finally we describe the spatial-time dynamics of

the whole system with the following equations:

∂[V ] (r, t)
∂t

+ τ

2
∂2[V ] (r, t)

∂t2
= DVSV

∂2[V ] (r, t)
∂r2

+ F(r, t) + τ

2
∂F(r, t)

∂t

∣∣∣∣
g
,

(15)
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∂[T] (r, t)
∂t

= DGBM
∂2[T] (r, t)

∂r2

+ a[T] (r, t)
{
1 − [I] (r, t)+[T] (r, t)

k

}

− k1[V ] (r, t)[T] (r, t),
(16)

∂[I] (r, t)
∂t

= k1[V ] (r, t)[T] (r, t) − k2[I] (r, t − τ), (17)

where the terms proportional to τ in Eq. (15) are the
new, second-order terms. A self-contained derivation of
Eq. (15) can be found in Ref. [23], Appendix A.
In Eq. (15) F(r, t) is again given by Eq. (14), and Eqs. (12)

and (13) from model 2 remain unchanged (Eqs. (16) and
(17), respectively).
Note that F(r, t) can be understood as the variation of

[V ] over time due to all reactive processes, but not to dif-
fusive processes, i.e. F(r, t) = ∂[V ](r,t)

∂t

∣∣∣
g
. This allows the

proper calculation of the first time derivative as [17, 27]

∂F(r, t)
∂t

∣∣∣∣
g

= −k1F(r, t)[T] (r, t) − k1[V ] (r, t)
∂[T] (r, t)

∂t

+ k2Y
∂[I] (r, t − τ)

∂t
− k3F(r, t).

(18)

For systems in which the infected cells diffuse appre-
ciably (not our case, see the last paragraph in the model
1 section), an age-structure model with this additional
diffusive-delay effect has been proposed by Gourley and
Kuang in Ref. [24], p. 558.
In the equation describing the virus dynamics, Eq. (15),

we include corrections only up to second order [17, 27].
It has been shown in previous work [26] that the diver-
gence between second-order approximation and full time-
delayed equations is small, and thus we can exclude terms
of higher orders.

Front speeds
Virus front
Using models 1–3 above, we look for realistic travelling-
wave speeds for both the propagation front of viruses
(inner front, Fig. 1) and the propagation front of tumor
cells (outer front, Fig. 1). Finding the propagation speeds
will allow us to compare to the in vitro experiments in
order to validate our approach.
In all models 1–3, we can transform the problem into a

single-variable system by using the co-moving coordinate
z = r − ct. Like in previous works [15, 26], we assume
the concentration of the three populations at the leading
edge of the moving front (z −→ ∞) can be written as
[T]= k − εT · exp (−λz), [ I]= εI · exp (−λz) and [V ]=

εV ·exp (−λz), thus we assume that tumoral cells are nearly
at maximum concentration at large distances from the
inoculation point of the viruses, while viruses and infected
cells are barely present. We make use of this transforma-
tion because beyond the edge of the front of infected cells
and viruses, there is only a continuous medium of tumor
cells. For non-trivial solutions to exist, the determinant of
the matrix corresponding to the linearized model must be
zero. The characteristic equations for models 1, 2 and 3
are, respectively,

(λc + k2)
(
λc − DVSVλ2 + kk1 + k3

)
−kk1k2Y = 0,

(19)

(
λc + k2e−λcτ ) (

λc − DVSVλ2 + kk1 + k3
)

−kk1k2Ye−λcτ = 0,
(20)

(
λc + k2e−λcτ ) [

λc − DVSVλ2 + kk1 + k3

+τ

2
(
λ2c2 − k2k21 − 2kk1k3 − k23

)]

−kk1k2Ye−λcτ
[
1 + τ

2
(λc − kk1 − k3)

]
= 0.

(21)

According to marginal stability analysis [28], the prop-
agation front moves with the minimum possible speed.
Therefore,

cVSV = min
λ>0

[c (λ)] , (22)

where c (λ) is given implicitly by Eqs. (19), (20) and (21).
From Eq. (22) we can numerically estimate the speed of
VSV infection.
The resulting propagation speeds for models 1–3 will be

calculated and plotted in “Results and discussion” section.
We also solve the third model by numerical integration

and find the front speed from the position of the virus
front wave in a successive steps of time.

