wxGRASS: Una interfaz Gráfica de Usuario para la integración de diversos programas libres para SIG

Francisco Alonso Sarría (*Depto. de Geografía*)
Jose Antonio Palazón Ferrando (*Depto. de Ecología*)
Universidad de Murcia
6-marzo-2007

- Introducción
 - La docencia de los SIG
 - GRASS para enseñar SIG
 - Interfaces Gráficas de Usuario para SIG
- ¿Qué es y cómo funciona wxGRASS?
- Integración de otros programas
 - PostgreSQL
 - R y gstat
 - GMT
- 4 Conclusiones

Conclusiones

La docencia de los SIG GRASS para enseñar SIG Interfaces Gráficas de Usuario para SIG

Introducción

Introducción

- Elemento esencial en los CV de licenciados en disciplinas relacionadas con las ciencias de la Tierra y el Medio Ambiente
- En la UMU se imparte como asignatura en las licenciaturas de Ciencias Ambientales y Geografía como asignaturas cuatrimestrales
- Problemas:

- Elemento esencial en los CV de licenciados en disciplinas relacionadas con las ciencias de la Tierra y el Medio Ambiente
- En la UMU se imparte como asignatura en las licenciaturas de Ciencias Ambientales y Geografía como asignaturas cuatrimestrales
- Problemas:

- Elemento esencial en los CV de licenciados en disciplinas relacionadas con las ciencias de la Tierra y el Medio Ambiente
- En la UMU se imparte como asignatura en las licenciaturas de Ciencias Ambientales y Geografía como asignaturas cuatrimestrales
- Problemas:
 - Descriptores terriblemente ambiciosos
 - En CC.AA. los alumnos no tienen conocimiento ninguno sobre el tema antes de empezar el curso
 - Se requiere la utilización de equipo informático
 - La destreza informática de los alumnos es muy variada

- Elemento esencial en los CV de licenciados en disciplinas relacionadas con las ciencias de la Tierra y el Medio Ambiente
- En la UMU se imparte como asignatura en las licenciaturas de Ciencias Ambientales y Geografía como asignaturas cuatrimestrales
- Problemas:
 - Descriptores terriblemente ambiciosos
 - En CC.AA. los alumnos no tienen conocimiento ninguno sobre el tema antes de empezar el curso
 - Se requiere la utilización de equipo informático
 - La destreza informática de los alumnos es muy variada

- Elemento esencial en los CV de licenciados en disciplinas relacionadas con las ciencias de la Tierra y el Medio Ambiente
- En la UMU se imparte como asignatura en las licenciaturas de Ciencias Ambientales y Geografía como asignaturas cuatrimestrales
- Problemas:
 - Descriptores terriblemente ambiciosos
 - En CC.AA. los alumnos no tienen conocimiento ninguno sobre el tema antes de empezar el curso
 - Se requiere la utilización de equipo informático
 - La destreza informática de los alumnos es muy variada

- Elemento esencial en los CV de licenciados en disciplinas relacionadas con las ciencias de la Tierra y el Medio Ambiente
- En la UMU se imparte como asignatura en las licenciaturas de Ciencias Ambientales y Geografía como asignaturas cuatrimestrales
- Problemas:
 - Descriptores terriblemente ambiciosos
 - En CC.AA. los alumnos no tienen conocimiento ninguno sobre el tema antes de empezar el curso
 - Se requiere la utilización de equipo informático
 - La destreza informática de los alumnos es muy variada

- Elemento esencial en los CV de licenciados en disciplinas relacionadas con las ciencias de la Tierra y el Medio Ambiente
- En la UMU se imparte como asignatura en las licenciaturas de Ciencias Ambientales y Geografía como asignaturas cuatrimestrales
- Problemas:
 - Descriptores terriblemente ambiciosos
 - En CC.AA. los alumnos no tienen conocimiento ninguno sobre el tema antes de empezar el curso
 - Se requiere la utilización de equipo informático
 - La destreza informática de los alumnos es muy variada

- Hoy en día la oferta de programas para la docencia de SIG es muy amplia. Las opciones pueden resumirse en:
 - Software comercial (caro, se fomenta el pirateo)
 - Versiones antiguas de programas comerciales (anticuados poco atractivos)
 - Software libre: programas en JAVA (poco eficientes, parciales)
 - Software libre: programas en C: GRASS (interfaces de texto difíciles

