

SIMULTANEOUS LOCALIZATION AND MAPPING
USING SINGLE CLUSTER PROBABILITY

HYPOTHESIS DENSITY FILTERS

Chee Sing LEE

Dipòsit legal: Gi. 1991-2015
http://hdl.handle.net/10803/323637

http://creativecommons.org/licenses/by/4.0/deed.ca

Aquesta obra està subjecta a una llicència Creative Commons Reconeixement

Esta obra está bajo una licencia Creative Commons Reconocimiento

This work is licensed under a Creative Commons Attribution licence

DOCTORAL THESIS

Simultaneous Localization and Mapping

Using Single Cluster Probability

Hypothesis Density Filters

Chee Sing Lee

2014

DOCTORAL THESIS

Simultaneous Localization and Mapping

Using Single Cluster Probability

Hypothesis Density Filters

Chee Sing Lee

2014

Doctoral Program in Technology

Supervised By:

Prof. Joaquim Salvi (Universitat de Girona)

Prof. Daniel Clark (Heriot-Watt University)

Work submitted to the University of Girona in fulfillment of the requirements for

the degree of Doctor of Philosophy

Acknowledgements

Throughout this doctoral thesis, I have been fortunate to have the support

of my family, friends, and colleagues. In particluar I would like to thank

my supervisors Daniel and Quim, who took unprecedented interest in my

development as a professional and a person. My lovely wife Chrissy has sat

by my side this entire time keeping me on track. I am grateful to all of

the wonderful people in the labs (you know who you are) at both Girona

and Edinburgh for making me feel welcome as a stranger in strange lands.

Among the countless people I need to thank, here are but a few who stand

out: Josep – you got me out of the lab and showed me the beauty of the

Catalan countryside, Sharad – for late night editing sessions and somehow

still having the energy to laugh over a cup of coffee, Kos – thank you for

walking the PhD road together and being a trusted friend and confidante,

Sebas – for an in-depth tour of Catalan culture and cattle, and Daniel –

thanks again for helping me believe in myself when I thought I couldn’t keep

going.

i

ii

List of Publications

The work in this thesis encompasses a number of collaborative efforts, which

are listed here:

Journal Articles

Lee, C.S., Nagappa, S., Palomeras, N., Clark, D., Salvi, J. in press. SLAM

with SC-PHD filters: an underwater vehicle application. IEEE Robotics and

Automation Magazine: Special Issue on Emerging Applications of Stochastic

Geometry in Autonomous Robotics.

Lee, C.S., Clark, D., Salvi, J. 2013. SLAM with Dynamic Targets via Single-

Cluster PHD Filtering. IEEE Journal of Selected Topics in Signal Processing.

vol.7, no.3, pp.543-552.

Conference Participations

First International Summer School on Finite Set Statistics, Edinburgh, UK,

August 2013.

Nagappa, S., Palomeras, N., Lee, C.S., Gracias, N., Clark, D., Salvi, J.

2013. Single Cluster PHD SLAM: Application to Autonomous Underwater

Vehicles using Stereo Vision. OCEANS’13 MTS/IEEE Conference, Bergen,

Norway, June 2013.

Lee, C.S., Clark, D., Salvi, J. 2012. SLAM with Single Cluster PHD Filters.

2012 IEEE International Conference on Robotics and Automation (ICRA),

St. Paul, USA, May, 2012.

iii

iv

Programming and Tuning Massively Parallel Systems(PUMPS) Summer School,

Barcelona, Spain, July 2011 .

Publications in Preparation

Franco Monsalve, J., Lee, C.S.., Houssineau, J., Clark, D. in preparation.

Accelerating the Single Cluster Probability Hypothesis Density Filter with a

GPU Implementation

List of Acronyms and

Initialisms

In alphabetical order:

AHRS attitude and heading reference system

AUV autonomous underwater vehicle

DVL Doppler velocity log

ESDF Exactly Sparse Delayed-State Filter

EKF Extended Kalman Filter

FoV field of view

GM-PHD Gaussian Mixture PHD

GPS global positioning system

i.i.d. independent and identically distributed

IMU inertial measurement unit

JCBB joint compatibility branch and bound

OSPA optimal sub-pattern assignment

PDF probability density function

p.g.fl. probability generating functional

v

vi

PHD probability hypothesis density

RB-PHD Rao-Blackwellized PHD

RFS random finite set

SC-PHD single cluster PHD

SLAM simultaneous localization and mapping

SURF speeded up robust features

UKF Unscented Kalman Filter

usbl]USBL]Ultra-short baseline

List of Figures

1.1 Feature-based simultaneous localization and mapping (SLAM)

example . 12

1.2 Feature ordering in vector-based SLAM 14

3.1 Simulated Poisson point processes 37

3.2 Segment Cox process . 39

3.3 Matérn process . 39

4.1 probability hypothesis density (PHD) examples 46

5.1 Cluster process visualization 61

5.2 Visual overview of single cluster PHD (SC-PHD) filter 70

5.3 Simulation scenario . 73

5.4 Simulation results: map and trajectory estimates 75

5.5 Simulation results: error metrics 76

5.6 Results from 3500 timestep simulation of SC-PHD SLAM . . . 77

5.7 Rao-Blackwellized PHD (RB-PHD) comparison scenario . . . 79

5.8 Monte Carlo simulation results 80

5.9 Comparison of updated vehicle distributions 82

6.1 GPU thread grid . 87

6.2 Warp-level control flow . 89

6.3 Coalescing memory access . 90

7.1 The Girona 500 Vehicle at CIRS. 99

7.2 Keypoint matching . 101

vii

viii LIST OF FIGURES

7.3 Elements of the underwater SC-PHD SLAM experiment . . . 104

7.4 Distorted images from the downward looking stereo camera. . 108

7.5 SLAM trajectories from underwater experiment 109

7.6 SLAM maps from underwater experiment 109

7.7 Squared trajectory error for SC-PHD SLAM (blue), and RB-PHD

SLAM (green). 110

List of Tables

2.1 Classification of SLAM methods 28

6.1 Compute Capability 2.0 specifications 88

7.1 SC-PHD SLAM parameters for underwater vehicle experiment. 106

ix

x LIST OF TABLES

Contents

List of Acronyms v

List of Figures vii

List of Tables ix

Abstract 5

1 Introduction 9

1.1 Simultaneous Localization and Mapping 9

1.2 Motivation and Objectives . 10

1.2.1 SLAM for Underwater Vehicles 10

1.2.2 Feature-Based SLAM 11

1.2.3 Multi-object Estimation 12

1.3 Context of Work . 15

1.4 Organization . 16

2 State of the Art 19

2.1 SLAM algorithms . 19

2.1.1 Gaussian Filter Methods 19

2.1.2 Particle Filter Methods 22

2.1.3 Posegraph Methods . 23

2.1.4 Data Association . 25

2.1.5 Random Finite Sets . 26

2.2 Random Finite Set methods 26

2.2.1 Summary . 27

1

2 CONTENTS

3 Mathematical Prerequisites 29

3.1 Finite Set Statistics . 29

3.1.1 Random Finite Sets . 29

3.1.2 Multi-object PDFs and Set Integrals 30

3.1.3 Functional Derivatives 32

3.1.4 Probability Generating Functionals 33

3.1.5 I.I.D. Processes and Poisson Processes 34

3.1.6 Cluster Processes . 38

3.2 Evaluating Multi-object State Estimates 40

4 Multi-object Moment Filters 43

4.1 Multi-object Bayes’ Filter . 43

4.2 PHD Filter . 44

4.2.1 PHD Filter Update . 47

4.2.2 PHD Filter Prediction 50

4.3 SC-PHD Filter . 52

4.3.1 SC-PHD prediction . 53

4.3.2 SC-PHD Update . 54

5 SLAM with SC-PHD Filters 57

5.1 Problem Formulation . 57

5.2 Implementing the SC-PHD Filter for SLAM 62

5.2.1 Measurement-driven Birth 63

5.2.2 Prediction . 64

5.2.3 Field of View . 65

5.2.4 Dynamic Map Features 66

5.2.5 Update . 68

5.2.6 Computational Complexity 69

5.2.7 State Extraction . 70

5.3 Simulation Results . 71

5.3.1 Dynamic landmarks 71

5.3.2 Comparison with RB-PHD SLAM 78

5.4 Discussion . 83

CONTENTS 3

6 GPU Implementation of the SC-PHD Filter 85

6.1 The CUDA Architecture . 85

6.1.1 Performance Considerations 87

6.2 Prediction . 91

6.3 Update . 93

6.4 Source Code . 95

7 Underwater Vehicle Application of SC-PHD SLAM 97

7.1 SLAM for Underwater Vehicles 97

7.2 Implementing the Single Cluster PHD SLAM 98

7.2.1 The Girona 500 Vehicle 98

7.2.2 Hybrid Particle PHD SLAM 98

7.2.3 Detecting Features of Interest 101

7.2.4 Underwater SC-PHD SLAM 103

7.3 Outlook . 108

8 Concluding Remarks 111

8.1 Summary . 111

8.2 Contributions . 112

8.3 Outlook . 113

A SC-PHD Filter Pseudocode 115

Bibliography 121

4 CONTENTS

Abstract

This thesis focuses on the problem of SLAM, in particular feature-based

SLAM, where a mobile autonomous vehicle explores an unknown environ-

ment, navigating by observing landmarks. As the environment is previously

unexplored, SLAM algorithms must estimate the location of the landmarks

in addition to the location of the vehicle. The majority of research in feature-

based SLAM builds on the legacy of foundational work using the Extended

Kalman Filter (EKF), a single-object estimation technique. Because feature-

based SLAM is an inherently multi-object problem, this has led to a number

of suboptimalities in popular solutions. We hypothesize that a feature based

SLAM algorithm derived from multi-object estimation techniques can achieve

superior estimation performance compared to conventional algorithms, espe-

cially in conditions where the aforementioned weaknesses are most promi-

nent. In this work, we develop such an algorithm, using the SC-PHD fil-

ter, a multi-object estimator modeled on cluster processes. This algorithm

hosts capabilities not typically seen with feature-base SLAM solutions such

as principled handling of false alarm measurements and missed detections,

and navigation with a mixture of stationary and moving landmarks. We

present experiments with the SC-PHD SLAM algorithm on both synthetic

and real datasets using an autonomous underwater vehicle. We also compare

our method to the RB-PHD SLAM, showing that it requires fewer approxi-

mations in its derivation and thus achieves superior performance.

Keywords: simultaneous localization and mapping, mobile autonmous vehi-

cles, underwater autonmous vehicles, probability hypothesis density filters,

multi-object estimation, finite set statistics.

5

6 ABSTRACT

Resumen

Esta tesis se centra en el problema de la localización y el mapeo simultáneo

(SLAM), en particular en el SLAM basado en caracteŕısticas, donde un

veh́ıculo móvil autónomo explora un entorno desconocido navegando mien-

tras observa dichas caracteŕısticas. Dado que inicialmente se desconoce el

entorno, los algoritmos SLAM deben estimar la localización de las carac-

teŕısticas del entorno además de la localización del propio veh́ıculo. La

mayor parte de la investigación en SLAM basado en caracteŕısticas se nu-

tre del legado fundamental en filtros de Kalman extendido (EKF), técnica

de estimación uni-objeto. Dado que el SLAM basado en caracteŕısticas es

intŕınsecamente un problema multi- objeto, ello ha popularizado un número

de soluciones subóptimas. En esta tesis se hace la hipótesis de que un SLAM

basado en caracteŕısticas derivado de una técnica de estimación multi-objeto

puede conseguir un mayor grado de rendimiento en la estimación comparado

con los algoritmos convencionales, especialmente en situaciones donde las de-

bilidades antes mencionadas son más presentes. En esta tesis se desarrolla

este algoritmo a partir de un filtro PHD con un único grupo (SC-PHD),

una técnica de estimación multi-objeto basado en procesos de agrupación.

Este algoritmo tiene unas capacidades que normalmente no se ven en algo-

ritmos de SLAM basados en caracteŕısticas, ya que es capaz de tratar fal-

sas caracteŕısticas aśı como caracteŕısticas no detectadas por los sensores del

veh́ıculo, además de navegar en un entorno con la presencia de caracteŕısticas

estáticas y móviles de forma simultánea. Se presentan resultados experimen-

tales del algoritmo SC-PHD en entornos reales y simulados utilizando un

veh́ıculo autónomo submarino. Los resultados son comparados con el al-

goritmo de SLAM Rao-Blackwellized PHD (RB-PHD), demostrando que se

requiere menos aproximaciones en su derivación y por consiguiente se obtiene

un rendimiento superior.

7

Resum

Aquesta tesis es centra en el problema de la localització y la construcció

de mapes de forma simultània (SLAM), en particular en el SLAM basat en

caracteŕıstiques, on un vehicle mòbil autònom explora un entorn desconegut

navegant mentre observa aquestes caracteŕıstiques. Donat que inicialment

l’entorn es desconegut, els algoritmes SLAM han d’estimar la localització

d’aquestes caracteŕıstiques de l’entorn al mateix temps que estima la local-

ització del propi vehicle. La major part de la recerca en SLAM basat en

caracteŕıstiques s’alimenta del llegat fonamental en filtres de Kalman estès

(EKF), tècnica d’estimació uni-objecte. Al ser el SLAM basat en carac-

teŕıstiques intŕınsecament un problema multi-objecte s’han popularitzat un

nombre de solucions sub-òptimas. En aquesta tesis en fa la hipòtesi de que

un SLAM basat en caracteŕıstiques derivat d’una tècnica d’estimació multi-

objecte pot aconseguir un major grau de rendiment en l’estimació comparat

amb els algoritmes convencionals, especialment en aquelles situacions on les

debilitats anomenades anteriorment són més presents. En aquesta tesis es

desenvolupa aquest algoritme a partir d’un filtre PHD amb un únic grup (SC-

PHD), una tècnica d’estimació multi-objecte basat en processos d’agrupació.

Aquest algoritme té unes capacitats que normalment no es veuen en els algo-

ritmes de SLAM basats en caracteŕıstiques, ja que és capaç de tractar falses

caracteŕıstiques, aix́ı com caracteŕıstiques no detectades pels sensors del ve-

hicle, a més de navegar en un entorn amb la presència de caracteŕıstiques

estàtiques i caracteŕıstiques en moviment de forma simultània. Es presenten

els resultats experimentals de l’algoritme SC-PHD en entorns reals i simu-

lats utilitzant un vehicle autònom submaŕı. Els resultats són comparats amb

l’algoritme de SLAM Rao- Blackwellized PHD (RB-PHD), demostrant que

es requereixen menys aproximacions en la seva derivació i en conseqüència

s’obté un rendiment superior.

8 ABSTRACT

Chapter 1

Introduction

This chapter introduces the problem of simultaneous localization and map-

ping (SLAM), in particular feature-based SLAM. We discuss the current

shortcomings of feature-based SLAM which provide motivation for this work.

1.1 Simultaneous Localization and Mapping

SLAM is a key component in mobile autonomous systems. It describes the

ability of a vehicle, once placed in an unknown environment, to explore and

map that environment, while at the same time estimating its own position

in the environment, using only its onboard sensing capabilities. Several diffi-

culties are encountered while performing this task, including but not limited

to:

• Inaccurate sensor models – Sensors can rarely be fully characterized

forl all operational conditions. Despite careful calibration efforts, some

systemic bias is likely to present in received measurements.

• Unreliable sensing of the environment – This includes not only a lack

of precision in sensor returns, but also false-positive sensor returns and

failures in detecting environmental features.

• Inaccurate motion models – SLAM algorithms will often incorporate a

vehicle motion model, but these models rarely describe the motion of

9

10 CHAPTER 1. INTRODUCTION

the vehicle with complete fidelity.

• Unreliable sensing of vehicle motion and position – In some applica-

tions, feedback sensors are employed to provide additional information

on vehicle motion. Like the environmental sensors, these readings are

both imprecise and inaccurate. For example, encoder-based odometry

can be confounded by wheel slippage. Relying solely on odometry to es-

timate position (dead reckoning) is an untenable strategy for extended

operations as odometry error accumulates over time. GPS measure-

ments can mitigate this problem, but in many environments where

autonomous mobile robots are used (e.g. underwater, subterranean,

extraterrestrial), GPS is intermittent or completely unavailable.

• Unanticipated changes in the environment or vehicle state – Portions

of the environment may change with time. Abrupt terrain changes may

impart motion on the vehicle which is drastically different from model

parameters.

The result of these adverse conditions is that nothing regarding the vehicle’s

environment or position can be known with complete certainty. Solving the

SLAM problem, therefore, requires the use of probabilistic methods which

give the best estimate of the vehicle and environment, given the sensor data

received.

1.2 Motivation and Objectives

The objective of this work this to apply the principles and methods of multi-

object estimation to the problem of feature-based SLAM.

1.2.1 SLAM for Underwater Vehicles

The subsea industry is increasingly interested in the use of autonomous un-

derwater vehicles (AUVs) to perform inspection, maintenance and light in-

tervention tasks at submarine facilities. Of particular interest is the ability to

have vehicles operating unattended for extended periods of time which is key

1.2. MOTIVATION AND OBJECTIVES 11

to reducing operating costs. A critical issue in this is the vehicle’s awareness

of its environment as well as its place within that environment, i.e., SLAM.

In order to perform pathfinding operations, surveys or intervention, the ve-

hicle must have a map of its surroundings as well as a firm knowledge of its

own position relative to the local area. It is for these reasons that SLAM is

widely described as a fundamental problem in mobile robotics.

Localization of AUVs is a particularly challenging area of research. The use of

global positioning systems (GPSs) is limited to the surface of the water due to

high levels of attenuation. An attitude and heading reference system (AHRS)

is used to estimate orientation of the vehicle and position is estimated using

a dead reckoning algorithm with measurements from a pressure sensor and

Doppler velocity log (DVL). The DVL measures velocity with respect to the

water or the sea bottom. It is possible to perform corrections due to drift

in the sensors or noisy measurements by incorporating this estimation into a

SLAM framework.

