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Abstract

Optimization methods are close to become a common task in the design process of many me-

chanical engineering fields, specially those related with the use of composite materials which offer

the flexibility in the design of both the shape and the material properties and so, are very suitable

to any optimization process. While nowadays there exist a large number of solution methods for

optimization problems there is not much information about which method may be most reliable

for a specific problem. Genetic Algorithms have been presented as a family of methods which can

handle most of engineering problems. However, starting from a common basic set of rules many

algorithms which differ slightly from each other have been implemented even in commercial soft-

ware packages. This work presents a comparative study of three common Genetic Algorithms:

Archive-based Micro Genetic Algorithm (AMGA), Neighborhood Cultivation Genetic Algorithm

(NCGA) and Non-dominate Sorting Genetic Algorithm II (NSGA-II) considering three different

strategies for the initial population. Their performance in terms of solution, computational time

and number of generations was compared. The benchmark problem was the optimization of a T-

shaped stringer commonly used in CFRP stiffened panels. The objectives of the optimization were

to minimize the mass and to maximize the critical buckling load. The comparative study reveals

that NSGA-II and AMGA seem the most suitable algorithms for this kind of problem.
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Preprint submitted to Composites Part B: Engineering 27th November 2012



  

1. Introduction

The use of optimization methods in the design of structural components has been growing in

the last years and becoming a usual step in the mechanical engineering workflow of many com-

panies, specially those focused on aircraft/aerospace composite structures whose characteristics

frequently meet the paradigm of a standard multiobjective optimization problem. For this rea-

son, a large amount of optimization strategies ([1–5] among others) are available in the literature

nowadays.

A structure of special interest which has been the object of optimization routines are composite

panels stiffened with stringers. The optimization of the set panel-stringer is of high interest since

this kind of structure is widely used in the aircraft industry. For them, Genetic Algorithms (GAs)

[6], a family of evolutionary algorithms, have been succesfully used, as reported in a large number

of publications [7–11] among others. A case of special interest reported in the scientific literature

is the optimization of the stacking sequence of composite laminates, for which GA have been used

successfully [12, 13]. However, in situations where the stacking sequence cannot be considered

as a design variable but a imposed requirement, the minimization of the weight is achieved with

geometrical parameters [14, 15]. In that case, what makes different the optimization of composite

structures from other materials is the use of failure mode based failure criteria such as Puck’s

[16] and LaRC [17]. These are in fact a set of failure criteria which assign a different index for

the different failure modes under consideration. When they are included in optimization routines

as non-smooth discontinuous constraints, the resulting optimization problem is very specific of

composite materials, as can be concluded from some works analysing the effect of different failure

criteria in the optimal solution [18–20].

The original formulation of GAs is based on the concept of natural evolution: the survival

of the fittest member, i.e., the better adapted members have more possibilities to transmit their

characteristics to future generations. The translation of this strategy into an algorithm is performed

by means of three operators:

• Selection operator which selects individuals with high fitness to form the mating pool.

• Crossover operator which permits the exchange of some characteristics between two or
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more members of the mating pool. Two individuals, called parents, exchange some charac-

teristics to generate two new members, called children.

• Mutation operator is implemented to save the process of losing genetic information during

crossover. Random changes are applied in some individuals during the mutation process to

preserve diversity in the population.

Although these three operators are the basis of a GA, there exist a large number of variations

which implement different encodings, different selection operators, different methods for mating

pairs or different strategies for mutation [21]. The behaviour of a specific GA depends on the

studied problem [22, 23] and the design variables [24], for this reason, some previous experience

or some comparative analysis is needed for selecting one GA out of a set of implemented GAs.

Some comparative studies of evolutionary algorithms with different industrial cases have been

already carried out, [25, 26] for example. These studies reveal that the best GA is different for

each kind of problem.

A good choice when using GAs for the optimization of composite stiffened panels is a GA

specifically designed for them, for example [27] and [28]. However, most of engineers are not

familiar with the implementation of such algorithms and a commercial software with the most

common GAs already implemented is a recommended option to carry out the optimization. In that

case, a comparison of the most used GAs is a necessity for the choice as well.