- Hoy en día la oferta de programas para la docencia de SIG es muy amplia. Las opciones pueden resumirse en:
 - Software comercial (caro, se fomenta el pirateo)
 - Versiones antiguas de programas comerciales (anticuados poco atractivos)
 - Software libre: programas en JAVA (poco eficientes, parciales)
 - Software libre: programas en C: GRASS (interfaces de texto difíciles

- Hoy en día la oferta de programas para la docencia de SIG es muy amplia. Las opciones pueden resumirse en:
 - Software comercial (caro, se fomenta el pirateo)
 - Versiones antiguas de programas comerciales (anticuados, poco atractivos)
 - Software libre: programas en JAVA (poco eficientes, parciales)
 - Software libre: programas en C: GRASS (interfaces de texto difíciles

- Hoy en día la oferta de programas para la docencia de SIG es muy amplia. Las opciones pueden resumirse en:
 - Software comercial (caro, se fomenta el pirateo)
 - Versiones antiguas de programas comerciales (anticuados, poco atractivos)
 - Software libre: programas en JAVA (poco eficientes, parciales)
 - Software libre: programas en C: GRASS (interfaces de texto difíciles
 - GRASS con Interfaz Gráfica de Usuario en un lenguaje de scripts ¿Solución ótotima?

- Hoy en día la oferta de programas para la docencia de SIG es muy amplia. Las opciones pueden resumirse en:
 - Software comercial (caro, se fomenta el pirateo)
 - Versiones antiguas de programas comerciales (anticuados, poco atractivos)
 - Software libre: programas en JAVA (poco eficientes, parciales)
 - Software libre: programas en C: GRASS (interfaces de texto difíciles
 - GRASS con Interfaz Gráfica de Usuario en un lenguaje de scripts ; Solución ótotima?

- Hoy en día la oferta de programas para la docencia de SIG es muy amplia. Las opciones pueden resumirse en:
 - Software comercial (caro, se fomenta el pirateo)
 - Versiones antiguas de programas comerciales (anticuados, poco atractivos)
 - Software libre: programas en JAVA (poco eficientes, parciales)
 - Software libre: programas en C: GRASS (interfaces de texto difíciles
 - GRASS con Interfaz Gráfica de Usuario en un lenguaje de scripts ¿Solución ótptima?

- Potente Cubre más de lo necesario para un curso de SIG amplio (version 6)
- Modular Flexible Se pueden abordar los problemas de diversos modos. Integración de diversos programas
- Software libre Modificable, estudiable, gratuito...
- Bajo Unix S.O. potente, flexible, Software libre, ...
- Desarrollado por expertos en geoprocesamiento

- Potente Cubre más de lo necesario para un curso de SIG amplio (version 6)
- Modular Flexible Se pueden abordar los problemas de diversos modos. Integración de diversos programas
- Software libre Modificable, estudiable, gratuito...
- Bajo Unix S.O. potente, flexible, Software libre, ...
- Desarrollado por expertos en geoprocesamiento

- Potente Cubre más de lo necesario para un curso de SIG amplio (version 6)
- Modular Flexible Se pueden abordar los problemas de diversos modos. Integración de diversos programas
- Software libre Modificable, estudiable, gratuito...
- Bajo Unix S.O. potente, flexible, Software libre, ...
- Desarrollado por expertos en geoprocesamiento

- Potente Cubre más de lo necesario para un curso de SIG amplio (version 6)
- Modular Flexible Se pueden abordar los problemas de diversos modos. Integración de diversos programas
- Software libre Modificable, estudiable, gratuito...
- Bajo Unix S.O. potente, flexible, Software libre, ...
- Desarrollado por expertos en geoprocesamiento

- Potente Cubre más de lo necesario para un curso de SIG amplio (version 6)
- Modular Flexible Se pueden abordar los problemas de diversos modos. Integración de diversos programas
- Software libre Modificable, estudiable, gratuito...
- Bajo Unix S.O. potente, flexible, Software libre, ...
- Desarrollado por expertos en geoprocesamiento