1.2.2 Feature-Based SLAM

One possible taxonomy for SLAM solutions is based on their choice of en-

vironment modeling. In this work, we will approach the SLAM problem

using a feature-based algorithm. Feature-based SLAM algorithms consider

the environment map to be composed of a number of distinct landmarks,

or features. At a minimum, these features are stored as coordinates in 2D

or 3D space, but higher dimension representations are possible, augmenting

the spatial coordinates with descriptive parameters (e.g. appearance, size,

shape). As a vehicle moves, repeated observation of landmarks will enable

an estimate of the vehicle’s motion relative to those landmarks and within

the environment as a whole.

Since a feature-based map is essentially only a collection of points in Eu-

clidean space, this type of representation is more tractable and memory-

efficient compared to other SLAM paradigms which store the environment

as a dense point cloud, or as a collection of images. However, alternate map

representations are not without merit. For example, dense point clouds fa-

12 CHAPTER 1. INTRODUCTION

Figure 1.1: Example of feature-based SLAM. Red ellipses represent land-
marks which have been observed by the vehicle, as it moves along the blue
trajectory. Image from [4]

.

cilitate obstacle detection, and images are well suited for object recognition

and semantics. While these isues fall outside the scope of this work, they are

nevertheless important topics in mobile robotics.

1.2.3 Multi-object Estimation

In all but the most trivial feature-based SLAM scenarios, the map is com-

posed of multiple features. It is therefore important that feature-based SLAM

solutions adopt a probabilistic framework which encompasses this fact. The

map should be represented as a probabilistic entity which admits not only

uncertainty in the description of individual features, but also uncertainty in

the number of features. However, much of the early and continuing work

1.2. MOTIVATION AND OBJECTIVES 13

in feature-based SLAM has not taken this into account. Rather, they have

adapted well-established single-object estimation techniques such as the Ex-

tended Kalman Filter (EKF) to suit their needs. A multi-object state is

coerced into a single object by concatenating the objects together into a

single vector, resulting in the following shortcomings:

• Using a single vector to represent a collection of multiple objects in-

troduces undue importance on ordering of the objects. As shown in

Figure 1.2, the same collection of features can be represented by sev-

eral mathematically unequal vectors.

• Initializing new features and deleting spurious ones involves adding

and removing entries to the state vector. Thus, the domain of the state

vector is constantly fluctuating throughout the estimation process, with

no probabilistic framework to model this fluctuation.

• To correctly update the state vector with feature measurements, indi-

vidual features must be properly matched to individual measurements.

This is commonly referred to as the data association problem. Data

association algorithms will tend to fail if the measurements contain a

high number of false alarms, and/or the detection rate for features is

low.

• We wish to consider map which contains a combination of indistin-

guishable static and moving features. At each iteration of the estima-

tion process, we must predict each individual feature as either moving

or remaining stationary. In a vector-based estimation framework, it is

cumbersome to develop a state transition function which would accom-

plish this, while remaining agnostic to the order of features in the state

vector.

The aim of this work is to construct a SLAM solution based on the principles

of multi-object estimation and thus avoid the problems listed above.

14 CHAPTER 1. INTRODUCTION

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

5

4

3

2

1

0

1

2

y

1
1
2
−4
3
5

 6=

1
1
3
5
2
−4

 6=

2
−4
3
5
1
1

 6= · · ·

Figure 1.2: A feature map consisting of three 2D features located at coordi-
nates (1, 1), (2,−4), and (3, 5). A vector representation of this map would be
a concatenation of the features, e.g. [1, 1, 2,−4, 3, 5]T . There are 3! = 6 dif-
ferent permutations for constructing such a vector. While they all represent
the same three features, none of them are mathematically equivalent.

1.3. CONTEXT OF WORK 15

1.3 Context of Work

The majority of the time spent on this work was split between the Computer

Vision and Robotics (VICOROB) group at the University of Girona, and the

Institute of Sensors, Signals, and Systems (ISSS) at Heriot-Watt University.

The VICOROB group hosts the Underwater Robotics Research Center, which

has made several important contributions to the field of autonomous under-

water vehicles (AUVs). This includes the development of several AUVs, the

most recent being the Girona 500 and Sparus II; winning several European-

level AUV competitions; and performing numerous real-world underwater

survey and inspection missions. In addition to autonomous underwater sys-

tems, the VICOROB group has also made contributions to robotic navigation

using catadioptric camera systems.

Daniel Clark’s group at the Heriot-Watt University specializes in statistical

signal processing and multi-object estimation. Professor Clark is regarded

to be a leading figure in the field of finite set statistics. Major contributions

include variance-based metrics for performance assessment in multi-object fil-

tering, PHD filter solutions for multi-sensor and distributed sensor systems,

and a generalized chain rule for functional derivatives. The group main-

tains collaborative relationships with the University Defense Research Coun-

cil (UDRC) and the Defense Science and Technlogy Organisation (DSTO) in

Australia.

This work has received funding from the following Spanish and European

project grants:

• FP7-ICT-2011-7 project PANDORA—Persistent Autonomy through

Learning, Adaptation, Observation and Re-planning (Ref 288273) funded

by the European Commission

• RAIMON – Autonomous Underwater Robot for Marine Fish Farms In-

spection and Monitoring (Ref CTM2011-29691-C02-02) funded by the

Ministry of Economy and Competitiveness of the Spanish Government.

16 CHAPTER 1. INTRODUCTION

1.4 Organization

This thesis is organized into several chapters:

1. Chapter 2 outlines the history of developments in the field of feature-

based SLAM. The past research work is classified according to the

various approaches to solving the SLAM problem, and key publications

in each category are cited. The chapter also explores prior work in

Random Finite Set methods, and highlights the developments that led

to their application in SLAM.

2. Chapter 3 discusses finite set statistics and multi-object calculus, intro-

ducing concepts such as set integrals, functional derivatives, probability

generating functionals (p.g.fl.s), and point processes. This provides a

mathematical foundation necessary for the discussion of algorithms in

following chapters.

3. Chapter 4 explains the methodology used to derive first-order moment

filters for multi-object estimation. The probability hypothesis density

(PHD) filter will be derived first, and then generalized to the single

cluster PHD (SC-PHD) filter which is used for the solving the SLAM

problem.

4. Chapter 5 illustrates the application of the SC-PHD filter to the SLAM

problem. A concrete numerical implementation of the filter is presented

which uses a hybrid particle/Gaussian mixture approach. Simulation

results on synthetic datasets are shown, and comparisons are drawn

between our work and Rao-Blackwellized PHD (RB-PHD) SLAM.

5. Chapter 6 Explains the strategies used to create a parallel implemen-

tation of the SC-PHD filter on a GPU with the CUDA software frame-

work.

6. Chapter 7 presents an application of SC-PHD SLAM on a real world

dataset collected by the Girona500 underwater vehicle at the Under-

water Robotics Research Center in Girona, Spain. We discuss the chal-

1.4. ORGANIZATION 17

lenges of implementing the SLAM algorithm on a real vehicle, and show

that our method compares favorably with other SLAM solutions.

7. Chapter 8 summarizes the work done in this thesis and comments on

possible avenues for future research.

In addition, a pseudo-code listing is included as an appendix to aid readers

who wish to implement our method and reproduce these results.

18 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art

In this chapter, a history of developments in the field of SLAM is outlined.

The past research work is classified according to the various approaches to

solving the SLAM problem, and key publications in each category are cited.

We also explore prior work in Random Finite Set methods, and highlight the

developments that led to their application in SLAM.

2.1 SLAM algorithms

Distilled to its core, SLAM is a state estimation problem: given a sequence

of noisy sensor readings and odometry inputs, what is the most likely con-

figuration of the robot’s trajectory and environment? Early breakthroughs

in SLAM were provided by utilising the Kalman filter and EKF to address

this as a joint state estimation problem, coupling the positions of the vehicle

and landmarks [85, 52].

2.1.1 Gaussian Filter Methods

The Kalman filter is a Bayesian filter framework in which a Gaussian random

variable with mean x and covariance matrix P is estimated through periodic

measurements. The filter is typically comprised of two main steps: prediction

and update. These are repeated over a series of time steps, delineated by the

arrival measurements.

19

20 CHAPTER 2. STATE OF THE ART

The prediction step propagates the state estimate through time. The Kalman

filter uses a linear dynamic model, characterized by a linear operator F, and

is subject to zero-mean Gaussian-distributed noise, with covariance matrix

Q. The prediced mean and covariance is therefore:

xk|k−1 = Fxk−1 (2.1)

Pk|k−1 = FPk|k−1F
T + Q (2.2)

The update step uses the measurement z to update the state estimate. The

Kalman filter uses a linear measurement model, characterized by a linear

operator H, and is subject to zero-mean Gaussian-distributed noise, with

covariance matrix R. Using a quantity called the optimal Kalman gain, K,

the Kalman filter update yields the minimum mean squared error estimate,

given the measurement:

xk|k = xk|k−1 + K(zk −Hxk|k−1) (2.3)

Pk|k = (I−KH)Pk|k−1 (2.4)

K = Pk|k−1H
TS−1 (2.5)

S = HPk|k−1H
T + R (2.6)

This method was validated by Dissanayake et. al. [26], who provided a proof

that as the number of observations approach infinity,

1. The covariance of any feature in the map converges toward the initial

vehicle covariance.

2. The feature locations become fully correlated with each other.

This implies that for linear dynamic and measurement system models, it is

possible to construct perfect relative map using the Kalman filter approach,

and therefore solve the SLAM problem.

The Extended Kalman Filter (EKF) is a generalization of the Kalman filter to

non-linear models. Let xk = f(xk−1) and zk = h(xk) be non-linear functions

describing the dynamic and measurement models respectively. The EKF

2.1. SLAM ALGORITHMS 21

prediction and update equations are identical to the Kalman filter except

that the predicted updated means are:

xk|k−1 = f(xk−1) (2.7)

xk|k = xk|k−1 + K(zk − h(xk|k−1)) (2.8)

In addition the matrices F and H are the linearizations of the functions f

and h with respect to the state vector. As such, the EKF is an approximate

estimator, and the quality of its estimate will depend on how closely the

linearized models fit the originals. The performance of the EKF suffers when

the original models are highly non-linear.

The Unscented Kalman Filter (UKF) is another adaptation of the Kalman

filter to non-linear models, offering reduced linearization error compared to

the EKF at the cost of increased computational expense. The unscented

transform generates a number of deterministic sigma points from a Gaussian

distribution, which capture the higher order moment properties of the un-

derlying distribution [46]. Rather than using linear approximations of the

dynamic and measurement models, the sigma points are propagated through

the exact models. The predicted and corrected distributions can be recovered

as a weighted linear regression of the sigma points. A SLAM solution based

on the UKF was proposed in [58].

A substantial amount of research has been directed toward improving the

computational performance of EKF-based SLAM methods in large-scale sce-

narios. Submapping algorithms achieve this by dividing the state into smaller

subsets of landmarks, each estimated by a separate EKF [49, 41, 90]. Mem-

bers of this family of algorithms vary by the hierarchy that relates the sepa-

rate submaps [10, 36, 76], or the strategy that controls propagation of infor-

mation between submaps [30, 75, 77]. Submapping SLAM has been demon-

strated in real-world experiments with underwater vehicles [100, 2, 3].

Information Filter Methods

The majority of the computational cost involved with the EKF is in the up-

date step, which involves the inversion of the full covariance matrix. This

22 CHAPTER 2. STATE OF THE ART

is an operation of complexity O(n2) with respect to the map size n. The

Extended Information Filter (EIF) is an alternate formulation of the EKF

designed reduce the complexity of SLAM the update phase [91]. Whereas the

EKF represents the SLAM state in the moment form, the EIF employs an

information form representation which reduces the update stage to a simple

addition operation. The tradeoff is that the mean state and covariance are

more difficult to obtain. In order to do so, the information matrix must be

inverted, which in a näıve approach, is an equally intensive operation as the

EKF update. In general, the information matrix is an approximately-sparse

matrix. The smaller values in the matrix represent the weaker correlations

between map features, and thus an exactly sparse approximation can be made

by zeroing then out. In this case, the state information can be recovered with

iterative methods which are linear in the number of features [92]. Eustice et.

al. observed that the dense nature of the information matrix in SLAM was

due to the marginalization of the previous vehicle pose during the prediction

step. By preserving the pose history in the state vector, the information

matrix retains an exactly sparse structure. The result is the Exactly Sparse

Delayed-State Filter (ESDF), which features the computational advantages

of a sparse information filter, without requiring any sparsification approxi-

mations [33]. One notable application of the ESDF was the visual mapping

of the wreck of the RMS Titanic using an underwater vehicle [32].

2.1.2 Particle Filter Methods

Filter-based methods such as the EKF and EIF make two fundamental as-

sumptions: that the SLAM posterior distribution is Gaussian, and that the

process and measurement functions may be reasonably approximated with a

first order Taylor expansion. If one or both of these assumptions do not hold,

then the algorithms will fail to provide a good solution. SLAM techniques

based on particle filters are not constrained by either of those assumptions.

Rather than using a parameterized representation for the SLAM posterior,

they use a finite number of samples, or particles. Particle filtering has been

successfully applied to robot localization, with a known map [91, 24, 37].

2.1. SLAM ALGORITHMS 23

However, the SLAM posterior distribution not only contains an estimate of

vehicle position, but also describes the locations of map features. Sampling

over such a high dimensional space would require an enormous number of

particles. Murphy proposed the Rao-Blackwellized particle filter [66] which

notes that only the vehicle trajectory needs to be sampled because the map

may be computed from it analytically, this key insight forms the basis of par-

ticle filter-based SLAM. In FastSLAM [59], each particle represents a distinct

hypothesis of the vehicle trajectory and has its own EKF associated with it to

estimate the map. The particles are dispersed according to the motion model,

to create a proposal distribution. The particles are then weighted and re-

sampled according to the measurement model. FastSLAM 2.0 [60] refines the

algorithm by modifying the proposal distribution to improve the richness of

particles in the most likely regions of the posterior distribution. DP-SLAM

[27][28] is an algorithm analogous to FastSLAM, where evidence grids are

used rather than EKFs to represent map information. Particle filter SLAM

techniques have seen applications such as exploration of underwater sink-

holes [34] and bathymetry surveys [7]. Particle filter algorithms are robust

to data association errors. When faced with ambiguous decisions, particles

conforming each of the competing hypotheses will be preserved, and the in-

correct ones will be eliminated after future measurements and resamplings.

Due to the large number of particles, careful memory management is needed

for efficient implementation. Moreover, the particle resampling process can

cause the distribution to collapse to a single hypothesis if steps are not taken

to preserve particle diversity. Methods such as progressive correction and

particle regularization [73, 67] can be used to avoid particle degeneracy.

2.1.3 Posegraph Methods

Instead of approaching SLAM as a recursive filtering problem, posegraph

methods cast it as an optimization problem. In the foundational work in this

area, Lu and Milios consider a collection vehicle poses X = [X0, · · · , Xn]T

is considered and the differences Dij between them. These differences are

observed via odometry and sensor inputs as normally-distributed measure-

24 CHAPTER 2. STATE OF THE ART

ments D̄ij. with covariance Cij. The maximum likelihood estimate of poses

can then be obtained by minimizing the Mahalanobis distance:

W =
∑

0≤i≤j leqn

(Xi −Xj − D̄ij)
TCij(Xi −Xj − D̄ij)

or in matrix form:

W = (D̄−HX)TC−1(D̄ −HX)

where D is the concatenation of all differences Dij and H is the matrix op-

erator which implements the difference operation between poses Xi and Xj.

In general, the measurement and motion models are non-linear, so non-linear

least squares methods such as Gauss Newton or Leverberg-Marquardt are em-

ployed [53, 40]. Square root SAM [25] incorporates improvements from ma-

trix factorization techniques, and is further refined in iSAM [48] with the use

of Givens rotations. The Thin Junction Tree Filter [74] and Treemap [38] al-

gorithms perform this optimization in tree-like topologies. Posegraph SLAM

seeks to jointly optimize the entire history of vehicle poses, under the con-

straints given by odometry and measurements. By considering the entire

trajectory in ensemble more consistent estimates can be obtained compared

to filtering methods, which only maintain estimates of the most recent state.

To achieve comparable results with filtering, forward-backwards smoothing

techniques must be applied. As optimization methods are highly data-driven,

they are well suited for applications with rich sensor data such as dense point

cloud scans of camera images. However, with increasing amounts of mea-

surement data comes increased risk of data association failures, and thus

introduction of spurious constraints into the optimization problem. Outlier

rejection algorithms which dynamically alter the topology of the pose graph

have been proposed to improve the robustness of the posegraph optimization

back-end [86].

2.1. SLAM ALGORITHMS 25

2.1.4 Data Association

The SLAM algorithms discussed thus far rely on the ability to determine the

correspondence between newly-arriving measurements and previously seen

portions of the environment. In EKF SLAM, for example, computing in-

novation zk − h(xk|k−1), requires that the predicted measurement h(x) be

computed from the specific sub-vector in x which matches the environment

feature that generated zk. In posegraph SLAM, constraints between poses

are generated by determining their locations relative to commonly observed

environment features. In practice, this data association is a problem which

must be solved separately before the predicted behavior from a SLAM al-

gorithm can be obtained. In feature-based SLAM, the most straightforward

approach is to match each measurement to its nearest neighbor, or create a

new feature when no existing ones are found within a certain distance thresh-

old [26]. A potential pitfall of this method is that multiple measurements

may be matched to a single feature. A joint compatibility constraint can

be employed to ensure that only one-to-one matchings are considered. The

joint compatibility branch and bound (JCBB) algorithm uses a depth-first

search of the hypothesis space to produce the maximal jointly-compatible as-

sociation hypothesis [70]. The 1-Point RANSAC algorithm couples the data

association closely to the SLAM algorithm. A number single-point associa-

tions are generated at random, and used to perform a partial EKF update.

The one which produces the fewest outliers in the full measurement set af-

ter the partial update is selected and used to perform the full update [13].

Probabilistic Multiple Hypothesis Tracking (PMHT), an iterative expecta-

tion maximization technique, has also been applied to data association in

SLAM [23]. Under real-world conditions, a number of measurements will be

spurious, or be generated by non-persistent features including these in the

SLAM state can potentially degrade the overall algorithm performance. The

Feature Stability Histogram is a technique used to constrain the SLAM state

to the most reliable environment features [5].