Glioblastoma front
Under the hypothesis of two propagation fronts, as shown
in Fig. 1, the outermost front would correspond the tumor
cells, [T] (GBM in our case of study). In the conditions
near this front, all models can be greatly simplified since
here the populations of viruses and infected cells are zero
(see the outer circle in Fig. 1 for a better understanding),
so [V ] (r, t) = 0 and [I] (r, t) = 0. Hence, it is only nec-
essary to work with the equation for the tumoral cells,
Eq. (16) for example, but remembering that [V ] (r, t) =
[I] (r, t) = 0,

∂[T] (r, t)
∂t

= DGBM
∂2[T] (r, t)

∂r2

+ a[T] (r, t)
{
1 − [T] (r, t)

k

}
.

(23)
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At the leading edge of this front, we assume that
[T] (r, t) = εT ·exp (−λz), and after some algebra we easily
obtain the speed of the glioblastoma front,

cGBM = 2
√
DGBM a, (24)

where DGBM is the glioblastoma diffusion coefficient and
a the growth rate, both estimated in the next subsection.
Note that Eq. (24) is the well-known Fisher propagation
speed [29]. Some recent extensions have been proposed
[6, 30], but they are not necessary for the purposes of the
present paper.

Parameter values
We estimate most of our parameters from in vitro experi-
ments on VSV applied to GBM [9, 11, 22]. The parameters
that we could not draw from such experiments have been
obtained from other rigorous studies on VSV or glioblas-
toma.
We use two different values of DVSV because the diffu-

sion coefficient of VSV has not been measured in gliomas.
The only value of VSV available (measured in an spe-
cific water solution) is DVSV = 8.37 · 10−5 cm2/h [31].
Another value measured in agar of VSV-similar viruses is
DVSV = 1.44 · 10−4 cm2/h [17].
ConcerningDGBM, Stein et al. [32] performed an in vitro

experiment in which a GBM tumor spheroid is implanted
into a collagen gel. The diffusion coefficient is measured
by tracking individual cells on the first day, calculating
their motion and averaging over many cells. Stein and co-
workers measure diffusion coefficients in the radial and
angular directions, which lead to the value DGBM = 3.75 ·
10−6 cm2/h [6].
Besides spreading, the number of cells also increases.

The parameter a is the corresponding proliferation rate. In
vitro measurements provide ample scope for this parame-
ter, 0.04 < a < 0.3 day−1 [33], and similarly in vivo studies
yield 0.01 < a < 0.14 day−1 [34].
The saturation cell density, k, measures the maximum

concentration of tumor cells (susceptible and infected) per
unit volume that the system can support, and its usual
value is k = 106 cells/cm3 (e.g.,Refs. [35, 36]).
We next analyze the rest of parameters, which are cal-

culated from the experimental studies by Wollmann et al.
[9, 11, 22].
The yield or burst size Y represents the total amount

of viruses produced by the death of a single infected cell.
There is no accurate numerical value calculated for the
case of VSV infecting GBM. However, by studying Fig. 4
in Ref. [11] we can obtain an estimation. The burst size
can be understood as the ratio between the maximum and
initial number of viruses, i.e. Y = Vmax

V0
. From that figure,

V0 is between 10 − 100 PFU/ml (last two plots in Fig. 4
in [11]) and Vmax between 108− 109 PFU/ml (the maxi-
mum is reached between 1 and 2 days post infection), so

we conclude that 106 < Y < 108. This also agrees with
the value measured in Ref. [37], although in that case VSV
infects BHK-21 cells (not GBM cells).
We have seen that there is a time lapse between a cell

being infected by a virus and that cell dying (and there-
fore, adding more viruses to the system). This time lapse
is called the delay time, τ . It plays a main role in the virus
propagation speed, but has not been accurately measured.
From the in vitro experiments described in Ref. [9] we
can try to estimate the value of τ . On one hand, we know
that the death of infected cells begins about 6 hours post
infection (hpi) of the virus to susceptible tumoral cells.
We also know that infected cells can be seen as early as 4
hpi (they are tracked down using GFP fluorescence). From
both data, we conclude that viruses leave infected cells at
least 2 h after infection. On the other hand, in a different
experiment infected cells are added directly (rather than
infecting viruses) and new infected cells were detected
after 12 h. This period includes the time needed for the
viruses to multiply within the infected cells, leave the cell
and infect new tumoral cells. So we can also assume that
τ must be lower than 12 h. In summary, we will work with
the range 2 < τ < 12 h.
The adsorption rate, k1, describes the efficacy of the