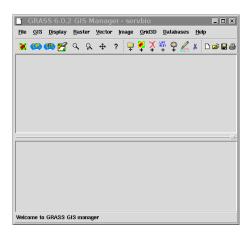
- Potente Cubre más de lo necesario para un curso de SIG amplio (version 6)
- Modular Flexible Se pueden abordar los problemas de diversos modos. Integración de diversos programas
- Software libre Modificable, estudiable, gratuito...
- Bajo Unix S.O. potente, flexible, Software libre, ...
- Desarrollado por expertos en geoprocesamiento

- Potente Los alumnos se pueden perder en la complejidad del sistema
- Modular Flexible Requiere un lenguaje muy rico de comunicación con el sistema. La integración difumina el entorno
- Software libre No si a mi guindos tampoco me cuesta un duro
- Bajo Unix Yo en mi casa de eso no tengo
- Desarrollado para expertos en geoprocesamiento

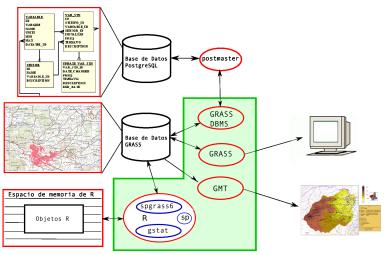
- Potente Los alumnos se pueden perder en la complejidad del sistema
- Modular Flexible Requiere un lenguaje muy rico de comunicación con el sistema. La integración difumina el entorno
- Software libre No si a mi guindos tampoco me cuesta un duro
- Bajo Unix Yo en mi casa de eso no tengo
- Desarrollado para expertos en geoprocesamiento

- Potente Los alumnos se pueden perder en la complejidad del sistema
- Modular Flexible Requiere un lenguaje muy rico de comunicación con el sistema. La integración difumina el entorno
- Software libre No si a mi guindos tampoco me cuesta un duro
- Bajo Unix Yo en mi casa de eso no tengo
- Desarrollado para expertos en geoprocesamiento

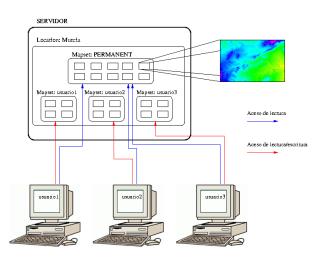
- Potente Los alumnos se pueden perder en la complejidad del sistema
- Modular Flexible Requiere un lenguaje muy rico de comunicación con el sistema. La integración difumina el entorno
- Software libre No si a mi guindos tampoco me cuesta un duro
- Bajo Unix Yo en mi casa de eso no tengo
- Desarrollado para expertos en geoprocesamiento



- Potente Los alumnos se pueden perder en la complejidad del sistema
- Modular Flexible Requiere un lenguaje muy rico de comunicación con el sistema. La integración difumina el entorno
- Software libre No si a mi guindos tampoco me cuesta un duro
- Bajo Unix Yo en mi casa de eso no tengo
- Desarrollado para expertos en geoprocesamiento


Conclusiones

IGU oficial de GRASS


Conclusiones

GRASS forma parte de un jardín

es y cómo funciona wxGRASS? Integración de otros programas Conclusiones La docencia de los SIG GRASS para enseñar SIG Interfaces Gráficas de Usuario para SIG

Trabajo en red

La docencia de los SIG GRASS para enseñar SIG Interfaces Gráficas de Usuario para SIG

- Proyecto BEST-GIS
- La interfaz es el programa
- Diferentes usuarios necesitan diferentes IGUs
- Servidores y clientes de SIG
- Infraestructuras de Datos Espaciales pero también en SIGs locales multiusuario

La docencia de los SIG GRASS para enseñar SIG Interfaces Gráficas de Usuario para SIG

- Proyecto BEST-GIS
- La interfaz es el programa
- Diferentes usuarios necesitan diferentes IGUs
- Servidores y clientes de SIG
- Infraestructuras de Datos Espaciales pero también en SIGs locales multiusuario

- Proyecto BEST-GIS
- La interfaz es el programa
- Diferentes usuarios necesitan diferentes IGUs
- Servidores y clientes de SIG
- Infraestructuras de Datos Espaciales pero también en SIGs locales multiusuario

- Proyecto BEST-GIS
- La interfaz es el programa
- Diferentes usuarios necesitan diferentes IGUs
- Servidores y clientes de SIG
- Infraestructuras de Datos Espaciales pero también en SIGs locales multiusuario