26 CHAPTER 2. STATE OF THE ART

2.1.5 Random Finite Sets

Working from the perspective of target tracking, Mahler proposed framing

the problem of tracking multiple targets as estimating a random finite set

of multiple vectors, rather than single state vector used in Kalman filter-

ing [54]. A recursive filter is used to estimate a random finite set through its

first-order moment, known as the probability hypothesis density (PHD). The

random finite set approach is advantageous because the estimation process

innately handles the possiblity of spurious measurements. In contrast, tradi-

tional vector-based approaches require post-processing to detect and remove

spurious measurements. The so-called PHD-Filter methodology was applied

to SLAM by Mullane et. al. [65] and has been shown to perform favorably

against FastSLAM 2.0 in simulations with high levels of measurement clut-

ter. The PHD filter has also been used to track targets in forward-scan sonar

data [18].

2.2 Random Finite Set methods

Random Finite Set methods are based in point process theory, which is con-

cerned with characterizing the occurrence of random events over measureable

spaces [22]. Engineering applications arose with the proposal of first-order

moment filters for Poisson point processes (PHD filter) [54] and independent

and identically distributed (i.i.d.) point processes (CPHD filter) [55]. An

alternate derivation of these filters has been demonstrated, showing them to

be the limit of bin-occupancy filters [29]. Development of a general chain

rule for functional derivatives [14] has provided a mathematical framework

for deriving more general moment filters [16]. Practical implementations for

these filters were developed using particle [97] and Gaussian Mixtures [96, 98]

representations for the moment densities. Early applications of these fil-

ters were for multiple object tracking in sonar imagery, [19, 17], tracking of

multiple extended objects or groups of objects [39, 89], and target tracking

fusing measurements from multiple sensors [93, 68]. Recent work has seen

the application area for PHD filters broadened to traffic monitoring [12] and

2.2. RANDOM FINITE SET METHODS 27

microscopic video processing [101].

The first work applying PHD filters to SLAM used a Rao-Blackwellized par-

ticle filter akin to FastSLAM, replacing the per-particle Kalman filter with a

PHD filter [64]. Subsequent work expanded on the single-cluster PHD filter

used for group tracking [88], casting SLAM as an analogous problem to group

tracking, with the vehicle in lieu of the group, and the environment map as

the group components [50], this framework also proposed a method for navi-

gating within environments containing a mixture of static and moving land-

marks [51]. Already, these algorithms are gaining traction with researchers in

the area of SLAM due to their ability to implicitly model the data association

of landmarks and deal with high rates of false positives/negatives. Recently,

the IEEE Conference on Robotics and Automation (ICRA) included an en-

tire workshop dedicated to the use of random finite set (RFS) methods in

SLAM [63, 61, 15].

2.2.1 Summary

Table 2.1 summarizes the different categories of SLAM solutions that have

been discussed. There are several important distinguishing characteristics

between the different categories, but they all share the common property of

considering uncertainty in vehicle motion and environment sensing. However,

with the exception of RFS methods, the algorithms reviewed here are reliant

on data association. A complete SLAM solution would typically consist of

the algorithm itself with data association “bolted on”. RFS methods, in ad-

dition to considering uncertainty in sensor motion and landmark state, take

into account additional complexities present in environment measurements

such as fluctuating landmark cardinality, missed detections, and clutter mea-

surements. In this way, data association is rendered into a non-problem.

This attractive property of RFS methods motivates our investigation into

how they might be exploited for solving the SLAM problem.

28 CHAPTER 2. STATE OF THE ART

Table 2.1: Classification of SLAM methods

Category Notable Attributes
Extended Kalman Filter (EKF) Classical SLAM solution. Assumes

Gaussianity of SLAM posterior,
complexity of update is quadratic
with map size

Extended Information Filter variants Canonical form dual of the EKF.
Update is addtive, but state recov-
ery is quadratic. Constant time exe-
cution can be achieved by sparse ap-
proximation of information matrix

Rao-Blackwellized Particle Filters Suitable for non-linear or non-
parametric vehicle motion models.
Innate multi-hypothesis data asso-
ciation. Requires careful memory
management and prone to sample
impoverishment

Posegraphs Employ linear algebra methods to
solve the “Full SLAM” problem.
Data association is necessary for
constructing constraints.

Random Finite Sets Estimation of a set of random vec-
tors, rather than a single state vec-
tor. Innate handling of measure-
ment clutter. In early stages of de-
velopment.

Chapter 3

Mathematical Prerequisites

The purpose of this chapter is to provide the reader with a mathematical

foundation necessary to fully appreciate the work in the remainder of this

thesis. The bulk of the material here will relate to finite set statistics and

multi-object calculus. Readers who are already familiar with the subject may

safely skip this chapter, but are encouraged to stay and review.

3.1 Finite Set Statistics

Multi-object estimation requires a distinct set of mathematical tools com-

pared to vector-based single-object estimation. Collectively, this set of tools

is referred to as Finite Set Statistics (FISST) [57]. The key concept in FISST

is that of the random finite set (RFS).

3.1.1 Random Finite Sets

The individual objects in our multi-object state are random vector-valued

quantities xi ∈ X . In many cases, these vectors are contained in some subset

of continuous Euclidean space

X ⊆ Rd

Let the entire multi-object state be expressed as an unordered set of indi-

29

30 CHAPTER 3. MATHEMATICAL PREREQUISITES

vidual object state vectors. The multi-object state is then itself a random

variable on a space we will denote F(X). This space should contain every

possible combination of single object states. That is, it should contain all

singleton sets of one object:

F(X) ⊃ X1 = {x1} ∀x1 ∈ X

All sets containing two distinct objects:

F(X) ⊃ X2 = {x1, x2} ∀x1, x2 ∈ X , x1 6= x2

As well as all sets containing three, four, five distinct objects, and so on.

Lastly, it should contain the state representing zero objects:

F(X) ⊃ X0 = ∅

We thus call F(X) the set of all finite sets on X , and a random variable

which takes on values in F(X) is called a random finite set on X .

3.1.2 Multi-object PDFs and Set Integrals

Like vector-valued random variables, RFSs can be characterized by a prob-

ability density function (PDF) which describes the relative likelihood of the

RFS to take on certain values in F(X). We define the multi-object PDF

fX : F(X) 7→ R+ as:

fX(Y) = Pr(X = {y1, . . . , yn}) (3.1)

Like their single-object counterparts, multi-object PDFs are real-valued, non-

negative functions. Because X and Y are unordered sets, the function fX(Y)

is considered to be symmetric in its arguments, that is, for any permutation

of the elements {y1, . . . , yn}, fX(Y) produces the same value. Such functions

are also referred to as Janossy densities [22, pg. 125].

In order to develop multi-object filters, we need to develop the concept of

integration with multi-object PDFs. Let f(X) be a function whose argument

3.1. FINITE SET STATISTICS 31

is an RFS on X . The set integral over a region S ∈ X is:∫
S

f(X) dX =
∞∑
n=0

1

n!

∫
Sn
f(x1, . . . , xn) dx1 · · · dxn (3.2)

= f(∅) +

∫
S

f(x1) dx1 +
1

2

∫
S×S

f(x1, x2) dx1 dx2 + · · · (3.3)

The presence of the factor 1
n!

reflects the fact that f(X) is symmetric in its

arguments. The set integral allows us to define some properties of a multi-

object PDF.

We can evaluate the probability that X is contained within a region S ∈ X
by taking the set integral of fX over S:∫

S

fX(Y) dY = Pr(X ⊆ S) (3.4)

From the multi-object PDF, we can derive an auxiliary distribution function

called the cardinality distribution, defined as follows:

pX(n) =

∫
|X|=n

fX(Y) dY = Pr(|X| = n) (3.5)

=
1

n!

∫
fX({x1, . . . , xn}) dy1 · · · dyn (3.6)

The cardinality distribution is a non-negative function over the natural num-

bers (zero included), where pX(n) is the probability that X contains n ele-

ments.

32 CHAPTER 3. MATHEMATICAL PREREQUISITES

3.1.3 Functional Derivatives

Recall the definition of the classical derivative for a scalar function f(x),

along a vector w:

δf(x; w) = lim
ε→0

f(x + εw)− f(x)

ε
(3.7)

The derivative is difference in the value of f(x) caused by an infinitesimally

small perturbation in the value of the argument, in the direction of w, divided

by the size of that perturbation. This derivative is in fact a specialization

for scalar functions of the Gâteaux derivative:

δf(x; η) = lim
ε→0

f(x+ εη)− f(x)

ε
(3.8)

The Gâteaux derivative is defined for functions which map between locally

convex topological vector spaces. Among other things, these vector spaces

encompass coordinate spaces such as Rn (in which case Equation (3.7) may be

applied), systems of linear equations, and function spaces. For our purposes,

we are interested in the latter case. To develop the PHD filter equations,

it is necessary to take derivatives of functions whose arguments are func-

tions (functionals). Thus, we need to develop further rules for applying the

Gâteaux derivative.

Higher order Functional Derivative

The function f(x) may be iteratively differentiated along multiple directions

η1, . . . , ηn. This nth-order derivative is defined as:

δnf(x; η1, . . . , ηn) = δ(δn−1f(x; η1, . . . , ηn−1); ηn) (3.9)

Chain rule for higher order functional derivatives

In order to derive the equations for the PHD filter, we will need to perform

higher-order derivatives of compounded functionals (functionals of the form

F [G[h]]). Given functions f and g mapping between locally convex topolog-

3.1. FINITE SET STATISTICS 33

ical vector spaces, the nth-order derivative of the compounded function f ◦ g
in the directions η1, . . . , ηn is defined as [21]:

δn(f ◦ g)(x; η1, . . . , ηn) =
∑

π∈Π(η1:n)

δ|π|f(g(x); ξπ1(x), . . . , ξπ|π|(x)) (3.10)

The derivative is a sum over Π(η1:n): the set of partitions of the set {η1, . . . , ηn}.
Each term in the summation is a |π|th-order derivative of f , where |π| is the

cardinality of the partition π. The directions for this derivative are defined

as

ξω(x) = δ|ω|g(x;ω1, . . . , ω|ω|) (3.11)

where {ω1, . . . , ω|ω|} ⊆ {η1, . . . , ηn} is a single block of the partition π. It

should be noted that this higher order chain rule is applied to chain differen-

tials. These are a slightly restricted class of Gâteaux derivatives, incorporat-

ing certain continuity assumptions [9], which for our purpose, are appropriate

in all but the most exotic modeling scenarios.

3.1.4 Probability Generating Functionals

p.g.fl. are an alternative yet equivalent expression of an RFS’s probabilis-

tic behavior. In some cases, they are a more concise representation than the

multi-object PDF. As will be seen in the next chapter, they are also an impor-

tant tool in developing the equations for multi-object moment filters [54, 62].

We first define a test function h(y), which is a real-valued function of y ∈ X ,

whose values lie in the range 0 ≤ h(y) ≤ 1. The p.g.fl. for an RFS with PDF

fX is defined as the set integral:

F [h] =

∫
hYfX(Y) dY (3.12)

where the expression hY is defined as follows:

hY =

1 if Y = ∅∏n
i=1 h(yn) if Y = {y1, . . . , yn}

(3.13)

34 CHAPTER 3. MATHEMATICAL PREREQUISITES

Certain values for the test function h give rise to some interesting cases:

• F [0] = fX(∅)

• F [1] =
∫
fX(Y) dY = 1

• if h is a constant value n, then:

F [n] =

∫
nYfX(Y) dY

= fX(∅) + n

∫
fX({y1}) dy1 +

n2

2

∫
fX(y1, y2) dy1 dy2 + · · ·

= Pr(|X| = 0) + nPr(|X| = 1) +
n2

2
Pr(|X| = 2) + · · ·

This is the probability generating function (p.g.f.) of p|X|(n), the car-

dinality distribution of X. To recover the distribution from its p.g.f.,

we perform higher-order derivatives:

Pr(|X| = n) =
dnF

dna
[a]

Just as the single-object distribution p|X|(n) can be recovered by taking

derivatives of its p.g.f., so can a multi-object probability density be recovered

by taking derivatives of its p.g.fl.

fX(Y) = δF (0; Y) (3.14)

Finally, consider the union of two statistically independent RFSs, X,Y ∈
F(X), whose p.g.fl.s are GX and GY respectively. The p.g.fl. of the resulting

union is equal to:

GX∪Y[h] = GX[h] ·GY[h] (3.15)

3.1.5 I.I.D. Processes and Poisson Processes

In single object estimation, we generally work with random variables that are

described by some parameterized distribution, e.g. Gaussian random vari-

3.1. FINITE SET STATISTICS 35

ables or binomial random variables. It should come to no surprise, therefore,

that there also exist parameterized distributions for RFSs. We arrive at these

distributions by considering the RFS as a realization of a particular type of

point process. Here, we discuss two such processess: the i.i.d. process, and

the Poisson process.

The probability that an RFS X ∈ F(X) generated by an i.i.d. process takes

on a value Y = {y1, . . . ,yn} is given by the following multi-object probability

density function:

fX(Y) = n!p(n)f(y1) · · · f(yn) (3.16)

Here, p(n) is the cardinality distribution of X, and f(y) is a probability

density function on X . If f(y) is a uniform distribution over X , we call the

process homogeneous, otherwise, it is inhomogeneous.

Poisson processes are a subset of i.i.d. processes, where the cardinality dis-

tribution is a Poisson distribution, parameterized by λ, the mean number of

points.

p(n) =
1

n!
λn exp(−λ) (3.17)

fX(Y) = λn exp(−λ)f(y1) · · · f(yn) (3.18)

Given these parameterized multi-object probability densities, we can derive

the corresponding p.g.fl.s. Recall the definition of the p.g.fl.:

F [h] =

∫
hYfX(Y) dY (3.19)

=
∞∑
n=0

1

n!

∫
h(y1) · · ·h(yn)fX(y1, . . . ,yn) dy1 · · · dyn (3.20)

Substituting the value of fX(Y) for the Poisson process (3.18):

F [h] = exp(−λ) + λ exp(−λ)

∫
h(y1)f(y1) dy1 (3.21)

+
1

2
λ2 exp(−λ)

∫
h(y1)h(y2)f(y1)f(y2) dy1 dy2 + · · · (3.22)

36 CHAPTER 3. MATHEMATICAL PREREQUISITES

= exp(−λ)
∞∑
n=0

(λ
∫
h(y)f(y) dy)n

n!
(3.23)

= exp(λf [h]− λ) (3.24)

where

f [h] =

∫
h(y)f(y) dy

Through a similar reasoning, we can derive the p.g.fl. of an i.i.d. process to

be:

F [h] =
∞∑
n=0

p(n)(

∫
h(y)f(y) dy)n (3.25)

= G(f [h]) (3.26)

Where G(y) =
∑∞

n=0 p(n)yn is the probability generating function of the

cardinality distribution p(n). These results, combined with the functional

derivatives in Subsection 3.1.3, will be the tools necessary to derive the multi-

object filters in the following chapter.

Simulating Point Processes

To simulate an i.i.d. process, we first sample n ∼ p(n) to get the number of

objects, and then we draw n independent samples from f(y). This process

is outlined in procedure simulateiidprocess. Example results are shown in

Figure 3.1.

Procedure simulateiidprocess(p,s)

Input: cardinality distribution p, spatial distribution s
n ∼ p(n)
for i = 1 . . . n do

xi ∼ s(x)
end
return {x1, . . . , xn}

3.1. FINITE SET STATISTICS 37

100 50 0 50 100
x

100

50

0

50

100

y

(a) Homogeneous

100 50 0 50 100
x

100

50

0

50

100

y

(b) Inhomogeneous

Figure 3.1: Two simulated Poisson point processes over the region X =
[x, y] ∈ [−100, 100]. In both cases, the cardinality is drawn from a Poisson
distribution with λ = 100. The homogeneous process samples from a uniform
distribution over X . The second process uses a spatial distribution which is a
2D normal with mean [20, 20] and variance σ2

x = 160, σ2
y = 360 and σ2

xy = 100.

38 CHAPTER 3. MATHEMATICAL PREREQUISITES

3.1.6 Cluster Processes

Cluster processes are hierarchical relationships between two point processes,

in which the realization of a daughter process is conditioned on a parent

process. This concept is best illustrated through examples.

Segment Cox Process

The Segment Cox Process is illustrated in Figure 3.2. The parent process is

a Poisson process which uniformly samples the space of line segment loca-

tions and orientations. For each generated line segment, a daughter Poisson

process samples points along its length.

Matérn Process

The Matérn Process is illustrated in Figure 3.3. The parent process is a

Poisson process which uniformly samples the space of cluster center locations.

For each generated cluster, a daughter Poisson process samples points within

a fixed radius R.

From these examples, we see that only the realizations of the daughter process

are observed as points. The realizations of the parent process are observed

indirectly as a conditioning on the daughter process. In the given examples,

the daughter processes are spatially centered about the realizations of the

parent process. Although this serves well to illustrate the link between the

parent and the daughter, such a spatial positioning is not necessary for cluster

processes. Rather, the defining characteristic is only that the daughter be

somehow conditioned on the parent process. This is best conveyed through

the language of probability generating functionals. The p.g.fl. of any cluster

process can be expressed as:

Gc[h] = Gp[Gd[h|·]] (3.27)

Where Gp[h] is the p.g.fl. of the parent process, and Gd[h|·] is the p.g.fl. of

the daughter process, conditioned on the parent process.

3.1. FINITE SET STATISTICS 39

100 50 0 50 100 150
x

100

50

0

50

100

150

y

Figure 3.2: Segment Cox process. The parent Poisson process has a rate
parameter λ1 = 5 and the daughter Poisson process has a rate parameter
λ2 = 10. Line segments have a fixed length L = 40.

50 0 50 100
x

120

100

80

60

40

20

0

20

40

60

y

Figure 3.3: Matérn process. The parent Poisson process has a rate parameter
λ1 = 5 and the daughter Poisson process has a rate parameter λ2 = 20.
Clusters have a fixed radius R = 20.

40 CHAPTER 3. MATHEMATICAL PREREQUISITES

3.2 Evaluating Multi-object State Estimates

When running simulations with a multi-object filter, it is useful to be able

to perform comparisons between the filter state and the simulation ground

truth, in order to evaluate its performance. For filters which use vector

representations of the state variable, this is fairly straight-forward. Two

vectors in X can easily be compared with the Euclidean distance. However

multi-object states reside in the space F(X), where the Euclidean distance

is not defined, and a different distance metric needs to be employed.