whole infection process (rate of virus entry and probability
of successful infection). The value of k1 could bemeasured
in an experiment where the reproduction of viruses and
host cells were prevented. Such an experiment has been
performed for other viruses [38] but not for VSV infect-
ing GBM. Since we do not have the ideal conditions in the
experiments cited before [9, 11, 22], we will use the earliest
data post-inoculation available in the experimental data in
Ref. [11] to minimize the effect of reproduction and thus
obtain the best possible estimation for k1.
Equations (7) and (8) are simplified in the absence of

reproduction and natural death, and when the population
is studied as a whole (i.e. ignoring diffusion terms) we have

d[V ] (t)
dt

= d[T] (t)
dt

= −k1[V ] (t)[T] (t). (25)

Obviously, integrating we get [T] (t) = [V ] (t)+ξ , where
ξ is the constant of integration. Note that ξ is the dif-
ference between the concentrations of tumor cells and
viruses. In order to estimate k1, we can rewrite the pre-
vious Eq. (25) as d[T](t)

dt = −k1[T] (t) ([T] (t) − ξ) and
making the necessary algebra we obtain the final formula
for calculating the adsorption rate,

k1 = 1
ξ (t − t0)

[
ln

(
T

T − ξ

)
− ln

(
T0

T0 − ξ

)]
. (26)

It is difficult to know the exact concentration of cells
at the beginning of the experiment or at certain time t,
because only relative concentrations were reported. How-
ever, extrapolating data provided in the previous cited
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papers by Wollmann et al. (Fig. 3C Control in [11], bar
G/GFP), we believe it is correct to assume that the val-
ues of initial tumor cells lie in the range T0 = 106 − 108
cells/cm3, and that T = 0.65T0 cells/cm3, t − t0 = 36
h. This allows the calculation of the adsorption rate, as
5 · 10−10 < k1 < 5 · 10−8 cm3/h. This is a rather wide
range, but we show in “Effect of k1 and Y ” section that k1
(as well as Y ) does not overly affect the propagation front
speed of VSV.
Finally, parameters k2 and k3 correspond to the rates of

death of infected cells and virus, respectively. Therefore,
the average life-time of an infected cell and a virus are 1/k2
and 1/k3, respectively.
The rate of death of infected cells k2 could be also under-

stood as the growth of viruses. Thus, for t < τ no new
virus are seen in the corresponding experiment (because
no infected cell has died yet), but for t ≥ τ the infected
cells start to die ruled by dI = −k2I0dt. The death of
each infected cell produces Y virus, thus dV = −YdI =
k2YI0dt = k2Vmaxdt. Integrating, we get k2 = Vmax−V0

�t·Vmax
≈

1
�t = 1

t∗−τ
, where t∗ represents the time when the virus

population reaches its maximum. According to Fig. 4B in
Ref. [11], experimental data (labeled as VSV-G/GFP) show
that the maximum is reached at t∗ = (48 ± 12) h. Nev-
ertheless, the final result of k2 will depend on τ and we
have a range rather than a single value for τ (see above).
Note, however, that for model 1 there is no time delay,
so k2 is calculated straightforwardly as the inverse of time
t∗ at which the concentration of viruses reaches its max-
imum, k2 = 1

t∗ h−1. Models 2 and 3 are dealt with in
“Results and discussion” section.
The evolution of the viruses over time in an envi-

ronment where they die but cannot reproduce is ruled
by dV = −k3Vdt. Through simple integration we get
V (t) = V0 exp [−k3 (t − t0)]. In the same experiment
as before, Fig. 4B in Ref. [11], we now have two cases
where these conditions are exactly reproduced (because
VSV-dG-GFP and VSV-dG-RFP are replication-restricted
virus variants, so they basically die). We can estimate
both values of k3 from the experimental data, namely
V (t = 24 h) = 30 PFU/cm3, V (t = 48 h) = 20 PFU/cm3

and V (t = 72 h) = 8 PFU/cm3 for the mutant dG-GFP
and V (t = 24 h) = 12 PFU/cm3, V (t = 48 h) = 8
PFU/cm3 andV (t = 72 h) = 6 PFU/cm3 for dG-RFP. Per-
forming linear fits to lnV versus t, we obtain that 0.014 <

k3 < 0.028 h−1.