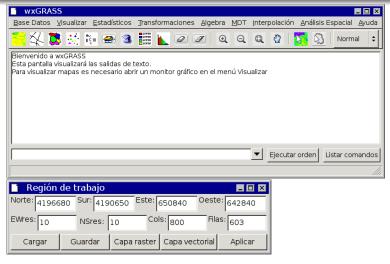
- Proyecto BEST-GIS
- La interfaz es el programa
- Diferentes usuarios necesitan diferentes IGUs
- Servidores y clientes de SIG
- Infraestructuras de Datos Espaciales pero también en SIGs locales multiusuario

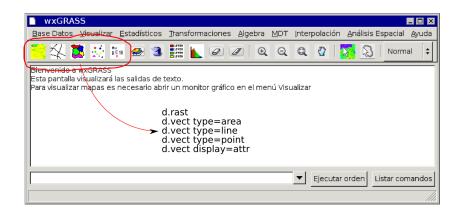
¿Qué es y cómo funciona wxGRASS?

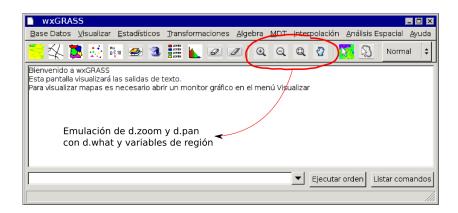
¿Qué es y cómo funciona wxGRASS?

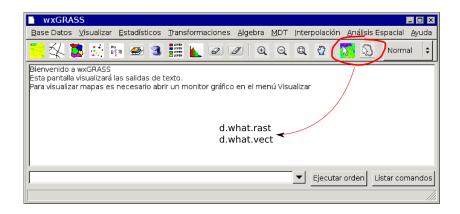
- Interfaz Gráfica de Usuario para GRASS
- Escrita con Python wxPython. Un lenguaje de programación completamente diferente

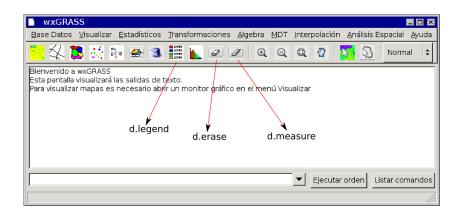
- Interfaz Gráfica de Usuario para GRASS
- Escrita con Python wxPython. Un lenguaje de programación completamente diferente

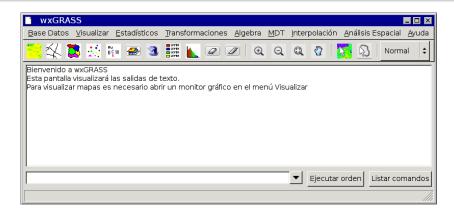


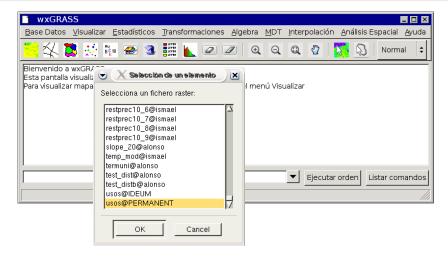

- Interfaz Gráfica de Usuario para GRASS
- Escrita con Python wxPython. Un lenguaje de programación completamente diferente

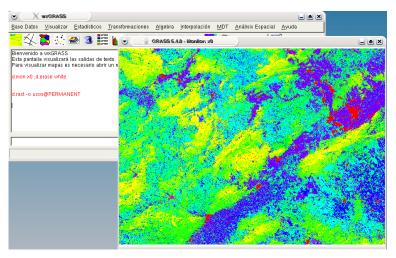

- Interfaz Gráfica de Usuario para GRASS
- Escrita con Python wxPython. Un lenguaje de programación completamente diferente
- De 0 a 90 % en la Navidad de 2004
- Adaptación a GRASS 6 en la Navidad de 2006

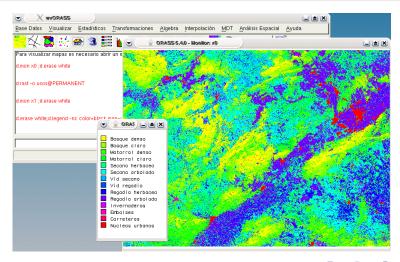

- Interfaz Gráfica de Usuario para GRASS
- Escrita con Python wxPython. Un lenguaje de programación completamente diferente
- De 0 a 90 % en la Navidad de 2004
- Adaptación a GRASS 6 en la Navidad de 2006