The Optimal Subpattern Assignment (OSPA) metric [84] is the distance

measure routinely encountered in the multi-object estimation literature. For

two multi-object states X = {x1, · · · , xm}, Y = {y1, · · · , yn} ∈ F(X), n ≥ m

their OSPA distance is computed in the following fashion:

1. Specify two parameters:

• the order p, with 1 ≤ p ≤ ∞

• the cutoff c, with c > 0

2. Choose a distance metric d on the single object space X , for example

the Euclidean distance. Modify the metric such that its maximum

value is the cutoff parameter:

d(c)(x, y) = min(d(x, y), c)

3. Use this distance to compute a cost matrix C containing the pairwise

p-th order distances between every element of X and Y :

Cij = d(c)(xi, yj)
p

4. From this cost matrix, compute the optimal assignment π ∈ Πn which

assigns elements from X to elements in Y such that the total cost is

minimized. A modified Hungarian/Munkres algorithm [11] is used to

perform this assignment.

3.2. EVALUATING MULTI-OBJECT STATE ESTIMATES 41

5. If the two multi-object states have differing cardinalities, we will be

left with unassigned features from the larger set. For each unassigned

feature, assign a cost of cp.

6. The OSPA distance is the p-th order average of the individual pairing

costs.

d(c)
p (X, Y) = (

1

n
(min
π∈Πn

m∑
i=1

d(c)(xi, y
p
π(i) + (n−m)cp))1/p (3.28)

The resulting quantity is a true distance metric in the sense that if satisfies

the following criteria:

1. Identity: d
(c)
p (X, Y) = 0, if and only if X = Y

2. Symmetry: d
(c)
p (X, Y) = d

(c)
p (Y,X)∀X, Y ∈ F(X)

3. Triangle Inequality: d
(c)
p (X, Y) + d

(c)
p (Y, Z) ≥ d

(c)
p (X,Z)∀X, Y, Z ∈

F(X)

Moreover, Eq. (3.28) actually defines an entire family of metrics, determined

by the choice of parameters p and c. The value of p affects how severely high

inter-object distances are penalized when pairing objects in X and Y. For a

fixed value of c, we have the following relationship:

d(c)
p1

(X, Y) ≤ d(c)
p2

(X, Y) 1 ≤ p1 ≤ p2 ≤ ∞

The cutoff value c is the cost assigned to unmatched objects and thus de-

termines the penalty for mismatched cardinalities. It also determines the

maximum inter-object distance to consider when finding the optimal assign-

ment.

An additional feature of the OSPA metric is that it may be decomposed into

two components: one which represents the localization error, and another

42 CHAPTER 3. MATHEMATICAL PREREQUISITES

which represents the cardinality error.

eloc = (
1

n

m∑
i=1

d(c)(xi, y
p
π(i))

1/p (3.29)

ecard = (
(n−m)cp

n
)1/p (3.30)

These components can provide additional insight on which factors contribute

the total OSPA error.

The OSPA metrics reported in Chapters 5 and 7 use parameter values p = 1

and c = 1.

Chapter 4

Multi-object Moment Filters

This chapter illustrates how the mathematical tools presented in the first

chapter may be used to derive multi-object moment filters that will be em-

ployed in the main body of this work. This chapter provides a tutorial on the

single-cluster PHD filter proposed by Swain and Clark [87]. We will begin

by discussing the exact Bayes’ rule solution to multi-object filtering, and the

reasons that it is impractical for most applications. We will continue by pre-

senting a first moment approximation of the multi-object Bayes filter, namely

the PHD filter. Finally, we will extend the PHD filter to single cluster point

processes, to arrive at the SC-PHD which will be applied to our SLAM so-

lution. Here, we will use rather general terminology to discuss these filters,

while the following chapters will place them in the context of SLAM.

4.1 Multi-object Bayes’ Filter

Consider an RFS-valued multi-object state, described by a multi-object prob-

ability density p(X). Over successive time steps, k, demarcated by mea-

surements Zk of the multi-object state, we can maintain an estimate of the

multi-object probability density with a Bayes’ filter iteration.

In most estimation problems of interest, the multi-object state undergoes

change through time. We model this change as a Markov transition density

43

44 CHAPTER 4. MULTI-OBJECT MOMENT FILTERS

f(X|X′). Between measurements we apply the following prediction equation:

pk|k−1(X) =

∫
fk(X|X′)pk−1(X′) dX′ (4.1)

When the state is observed, producing a measurement set Zk, the probability

density can be updated via Bayes’ rule:

pk|k(X|Z) =
pk|k−1(X)pk(Z|X)∫
pk|k−1(X)pk(Z|X) dX

(4.2)

Where pk(Z|X) is a multi-object measurement likelihood.

It is difficult, if not impractical, to implement the Bayes’ filter exactly. The

integrals in the prediction and denominator of the update do not always

exist in closed form. In single-object filtering, this can be mitigated by

approximating the prior distribution. Applying a Gaussian approximation

yields the Kalman filter, while a particle representation can be used for non-

parameterized priors, resulting in the particle filter. However, in multi-object

filtering, the intractability of the integral is compounded by the fact that it

is now the set integral defined in the previous chapter. As already seen,

this integral quickly becomes cumbersome for higher numbers of objects.

Finally, full multi-object probability densities are difficult to manipulate,

even in parameterized form, due to the necessity of accounting for spatial

distributions for every possible cardinality. For these reasons, we choose to

use a filter which propagates the first moment approximation of the multi-

object density. The following section will demonstrate the derivation of this

filter.

4.2 PHD Filter

For single-object probability densities, the first order moment corresponds to

the expected value:

E[x] =

∫
xf(x) dx (4.3)

4.2. PHD FILTER 45

One might expect that the multi-object analog would be simple substitution

of the vector-valued variable x for its RFS-valued counterpart X, yielding:

E[X] =

∫
Xf(X) dX (4.4)

The factor of X within the integrand is problematic because addition between

random finite sets is not defined. To obtain a well-behaved integral, we apply

a mapping between the RFS X and its underlying vector space X :

TX =

0 if X = ∅∑
x∈X δ(x) otherwise

(4.5)

We now define the first order moment to be the expected value of TX. This

moment is called the Probability Hypothesis Density, or PHD. The PHD is

also referred to as the intensity of a multi-object distribution.

DX(x) =

∫
TXf(X) dX ∈ X (4.6)

What does a PHD tell us about its corresponding probability distribution?

As in the case of the single object first moment, the PHD can be considered

to be a sort of expected value. Specifically, the integral of the PHD over a

particular region B ∈ X yields the expected number of objects falling within

B ∫
B∈X

DX(x) d(x) = E[|X ∩B|] (4.7)

In addition to the cardinality of the RFS, the PHD also contains information

about the location of objects within X and the precision to which that lo-

cation is known. Figure 4.1 illustrates this concept. It should be noted that

while the PHD can be considered to be a density function, it does not fit the

definition of a probability density function. Since its integral over X is the

expected number of objects, and not necessarily equal to 1.

Since it is a function over a vector space, the PHD is much easier to manip-

ulate than the full multi-object probability density. This means it is possible

to obtain a Bayes’ rule filter which propagates the PHD.

46 CHAPTER 4. MULTI-OBJECT MOMENT FILTERS

Figure 4.1: Example PHDs over a 2-dimensional state space. The integral of
both these densities gives n = 3 as the expected number of objects. However,
the one above left indicates a much higher certainty in the location estimate
of the 3 objects.

4.2. PHD FILTER 47

While the definition of the PHD offered in (4.6) is perhaps the most acces-

sible, for the purposes of deriving the filter, we will employ an alternative

definition of the PHD:

DX(x) = δG(1;x) (4.8)

That is, the PHD of the RFS X is equal to the functional derivative of its

p.g.fl., evaluated at h = 1. A proof of this relationship can be found in [57,

p.581-582].

4.2.1 PHD Filter Update

Let us begin with deriving the update equation for the PHD filter. The p.g.fl.

for the Bayes updated multi-object probability density is [57, p. 757-758]:

Gk|k[h] =
δF (0, h;Zk)

δF (0, 1;Zk)
(4.9)

with

F [g, h] =

∫
hXGk|k[g|X]pk|k−1(X) dX (4.10)

Gk[g|X] =

∫
gZpk(Z|X) dZ (4.11)

We can observe that Gk[g|X] is the p.g.fl. for the measurement likelihood

distribution pk(Z|X). In order to obtain a more concrete expression, we

make some modeling assumptions regarding the measurement process:

1. Each object x ∈ X generates a measurement Υ(x) independently of

the other objects. With a probability pD ≤ 1, Υ(x) will consist of

a single measurement {z} or, with a probability of 1 − pD, a missed

detection ∅. The singleton measurements are drawn from a single-

object measurement likelihood distribution p(z|x).

Υ(x) =

∅ with probability (1− pD)

{z} ∼ p(z|x) with probability pD
(4.12)

48 CHAPTER 4. MULTI-OBJECT MOMENT FILTERS

2. In addition to objects-generated measurements, Z includes a number

of false alarm, or clutter measurements, generated independently of

the objects. These clutter measurements are drawn from a Poisson

process with rate parameter λ and spatial distribution c(z). That is,

the clutter measurements are an RFS C = {z1, . . . , zm} where each

z is drawn from c(z) and the cardinality m is drawn from a Poisson

distribution with parameter λ.

Thus, the measurement set can be modeled as

Z = Υ(x1) ∪ · · · ∪Υ(xn) ∪ C (4.13)

As we have specified that each component of this union is statistically inde-

pendent of the others, the p.g.fl. of Z is simply the product of the p.g.fl.s for

each individual term. Since the clutter process is Poisson, we have already

shown in equation 3.24 that it’s p.g.fl. is

Gc[g] = exp(λc[g]− λ) (4.14)

We now turn our attention to the target-generated measurements. From the

definition of the p.g.fl.:

Gz[g|x] =

∫
gZf(Z|x) dZ (4.15)

= f(∅|X) +

∫
g(z)f({z}|x) dz (4.16)

= (1− pD) + pD

∫
g(z)p(z|x) dz (4.17)

Abbreviating pg =
∫
g(z)p(z|x) dz, we therefore obtain the p.g.fl. of the

measurement set as:

Gk[g|X] = Gz[g|x1]× · · · ×Gz[g|xn]×Gc[g] (4.18)

= (1− pD + pDpg)
X expλc[g]− λ (4.19)

4.2. PHD FILTER 49

Substituting into F [g, h]:

F [g, h] =

∫
hX(1− pD + pDpg)

X exp(λc[g]− λ)pk|k−1(X) dX (4.20)

= exp(λc[g]− λ)

∫
(h(1− pD + pDpg))

Xpk|k−1(X) dX (4.21)

= exp(λc[g]− λ)Gk|k−1[h(1− pD + pDpg)] (4.22)

Gk|k−1[h] is the p.g.fl. of the predicted RFS X. The final modelling assump-

tion necessary to obtain the PHD update equation is to specify that the

predicted RFS behaves according to a Poisson process. This give us:

F [g, h] = exp(λc[g]− λ)× exp(µ(s[h(1− pD + pDpg)]− 1)) (4.23)

= exp(λc[g]− λ+ µ(s[h(1− pD + pDpg)]− 1)) (4.24)

The foregoing equation can be expressed as a compounded functional:

F [g, h] = G[Th[g]] (4.25)

G[h] = exp(µ(s[h]− 1)) (4.26)

Th[g] = h(1− pD + pDpg) + µ−1λ(c[g]− 1) (4.27)

Expressed in this way, the generalized chain rule for functional derivatives

can be applied to obtain the numerator and denominator terms in Equation

(4.9) to obtain the p.g.fl. of the Bayes updated multi-object distribution, and

then further differentiated as in Equation (4.8) to obtain the updated PHD.

A full derivation is outside the scope of this work, but can be found in [16].

The resulting expression for the updated PHD is as follows:

Dk(x) = Dk|k−1(x)

[
(1− pD) +

∑
z∈Zk

p(z|x)pD(x)

ηz(x)

]
(4.28)

ηz(x) = κk(z) +

∫
Dk|k−1(x)pD(x)p(z|x) dx (4.29)

with

50 CHAPTER 4. MULTI-OBJECT MOMENT FILTERS

Dk|k−1(x) predicted PHD

pD(x) detection probability of a feature state x

p(z|x) single-object observation likelihood for a measurement z,

given an object state x

κk(z) PHD of the measurement clutter process evaluated at z

4.2.2 PHD Filter Prediction

The prediction step of the PHD filter propagates any possible changes in the

multi-object state between measurements, typically the motion of individ-

ual objects. Derivation of the p.g.fl. for the multi-object Bayes prediction

(4.1) is relatively simple compared to that of the update. It emerges from a

straightforward application of the definition of the p.g.fl.

Gk|k−1[h] =

∫
hXpk|k−1(X) dX (4.30)

=

∫
hX
∫
fk(X|X′)pk−1(X′) dX′ dX (4.31)

=

∫
pk−1(X′)

∫
hXfk(X|X′) dX dX′ (4.32)

=

∫
pk−1(X′)Gk|k−1[h|X′] dX′ (4.33)

Note that Gk|k−1[h|X′] is the p.g.fl. of the multi-object transition density

fk(X|X′) To obtain a concrete expression for this p.g.fl., we begin by mod-

eling the predicted RFS. Given a prior RFS Xk−1 = {x1
′, . . . ,xn

′}, the

predicted RFS will be union of the individual objects in Xk−1 propagated

forward in time, together with a birth RFS B, representing newly-appearing

objects. Furthermore, the evolution of each individual object through time

is statistically independent from all other objects, including ones newly ap-

pearing.

Xk|k−1 = Σ(x1
′) ∪ · · · ∪ Σ(xn

′) ∪Bk (4.34)

Note that much of the literature involving the PHD filter also includes a

spawning process, which describes the appearance of new objects dependent

on existing ones. We will omit this piece for the sake of simplicity. We

4.2. PHD FILTER 51

will account for the possiblity that objects may cease to exist between time

steps, characterized by a survival probability pS ≤ 1. For each object that

survives, its predicted state will be sampled from a single-object transition

density fk(x|x′).

Σ(x′) =

∅ with probability (1− pS)

{x} ∼ fk(x|x′]) with probability pS
(4.35)

This survival model is completely analogous to the detection model in Equa-

tion (4.12). Thus, we can use the same line of reasoning used to derive

the p.g.fl. for object-generated measurements (4.17) to obtain the p.g.fl. for

transitioned objects

Gk|k−1[h|x′] = (1− pS + pSph) (4.36)

ph =

∫
h(x)fk(x|x′) dx (4.37)

Let Gb[h] be the p.g.fl. for the birth RFS B. The p.g.fl. for the multi-object

transition density is therefore:

Gk|k−1[h|X′] = Gb[h](1− pS + pSph)
X′ (4.38)

Substitute into Equation (4.33) to obtain the p.g.fl. for the predicted multi-

object distribution.

Gk|k−1[h] =

∫
Gb[h](1− pS + pSph)

X′pk−1(X′) dX′ (4.39)

= Gb[h]

∫
(1− pS + pSph)

X′pk−1(X′) dX′ (4.40)

= Gb[h]Gk−1[(1− pS + pSph)] (4.41)

Taking the functional derivative, we obtain the PHD filter prediction equa-

tion.

Dk|k−1(x) = δGk|k−1(1; x) (4.42)

52 CHAPTER 4. MULTI-OBJECT MOMENT FILTERS

=

∫
pS(x)f(x|x′)Dk−1(x) dx′ + γ(x) (4.43)

with the following definitions:

Dk−1(x) prior PHD

pS(x) survival probability for a given object state x

fk(x|x′) single-object observation transition density

γk(x) PHD of the birth RFS

With the prediction and update equations defined, the PHD filter is complete.

We will now move on to consider the SC-PHD filter.

4.3 SC-PHD Filter

The applications in the remainder of this work utilize a generalization of the

PHD filter, called the SC-PHD filter. This filter considers the multi-object

state to be generated by a cluster process, such as those described in Section

3.1.6, with the additional condition that the parent process consist of a single

object. To derive the SC-PHD filter, we follow a procedure similar to the one

outlined in the previous section. Where we encounter Gk−1[h] and Gk|k−1[h],

the p.g.fl.s for the prior and predicted multi-object probability distributions,

we substitute p.g.fl.s for cluster processes

G[h] = Gp[Gd[h]] (4.44)

Given the requirement that the parent RFS be a singleton, the p.g.fl. of the

parent process must be:

Gp[h] =

∫
h(x)s(x) dx (4.45)

Thus, the PHD of the parent process is identical to the spatial distribution

s(x), and the single cluster p.g.fl. is simply the inner product of the spatial

distribution of the parent with the p.g.fl. of the daughter process.

G[h] =

∫
s(x)Gd[h] dx (4.46)

4.3. SC-PHD FILTER 53

Here, we will present the SC-PHD filter equations, foregoing a full derivation.

However, a complete discussion can be found in [89, Appendix B].

4.3.1 SC-PHD prediction

Under the assumption that the introduction of new daughter process objects

is statistically independent of the dynamics of existing object, the predicted

joint intensity for the single-cluster process is given by:

Dk|k−1(x,y) =∫
sk−1(x′)πk|k−1(x|x′)D̃k|k−1(y|x′) dx′ (4.47)

where D̃k|k−1(y|x) is the predicted PHD of the daughter process:

D̃k|k−1(y|x) = γk|k−1(y|x)

+

∫
D̃k−1(y′|x)pS(y′|x)πk|k−1(y|y′; x) dy′︸ ︷︷ ︸

D̃p
k|k−1

(y|x)

(4.48)

with the following definitions:

54 CHAPTER 4. MULTI-OBJECT MOMENT FILTERS

sk−1(x′) prior PHD of the parent state from time k − 1

πk|k−1(x|x′) Markov transition density of the parent

γk|k−1(·|x′) PHD for daughter birth process at time k, conditioned on

parent state x′

D̃k−1(y′|x′) prior PHD of the daughter state from time k− 1, conditioned

on parent state x′

pS(·|x′) object survival probability, conditioned on parent state x′

πk|k−1(·|·; x′) single-object Markov transition density for daughter process,

conditioned on parent state x′

D̃p
k|k−1(y|x) portion of the predicted PHD corresponding to objects per-

sisting from previous time step.