The solution of the multi-objective optimization problem is linked to the concepts of domi-

nance and non-dominance. When an individual is non-dominated it is a member of the Pareto’s

front, which is the set of possible optimal solutions. A candidate to solution A dominates candi-

date B if the conditions of Eq. 1 are fulfilled. On the other hand, if the Eq. 2 is satisfied A and C

are considered non-dominated candidates.

fi(A) ≺ fi(B) ↔
(
f1(A) < f1(B)

)
∧

(
f2(A) < f2(B)

)
(1)

fi(A) ∼ fi(C) ↔
(
(fi(A) � fi(C)

)
∧

(
fi(A) � fi(C)

)
(2)

In this paper a comparative study of composite stringers under compression loads with three

3



  

different GAs is carried out. The chosen three, implemented in software IsightTM [29], are:

Archive-based Micro Genetic Algorithm (AMGA) [30], Neighborhood Cultivation Genetic Algo-

rithm (NCGA) [31] and Non-dominate Sorting Genetic Algorithm II (NSGA-II) [32]. The main

differences between these GAs are listed below:

• NSGA-II: After the creation of the parent population, sorting based on the non-dominance is

used. A fitness (equal to non-domination level) is fixed in each solution. The best individuals

of this ranking are used to create the new population using the selection, crossover and

mutation operators.

• AMGA: This algorithm uses a small population size and creates an external archive with the

best solutions obtained, which is updated every iteration. AMGA employs the concept of the

non-dominance ranking of NSGA-II and it creates the parent population from the archive

with the method of SPEA2 [33]. The mating pool is a derivation of the binary tournament

selection method of NSGA-II. The use of the archive permits to obtain a large number of

non-dominated points at the end of the simulation. AMGA is a GA highly based in NSGA-

II.

• NCGA: A neighborhood crossover mechanism is added in the normal mechanisms of GAs

which it improves the crossover operator. The pair of individuals to perform crossover is

not randomly chosen, but the individuals who are close each other in the objective space are

selected.

A T-shape stringer is used as a benchmark because of its simple geometry with only two

design variables (subsection 2.1) and because of its real-life interest in the design of stiffened

panels. A preliminary study of the stringer is performed (subsection 2.3) which permits to know

the approximated optimal result. These structures are used for their compression behaviour with

low weight. For this reason, the objectives are both the maximization of the critical buckling load

(Pcr) and the minimization of the stringer mass (m). In these cases, Pcr normally is most important

for these structures and their design is in function of it. Then, in the optimization process is

prioritized the Pcr than the mass (details in section 3). Therefore, the previous optimal result is
4



  

compared with the optimization results (section 4) to know the reliability of the GA. Finally, a GA

is proposed to use in the solution of similar multi-objective optimization problems.

2. Benchmark problem

2.1. Specimen

In this study a composite material T-shape stringer has been analysed under compression load

(Fig. 1). This geometry was selected since it provides both simplicity to run a benchmark and real

life engineering interest.

[Figure 1 about here.]

The stringer is made from AS4/8552 pre-preg whose properties are described in Table 1. Stack-

ing sequence is [0/90/02/± 45] for the stringer base and [±45/02/90/0]S for the stringer rib.

[Table 1 about here.]

2.2. Virtual test

To carry out the optimization, a virtual test was modelled, using ABAQUSTM (Fig. 2). A com-

pression load is applied on an end of the stringer and clamped by the other end. This compression

load is applied by means of pottings, metallic elements where the stringer can be introduced and

fixed with resin (Fig. 2). A potting only permits the displacement of the stringer base in X-axis

and Y-axis in stringer rib. In the middle of the specimen a damaged zone was introduced to sim-

ulate the effects of an impact. This damaged zone is located in the stringer rib, in the middle of

the specimen and it is modelled by reducing in a 50% the values of Exx and XC. The location of

the damaged zone and the amount of properties reduction were obtained in a previous study [34].