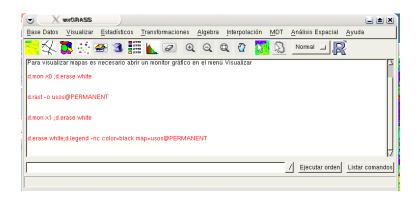

wxGRASS: Pantalla principal

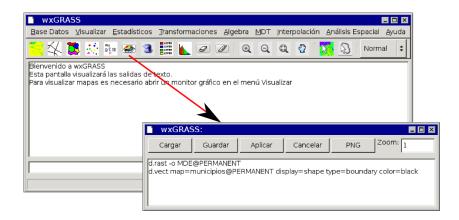





wxGRASS: Sistemas de selección

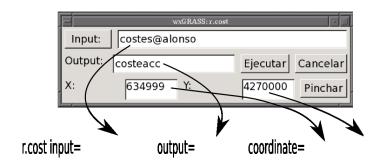

wxGRASS: Sistemas de selección


wxGRASS: Salidas gráficas

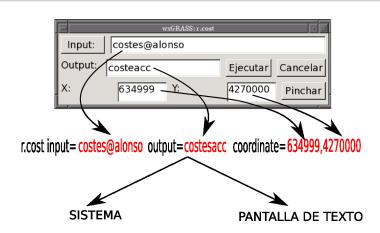


wxGRASS: Salidas gráficas

wxGRASS: Linea de comandos

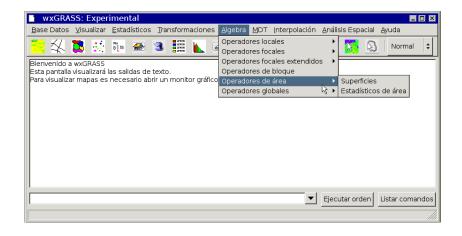

wxGRASS: r.cost		
Input:	costes@alonso	
Output:	costeacc	Ejecutar Cancelar
X:	634999 Y:	4270000 Pinchar



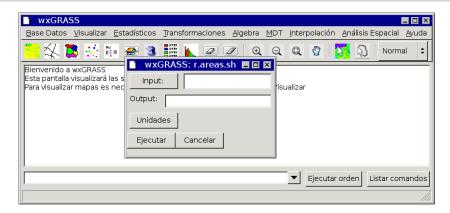

r.cost input= output= coordinate=

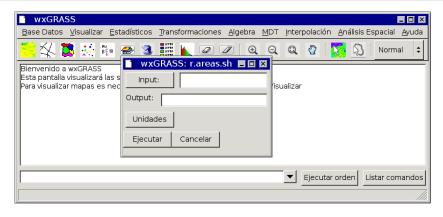
r.cost input= output= coordinate=

r.mapcalc 'MASK=if(usos==3 && MDE<200,1,null())'