Results and discussion
GBM and VSV front speeds: theory versus experiment
Our main objective is to obtain realistic values for the
propagation speeds in an in vitro virus-tumor system, pro-
viding positive results from a biophysical point of view for
the realization of these treatments.

In “Methods” section we have described three possi-
ble models for our VSV-GBM system and the neces-
sary experimental parameter values. Here we present the
speeds predicted by these models.
The case of tumor expansion has a single, simple solu-

tion for all models, Eq. (24), since the infection does not
play a role here. Substituting the values of DGBM and a
we obtain that cGBM = 2.5 · 10−4 cm/h, with a = 0.1
day−1, which we think is a reasonable mean value. Indeed,
the range of measurements of the proliferation rate is
0.01 < a < 0.3 day−1, which yields a range of speeds
7.9 · 10−5 < cGBM < 4.33 · 10−4 cm/h). Stein and co-
workers measured an experimental in vitro speed range
of 2.37 · 10−4 < cGBM < 5.54 · 10−4 cm/h [33], which
is consistent with our model, despite the simplicity of
Eq. (24).
The case of the virus front is less straightforward. As

we have already discussed in “Parameter values” section, a
very important but not strictly well-measured parameter
is the delay time τ . Therefore, the speed results have been
calculated in terms of this parameter, c (τ ). The death
rate of infected cells k2 also changes, because it depends
directly on τ .
The infection front speed, cVSV , can be seen in Fig. 2.

For each of the 3 models we have plotted the results
from typical parameter values (bold lines). To compute
these results we have chosen the parameter values that
seem to be the most representative and accepted for
this experiment: average values of k2 and k3, the value
of DVSV calculated for VSV in an specific water solu-
tion and the larger values of k1 and Y. However we
have also computed cVSV by varying each of the param-
eters of Eqs. (19)–(21), with the exception of k because
k = 106 cells/cm3 is a widely accepted value in research
papers (see “Parameter values” section). In Fig. 2 we
include the upper and lower bounds for the front speed
obtained, for each of the 3 models, from the experimen-
tal parameter ranges (parameter values are specified at the
caption).
The hatched area in Fig. 2 corresponds to the experi-

mental values of VSV speed estimated from the in vitro
experiment by Wollmann et al. in Ref. [9], Fig. 3A.
Dotted lines correspond to the analytical results to

model 1, Eqs. (7)–(10), i.e. the classical model adapted
from the equations in Ref. [5]. Obviously they are hori-
zontal lines, since they do not depend on τ . As we can
see in Fig. 2, model 1 yields speeds much faster than the
experimental observations. The curves are the numerical
results from our time-delayed reaction-diffusion models.
Dashed curves correspond tomodel 2, given by Eqs. (11 )–
(14). We see that just by taking into account the eclipse or
delay time on the death of infected cells, we obtain much
better results as compared with experimental velocities,
although not enough to satisfactorily explain the data (the
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Fig. 2 VSV front propagation speed as a function of the delay time τ , for model 1 (dotted lines), model 2 (dashed curves) and model 3 (solid curves).
The hatched area shows the experimental in vitro VSV front speed [9]. Upper bounds are computed from: k1 = 5 · 10−8 cm3/h, k2 = 1

36−τ
h−1

(k2 = 1
36 h−1 for model 1), k3 = 0.014 h−1, Y = 108 and DVSV = 1.44 · 10−4 cm2/h. Lower bounds are computed from: k1 = 5 · 10−10 cm3/h,

k2 = 1
60−τ

h−1 (k2 = 1
60 h−1 for model 1), k3 = 0.028 h−1, Y = 106 and DVSV = 8.37 · 10−5 cm2/h. The results from typical values (bold lines) are

computed from: k1 = 5 · 10−8 cm3/h, k2 = 1
48−τ

h−1 (k2 = 1
48 h−1 for model 1), k3 = 0.02 h−1, Y = 108 and DVSV = 8.37 · 10−5 cm2/h. In all the

cases k = 106 cells/cm3

minimum bound of model 2 in Fig. 2 is above the hatched
area). Finally, solid curves in Fig. 2 correspond to model 3
(please recall that this is extremely close to the full time-
delayed equation, see “Methods” section). The equations
for this mainmodel, Eqs. (15)–(18), when considering typ-
ical parameter values, produce results that agree with the
experimental data within a range of τ between 5.0 and
9.3 h.
According to our best description (model 3), the entire