It is added to simplify the finite element analysis (FEA) and to set the region where the first ply

failure will appear. LaRC failure criteria is applied only in damaged zone to reduce computation

time because it is known that the first ply failure will appear in the previously damaged zone. The

elements used in mesh are S4 shell type (4-node shell element with full integration).

[Figure 2 about here.]
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2.3. Preliminary study

A preliminary study aiming to determine the influence of design variables in the principal

objective, Pcr and to obtain an approximated optimal solution was carried out. This results will be

used to compare the performance of the analysed algorithms.

Individuals with different dimensions of the stringer base length (LB) and the stringer rib length

(LS) were distributed in design space and FEA was run for each individual. A design was consid-

ered unfeasible if the specimen damage started.

Pcr was calculated with the expression:

Pcr = RF · λ (3)

where RF is reaction force supported by the stringer and λ is the first stringer eigenvalue.

Once all distributed cases were executed the influence of each design variable was analysed. As

shown in Fig. 3 Pcr grows directly proportional to LB until LB ' 29 mm, when it starts to

decrease. On the other hand, Pcr decreases inversely proportional to LS (Fig. 4). This is because

Pcr is dependent of λ, which is related to the vibration mode. At the same time, the vibration

modes are dependent on the inertia. In our system of reference, the lowest inertia is Iyy and, for

this reason, the specimen rotates respect to Y-axis. An increment of LB generates an increment of

Iyy, so the Pcr grows as well. When LB ' 29 mm the vibration mode changes and λ decreases,

and so does the Pcr.

[Figure 3 about here.]

[Figure 4 about here.]

When Pcr is plotted against LB and LS (Fig. 5) a peak is observed. This peak indicates the highest

Pcr, that is the approximated optimal solution. This previous optimal solution has the values LB

approximately between 28 and 29 mm and LS between 21 and 22 mm.

[Figure 5 about here.]
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3. Multi-objective optimization

The two objectives of the optimization problem are to maximize Pcr and to minimize m, that is

f1(x) = −Pcr and f2(x) = m. The design variables are the length of the base (LB) and the rib (LS)

of the stringer.

The optimization problem is defined as:

Minimize Fobj (f1(x), f2(x))

Subject to g(x) > 0

20 ≤ xi ≤ 30 i = 1, 2

(4)

where x = (LB, LS), g(x) = 1− FI(x) and FI(x) is the LaRC failure index.

Subsequently, the objective function (Fobj) is described:

Fobj =
∑ (

fi(x) · wi

si

)
(5)

where fi(x) are the different objectives, wi and si the weight and scale factors for each objective,

respectively. To give priority to Pcr the values of the weights w1 and w2 are set 0.7 and 0.3, respec-

tively.

The commercial software IsightTM, with several optimization methods implemented, was used

to solve the multi-objective optimization problem of Eq. 4. This software implements Eq. 5

which is used as a post-processing to extract the optimal solution from the Pareto front delivered

by the GAs. IsightTM permits to link ABAQUSTM with the chosen optimization method and to

calculate the Pcr for each individual. ABAQUSTM analyses the different geometries (individuals)

computed for the optimization method. RF , λ, m and FI of the individuals are calculated by

ABAQUSTM and Pcr by IsightTM. Each GA has the same scheme. The used computer is a HP

Compaq dx2400 Microtower with an Intel R© CoreTM 2 Quad CPU Q8200 with 2.33GHz, 4GB of

RAM, MS Windows XP Professional x64 Edition, IsightTM 5.5 and ABAQUSTM 6.9-3.

Once the optimization scheme was designed the different GAs were executed with different initi-

ation modes. These modes set how the initial population is generated:
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• Distributed population (DP): Equally spaced points in the design space are created.

• Random (R): A cloud of random cases is generated.

• Initial solution (IS): The starting initial population is a random cloud near to an initial geom-

etry. For the analysed case it was set LB = 24 mm and LS = 25 mm.