echo TEXTO | r.colors MAPA

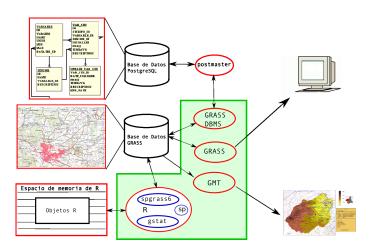



wxGRASS: Utilización de scripts

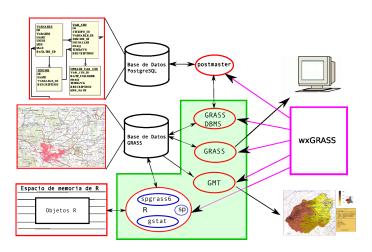
wxGRASS: Utilización de scripts

wxGRASS: Utilización de scripts

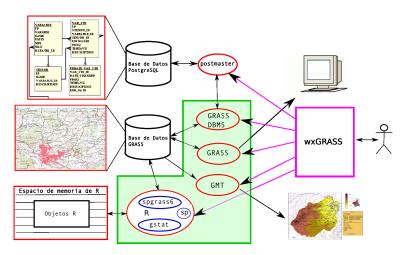
r.areas.sh: r.report | awk | r.reclass



Integración de otros programas

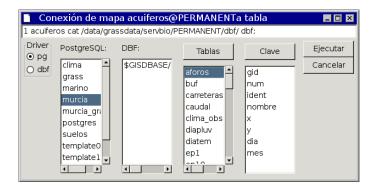


Integración de otros programas: GRASS forma parte de un jardín

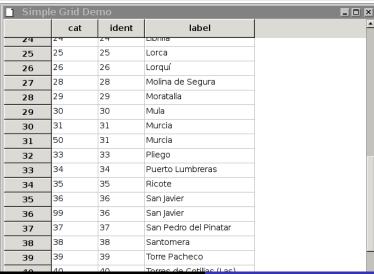

GRASS forma parte de un jardín

GRASS forma parte de un jardín

GRASS forma parte de un jardín

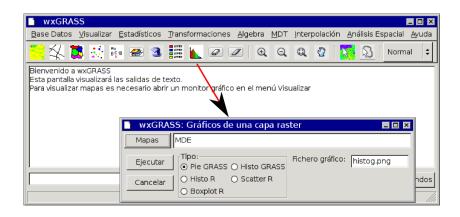

PostgreSQL

- Es el Sistema de Gestión de Base de Datos libre más potente (www.postgresql.org/)
- Hasta la versión 5.4 de GRASS la integración era más débil
- En GRASS 6 las capas vectoriales se enlazan directamente a tablas de PostgreSQL y se pueder consultar y editar desde GRASS


- Es el Sistema de Gestión de Base de Datos libre más potente (www.postgresql.org/)
- Hasta la versión 5.4 de GRASS la integración era más débil
- En GRASS 6 las capas vectoriales se enlazan directamente a tablas de PostgreSQL y se pueden consultar y editar desde GRASS

- Es el Sistema de Gestión de Base de Datos libre más potente (www.postgresql.org/)
- Hasta la versión 5.4 de GRASS la integración era más débil
- En GRASS 6 las capas vectoriales se enlazan directamente a tablas de PostgreSQL y se pueden consultar y editar desde GRASS

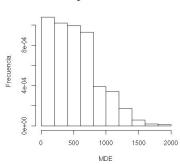
Consul	ta SQL					_
Base de dat	os: grass	Tabla:	public.municipios	Variables	Cargar	Guardar
Consulta: select cat,label,ident from public.municipios						
Guardar consulta como: No guardar 🛊 en el fichero:						
Ejecutar	Cancelar					

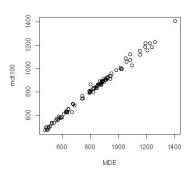


- Es uno de los programas de análisis de datos más utilizados en entornos de software libre (www.r-project.org/)
- Dispone de 600 paquetes de funciones desarrolladas por la comunidad de usuarios
- Varios de ellos para el manejo de datos espaciales: GRASS, sp, spgrass6, gstat, ...
- Puede leer y manejar datos de GRASS

- Es uno de los programas de análisis de datos más utilizados en entornos de software libre (www.r-project.org/)
- Dispone de 600 paquetes de funciones desarrolladas por la comunidad de usuarios
- Varios de ellos para el manejo de datos espaciales:
 GRASS, sp, spgrass6, gstat, ...
- Puede leer y manejar datos de GRASS

- Es uno de los programas de análisis de datos más utilizados en entornos de software libre (www.r-project.org/)
- Dispone de 600 paquetes de funciones desarrolladas por la comunidad de usuarios
- Varios de ellos para el manejo de datos espaciales:
 GRASS, sp, spgrass6, gstat, ...
- Puede leer y manejar datos de GRASS


- Es uno de los programas de análisis de datos más utilizados en entornos de software libre (www.r-project.org/)
- Dispone de 600 paquetes de funciones desarrolladas por la comunidad de usuarios
- Varios de ellos para el manejo de datos espaciales:
 GRASS, sp, spgrass6, gstat, ...
- Puede leer y manejar datos de GRASS



wxGRASS: Gráficos de una capa raster			_ 🗆 ×
Mapas			
Ejecutar	Tipo: Histo R O Histo GRASS	Fichero gráfico:	
Cancelar	○ Pie GRASS ○ Scatter R ○ Boxplot R	Tamaño muestral:	

wxGRAS	S: Gráficos de una capa ras	iter 🔳 🗆 🗷
Mapas		
Ejecutar	Tipo: Histo R O Histo GRASS	Fichero gráfico:
Cancelar	O Pie GRASS O Scatter R O Boxplot R	Tamaño muestral:
\	echo m1 Rsave;cat gra	*
d.R←	echo m1,m2 Rsave;ca	t grass_scatter.R Rno-save
	echo m1,m2 Rsave;ca	t grass_boxplot.R Rno-save