range of speed cVSV in Fig. 2 is an order of magni-
tude faster than the speed of propagation of glioblastoma,
cGBM, (see above). Therefore the virus front could theo-
retically reach the tumoral front and infect it all. We stress
that this is a model appropriate for in vitro experiments,
whereas in vivo more complex models will be necessary
(as discussed below).
In Fig. 3 we show snapshots of the viruses and infected

cells profiles as functions of the radial axis, computed
from the computational simulations at three time instants.
The simulations have been performed by numerical inte-
gration of model 3, which is biologically more realistic and
produces results in agreement with the experimental data
(see Fig. 2). We use the typical parameter values used in
Fig. 2 (bold lines, see caption for the values). We can see
in Fig. 3 that both propagation fronts advance at the same
speed and with regular shapes.
From the profiles we can see that the number of infected

cells grows rapidly, then there is a plateau of infected cells

(as a result of the time delay τ before any infected cell
dies), and then decay at a rate k2. The virus profiles show
an abrupt rise when infected cells start dying (end of the
plateau of infected cells) and then keep rising up to a
peak. Behind this peak, the virus death term k3 predomi-
nates over the virus production, and the number of viruses
decay. Although Fig. 3 seems to indicate that the front of
infected cells appears prior to the virus front, the opposite
happens (this can be appreciated by enlarging the vertical
scale).
From these simulations we can calculate the front speed

by tracking the position of the edge of the front of the virus
at successive steps of time. A simple space vs time data is
generated and then, the front speed is directly the slope.
From the simulations (parameter values are the same than
typical values in Fig. 2 with τ = 6 h) we find a front speed
of 4.829 · 10−3 cm/h. The relative error between the simu-
lations and the analytic speed [cVSV = 4.853 · 10−3 cm/s,
from Eqs. (21)–(22)] is only about 0.5%.
An alternative way to know the front propagation speed

from Fig. 3 is the plateau of infected cells. Its width is
directly related with the time delay τ and the infection
front speed as width = τ · c. Then, the result for the speed
is (0.53858 − 0.51317) cm / 6 h = 4.735 · 10−3 cm/h (dis-
tances for t = 108 h), and the relative error (compared
with the analytical results with same parameter values
than the simulations) is lower than 2.5% (cVSV = 4.853 ·
10−3 cm/s).
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Fig. 3 Radial profiles of
[
V∗] and [

I∗
]
at three different times for model 3. The labels of V∗ and I∗ stand for the units used, defined as [V]

[V]max
and [I]

[I]max
,

respectively. The profiles are computed from numerical integration

Effect of k1 and Y
In “Parameter values” section we have estimated the val-
ues of the parameters used in our mathematical models.
Some of them, e.g. DVSV , DGBM and k, have well-defined
values, which are taken from the references indicated in
the text. The delay time τ plays a very important role and
therefore we have found the front propagation speed as a
function of this parameter (remember that k2 = 1

48−τ
, so

we could add k2 to this argument). Other parameters like
a and k3 have a range of possible values, albeit a narrow
one, and as such we use the mean value, or that usually
accepted by other sources. Lastly, parameters Y and k1
have very wide ranges, spanning several orders of mag-
nitude, but as we shall show below, they do not have an
important effect on the virus front speed.
In Fig. 4 the speed of VSV is calculated from model 2

(Eqs. (11)–(14)) and model 3 (Eqs. (15)–(18)). Setting the
typical parameter values previously used in Fig. 2 (bold
curves) and Fig. 3 for DVSV , DGBM, k, k3 and the average
value τ = 8 h (so k2 = 1/40 h−1), which yields results
consistent with the range of experimental speeds (Fig. 2),
we have varied the values of Y and k1 for each of both
models.
In model 2 (upper curves in Fig. 4) the speed depen-

dence on Y and k1 is fairly important. Indeed, by increas-
ing these variables by two orders of magnitude, the speed
increases on average by 25 and 18%, respectively. How-
ever, looking at the best approach, model 3 (lower curves),
we note that the speed increases only by 3 and 2% for Y
and k1, respectively.
Therefore, model 3 has little dependence on the param-

eters Y and k1 and the delay time is the most important
parameter (Fig. 2). In contrast, model 2 depends more

directly on both parameters, although τ still remains the
crucial one (compare the change of the speed in Fig. 2 with
those in Fig. 4 for model 2). To obtain a speed of virus
propagation similar to the observed data (c ≈ 5 · 10−3

cm/h) with model 2, we should modify Y and k1 out of
the experimental ranges. Indeed, their values should be
about Y = 104 or k1 = 5 · 10−12 cm3/h. Therefore,
we could get a speed in agreement with the experimental
data, but only using unrealistic parameter values, which
do not correspond to VSV. This is further proof that our
final model 3, the time-delayed reaction-diffusion set of
equations, is a goodmathematical tool to explain this kind
of virus-tumor biological systems.