4.3.2 SC-PHD Update

The measurement update for the joint single-cluster PHD is:

Dk|k(x,y) =
sk|k−1(x)LZk(x)∫
sk|k−1(x)LZk(x) dx

D̃k|k(y|x) (4.49)

where D̃k|k(y|x) is the updated PHD of the daughter:

D̃k|k(y|x) = D̃k|k−1(y|x)

[
(1− pD(y|x)) +

∑
z∈Zk

g(z|y,x)pD(y|x)

ηz(y|x)

]
(4.50)

ηz(x) = κk(z) +

∫
D̃k|k−1(y|x)pD(y|x)g(z|y,x) dy (4.51)

with

4.3. SC-PHD FILTER 55

sk|k−1(x) predicted PHD of the parent state

D̃k|k−1(y|x) predicted PHD of the daughter state, conditioned on parent

state x

pD(y|x) detection probability of a daughter state y given a parent state

x

g(z|y,x) single-object observation likelihood for a measurement z given

a daughter state y and parent state x

κk(z) PHD of the measurement clutter process evaluated at z

LZk(x) the multi-object observation likelihood of the measurement set

Zk given a parent state x

it is defined by:

LZk(x) = exp

{
−
∫
pD(y|x)D̃k|k−1(y|x) dy

} ∏
z∈Zk

ηz(x) (4.52)

We can see that the SC-PHD filter does not deviate very far from the PHD fil-

ter. The prediction and update equations for the daughter PHD are virtually

identical to those of the PHD filter, the sole difference being the condition-

ing on the parent state. The parent prediction involves a straightforward

inner product with a separate Markov transition density. The key result

is the multi-object observation likelihood LZk(x) for performing the parent

update.

56 CHAPTER 4. MULTI-OBJECT MOMENT FILTERS

Chapter 5

SLAM with SC-PHD Filters

In this chapter, we describe the use of the SC-PHD filter derived in Chapter

4 for solving the SLAM problem. The filter is implemented with a hybrid

particle/Gaussian mixture formulation, with modifications for measurement-

driven birth, changing field of view, and features with heterogeneous dynam-

ics. We present experimental results with synthetic datasets, and compare

this algorithm with RB-PHD SLAM.

5.1 Problem Formulation

In this work, we consider a mobile sensor, or vehicle, whose state evolves ac-

cording to a particular motion model such as constant velocity or coordinated

turn. From these motion models, a probability density π(Xk|k−1|Xk−1,uk),

may be derived which describes the probability of transitioning from a pre-

vious state Xk−1 to a current state Xk|k−1, where uk is the control input for

the current timestep, which may or may not be present depending on the

choice of motion model.

Furthermore, we assume that the environment is composed of a set of map

features M. The map is not necessarily completely static, so likewise its state

evolves according to π(Mk|k−1|Mk−1). As the sensor explores the environ-

ment, it receives measurements Zk relating the map features to the vehicle

position through a possibly non-linear function h(m,X). The measurement

57

58 CHAPTER 5. SLAM WITH SC-PHD FILTERS

process is non-ideal, so that in addition to measurements being subject to

additive noise, some map features may fail to be sensed (missed detections),

and measurements may be received which do not correspond to any map

feature (false alarms, or clutter).

We represent the vehicle state as a single random vector in the vehicle state

space X ⊆ Rnx , and each map feature as a single random vector in the feature

space M⊆ Rnm .

xk = [xk,1, . . . , xk,nx] ∈ X (5.1)

mk,n = [mk,n,1, . . . ,mk,n,nm] ∈M (5.2)

While it is certain that there is and always will be only one vehicle, no such

certainty applies to the number of map features. Hence the map state is

what we call an RFS on M:

Mk = {mk,1, . . . ,mk,nk} ∈ F(M) (5.3)

where F(M) denotes the set of all finite subsets ofM. The sensor measure-

ments for each time step are modeled as a union of two independent RFS’s on

the measurement space Z ⊆ Rnz : one representing measurements generated

by map features, and the other representing the clutter measurements:

Zk = Z(x,M) ∪ C ∈ F(Z) (5.4)

The goal in SLAM is to estimate the joint posterior distribution of the ve-

hicle and map states given a history of control inputs and measurements:

pk(Xk) = pk(Xk,Mk|u1:k,Z1:k). This is accomplished through the prediction

and update recursion that is ubiquitous throughout many Bayesian estima-

tion applications, including SLAM. The predicted joint state is given by the

Chapman-Kolmogorov equation:

pk|k−1(Xk|k−1|u1:k,Z1:k−1) =

∫
π(Xk|k−1|Xk−1,uk) dXk−1 (5.5)

5.1. PROBLEM FORMULATION 59

The updated joint state is the result of applying Bayes’ rule:

pk(Xk|Z1:k) =

gk(Zk|Xk|k−1)pk|k−1(Xk|k−1|u1:k,Z1:k−1)∫
gk(Zk|Xk|k−1)pk|k−1(Xk|k−1|u1:k,Z1:k−1) δXk|k−1

(5.6)

For all but the most trivial of cases, the above is computationally impracti-

cal. Because the joint state is defined over the space X ×F(M), the integrals

become set integrals [54], which are taken over all sets of all possible car-

dinalities. Even specifying and storing a probability distribution over such

a space becomes a daunting task. These difficulties will be overcome in the

following manner:

1. The SLAM scenario will be modeled as a cluster process, allowing us

to separate the problem into estimation of a relatively simple parent

process for the vehicle, and a conditional daughter process for the map.

2. Instead of propagating pk(Xk), we propagate its first momentDk(x,m).

The first moment takes values over the single-object space X ×M and

is significantly easier to handle than a full multi-object probabilility

distribution.

Cluster processes, illustrated in Figure 5.1, describe a hierarchical arrange-

ment of point processes where the realization of a daughter process is condi-

tioned on the realization of some parent process [88]. For modeling SLAM,

we consider a special subset of cluster processes where the cardinality of the

parent process is exactly equal to one. Such processes are termed single clus-

ter processes. The map is represented by a daughter point process over the

feature space whose realization is conditioned on the realization of the vehicle

point process, which consists of a single individual in the vehicle state space.

In this work, both the map and false positive measurements are considered

to be realizations of Poisson point processes. Moreover, we assume that the

introduction of newly-observed map features is statistically independent of

the dynamics of existing map features. This allows us to apply the SC-PHD

filter that was described in Chapter 4.

60 CHAPTER 5. SLAM WITH SC-PHD FILTERS

At first, cluster processes may appear to be incongruent to the SLAM prob-

lem. Indeed, the term “cluster process” evokes an image where daughter

events are spontaneously generated by instances of the the parent process.

This contrasts with the usual conceptualization of SLAM where environment

features exist in perpetuity waiting to be “discovered” by the vehicle. To a

vehicle with no a priori knowledge of its environment, this distinction is not

important. At the risk of sounding somewhat existential, we may treat a

feature as having come into existence the moment it is first sensed, as it is

from that point onward that it becomes relevant to the operational decisions

of the vehicle. Having overcome this conceptual hurdle, we find that the

conditional relationship between observation of features and the trajectory

of the vehicle satisfies the requirements of applying a cluster process model.

Furthermore, by employing a model in which features may be born and die

off, we create a SLAM framework that can cope with a dynamically changing

environment.

5.1. PROBLEM FORMULATION 61

Daughter Space

Parent Space

Observation Space

Figure 5.1: Visualization of a cluster process. The daughter process is
conditioned on realizations of a separate parent process. Observations are
collected only on the daughter process, and are mixed in with false alarms.

62 CHAPTER 5. SLAM WITH SC-PHD FILTERS

5.2 Implementing the SC-PHD Filter for SLAM

Thus far, our discussion of the PHD and SC-PHD filter has been couched in

mostly symbolic terms. We will now turn our attention to how the SC-PHD

filter is implemented numerically for application towards SLAM.

In implementing the SC-PHD filter, we couple a particle representation for

the parent PHD with a Gaussian mixture representation for the PHD of the

daughter state. To reflect the conditional relationship between the parent

and daughter processes, each particle in the parent PHD is associated with

its own Gaussian Mixture (GM) representing the daughter PHD conditioned

on that particle’s trajectory.

sk−1(x) =

Nk−1∑
i=1

ζ
(i)
k−1δ(x − x

(i)
k−1) (5.7)

D
(i)
k−1(y|xk−1) =

J
(i)
k−1∑
j=1

w(i,j)N (y;µ
(i,j)
k−1,P

(i,j)
k−1) (5.8)

Note that because the PHD is not a true probability distribution, the weights

w(i,1), · · · , w(i,j) do not necessarily sum to 1. Rather, the sum of these weights

is the estimated number of map features. The particle representation was

chosen for its ability to capture non-linearities in vehicle motion, while the

Gaussian mixture representation was chosen for its computational economy

and was deemed suitable under the assumption of relatively simple dynam-

ics for objects in the daughter process. Each particle’s conditional daughter

PHD is propagated with a Gaussian Mixture PHD (GM-PHD) filter [96],

amended with the measurement-driven birth strategy described in [43]. The

GM-PHD filter relies on the further assumptions that the daughter process

motion model and measurement models are linear Gaussian, or may be rea-

sonably linearized as such, with matrices F and H, and that the noise affect-

ing these models is zero-mean Gaussian-distributed, with covariance matrices

Q and R.

5.2. IMPLEMENTING THE SC-PHD FILTER FOR SLAM 63

5.2.1 Measurement-driven Birth

In the general discussion of both the PHD and SC-PHD filters in Chapter

4, no constraints were placed on the RFS describing birth objects. Some

works in the PHD filter literature, e.g. [97], sample the birth objects from a

random point process. In reality, we have at our disposal a resource which

allows us the construct the birth distribution in a more informed manner:

the measurements from the current time step Zk. Even considering the pres-

ence of false alarms, some of the collected measurements can originate from

previously unobserved map features and thus it is reasonable to derive the

birth RFS from Zk. Let the PHD for the birth RFS at time k be defined by

the following Gaussian mixture:

γk(m|x) =
∑
z∈Zk

wbN (y;h−1(z,x),R∗) (5.9)

R∗ = H∗RH∗T (5.10)

Where h−1(z,x) is the inverse measurement function relating a measurement

and vehicle state to a map feature location, and H∗ is its linearization with

respect to the measurement. The weight of the birth features wb is typically

tuned from the expected number of newly observed features each time step.

In addition to these changes, the creation of the birth features to the daughter

PHD is delayed until the update step. The reasons for this are twofold:

1. The measurements are already being used during the update step, and

are otherwise not accessed during the prediction. Hence, it is more

computationally expedient to create the birth features during the up-

date;

2. As the birth features are created directly on top of the current mea-

surements, they will be given disproportianate importance if they are

passed through the PHD update normally, and so require special han-

dling during the update. This will be elaborated upon in Section 5.2.5

It has been shown in that this strategy can provide superior performance

when applied to the GM-PHD filter, as well as the SMC-PHD filter [43,

64 CHAPTER 5. SLAM WITH SC-PHD FILTERS

80]. However, it should be noted that this strategy can only be applied

in scenarios where an inverse exists for the measurement model. For some

sensor configurations, most notably bearing-only sensors, this is not true.

In such cases the traditional measurement-agnostic birth strategy should be

employed.

5.2.2 Prediction

Substitution of equations (5.7) and (5.8) into the SC-PHD prediction equa-

tion (4.47), and applying the sampling property of the Dirac delta function

yields the following result:

Dk|k−1(x,y) =

Nk−1∑
i=1

ζ
(i)
k−1πk|k−1(x|x(i)

k−1)D̃k|k−1(y|x(i)
k−1) (5.11)

Next, the Markov transition density of the parent is approximated by drawing

M samples from it:

{x(i,1), · · · ,x(i,M)} ∼ πk|k−1(x|x(i)
k−1) (5.12)

Dk|k−1(X,M) ≈
Nk−1∑
i=1

M∑
j=1

ζ(i)

M
δ(x − x(i,j))D̃k|k−1(y|x(i)

k−1) (5.13)

For each parent particle from the prior, its associated conditional daughter

PHD is replicated M times, and a prediction is generated for each replicate.

With measurement-driven births, the incorporation of new targets into the

daughter PHD is delayed until the update step. Therefore, the predicted

daughter PHD describes only persisting daughter features propagated for-

ward in time:

D̃S,k|k−1(y|x(i)
k−1) = pS

JS,k|k−1∑
j=1

w
(j)
S,k|k−1N (y;µ

(j)
S,k|k−1,P

(j)
S,k|k−1|x) (5.14)

w
(j)
S,k|k−1 = w

(j)
k−1 µ

(j)
S,k|k−1 = f(µ

(j)
k−1)

P
(j)
S,k|k−1 = FkP

(j)
k−1F

T
k + WkQkW

T
k

5.2. IMPLEMENTING THE SC-PHD FILTER FOR SLAM 65

where f(µ) is the (possibly non-linear) motion model describing the motion

of daughter features and F and W are the Jacobians of the motion model

with respect to the daughter feature and process noise respectively. It should

be noted that for static daughter features, the motion model is simply the

identity, and so the prediction only needs to be performed for dynamic daugh-

ter features. The predicted joint PHD now consists of Nk|k−1 = M × Nk−1

particles corresponding to the parent state, and the same number of Gaus-

sian mixtures representing the conditional daughter PHDs. Note that this

means the number of particles grows geometrically with every prediction, but

when the particles are resampled, we only draw a number of samples equal

to the number of original particles, so that this growth does not continue

unchecked.

5.2.3 Field of View

As the vehicle travels, the observable area of the feature space will change

according to the position of the sensor. Let this area be FOV (X) ⊆ M.

We consider map features within FOV (X) to have a probability of detec-

tion equal to some nominal value pD, and all other features to have a zero

probability of detection.

pD(y|x) =

pD if M ∈ FOV (X)

0 otherwise
(5.15)

The PHD update in Eq. (4.28) may be thought of as the sum of a non-

detection term and a detection term. When pD(y|x) = 0 is substituted into

(4.28), the equation reduces to only the non-detection term:

D̃k(M|X) = D̃k|k−1(M|X)

This means that for the portion of the map that is outside of the vehicle’s field

of view, the updated PHD is the same as the predicted PHD. Therefore, the

PHD update only needs to be performed on map features which are currently

visible, which introduces an upper bound for the required computational

66 CHAPTER 5. SLAM WITH SC-PHD FILTERS

effort in this portion of the algorithm.

Clearly, this is a simplified model; for application in real-world systems, a

feature’s probability of detection could be affected by its range from the

sensor, or by occlusion. The effects of mismatched detection probabilities

should not be discounted. If a feature is assumed to be in the FOV when in

reality it is not, its pD will be overestimated. This means the non-detection

term in Eq. (4.28) will be under-weighted, and because no measurement was

received, the detection term will also have a very low weight. Depending

on the state extraction scheme used, this may result in a map feature being

incorrectly deleted. If the FOV proves too challenging to be parameterized,

then it may be worthwhile to incorporate techniques for online estimation of

the detection probability [56].

5.2.4 Dynamic Map Features

Traditionally, feature-based SLAM solutions operate under the assumption

that the map consists only static features. There may be transient objects

moving through the environment which are detected by the vehicle’s sen-

sors, but these measurements are excluded through some pre-processing step

in order to fit the original assumption. We hypothesize that the SC-PHD

SLAM framework is capable of discriminating between static and dynamic

features, and of maintaining tracks for dynamic features, even when sensor

measurements provide no information on the static or dynamic nature of

the features. We can define a state space with both position and velocity

components. For example in the Cartesian plane:

m = [x, y, ẋ, ẏ] ⊆ R4

One might expect that given this state definition, we could model the feature

evolution with some appropriate motion model, e.g. constant velocity or co-

ordinated turn, and estimates for static features would coveniently converge

towards points on the hyperplane (ẋ, ẏ) = (0, 0). Unfortunately, this does

not work as well as anticipated. The Markov transition densities formed from

these motion models propagate the uncertainty in the velocity estimate as

5.2. IMPLEMENTING THE SC-PHD FILTER FOR SLAM 67

uncertainty in the position estimate, so that even in the absence of process

noise, the position uncertainty grows every time step during the prediction

step unless the feature’s velocity is known deterministically. This has se-

rious implications for features outside of the field of view, whose position

uncertainties will continue to grow until reobserved. Indeed, this approach

is analogous to the tuning strategy for EKF-SLAM, where noise is injected

into feature covariance matrices. A significant body of research has shown

that this surely leads to inconsistent estimation [47, 95, 6, 44].

To address these issues, we instead represent the daughter process as the

sum of two Poisson processes, one for static features, and one for dynamic

features

D̃(M|X) = D̃s(M|X) + D̃d(M|X) (5.16)

Because the sum of Poisson processes is still Poisson, the previously described

equations are still applicable. We consider the positions for static features

to reside in a different space than the positions of the dynamic features, so

that M is now defined over the joint space M =Ms ×Md.

The prediction step will be performed separately for each process, accord-

ing to (5.14), using their particular Markov transition density and survival

probability.

5.2.5 Update

Each of the conditional daughter PHDs are updated individually when mea-

surement inputs arrive. As mentioned previously, the incorporation of new

targets into the PHD is postponed until the measurement update. Thus,

the updated PHD can be considered as the sum of three terms: 1. Targets

persisting from the previous time step which have failed to be detected (mis-

detection); 2. Targets persisting from the previous time step which have been

detected (detection); and 3. Newly-appearing targets for the current timestep

(birth). We assume that the static/dynamic nature of a daughter feature is

not captured by the sensor, so for each measurement, we create two birth

68 CHAPTER 5. SLAM WITH SC-PHD FILTERS

terms: one in the static feature space and one in the dynamic feature space.

D̃k|k(y|x) = (1− pD)

Jk|k−1∑
j=1

w
(j)
k|k−1N (y;µ

(j)
k|k−1, P

(j)
k|k−1)

+
∑
z∈Zk

Jk|k−1∑
j=1

w
(j)
k|kN (y;µ

(j)
k|k(z),P

(j)
k|k(z))

+
∑
z∈Zk

wγ0
ηz(y|x)

(N (y; z∗s(x),R∗s) +N (y; z∗d(x),R∗d)) (5.17)

w
(j)
k|k = w

(j)
k|k−1

pDg(z|y,x)w
(j)
k|k−1

ηz(y|x)
(5.18)

ηz(y|x) = κ(z) + pD

Jk|k−1∑
l=1

g(z|y,x)w
(j)
k|k−1 + 2wγ0 (5.19)

µ
(j)
k|k(z) = µ

(j)
k|k−1 + K(z − h(µ

(j)
k|k−1,x)) (5.20)

P
(j)
k|k(z) = (I−KkHk)P

(j)
k|k−1 (5.21)

Kk = PHT
kS−1

k Sk = HkPk|k−1H
T
k + Rk (5.22)

z∗s(x), z∗d(x), R∗s, R∗d are the means and covariances for the measurement-

driven birth terms, whose deriviation was discussed in Section 5.2.1. These

feature states will have identical position components, and will differ only in

the velocity components. The weights of the parent particles are updated

using the multi-object measurement likelihood LZk .