Histograma de frecuencias

wxGRASS	: Conexió	n con R					
Cargar	Guardar	Opciones:	Leer raster Leer vectorial Escribir raster	_ _	Ejecutar	Cancelar	Ayuda
library(spgrass6)						

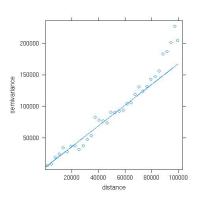
gstat

- Programa para modelización geoestadística
- Existe una versión como programa independiente (www.gstat.org/)
- En wxGRASS se accede a las funciones de gstar a través de la correspondiente librería de R

gstat

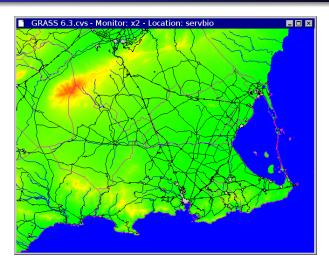

- Programa para modelización geoestadística
- Existe una versión como programa independiente (www.gstat.org/)
- En wxGRASS se accede a las funciones de gstar a través de la correspondiente librería de R

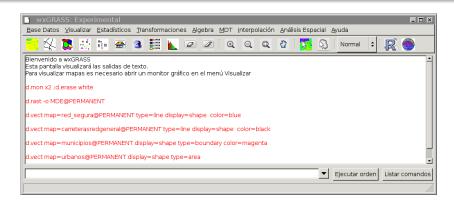
gstat

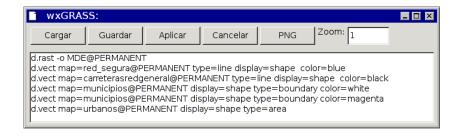

- Programa para modelización geoestadística
- Existe una versión como programa independiente (www.gstat.org/)
- En wxGRASS se accede a las funciones de gstar a través de la correspondiente librería de R

wxGRASS: kriggeado	
Capa de puntos: Capas Columna: X Lag: y 3000	Gráfico:
clima_obs2@atlasa	Jacinivai jpg
Modelo: Parámetros: meseta alcance pepita cutoff	
Capa raster resultado: nmin nmax maxdist:	
Ejecutar Cancelar Ayuda	

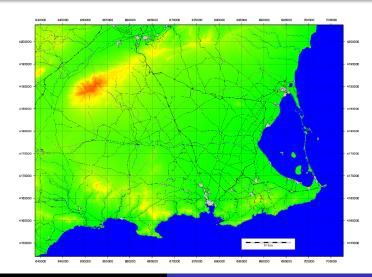
wxGRASS: kriggeado	
Capa de puntos: Capas y	Gráfico: semvar.jpg
clima_obs2@atlasa	semvangpg
Modelo: Esférico Parámetros: meseta alcance pepita cutoff 2000 10000 0 5	50000
Capa raster resultado: nmin nmax maxdist:	
Ejecutar Cancelar Ayuda	

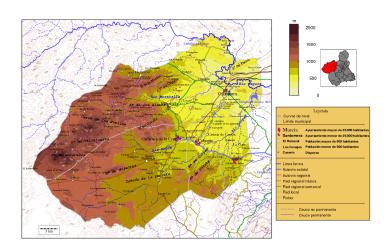

wxGRASS: kriggeado	
Capa de puntos: Capas y	Gráfico: semvar.jpg
clima_obs2@atlasa	Jennan, pg
Modelo: Esférico Parámetros: meseta alcance pepita cutoff 2000 10000 0 5	50000
Capa raster resultado: resultado nmin nmax maxdist: 2 20 10000	
Ejecutar Cancelar Ayuda	