The GA parameters are fixed to analyse each GA with the same conditions. The values of para-

meters are listed below:

• Number of generations: 25

• Generation size: 16 individuals

• Selection rate: 50%

• Crossover probability: 90%

• Mutation probability: 50%

These parameters generate 400 individuals for each GA and each initiation mode. AMGA is

an exception, since it needs a different initial generation. For this reason, the value of initial

population of AMGA is 40. This modification forces to change the number of generations to 24

to obtain the same approximated number of cases. On the other hand, IsightTM does not permit

the IS mode with NCGA. Because of the fact that the GAs have a random component, related to

crossover and mutation operators, each GA and each initiation mode was executed five times.

The executions for each GA and initiation mode are performed in random order to reduce the

effect that other processes running in the computer might have on the results of the computational

experiment.

4. Results and Discussion

The comparison of the different algorithms is performed in terms of: obtained solution, computa-

tional time and number of generations to obtain the optimal. When an optimal individual does not

improve after a specific generation, it is considered that this generation has reached the optimum.
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The obtained results are listed in Table 2.

[Table 2 about here.]

All values LB and LS of the Table 2 are in agreement with the previous study, except four individ-

uals. These four individuals, all in NCGA and DP mode (iterations 1, 2, 3 and 4), obtain a lower

value of Fobj than the individuals of other GAs and initiation modes. A priori, this fact indicates

that NCGA is the GA with the worst results, particularly with DP mode.

The mean, median and standard deviation were calculated for each GA and each variable (Table

3). This table shows that there are non-significant differences between the GAs for time variable,

since the differences of mean are lower than 1%. Then, the mean of Fobj in NCGA is 2.44% and

2.26% lower than AMGA and NSGA-II respectively. Again, NCGA delivers different and lower

results of the Fobj. However, AMGA and NSGA-II have a similar result with 0.18% of difference.

NSGA-II achieves the best result of number of generations which is 9.91% lower than to AMGA,

which occupies the second place. On the other hand, NCGA obtains a number of generations

2.83% lower than AMGA and 7.28% greater than NSGA-II.

[Table 3 about here.]

To determine what statistical test is the most accurate to handle all data, the data type needs to

be identified. The Kolmogorov-Smirnov test is used to determine the normality of the data (each

GA and each initiation mode independently). This test concluded that all the sets of data are

non-normal populations. In this situation, a non-parametric test is recommended. Furthermore,

as reported in [35], non-parametric tests are specially useful for the analysis of evolutionary algo-

rithms, in this case GAs. The Mann-Whitney U-test (also known as Wilcoxon rank sum test) was

used to compare the data. The null hypothesis of the Mann-Whitney test is that compared popu-

lations have identical distributions with equal median, against the alternative of different medians.

This test has to be applied by facing the data two by two which leads to face each GA to the others.

This process was repeated in each comparison variable. The results of the Mann-Whitney test are

in Table 4, where = is null hypothesis acceptance and 6= is null hypothesis rejection.
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[Table 4 about here.]

Results of the test reflect that the time values are equal for all GA. Furthermore, an equal distrib-

ution is observed for Fobj in AMGA and NSGA-II, while different results are detected in NCGA.

The lowest value of Fobj in NCGA (shown in Table 3) indicates that AMGA and NSGA-II are

a good option to obtain a high and similar value of Fobj. On the other hand, an unequal distri-

bution is obtained for the value of number of generations in AMGA and NSGA-II. Moreover,

NCGA is similar to AMGA and NSGA-II. The values of Table 3 reveal that the number of gen-

erations for NCGA are approximately equidistant between AMGA and NSGA-II. For this reason,

NCGA is similar to AMGA and NSGA-II but these are different among them. NSGA-II needs

less generations to obtain the optimal. However, a high standard deviation indicates that a random

component exists. Additionally, the initiation mode was studied. The distribution of the studied

cases in each GA and each initiation mode was analysed and the optimum evolution as well. The

most representative cases are shown in Fig. 6.

[Figure 6 about here.]

Fig. 6(a) depicts the lines of distributed cases and the fact that the initial optimal solution is close to

the final solution. This means that a DP mode enables the GA to achieve a faster optimal solution.

On the other hand, a R mode has an expected random distribution (Fig. 6(b)). A possible remote

initial optimal solution is the problem of a R mode, which may delay the arrival at the optimum.