ζ
(i)
k =

LZk(x
(i)
k|k−1)ζ

(i)
k|k−1∑Nk|k−1

l=0 LZk(x
(l)
k|k−1)ζ

(l)
k|k−1

(5.23)

LZk(x
(i)
k|k−1) = exp{

J
(i)
k|k−1∑
j=0

w
(j)
k|k−1}

∏
z∈Zk

ηz(y
(i)
k|k−1|x

(i)
k|k−1) (5.24)

Following each daughter update, the number of terms in the Gaussian mix-

ture is equal to Jk|k = (|Zk|+1)Jk|k−1 + |Zk| To limit this exponential growth

in mixture terms, a mixture reduction step is performed to eliminate terms

with weights that are too low, and to merge similar terms. Specifically, we

5.2. IMPLEMENTING THE SC-PHD FILTER FOR SLAM 69

employ the clustering algorithm described in [82]. The reduction procedure

consists of pruning step, in which Gaussian terms are eliminated based on

the criteria of minimum weight and maximum number of terms, followed

by a mergingstep, in which Gaussians within a certain distance threshold

are combined. Alternative reduction algorithms, such as Gaussian Mixture

Reduction by Clustering [83] may be substituted here if higher fidelity is

required.

5.2.6 Computational Complexity

The complexity of the SC-PHD SLAM algorithm is linear in terms of num-

ber of measurements m, number of map features n, and number of parent

particles p. The prediction step is on the order O(np), while the update is of

the order O(mnp). In fact, we have found that the largest performance bot-

tleneck in our experiments comes from an externality: the Gaussian mixture

reduction algorithm exhibits a complexity on the order of O(n3). We believe

that continuing research in this area should prioritize alternative methods

for this portion of the algorithm.

5.2.7 State Extraction

To obtain an estimate of the parent state, the weighted mean of the parent

particles is used. The expected daughter PHD can be obtained by performing

a weighted sum of all the Gaussian mixtures and then applying another

Gaussian Mixture Reduction. However, because the reduction algorithm has

a complexity of O(n3), this would scale poorly with the number of parent

particles. For that reason, we simply select the PHD corresponding to the

maximum-weighted particle. Empirical evidence has shown that the results

do not differ significantly from the expected value map. Next, the Gaussian

mixture weights are summed to give an estimate of the number of targets

Nk. The Nk most highly-weighted terms are then taken to be the daughter

estimate.

70 CHAPTER 5. SLAM WITH SC-PHD FILTERS

Each parent particle is
linked to a map,
conditioned on that
particle's trajectory

When a measurement arrives,
the per-particle maps are updated
with the PHD filter

The particle's weight is updated
based on the measurement
likelihood from the map update

PHD
Update

Figure 5.2: The single-cluster PHD SLAM process can be represented by the
above hierarchy. Updates from landmark updates propagate upwards and
reweight particles representing the vehicle position.

5.3 Simulation Results

The SC-PHD SLAM filter was verified via synthetic simulation in two sce-

narios: one to ascertain the functionality of mixed landmark estimation, and

another to compare its performance against the previously proposed RB-PHD

SLAM algorithm.

5.3.1 Dynamic landmarks

The first simulation was performed using the scenario depicted in Figure 5.3a.

In this scenario, a vehicle explores a planar two-dimensional environment,

and receives measurements generated by point features, several of which are

themselves moving through the environment. The vehicle state is represented

5.3. SIMULATION RESULTS 71

by a three element vector consisting of absolute displacement in x and y, and

orientation θ: Xk = [xk, yk, θk]. The dynamics of the vehicle adhere to the

motion model described in [42, 69], where the next vehicle state depends on

control inputs for velocity ve taken from a wheel encoder, and steering angle

α.

[xk, yk, θk]
T = [xk−1, yk−1, θk−1]T

+

ẋ+ θ̇(a sin θk−1 + b cos θk−1)

ẏ + θ̇(a cos θk−1 − b cos θk−1)

θ̇

∆T (5.25)

ẋ = vc cos θk−1 ẏ = vc sin θk−1 θ̇ =
vc
L

tanα (5.26)

where a = 1.890m, b = 0.250m, H = 0.380m, and L = 1.415m are parameters

describing vehicle geometry and sensor placement, also

vc =
ve

1− tanαH
L

(5.27)

transforms wheel encoder velocity onto the vehicle centerline. The odometry

inputs are reported with zero-mean additive Gaussian noise with standard

deviations σv = 1 m/s and σα = 2◦ for wheel velocity and steering angle

respectively.

The measurements received by the vehicle from environment features consist

of a range r and a relative bearing φ.rk
φk

 =

√

∆x2 + ∆y2

arctan(∆y,∆x)

 (5.28)

The vehicle’s sensor has a 15m range, and a 360◦ field of view. Measurements

are subject to zero-mean additive Gaussian noise, with standard deviations

σr = 0.25m and σφ = 0.5◦ for range and bearing respectively. Moreover,

false alarm measurements are received at a mean rate of λ = 20 per scan.

72 CHAPTER 5. SLAM WITH SC-PHD FILTERS

Odometry inputs arrive at a rate of 20 Hz, while measurements arrive at

a rate of 10 Hz. The probability of detection was pD = 0.95. Figure 5.3b

gives an example of the dead-reckoning trajectory from the noisy odometry

inputs, and cumulative sensor measurements which may be generated from

these simulation parameters.

Monte Carlo (MC) simulations were performed with 25 different sets of odom-

etry and measurement inputs. To account for variability in sampling the

Markov transition during the prediction, 4 runs were performed for each set

of inputs, for a total of 100 MC runs. The filter was run with a nominal

particle count of N0 = 32, and M = 2 samples were drawn from the tran-

sition density every prediction step. The threshold for particle resampling

was set to Neff = 0.05. Figure 5.4a shows an example of the resulting map

and trajectory estimates. Dynamic feature tracks are shown in Figure 5.4b.

It can be seen that the majority of false tracks are located where there are

closely-spaced static map features, and where successive measurements orig-

inating from these features could be construed as originating from a single

dynamic feature.

Figures 5.5a and 5.5b show the average error in vehicle pose and map. Map-

ping performance was quantified using the OSPA distance [84], a metric

which takes into account differences in both localization and cardinality. For

computing the map error, the ground truth was constructed in the following

manner: 1) Static features are included in the set of true features from

the time step when they are first observed until the end of the simulation;

and 2) Dynamic features are included in the set of true features only while

they are within the field of view; this results in the segmented ground truth

tracks in Figure 5.4b. The results indicate that the SCPHD SLAM algorithm

produces a definitively superior trajectory estimate compared to odometry

alone, and that map estimation error is non-increasing for the duration of the

simulation. For the sake of expeditious computation in our MC runs, we used

a reduced-size scenario of approximately 300 time steps in length. However,

in order to ascertain the algorithm’s viability in more extended operations,

we also ran a single simulation on a scenario 3500 time steps in length, with

identical parameters. The results are shown in Figures 5.6, and show that

5.3. SIMULATION RESULTS 73

25 20 15 10 5 0 5 10 15 20
x (meters)

20

15

10

5

0

5

10

15

20

y
(m

et
er

s)

(a) Vehicle trajectory (solid line), static and dynamic map features (stars and
dashed lines).

30 20 10 0 10 20
x (meters)

20

10

0

10

20

y
(m

et
er

s)

(b) Cumulative measurements and dead-reckoning trajectory (red, solid).

Figure 5.3: Simulation scenario

74 CHAPTER 5. SLAM WITH SC-PHD FILTERS

−25 −20 −15 −10 −5 0 5 10 15 20 25
−20

−15

−10

−5

0

5

10

15

20

x (meters)

y
 (

m
e
te

rs
)

(a) Example map and trajectory estimate. Black stars and dashed line show true
feature locations and vehicle trajectory.

−20 −15 −10 −5 0 5 10 15 20 25

−20

−15

−10

−5

0

5

10

15

x (meters)

y
 (

m
e

te
rs

)

(b) Tracks of estimated dynamic targets (green), overlaid on true feature trajec-
tories (black).

Figure 5.4: Simulation results: map and trajectory estimates

5.3. SIMULATION RESULTS 75

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

steps

A
b

s
o

lu
te

 X
Y

 e
rr

o
r

(a) Mean vehicle error over 100 MC runs (blue,solid) and dead-reckoning error
(red, dashed).

0 50 100 150 200 250 300
0

5

10

O
S

P
A

 M
e
tr

ic

0 50 100 150 200 250 300
0

0.5

1

1.5

2

L
o

c
a
li
z
a
ti

o
n

 E
rr

o
r

0 50 100 150 200 250 300
0

5

10

C
a
rd

in
a
li
ty

 E
rr

o
r

(b) Mean map error over 100 MC runs. A cutoff value of c = 10 was used in
computing the OSPA metric.

Figure 5.5: Simulation results: error metrics

76 CHAPTER 5. SLAM WITH SC-PHD FILTERS

consistent estimation performance is sustained over longer running times. As

each per-particle map is updated independently, the SC-PHD SLAM algo-

rithm lends itself well to parallelization. Our implementation is based on the

CUDA 4.0 parallel computing platform, and the simulations presented here

were performed on an Nvidia Tesla C2070 GPU.

5.3. SIMULATION RESULTS 77

−200 −150 −100 −50 0 50 100 150 200
−200

−150

−100

−50

0

50

100

150

200

x (meters)

y
(m

et
er

s)

(a) Trajectory and map results. Black stars and dashed line show true feature
locations and vehicle trajectory.

0 500 1000 1500 2000 2500 3000 3500
0

50

100

150

200

250

Time step

P
o

si
ti

o
n

 E
rr

o
r

(m
)

(b) Vehicle pose estimation error (blue,solid), compared to error from odometry
alone (red,dashed).

0 500 1000 1500 2000 2500 3000 3500
0

2

4

6

O
S

P
A

 E
rr

o
r

0 500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

L
o

ca
liz

at
io

n
 E

rr
o

r

0 500 1000 1500 2000 2500 3000 3500
0

1

2

3

4

5

6

Time step

C
ar

d
in

al
it

y
E

rr
o

r

(c) Map estimation OSPA error, with localization and cardinality components.

Figure 5.6: Results from 3500 timestep simulation of SC-PHD SLAM

78 CHAPTER 5. SLAM WITH SC-PHD FILTERS

5.3.2 Comparison with RB-PHD SLAM

In this set of experiments, we compare the performance our SC-PHD SLAM

algorithm to that of a previous PHD filter SLAM algorithm: RB-PHD

SLAM [64]. The motion and measurement models are identical to those used

in the simulations in the previous section. The odometry noise is zero-mean

Gaussian distributed, with standard deviations of σv = 2 m/s and σα = 5◦ for

the wheel encoder and steering angle respectively. Likewise, measurements

are subject to additive zero-mean Gaussian distributed noise with standard

deviations σr = 1m and σb = 2◦ in range and bearing respectively. Map

features have a detection probability of pD = 0.95 and false alarms arrive at

a mean rate of λ = 5 per scan. Figure 5.7 illustrates the simulation scenario.

Using the same map feature layout and vehicle trajectory, 50 Monte Carlo

runs were simulated, recreating odometry input and sensor measurements

for each run. These inputs were then passed through both the SC-PHD and

RB-PHD SLAM algorithms. The single-feature map approximation was used

for RB-PHD SLAM. Figure 5.8 shows the pose and map errors averaged over

the 50 MC runs.

These simulations show that the SC-PHD SLAM gives markedly better per-

formance compared to RB-PHD SLAM. The most important difference be-

tween the two algorithms is the derivation of the multi-object likelihood

LZk(x), which is referred to as g(Zk|X) in the RB-PHD SLAM literature.

The RB-PHD SLAM likelihood is obtained by observing that it is equivalent

to the normalization term in the daughter update. The Bayes’ update for

the conditional map is:

pk|k(M|X) =
g(Zk|M,X)pk|k−1(M|X)

g(Zk|X)
(5.29)

This can be re-arranged to become:

g(Zk|X) =
g(Zk|M,X)pk|k−1(M|X)

pk|k(M|X)
(5.30)

Because the g(Zk|X) has no dependence on the map, any choice for the

5.3. SIMULATION RESULTS 79

Figure 5.7: Illustration of the scenario used for RB-PHD comparison sim-
ulations, showing the true vehicle trajectory (black solid), dead-reckoning
trajectory (red dashed), true map landmarks (blue stars), and cumulative
sensor measurements (gray dots).

value of M will produce the same likelihood. Therefore, it is convenient

to assume an empty map (M̃ = ∅) or a single-feature map (M̃ = {m})
for ease of computation. To obtain a closed-form expression for g(Zk|X),

the distributions pk|k−1 and pk|k are assumed to be Poisson, and their first

moments are evaluated at M̃ rather than the true distribution.

The single-cluster PHD filter was derived with an approach more analogous

to the classical PHD filter [57], where an assumption on the prior is used to

derive a closed-form expression from the exact Bayes filter update. Specif-

ically, we assume that the prior is the realization of a hierarchical Poisson

process. The approach by Mullane, Vo and Adams required Poisson approx-

imations on both the prior and posterior, and a further approximation on

the number of features. Consequently, the single-cluster PHD filter more

faithfully represents the true multi-object distribution since it requires fewer

approximations in its derivation.

To further explore effect of this difference in practice, we carried out a small

experiment. Using the same set of sensor inputs, the measurement updates

for the two methods were executed on identical predicted states. Figure

5.9 shows the resulting parent distributions. It is apparent that the SC-PHD

80 CHAPTER 5. SLAM WITH SC-PHD FILTERS

0 50 100 150 200 250 300 350 400
Time Step

-1

0

1

2

3

4

5

P
os

e
E

rr
or

 (
m

et
er

s)

(a) Vehicle Pose Error.

0 50 100 150 200 250 300 350 400
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

O
S

P
A

 E
rr

or

0 50 100 150 200 250 300 350 400
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Lo
ca

liz
at

io
n

E
rr

or

0 50 100 150 200 250 300 350 400
Time Step

0

1

2

3

4

5

C
ar

di
na

lit
y

E
rr

or

(b) Map OSPA Error, with localization and cardinality components.

Figure 5.8: Monte Carlo simulation results, with 1 − σ bounds indicated.
SC-PHD SLAM: blue, solid. RB-PHD SLAM: red, dashed.

5.3. SIMULATION RESULTS 81

SLAM update generates a significantly more focused parent distribution than

the RB-PHD SLAM update. This suggests that the multi-object likelihood

used in the single-cluster derivation is more discriminating, and is better able

to concentrate the parent particles about the true vehicle position.

Lastly, we can draw a comparison based on computational complexity be-

tween the SC-PHD and RB-PHD SLAM filters. Most of the adaptations

we have included in our algorithm, such as measurement-driven birth and

prediction with multiple parent samples, are equally valid for the RB-PHD

framework. Therefore, it will suffice to compare the relative complexities for

the multi-object likelihood computation. Using the same notation as Subsec-

tion 5.2.6, we find that the likelihood computation in (5.24) has a complexity

of O(m+ n). For RB-PHD SLAM, the complexity of the likelihood compu-

tation using both the empty map and single feature map approximations is

O(m). However, without applying approximations, the complexity returns

to O(m+ n).

82 CHAPTER 5. SLAM WITH SC-PHD FILTERS

-2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4
x

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

6.2

y

(a) SC-PHD SLAM particles .

-2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4
x

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

6.2

y

(b) RB-PHD SLAM particles .

x

-2.6
-2.4

-2.2
-2.0

-1.8
-1.6y

4.5

5.0

5.5

6.0

p(X
)

0.00

0.01

0.02

0.03

0.04

0.05

(c) SC-PHD SLAM smoothed distri-
bution .

x

-2.6
-2.4

-2.2
-2.0

-1.8
-1.6y

4.5

5.0

5.5

6.0

p(X
)

0.00

0.01

0.02

0.03

0.04

0.05

(d) RB-PHD SLAM smoothed distri-
bution .

Figure 5.9: Comparison of updated vehicle distributions. Smoothing was
performed using a Gaussian kernel with a bandwidth h = 0.05.

5.4. DISCUSSION 83

5.4 Discussion

The results presented in this chapter demonstrate that the SC-PHD filter is

suitable to Simultaneous Localization and Mapping applications. We believe

that its ability to cope with measurement clutter without the need for data

association is an attractive property of the SC-PHD filter, and with further

development, it could be successfully applied to real-world scenarioss. In

addition, this framework can correctly discriminate and track dynamic map

features mixed in with static features, even when the sensor measurements

provide no information about the movement of the feature. Whereas in the

past moving objects in the environment have been regarded as a nuisance

for SLAM algorithms, we have shown that they can in fact be exploited for

localization purposes.

Nevertheless, there is room for improvement. We anticipate that the ambi-

guity between dynamic map features and closely-spaced static features can

be resolved by introducing more complex birth models for the dynamic fea-

tures. Like other particle filter SLAM algorithms such as FastSLAM and

RB-PHD SLAM, the SC-PHD SLAM filter has a tendency towards degener-

acy in the vehicle state estimate, but this could be ameliorated through the

use of techniques such as particle filter regularization. Furthermore, if the

non-linearity of the vehicle motion is not significant, then Gaussian imple-

mentations for the parent filter are also possible. It may be worthwhile to

explore alternative modelings of the SLAM process. The Poisson assump-

tion on the map feature process imposes a high variance on its cardinality

estimate, also the single-cluster process model only encodes dependencies

between the map features and the vehicle, but not between map features.

Recent contributions in Finite Set Statistics [20] will allow us model SLAM

in the context of general hierarchical interacting population processes, where

such inter-object relationships are taken into consideration.