- Entorno de trabajo para la maquetación de mapas para su integración en papel (www.soest.hawaii.edu/gmt/)
- Programa modular, los diferentes módulos van añadiendo elementos a un fichero postscript
- Muy flexible pero con una sintáxis compleja
- Muy útil en combinación con el driver PNG de GRASS


- Entorno de trabajo para la maquetación de mapas para su integración en papel (www.soest.hawaii.edu/gmt/)
- Programa modular, los diferentes módulos van añadiendo elementos a un fichero postscript
- Muy flexible pero con una sintáxis compleja
- Muy útil en combinación con el driver PNG de GRASS

- Entorno de trabajo para la maquetación de mapas para su integración en papel (www.soest.hawaii.edu/gmt/)
- Programa modular, los diferentes módulos van añadiendo elementos a un fichero postscript
- Muy flexible pero con una sintáxis compleja
- Muy útil en combinación con el driver PNG de GRASS


- Entorno de trabajo para la maquetación de mapas para su integración en papel (www.soest.hawaii.edu/gmt/)
- Programa modular, los diferentes módulos van añadiendo elementos a un fichero postscript
- Muy flexible pero con una sintáxis compleja
- Muy útil en combinación con el driver PNG de GRASS



wxGRASS: Maquetación de mapas con GMT	_
Salida: mimapa.png Puntos por pulgada: 200 Anchura (cm): 34.483 E=1: 200000	
Intervalo de rejilla: Papel: O a0	fuente:
Otros parámetros: Parámetros escala gráfica (x y a dl i):	
686000 4155000 200 1000 10	
Ejecutar Cerrar Ayuda Guardar script como: mimapa.sh	


```
$ gmtset D_FORMAT %7.0f PAPER_MEDIA a1
ANNOT_FONT_SIZE_PRIMARY 10
$ psbasemap -R638809/707775/4151969/4203778
-JX34.483c/25.9045c -B0 -P -K -X5c >mimapa.ps
$ psimage mimapa.ras -W34.483c/25.9045c -C0c/0c -O -K>mimapa.ps
$ psbasemap -R -J -B5000g5000 -O -K>mimapa.ps
$ sh escala_km.sh 686000 4155000 200 1000 10
mimapa.ps
$ psbasemap -R -J -B5000 -O>mimapa.ps
```


- Facilita el aprendizaje de SIG utilizando GRASS como motor y wxGRASS como Interfaz
- Permite configurar diferentes niveles-perfiles de usuario con diferentes aspectos de la IGU.
- El sistema de ventanas no oculta el aspecto algorítmico de los SIG
- Integra diferentes programas en una interfaz coherente

- Facilita el aprendizaje de SIG utilizando GRASS como motor y wxGRASS como Interfaz
- Permite configurar diferentes niveles-perfiles de usuario con diferentes aspectos de la IGU.
- El sistema de ventanas no oculta el aspecto algorítmico de los SIG
- Integra diferentes programas en una interfaz coherente

- Facilita el aprendizaje de SIG utilizando GRASS como motor y wxGRASS como Interfaz
- Permite configurar diferentes niveles-perfiles de usuario con diferentes aspectos de la IGU.
- El sistema de ventanas no oculta el aspecto algorítmico de los SIG
- Integra diferentes programas en una interfaz coherente

- Facilita el aprendizaje de SIG utilizando GRASS como motor y wxGRASS como Interfaz
- Permite configurar diferentes niveles-perfiles de usuario con diferentes aspectos de la IGU.
- El sistema de ventanas no oculta el aspecto algorítmico de los SIG
- Integra diferentes programas en una interfaz coherente

Posibilidades a explorar en el futuro

- Agrupación de diversas operaciones-módulos en una sola acción con diferentes estrategias para maximizar el aprendizaje
- Simulación de las IGU de otros programas
- Utilización en entornos no docentes

Posibilidades a explorar en el futuro

- Agrupación de diversas operaciones-módulos en una sola acción con diferentes estrategias para maximizar el aprendizaje
- Simulación de las IGU de otros programas
- Utilización en entornos no docentes

Posibilidades a explorar en el futuro

- Agrupación de diversas operaciones-módulos en una sola acción con diferentes estrategias para maximizar el aprendizaje
- Simulación de las IGU de otros programas
- Utilización en entornos no docentes

Muchas gracias

 Podeis descargar wxGRASS de: http://www.um.es/geograf.sigmur