Finally, the first optimal solution is usually further from the final optimum in IS mode (Fig. 6(c)).

This last initiation mode is recommended to improve a previous result.

5. Conclusion

A process to compare three GAs for the solution of multi-objective optimization problem of a

simple composite material structure has been presented. A T-shape composite stringer under com-

pression loads has been used as a benchmark for three different GA: AMGA, NCGA and NSGA-II.

Moreover, a preliminary study of the specimen has been carried out to demonstrate that all the GAs

reach the optimal solution.
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An analysis of the results aids to recognize the first differences between the GAs. Therefore, a

lower value of Fobj is observed in NCGA. A non-parametric test (Mann-Whitney U-test) has been

used to compare the equality or inequality of the results. This test evidences that the computing

time is independent on the GA used for the calculation because all the time values are similar.

This conclusion might be affected by the use of a reduced number of design variables. On the

other hand, both the AMGA and the NSGA-II achieve a high and similar value of Fobj. The lowest

number of generations is obtained by NCGA and NSGA-II.

Finally, the different initiation mode (DP, R and IS) has been analysed to appreciate the differences

among them.

In conclusion, the results of Fobj and the number of generations indicate that the most recom-

mended GAs for similar structural cases are NSGA-II and AMGA, because they give similar

results.
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[29] Isight 5.0 User’s guide. Dassault Systèmes Simulia Corp.; Cary, North Carolina, USA; 2011.

[30] Tiwari S, Fadel G, Koch P, Deb K. AMGA: An archive-based micro genetic algorithm for multi-objective

optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2008. 2008,

p. 729–36.

[31] Watanabe S, Hiroyasu T, Miki M. Neighborhood cultivation genetic algorithm for multi-objective optimization

problems. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2002. 2002, p.

458–65.

[32] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE

Transactions on Evolutionary Computation 2002;6(2):182–97.

[33] Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength pareto evolutionary algorithm for multiob-

jective optimization. In: EUROGEN2001 Conference. 2001, p. 95–100.

[34] Crescenti M. Post-buckling analysis of a carbon/epoxy stiffened panel pre-impacted on the stiffener edge.

Master’s thesis; Universitat de Girona; 2011.

[35] Garcı́a S, Molina D, Lozano M, Herrera F. A study on the use of non-parametric tests for analyzing the evolu-

tionary algorithms’ behaviour: A case study on the CEC’2005 special session on real parameter optimization.

Journal of Heuristics 2009;15(6):617–44.
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Figure 3: Pcr vs. LB.

17



  20 22 24 26 28 30
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
x 10

4

Stringer rib length [mm]

P cr
 [

N
]

 

 

FEA (Feasible)
Fitting (Feasible)
FEA (Unfeasible)

Figure 4: Pcr vs. LS.
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Figure 6: Evolution of the optimums.
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Property Value Units Description
Exx 135 GPa Young’s modulus in fiber direction.

Eyy 9.6 GPa
Young’s modulus in transversal
fiber direction.

Ezz 9.6 GPa
Estimated Eyy = Ezz.
(transversally isotropic material).

νxy 0.32 - Poisson’s modulus in XY plane.

νxz 0.32 -
Estimated νxy = νxz.
(transversally isotropic material).

νyz 0.487 - Poisson’s modulus in YZ plane.
Gxy 5.3 GPa Shear modulus in XY plane.

Gxz 5.3 GPa
Estimated Gxy = Gxz

(transversally isotropic material).
Gyz 3.228 GPa Shear modulus in YZ plane.
XT 2207 MPa Longitudinal tensile strength.
XC 1531 MPa Longitudinal compressive strength.
YT 80.7 MPa Transverse tensile strength.
YC 199.8 MPa Transverse compressive strength.

SLUD 114.5 MPa In-plane shear strength.
GIC

1 0.2839 N/mm2 Fracture energy toughness in mode I.
GIIC

2 1.0985 N/mm2 Fracture energy toughness in mode II.
ρ 1.59 ·10−9 T/mm2 Density.