84 CHAPTER 5. SLAM WITH SC-PHD FILTERS

Chapter 6

GPU Implementation of the

SC-PHD Filter

Due to the combinatorial nature of the multi-object likelihood, single-threaded

implementations of the SC-PHD filter can have very long running times: a

MATLAB implementation can run for several hours to complete relatively

simple simulations. For this reason, a multi-threaded implementation is crit-

ical for obtaining results in a timely fashion. Fortunately, the SC-PHD al-

gorithm is quite amenable to parallel implementation. The maps for each

parent particle are conditionally independent of each other, and so may be

propagated entirely in parallel. We created a GPU implementation of the

algorithm using the CUDA programming platform. The purpose of this chap-

ter is to explain this implementation, and the design considerations that went

into creating it.

6.1 The CUDA Architecture

CUDA (formerly Compute Unified Device Architecture) is a programming

platform developed by NVIDIA for performing general purpose computing

on the company’s’ graphics processing units (GPUs). The CUDA platform

consists primarily of software libraries and tools such as compilers, linkers,

and debuggers, as well as a software development kit and documentation li-

85

86 CHAPTER 6. SC-PHD FILTER ON THE GPU

brary. In general, CUDA programs will contain a combination of instructions

which are executed on the GPU, or device code, and instructions which are

executed on the CPU, or host code. Host code can be written in full C/C++,

while device code only supports C and a limited number of C++ features.

The heart of a CUDA application is a special C function called a kernel.

This is the code that will be executed in parallel by all the GPU threads.

As a consequence, every single thread receives the same set of instructions,

and therefore, we require some means to differentiate the behavior of each

thread whether by sending threads down different code paths, or by causing

them to operate on different parts of the input and output data. Millions

of threads performing the same operations on the same data could hardly

be thought of as parallel computation! In order to see how threads may be

coerced into behaving differently while following the same set of instructions,

we must first consider how the threads are organized (Figure 6.1). Threads

are first grouped into blocks, which are then arranged as a grid. Each thread

has access to its position within its block through a special variable called

blockIdx, its block’s position within the grid (gridIdx), and the dimensions

of the blocks (blockDim). From this information, each thread can determine

its unique index:

threadIdx = gridIdx× blockDim + blockIdx

This index can then be used to access different parts of the input and out-

put data, or used in conditional statements for branching code paths. The

block-grid hierarchy serves two purposes. First, it facilitates scalability to

GPUs with different numbers of multiprocessor cores. The CUDA runtime

automatically and transparently distributes the workload across the number

of available cores at a block-level granularity. The second purpose is that

threads are only able to share information with other threads in the same

block, through a shared memory mechanism. This is a particularly important

consideration for designing the SC-PHD update.

Setup and execution of a kernel function is performed by host-side operations.

A barebones kernel launch consists of the following steps:

6.1. THE CUDA ARCHITECTURE 87

gridIdx 0, blockIdx 5: threadIdx 5

gridIdx 1, blockIdx 2: threadIdx 12

blockDim 10

gridDim 5

Figure 6.1: Example configuration of a grid of GPU threads. Here, the grid
is a one-dimensional array, but two and three dimensional layouts may also
be created.

1. Allocate GPU memory for storing inputs and outputs with cudaMalloc

2. Copy input data to global GPU memory with cudaMemcpy

3. Launch the kernel

4. Copy output data from GPU to host with cudaMemcpy

5. Free allocated GPU memory with cudaFree

The kernel launch is a modfied function call with syntax extensions for spec-

ifying the number of blocks, and the number of threads within each block.

For example, to launch a kernel called myKernel with 100 blocks and 256

threads per block:

myKernel<<<100,256>>>(args...)

Scalar arguments to the kernel are passed by value, vector arguments must be

passed pointers to device memory. Synchronization between the host and the

device is handled transparently. The host program will continue to execute

after launching the kernel until it encounters an instruction that depends

on the output of the GPU operation. It will then block until the kernel as

finished execution.

6.1.1 Performance Considerations

Specification sheets for contemporary GPUs quote computational capabili-

ties in the neighborhood of 1 teraflop (trillion floating point operations per

88 CHAPTER 6. SC-PHD FILTER ON THE GPU

Table 6.1: Compute Capability 2.0 specifications

Max grid dimensionality 3

Max x,y, or z dimension of grid 65535

Max block dimensionality 3

Max x or y dimension of block 1024

Max z dimension of block 64

Max number of threads per block 1024

Warp size 32

Max number of resident blocks per multiprocessor 8

Max number of resident warps per multiprocessor 48

Max number of resident threads per multiprocessor 1536

Number of 32-bit registers per multiprocessor 32K

Max amount of shared memory per multiprocessor 48 KB

Number of shared memory banks 32

Local memory per thread 512 KB

Constant memory size 64 KB

second). These figures represent an ideal case, where the GPU’s entire com-

plement of threads is fully engaged in computation. In practice, launching

and executing a GPU kernel involves several forms of overhead which must

be managed in order to approach specified performance. This discussion aims

to cover only a few major design considerations. For a more complete treate-

ment, we refer the reader to the CUDA C Best Practices Guide [72]. The

various generations of GPU hardware are subject to different limitations, or

compute capability in CUDA parlance. Our Tesla C2050 GPU is a compute

capability version 2.0 device, the specifics of which are detailed in the Table

6.1

6.1. THE CUDA ARCHITECTURE 89

if (tIdx is odd) then
Do x

end
else

Do y
end

if (btIdx/WARPSIZEc is odd) then
Do x

end
else

Do y
end

Figure 6.2: Both of these code listings cause half of the threads to perform
an action x and the other half to perform y. The code on the left will cause
divergence, as all the odd-indexed threads within a warp will perform x and
all the even-indexed threads will perform y. In contrast, the code on the right
does not produce divergence. The threads in each warp will all be performing
either x or y.

Control Flow

Within each block resident on a GPU multiprocessor, the threads are sched-

uled and executed in groups of 32 consecutive threads called warps. The

threads within the warp execute one instruction at a time. It is most effi-

cient when every thread within the warp is performing the same instruction.

If some threads are at a different location within the program, then the warp

has diverged, and the different instructions must be executed sequentially.

Divergence usually occurs as a result of conditional branching within the

kernel code. Because the assignment of of threads to warps is completely

deterministic, it is possible to re-implement these branches so that no warp

divergence occurs, as shown in Figure 6.2.

Coalesced Global Memory Access

All but the most trivial GPU kernels operate on some input and output data.

Accessing these data invokes some overhead costs that need to be minimized

in order to optimize the performance of the kernel. The GPU global memory

is divided into aligned 64-byte segments. When a thread accesses a particu-

lary memory address, all the other memory addresses in the same segment

are fetched at the same time. To maximize effective memory bandwidth we

should ensure that when threads within a warp perform memory transac-

90 CHAPTER 6. SC-PHD FILTER ON THE GPU

offset = tIdx*WIDTH
for i = 1 . . . n do

val ← data[i+offset]
. . .

end

i = 0

i = 1

Memory

Fetches

Memory

Fetches

(a) Non-coalesced access pattern

stride = WIDTH
for i = 1 . . . n do

val ← data[tIdx+i*stride]
. . .

end

i = 0

i = 1

Memory Fetch

Memory Fetch

(b) Coalesced access pattern

Figure 6.3: Having each thread loop through its own contiguous section of
memory (left) results in wasted memory bandwidth, as each thread requires
its own fetch operation. Modifying the loop to the example on the right keeps
memory accesses within the same segment each loop iteration, reducing the
required number of fetches.

tions, they take place at addresses within the same segment. In situations

where each thread must loop over several global memory locations, a strided

access pattern is therefore recommended (Figure 6.3). It should be noted

that newer generation GPUs are equipped with a modest amount on-chip L1

and L2 cache, which can help reduce the number of extra fetches. Neverthe-

less, designing the kernel with coalesced memory access in mind will ensure

good performance regardless of the target hardware.

6.2. PREDICTION 91

Shared Memory

Each block of threads has at its disposal an amount of on-chip memory called

shared memory. This memory resides on the processor die, and therefore can

be accessed much more quickly than global GPU memory, which is located

off-chip on the GPU board. Moreover, shared memory accesses do not need

to be coalesced. Because of this, the input data relevant to the thread block

should first be copied to shared memory before further manipulation in order

to reduce memory overhead.

Shared memory is divided into a number of banks (16 or 32 depending on

the generation of GPU). Accesses to seperate banks are serviced in parallel,

but if multiple threads in the same warp attempt to access different ad-

dresses within the same bank, a bank conflict will occur and the conflicting

transactions will have to be serialized.

Block Sizes

To fully utilize GPU resources, all of the multiprocessors should be occupied.

The computation tasks are allocated to multiprocessors on the basis of thread

blocks, so to ensure full occupancy, the kernel should launch with a number of

blocks greater than or equal to the number of multiprocessors on the device.

Furthermore, each multiprocessor can actively run multiple blocks at once.

While it waits for a warp in one block to finish executing, it will switch over

to another warp in another block. Maximizing the number of these resident

blocks has an important effect on computational performance. In our Tesla

C2050,

6.2 Prediction

The SC-PHD prediction involves two kernel functions, which are launched

sequentially. The first performs the prediction of the parent particles. Each

thread is tasked with computing a single predicted parent particle state,

which essentially consists of propagating the prior state through the vehicle

motion model with added noise. Implementing a per-thread random number

92 CHAPTER 6. SC-PHD FILTER ON THE GPU

generator would be prohibitively complicated, so the random noise samples

are generated by the host, and passed to the kernel as input arguments.

Algorithm 1: Kernel function for parent particle prediction. Because

the number of predicted particles can be a multiple of the number of

prior particles, the indices for the prior and predicted arrays may be

different.
Function parentPredictKernel(priorParticlesArray,noiseArray,

predictedParticlesArray)

idxPrior = btid/numParticlesPerPredictc
oldState = priorParticlesArray[idxPrior]

noise = noiseArray[tid]

newState = computeMotion (oldState,noise)

predictedParticlesArray[tid] = newState

end

The second kernel computes the predicted map features. Stationary fea-

tures need not be predicted, so there is some host-side preprocessing done

to first separate the dynamic features. Because the map features are Gaus-

sians rather than particles, no random samples need to be generated for the

prediction noise. In practice, the number of features may be larger than the

total number GPU threads, so the kernel loops over the feature array with a

stride size equal to the thread count. Because we have adopted the adaptive

birth scheme, introduction of newborn targets is postponed until the update

step.

Algorithm 2: Kernel function for map feature prediction.

Function mapPredictKernel(priorFeaturesArray,predictedFeaturesArray)

for j = 0,nThreads,2nThreads,. . . ,nFeatures do

idx = tid + j

predictedFeaturesArray[idx] = computeMotion

(priorFeaturesArray[idx])

end

end

6.3. UPDATE 93

6.3 Update

The SC-PHD update consists of updating the parent particle weights and

the conditional daughter Gaussian mixtures. Because the number of par-

ent particles is only on the order of several hundred, the reweighting and

resampling is best implemented on the host side. On the other hand, up-

dating the conditional daughters typically involves the creation of hundreds

of thousands of Gaussian components, each consisting of a weight, mean,

and covariance matrix. Thus, daughter PHD update comprises the bulk of

the computational expense in the SC-PHD filter recursion. We first deter-

mine the amount of memory that will need to be allocated to perform the

update. A predicted SC-PHD consists of K parent particles and their as-

sociated Gaussian mixture daughters. Each Gaussian mixture contains J (k)

components. Performing an update with M measurements will result in an

updated SC-PHD containing the following number of Gaussian components:

Npredict =
K∑
k=1

J (k) (6.1)

Nupdate = Npredict +M ×Npredict +M ; (6.2)

Where the three terms within the summation represent non-detection, de-

tection, and measurement-driven birth respectively. Therefore, the update

kernel must be allocated Nupdate × sizeOf(Gaussian) bytes for the out-

put. In addition, Npredict × sizeOf(Gaussian) bytes are required for

the predicted PHD and M × sizeOfMeasurement bytes are required for the

measurements. We will store the measurements in constant memory because

they will be accessed by all blocks of the kernel.

To determine the thread geometry for the update kernel, we must consider

what operations we wish to perform at the thread level, and at what level the

threads will need to communicate with each other. Each individual thread

shall be tasked with the creation of a single Gaussian term in the updated

PHD. However, as shown in Equation (5.19), computing the normalization

term for each daughter PHD requires that the weights of all Gaussian terms

94 CHAPTER 6. SC-PHD FILTER ON THE GPU

be summed. Thus, we will partition the kernel such that each thread block

corresponds to a single parent particle and it’s associated Gaussian mixture,

and so that shared memory within each block may be used for computing

the weight normalizer term. Because the predicted PHD is input as a single

large array of all daughter Gaussian mixtures concatenated together, the

kernel will require as an additional input an array of indexing offsets so that

each thread block can find its corresponding Gaussian mixture. These offsets

are computed on the host side prior to kernel launch.

The following pseudocode listing illustrates the general structure of the SC-PHD

update kernel:

Algorithm 3: Abbreviated pseudo-code for the PHD update GPU
kernel
Function PHDUpdateKernel(predictedGaussians,offsets,measurements)

[idxIn,idxOut,nPredict,blockOffset] =
computeIndices(offsets,threadIdx,blockIdx)
predicted = predictedGaussians[idxIn]
i = idxOut - blockOffset
if i >nPredict then non-detection

weight = predicted.weight
updatedGaussians[idxOut] = predicted

else if nPredict <= i <(nPredict*(1 + nMeasurements)) then
detection

m = floor((i - nPredict)/nPredict)
updated = preUpdate(predicted,measurements[m]) weight =
updated.weight
updatedGaussians[idxOut] = updated

else if i >= (nPredict*(1 + nMeasurements)) then birth
m = i - (nPredict*(1 + nMeasurements))
birth = computeBirth(measurements[m])

end
sharedmem[threadIdx] = weight
normalizer = sum(sharedmem)
updatedGaussians[idxOut] /=normalizer

end

6.4. SOURCE CODE 95

6.4 Source Code

The source code for this GPU implementation of the SC-PHD filter is freely

available under the Apache 2.0 license at the following address:

https://github.com/cheesinglee/cuda-PHDSLAM

96 CHAPTER 6. SC-PHD FILTER ON THE GPU

Chapter 7

Underwater Vehicle

Application of SC-PHD SLAM

This chapter discusses an application of the SC-PHD SLAM algorithm with a

real-world dataset that was collected during an experiment at the Underwater

Robotics Research Center in Girona, Spain. The purpose of this work is to

demonstrate that the SC-PHD filter can be successfully applied toward solving

real world problems in underwater robotics. The work presented in this article

is to our knowledge, the first application of RFS techniques in underwater

robotics.

7.1 SLAM for Underwater Vehicles

Underwater SLAM is an active and mature area of research, with nearly two

decades’ worth of contributions. Because satellite navigation like GPS or

Gallileo is unavailable , and acoustic transponder systems like] (usbl) fur-

ther complicate the already challenging logistics of deploying an AUV, au-

tonomous navigation is more important to underwater vehicles than to terres-

trial or aerial vehicles. A number of EKF-based SLAM algorithms have been

demonstrated using both sonar [78, 71, 3] and camera sensors [99, 31]. Sonar-

based navigation using least squares methods have also been proposed [35].

Underwater SLAM has advanced to the point that meaningful missions can

97

98 CHAPTER 7. AUV APPLICATION OF SC-PHD SLAM

be executed by an AUV. A particle filter localization algorithm was employed

in the autonomous survey of flooded sinkholes [34]. The ESDF was applied

to autonomously survey the wreck of RMS Titanic [32]. Although PHD fil-

ter SLAM methods have been demonstrated for surface water platforms [64],

underwater applications remain unexplored.

7.2 Implementing the Single Cluster PHD SLAM

To assess the suitability of the finite set techniques for underwater naviga-

tional applications, we developed an implementation of an SC-PHD SLAM

algorithm for use on an underwater robotic vehicle, the Girona 500. In this

section we will discuss a number of adaptations made to the algorithm, as

well as the experiment performed to evaluate its performance.

7.2.1 The Girona 500 Vehicle

The Girona 500 (Figure 7.1) is an underwater robotic vehicle developed by

Underwater Robotics Research Center (CIRS) at the University of Girona.

It is a triple hull design, with each torpedo-shaped hull measuring 0.3 m in

diameter, and 1.5 m in length. Its overall dimensions are 1.5m×1.0m×1.0m

(L×W×H), and its weight is less than 200 kg. Its maximum operating depth

is rated at 500 m. The triple hull design provides a high separation between

the vehicle’s centre of buoyancy and centre of gravity, which in turn affords

stability in pitch and roll. The Girona 500’s design is highly modular. It can

be equipped with between 3 to 8 thrusters in various configurations to allow

for motion in 3 to 6 redundant degrees of freedom. In addition to the typical

navigational and survey sensors, it has space dedicated to mission-specific

payloads such as robotic arms for intervention tasks.

7.2.2 Hybrid Particle PHD SLAM

As the single-cluster PHD can be separated into a parent and conditional

daughter term, we adopt a hybrid particle and Gaussian mixture approach

7.2. IMPLEMENTING THE SINGLE CLUSTER PHD SLAM 99

Figure 7.1: The Girona 500 Vehicle at CIRS.

for implementing the filter on our underwater vehicle. A particle vehicle

state allows us to cope with a non-linear observation model, while a Gaus-

sian mixture map state keeps the computational expenses in the map update

manageable. The filter is updated using velocity measurements from the

Doppler velocity log (DVL) and relative positional measurements from land-

marks. The particles representing the vehicle state are propagated forward

in time using a 3D constant velocity motion model.

The vehicle state is defined by a 12-dimensional vector consisting of cartesian

and angular positions, and their respective velocities.

X = [x, y, z, ẋ, ẏ, ż, θ, φ, ψ, θ̇, φ̇, ψ̇]T

The cartesian displacements x, y, z are relative to the global reference frame,

while the respective velocities are given in the vehicle reference frame.

Typically, this would require a particle state space consisting of positions

and velocities in both linear coordinates and roll/pitch/yaw angles, for a to-

tal of 12-dimensions which would require an enormous number of particles.

To mitigate the curse of dimensionality, we first treat the roll and pitch an-

gles and velocities from the inertial measurement unit (IMU) as a trusted

source, thus eliminating a third of the dimensions in the particle state space.