Fig. 4 VSV invasion speed on GBM for various values of Y and k1. The
other parameter values are k = 106 cm−3, k2 = 1

40 h−1, τ = 8 h and
k3 = 0.02 h−1. Model 3 proves that neither Y nor k1 affect much the
speed of the front
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Conclusions
A simple set of time-delayed equations have been built
to understand the dynamics of a virus-tumor system. We
have improved a previous model with new ideas and care-
fully incorporated experimental results (especially Ref.
[9]). Figure 2 proofs that our best framework (model 3)
is in reasonable agreement with the experimental data.
Furthermore, the figure shows that neither model 1 nor
model 2 can explain the experimental data. So it is abso-
lutely necessary to add the second-order terms propor-
tional to τ in Eq. (15) to properly include the time-delay
effect.
We have shown that the delay time τ is the crucial

parameter in our models (even when compared to other
parameters that are strongly unknown, such as k1 and Y ).
As we could have expected, as τ increases, the speed of the
virus front decreases, because viruses spend more time
inside the cell, and therefore at rest. In spite of being of
utmost importance, the role of the delay or eclipse time
has not been taken into account in previous models of
virus treatment of tumors [5, 18, 19].
We have found that our new model can satisfactorily

predict the front speed for the lytic action of oncolytic
VSV on glioblastoma observed in vitro. But this is only
a first step towards a deep biophysical understanding of
the principles of virus-tumor space-time spread in a com-
plex system. This model could be extended to be applied
to in vivo experiments where, among other effects, the
immune response should be also included in the model
because it may play a significant role regulating the effi-
cacy of the therapy. In particular, it seems that there is
currently no agreement about which approach is better in
oncolytic therapy, whether to modify oncolytic viruses to
obtain the maximum antitumoral immune response [39],
to transiently suppress the immune response [40], or to
use a combination of both [40]; future appropriate mod-
eling of the three scenarios might help in tackling this
controversy from a different perspective.
In this paper we have focused on GBMs because of the

experimental data available, but our model could apply
also tomany non-diffusive cancers, for which viral therapy
is a promising approach [18, 19, 41], since the reaction-
diffusion equations for the viruses [Eqs. (15)–(18)] will
still be valid, even though in such cases tumor cells will
not diffuse. Thus, we provide a basis that can be applied
in the near future to realistically simulate in vivo virus
treatments of several cancers.

Reviewers’ comments
Reviewer’s report 1
Yang Kuang, Arizona State University, United States of
America
Reviewer comments: The paper is mostly well written

with only a few places where I can suggest the authors to

consider adding more details or be aware of alternative
explanations.
1: The authors made a valid point that ∂[V ]

∂t is not always
close to 0. However, a routine argument used in the math-
ematical modeling community is the quasi-state-steady
approximation. This argument suggests that due to virus’
fast dynamics (virus reproduces probably in less than one
hour once the first virus reproduced), over the longer
period tumor cell growth time (of days), on average, the
total virus amount changes at a rate far less than the
maximum possible rate when all viruses reproduce at the
maximum rate. Mathematically, one can show this quasi-
steady-state level can be approximated by setting ∂[V ]

∂t = 0
and solvingV in terms of other variables. 2: A better refer-
ence in the virus modeling context for the need of adding
the virus loss term−k1[V ] (r, t)[T] (r, t)may be E. Beretta
and Y. Kuang: Modeling and analysis of a marine bacte-
riophage infection. Math. Biosc. 149, 5776(1998), where
each and every term is carefully explained in the context
of biology. 3: The justification for the Eq. (15) is math-
ematically simple, but mechanistically very ad hoc and
difficult to follow. A possible alternative way to modeling
the delay dependence of the diffusive action is to assign
virus an age. A good reference on this approach is S. A.
Gourley and Y. Kuang: A Delay Reaction-Diffusion Model
of the Spread of Bacteriophage Infection, SIAM J. Appl.
Math., 65, 50566(2005). 4: I think readers will benefit if
the authors can provide more about the data nature and
even a figure which may suggest that the VSV front is
as described in Fig. 2. The authors may take a look of
our recent work on in vitro GBM modeling and wave
speed estimation to see how we handled this. Tracy L.
Stepien, Erica M. Rutter, and Yang Kuang, 2015. A data-
motivated density-dependent diffusion model of in vitro
glioblastoma growth, Math. Biosc. Eng., 12, 11571172.