1 Source: [37]
2 Source: [38]

Table 1: AS4/8552 properties. Source: [36], unless otherwise stated.
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GA Initiation Iteration Pcr [kN] m [g] LB [mm] LS [mm] Fobj Time [min] Generations

AMGA

DP

1 17.386 65.24 28.49 21.37 67.36 580.8 14
2 17.356 65.41 28.53 21.44 67.16 585.6 23
3 17.340 65.54 28.58 21.49 67.04 597.5 23
4 17.359 65.16 28.36 21.39 67.25 586.8 23
5 17.335 65.25 28.36 21.45 67.09 590.7 22

R

1 17.350 65.41 28.51 21.45 67.13 586.4 23
2 17.394 65.19 28.47 21.35 67.41 575.6 23
3 17.365 65.02 28.28 21.36 67.32 583.6 20
4 17.385 65.26 28.51 21.38 67.35 584.2 20
5 17.355 65.73 28.78 21.49 67.06 581.1 23

IS

1 17.342 65.55 28.59 21.45 67.04 574.1 24
2 17.362 65.31 28.48 21.42 67.22 582.9 22
3 17.353 65.35 28.48 21.43 67.16 576.5 21
4 17.386 65.28 28.52 21.38 67.35 584.0 19
5 17.344 64.91 28.15 21.36 67.24 581.6 18

NCGA

DP

1 17.198 66.70 29.04 21.89 65.98 586.0 24
2 16.948 68.08 29.34 22.50 64.31 596.3 22
3 16.617 68.94 29.02 23.13 62.40 581.4 20
4 16.877 67.55 28.75 22.50 64.12 577.9 20
5 17.156 66.24 28.58 21.86 65.91 581.1 22

R

1 17.103 65.01 27.66 21.66 66.02 568.7 16
2 17.303 65.35 28.34 21.50 66.91 579.2 22
3 17.313 65.38 28.39 21.49 66.95 581.8 22
4 17.112 64.62 27.45 21.55 66.17 580.9 20
5 17.303 65.14 28.20 21.46 66.97 577.2 18

NSGA-II

DP

1 17.364 65.23 28.42 21.40 67.25 578.1 23
2 17.361 65.33 28.58 21.42 67.21 575.6 19
3 17.322 65.09 28.22 21.42 67.08 587.9 21
4 17.357 65.38 28.51 21.44 67.17 581.8 21
5 17.319 64.98 28.13 21.41 67.09 588.9 20

R

1 17.363 65.50 28.62 21.45 67.16 581.1 21
2 17.375 65.05 28.32 21.35 67.36 577.7 16
3 17.301 64.99 28.10 21.43 67.00 579.4 14
4 17.372 65.41 28.58 21.42 67.24 580.7 17
5 17.370 65.51 28.65 21.44 67.19 592.1 10

IS

1 17.377 65.15 28.40 21.37 67.34 570.7 19
2 17.394 65.44 28.58 21.44 67.19 580.1 21
3 17.213 64.45 27.56 21.40 66.73 578.2 20
4 17.151 64.19 27.29 21.40 66.49 563.7 22
5 17.265 64.71 27.84 21.41 66.91 577.3 22

Table 2: Summary of obtained results.
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Variable GA Mean Median Stand. dev.

Fobj

AMGA 67.21 67.22 0.13
NCGA 65.57 66.00 1.50

NSGA-II 67.09 67.17 0.23

Time
AMGA 583.4 583.6 5.9
NCGA 581.0 581.0 6.9

NSGA-II 579.6 579.4 6.9

Number of
generations

AMGA 21.2 22 2.7
NCGA 20.6 21 2.3

NSGA-II 19.1 20 3.5

Table 3: Statistics of the results.
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AMGA NCGA NSGA-II

Fobj

AMGA 6= =
NCGA 6= 6=

NSGA-II = 6=

Time
AMGA = =
NCGA = =

NSGA-II = =

Number of
generations

AMGA = 6=
NCGA = =

NSGA-II 6= =

Table 4: Mann-Whitney test results.
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