Authors’ response: We want to thank Dr. Y. Kuang for
his revision of ourmanuscript and the suggestions provided
to make it more complete and comprehensive. We answer
each of his four comments separately below:
1. The quasi-state-steady approximation is truly widely

used in mathematical modeling. It implies that the virus
dies in a very short time, and the rate of the virus producing
infected cells is short enough not to create a great amount
of viruses. Mathematically, this means that, k3 � k2 [20].
This condition is not fulfilled in our VSV-GBM system,
where k3 ≈ k2. As a result, we consider that, in such a
system, it is better to develop our model and perform the
calculation with all three equations. We explain this before
Eqs. (5) and (6).
2. We have added the relevant reference suggested at the

end of “Previous mathematical approaches” section.
3. The justification of Eq. (15) is described in more detail

in Ref. [23], Appendix A. We mention this below Eq. (17).



Rioja et al. Biology Direct  (2016) 11:1 Page 11 of 12

We also cite [below Eq. (18)] the interesting reference sug-
gested, which applies to systems in which infected cells
diffuse (not our case).
4. A new figure (Fig. 3) has been added to the paper

showing the evolution in space and time of the concen-
tration of virus and infected cell populations. We have
computed these profiles through numerical integration and
they now provide a new source from where to calculate the
front speed for model 3. We see that this new value agrees
with the experimental data found in Wollmann et al.
experiments and with our analytical results. Readers will
probably benefit from this new approach in order to com-
pletely understand the significance of our new equations
and the good agreement between theoretical and experi-
mental data. So, we specially appreciate the advice (from
both referees) to include this kind of results.

Reviewer’s report 2
Georg Luebeck, Fred Hutchinson Cancer Research
Center, United States of America
Reviewer comments: The mathematical framework

presented by de Rioja et al. for oncolytic infection of GBM
cells by the VSV virus and its impact on tumor growth
in culture builds upon previous modeling. The authors
show, convincingly (at least for the infection experiments
in GBM cells), that it is important to include a time delay
that represents the time from infection to cell death and
production of new viral particles. Furthermore, the case is
made that the time delay effect and sequestration of the
virus in the infected cells leads to second order effects
which further slow the spread of the virus.
Although the model is rather simplistic (it has radial

symmetry, no vasculature, infection starting from a single
point) and most kinetic rates are only known imprecisely,
the agreement of the model prediction with the exper-
imental data on the front speed of the VSV action is
reassuring that the mathematical description of the aug-
mented model is biologically plausible. The conclusions,
of course, would have been stronger had the authors
used an independent experimental model to validate their
finding. Also, there is no notion of uncertainty in the pre-
dictions shown in Fig. 2. It would be useful if a sensitivity
analysis could be included to demonstrate that model 3
is indeed the only model (among the 3) that is consistent
with the experimental data.
Also, it is somewhat surprising that the authors did not

also visualize the solutions of their models as radial den-
sity ‘snapshots’ at various endpoints. This (together with
the parameter values used) could help others to reproduce
their results.
Authors’ response: We thank the review by Dr.

G. Luebeck, which is quite positive with our research
manuscript. We have reviewed the text according to his
suggestions.

As suggested, we have improved Fig. 2 by adding lower
and upper bounds to the model predictions obtained by
considering the whole range of the parameter uncertainties.
The new figure shows how important it is to include the
second-order terms, because neither model 1 nor model 2
can explain the experimental data. The robustness of this
conclusion has improved with this sensitivity analysis.
A new Fig. 3 has been added to the manuscript follow-

ing the advice of both referees. It shows three snapshots of
the populations of virus and infected cells in space at dif-
ferent instant. This new figure provides a visualization of
the expansion process, as well as a new way to compute the
front speed for model 3.
Minor points have been take into account and corrected

in the text.
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