However, the compass observations show significant inaccuracies and there-

fore yaw values must remain in the filter state. We continue even further by

100 CHAPTER 7. AUV APPLICATION OF SC-PHD SLAM

implementing a pipelined approach for the linear velocities. We maintain a

separate EKF to filter the vehicle-frame velocities based on a random-walk

prediction, and linear measurements from the DVL. These filtered velocities

are then transformed to the global reference frame and used to predict the

vehicle particles with the constant velocity model. In this manner, we need

only to maintain a particle state space of five dimensions: (x, y, z, θ, θ̇). Using

this pipelined approach leads to estimation in a lower dimension state-space

with the particles, as well as lower variance on the estimated state [81]. Other

options to improve the filter are the use of optimal sampling strategies [94]

and multiple model filters [79] to better characterize different behaviours of

the vehicle.

The reduced-dimensionality state is propagated forward through time using

a constant velocity motion model:

Xk|k−1 =

xk−1

yk−1

zk−1

+ R

ẋk−1

ẏk−1

żk−1

∆t

θk−1 + θ̇k−1∆t+ nθ
∆t2

2

θ̇k−1 + nθ∆t

(7.1)

where R is the 3D rotation matrix computed from the three orientation

angles, nθ is a process noise parameter on the yaw, and ∆t is the length of

the time interval.

The vehicle particles represent the parent state in the context of the SC-PHD

filter, and to each particle, we associate a Gaussian mixture which represents

the map, or daughter PHD conditioned on that particle’s trajectory. Up-

dating the filter with landmark observations thus consists of performing the

PHD filter update for each map [96], which is then propagated upwards to the

parent process. This is reflected by the weight-update of the parent particles

in the single cluster process. Figure 5.2 depicts this hierarchical update.

7.2. IMPLEMENTING THE SINGLE CLUSTER PHD SLAM 101

Figure 7.2: Keypoints are matched between the left and right images (top).
Triangulation gives the 3D coordinates of the points with respect to the
camera (bottom).

7.2.3 Detecting Features of Interest

In the absence of position measurements, the increase in uncertainty on ve-

hicle position is unbounded. This can be reduced by incorporating measure-

ments with respect to static targets under water. Typically, these targets will

correspond to features in man-made structures such as risers, pipes, anchor

chains, or naturally occuring rock formations and/or vegetation. In our ex-

periments, we utilise a stereo camera to detect and triangulate such points of

interest with respect to the camera. While our experiments here rely solely

on vision-based features, sonar is also an important sensing regime for un-

derwater robotics, although feature detection can be more problematic with

sonar imagery compared to vision [45].

102 CHAPTER 7. AUV APPLICATION OF SC-PHD SLAM

Points of interest in the sensor field of view (FoV) can correspond to phys-

ically meaningful structures with semantic meaning, or merely an abstract

set of points. For example, an underwater riser in the camera FoV may

represent a point of interest. In this case, we can attribute a semantic tag

to the structure and possibly other identifying information. In contrast to

this, a lower level analysis of the structure may decompose the riser into a

set of corners, lines and/or circles, with each of these representing a point of

interest. The use of semantic tags is only possible in the presence of prior in-

formation. The vehicle is unable to assign tags to unrecognizable landmarks,

and in such instances, points of interest such as points and lines are more

appropriate.

Our approach parameterizes features as points in R3, and involves the use of

standard image feature detectors such as speeded up robust features (SURF)

[8] to detect a small number of “strong” features or keypoints in the im-

age. By detecting and matching keypoints in a pair of stereo images, we

can approximately triangulate the position of keypoints in the camera coor-

dinate system (Figure 7.2). Our measurements consist of pixel coordinates

[ul, ur, vl, vr] from pairs of corresponding SURF keypoints in the left and

right camera images. Given a map feature m = [xyz] in 3D, its predicted

measurement can be computed from the following model:

[ul, vl, 1]T = g(m,Pl) (7.2)

[ur, vr, 1]T = g(m,Pr) (7.3)

g(m,P) = P

R(−φk,−ψk,−θk) −Tk

01×3 1

m

1

 (7.4)

Here, Pl and Pr are the 3 × 4 projection matrices for the left and right

cameras, R(φ, ψ, θ) and T are the extrinsic rotation matrix and translation

vectors respectively. To obtain a 3D feature location from a pair of corre-

7.2. IMPLEMENTING THE SINGLE CLUSTER PHD SLAM 103

spondences, we invert the measurement model:

m =

R(φk, ψk, θk) Tk

01×3 1

 g−1([ul, ur, vl, vr], Pl, Pr) (7.5)

In practice, we use the OpenCV library function triangulatePoints to

accomplish this.

Due to changes in illumination and contrast, the set of detected keypoints

can change significantly between images. This gives rise to a situation with

numerous unstable keypoints with poor probability of detection. The more

stable keypoints will be tracked by the filter, while keypoints that are visible

only briefly will be modelled by the clutter RFS in the PHD filter. In our

model, we assume a uniform density of clutter measurements over the entire

map, and a constant probability of detection pD < 1 for features within the

camera’s view frustrum and pD = 0 for features outside.

7.2.4 Underwater SC-PHD SLAM

To test the SC-PHD SLAM algorithm, we conducted an experiment in the

test tank at CIRS, which measures 8m×8m×5m. The bottom of the test

tank is overlaid with a known pattern simulating the sea-floor (see Figure

7.1), and the vehicle was teleoperated in a lawnmower survey trajectory over

this pattern.

The vehicle is equipped with a downward looking stereo camera recording at

approximately 10 frames per second. SURF features are extracted from the

camera images to provide measurements for the SC-PHD SLAM algorithm.

For the purpose of the filter update, the map features are projected onto the

camera image plane, and the likelihoods are evaluated in the image domain.

This allows for better characterisation of the measurement noise. Due to the

fact that the appearance of the surface over which the vehicle is travelling

is known a priori, it is also possible to obtain a ground-truth trajectory for

this scenario by reprojecting the collected camera images onto the pattern.

This is shown in Figure 7.3c.

104 CHAPTER 7. AUV APPLICATION OF SC-PHD SLAM

(a) The Girona 500 hovering above the test tank floor.
The known pattern of the floor is used to estimate the
ground-truth trajectory of the vehicle.

(b) The housing for the Girona 500’s
stereo camera

(c) Camera-centered ground truth
trajectory constructed by matching
collected image with a priori seafloor
pattern

Figure 7.3: Elements of the underwater SC-PHD SLAM experiment

7.2. IMPLEMENTING THE SINGLE CLUSTER PHD SLAM 105

Determining a ground truth for the map is far less straightforward. As we

have the image file on hand for the map mosaic, it is possible to run a fea-

ture extractor on the image and predict where the most salient points of

the environment would be. However, these features correspond to a top-

down, whole-scene view under ideal lighting conditions. It is not certain

that the features extracted with this approach would be consistently ob-

served from the various viewing angles, depths, and illumination conditions

over the course of the vehicle’s trajectory. Therefore, we instead opt with a

vehicle-oriented approach for locating the map features. Using the ground-

truth trajectory described previously, we project the SURF features from

each camera frame onto the mosaic and match the projected features against

features detected in the mosaic. We divide the mosaic into grid and sum the

successful matches within each grid cell to construct a 2D histogram show-

ing the locations of consistently observed features. These histograms allow

a qualitative comparison of the maps constructed by the SLAM algorithm

(Figure 7.6).

The raw images from the camera exhibit a high degree of distortion (see

Figure 7.4). Although corrected for, this distortion can manifest as errors

in triangulation if camera calibration is inexact. We account for this in the

experiment by assigning a relatively high level of additive noise to the feature

measurements.

We used the sensor data from this experiment as inputs the SC-PHD SLAM

filter. The RB-PHD SLAM filter was also run for comparison. The param-

eters used for both algorithms are listed in Table 7.1. Due to the limited

computing capacity onboard the vehicle, the SLAM algorithms are run of-

fline. Clearly, autonomy is of paramount importance for robotics applica-

tions. We anticipate that through a combination of algoirthm optimisation,

improvements in available computing resources, and energy storage efficiency,

real-time and online execution of SC-PHD SLAM is not too far in the future.

Figure 7.5 depicts the trajectory outputs of the SLAM algorithms compared

to dead reckoning and the ground truth. Without SLAM, localization is

performed using an EKF filter using velocity measurements from the DVL.

It is clear that there is significant drift in the estimated vehicle position when

106 CHAPTER 7. AUV APPLICATION OF SC-PHD SLAM

Parameter Value

Noise Standard Dev. Yaw 0.1 rad

IMU 0.2 rad/sec

DVL 0.1 m/s

Pixel 3.0 px

Particle Filter Number of Particles 400

Neff resampling threshold 0.5

PHD Filter Birth intensity 0.05

Clutter intensity 20

Probability of survival 1.0

Probability of detection 0.85

GM reduction Minimum pruning weight 0.0005

Merging distance threshold 0.5

Maximum number of Gaussian terms 12000

Table 7.1: SC-PHD SLAM parameters for underwater vehicle experiment.

7.2. IMPLEMENTING THE SINGLE CLUSTER PHD SLAM 107

only the DVL is used to perform dead reckoning. Aside from accumulated

error in the velocity readings, the dead reckoning estimate also suffers from

inaccurate heading measurements. As mentioned previously, the IMU values

are trusted completely, but in reality the sensor is affected by soft-metal

effects due to proximity to the test tank’s concrete walls. This is evidenced by

the significant deviation following the initial bend in the vehicle trajectory.

In some portions of the trajectory, the IMU heading was off by up to 15

degrees. For operations in open sea settings, this effect should be far less

pronounced, as the sensor will be well-separated from sources of interference.

Introducing the seafloor pattern as a navigational reference improves mat-

ters. Compared to dead reckoning, both SLAM algorithms result in a better

estimates of the trajectory. The multiple loop closures in the trajectory serve

to keep the localization error bounded and eliminates the cumulative drift

which otherwise occurs. A qualitative assessment suggests that the SC-PHD

trajectory matches the ground truth better. This is confirmed through the

examination of squared trajectory error shown in Figure 7.7.

The map state is taken from the map PHD belonging to the most highly-

weighted particle. As we have opted for a Gaussian mixture implementation

for the map PHD, we can obtain the expected number of features by sum-

ming weights of all the mixture components; this is equivalent to taking the

integral of the PHD over the entire map. We then select the most highly-

weighted mixture components as the locations of the map features. This

is shown in Figure 7.6. Because our map “ground truth” is given as a his-

togram, a quantitative comparison is not given, since the optimal sub-pattern

assignment (OSPA) metric is used for comparing point sets.

108 CHAPTER 7. AUV APPLICATION OF SC-PHD SLAM

Figure 7.4: Distorted images from the downward looking stereo camera.

7.3 Outlook

We have seen here that PHD filter methods are suitable for application to the

SLAM problem. There are of course, some refinements that can be made to

our implementation. For example, the suboptimal performance of the IMU in

the constricted test tank environment warrant a more conservative handling

of its readings. Our research in this avenue will continue as we integrate

the SC-PHD SLAM algorithm into a larger autonomous control framework,

using its navigational estimates to inform higher-level tasks and missions.

The scenario presented here was in a high light environment where cameras

may be used and a myriad of computer vision techniques can be brought to

bear. Underwater vehicles operating at greater depths will be without this

luxury and will need to rely on sonar, and feature detection will be even less

straightforward. We expect that given the PHD filter’s capability to excel

in difficult sensing regimes, it can rise to meet these challenges, and we are

looking forward to seeing many interesting applications in the underwater

arena.

7.3. OUTLOOK 109

(a) Dead reckoning tra-
jectory.

(b) RB-PHD SLAM tra-
jectory.

(c) SCPHD SLAM tra-
jectory.

Figure 7.5: Resulting trajectories from SLAM. Start of trajectory indicated
by triangle. SC-PHD SLAM exhibits lower trajectory error compared to RB-
PHD SLAM, while both SLAM methods are superior to odometry alone.

(a) RB-PHD SLAM landmarks. (b) SCPHD SLAM landmarks.

Figure 7.6: Estimated landmarks for RB-PHD SLAM and SCPHD SLAM are
overlaid on ground truth histogram described in Section 7.2.4. Landmarks
outside the histogram area originate from features detected in the test tank
environment, outside of the mosaic.

110 CHAPTER 7. AUV APPLICATION OF SC-PHD SLAM

0 5000 10000 15000 20000 25000
Time Step

0.0

0.5

1.0

1.5

2.0

2.5

E
rr

o
r

(m
2

)

Squared Trajectory Error

Figure 7.7: Squared trajectory error for SC-PHD SLAM (blue), and RB-PHD
SLAM (green).

Chapter 8

Concluding Remarks

8.1 Summary

Multi-object moment filters have a number of strengths which can be applied

to the challenging domain of mobile autonomous vehicles. Namely:

• Coping with less than ideal measurement conditions (false alarms and

missed detections).

• Maintaining and updating estimates of multiple objects from multiple

measurements without the need for data association heuristics.

• Tracking objects with heterogeneous dynamic characteristics.

• A well-established modeling and algorithm design methodology which

can be traced back to first principles.

This work has presented an application of multi-object estimation methods

to the area of feature-based simultaneous localization and mapping.

In Chapter 2, we reviewed the current state of the art in feature-based SLAM

and RFS methods. The body of research in feature-based SLAM classi-

fied into several categories: information filter based methods, particle based

methods, and submapping methods; all of these methods shared the common

weaknesses of attempting to bridge a multi-object scenario with single-object

estimation techniques.

111

112 CHAPTER 8. CONCLUDING REMARKS

In Chapter 3, we covered the mathematical background for finite set statis-

tics and multiobject calculus. Topics covered were set integrals, functional

derivatives, probability generating functionals, point and cluster processes,

and the OSPA metric.

In Chapter 4, we built upon the material covered in Chapter 3 to illustrate

the derivation of first-moment multi-object filters, namely the PHD filter

and the SC-PHD filter. Modelling the object dynamics and measurements

as RFSs allows us to derive concrete expressions for the p.g.fl. prediction and

update, which we can then differentiate to obtain the PHD filter equations.

In Chapter 5 developed an algorithm based on the SC-PHD filter for SLAM

with dynamic landmarks, and validated it in simulation. The algorithm

is centered on a hybrid particle/Gaussian mixture implementation of the

SC-PHD filter, with adaptations for measurement-driven birth and varying

FoV. The simulation results showed that our algorithm compares favorably

with the RB-PHD filter, a prior PHD filter based SLAM algorithm.

In Chapter 7, we demonstrated that the SC-PHD SLAM algorithm is viable

for real-world applications by running it with the Girona 500 underwater

vehicle. The experiment described a seafloor survey, with map features ex-

tracted via SURF from stereo imagery. The SC-PHD SLAM algorithm was

again shown to perform better than RB-PHD SLAM and EKF SLAM.

8.2 Contributions

This thesis makes the following contributions:

• A novel SLAM algorithm derived from the SC-PHD filter which is ca-

pable of operating under difficult sensing conditions characterized by

the presence of false alarms rates and missed detections. The algo-

rithm is also capable of navigating in a map composed of a mixture of

stationary and moving landmarks.

• A successful implementation of this algorithm in an underwater robotic

platform with stereo vision.

8.3. OUTLOOK 113

• An implementation of the PHD and SC-PHD filters on a GPU, which

achieves a computational rate that is orders of magnitude faster than

MATLAB implementations.

8.3 Outlook

We believe that this field of research will become particularly fruitful as

multi-object estimation methods move beyond their roots in target tracking

and statistical signal processing. Areas such as astronomy, forestry, and

statistical geography, where point process theory has already been a well-

established tool, contain numerous opportunities to apply methods such as

the SC-PHD filter.

In the domain of mobile autonomous vehicles and feature-based SLAM, there

remain many challenges to which this work could be applied. The map fea-

tures we worked with described only position and velocity. Augmenting

these with richer descriptions (shape,extent,semantic tags), would facilitate

a greater level of autonomy and presents and interesting challenge for mod-

elling and filter development. In addition, autonomous vehicles measure their

environment with a wide range of sensors modalities including radar,laser

scanners, and sonar. As seen in our work with the underwater vehicle dataset

and camera calibration, each type of sensor involves a unique set of challenges

to which novel solutions can be developed.

114 CHAPTER 8. CONCLUDING REMARKS

Appendix A

SC-PHD Filter Pseudocode

This section contains pseudocode for our implementation of the single cluster

PHD (SC-PHD) filter. In this implementation of the filter, the joint PHD

is defined by the parent particle states and their accompanying Gaussian

mixture probability hypothesis density (PHD)s. The pseudocode listings

will make use of the following abbreviations:

Dk(x,y)
.
= {x(i), ω(i), D̃

(i)
k (y|x)}Nki=1 (A.1)

D̃
(i)
k (y|x)

.
= {µ(j),P(j), w(j}J(i)

j=1 (A.2)

Each of the subroutines listed here accepts as input and returns as output

a single parent particle and its corresponding map. For numerical stabil-

ity, it is recommended that weights and likelihoods be replaced with their

log-equivalents, and that the corresponding computations be modified ac-

cordingly.

115

116 APPENDIX A. SC-PHD FILTER PSEUDOCODE

Function SC-PHD(Dk−1,Zk)

Input: Prior joint state estimate, current measurements

Output: Posterior joint state estimate, measurements

for i = 1 . . . Nk−1 do

D
(i)
k|k−1 =Predict(D

(i)
k−1(x,y))

D̂
(i)
k|k−1 =PreUpdate(D

(i)
k|k−1(x,y),Zk)

[D̃
(i)
k|k, LZk(x)] = Update(D̃

(i)
k|k−1, D̂

(i)
k|k−1,Zk)

ω(i) = ω(i) × LZk(x)

D̃
(i)
k|k = PruneAndMerge(D̃

(i)
k|k) // [96, Table II]

end

// Particle resampling according to [1, Algorithm 2]

x(1...Nk) = Resample(x(1...Nk), ω
(1...Nk)
k)

ω(1...Nk) = 1/K

return Dk = {x(i), ω(i), D̃
(i)
k (y|x)}Nki=1

The top-level filter iteration should look familiar to those experienced with

other Bayesian filter methods such as the Extended Kalman Filter (EKF).

The update step is split into two subroutines: PreUpdate computes auxil-

liary terms which are needed for the computation of the SC-PHD update

and Update implements the actual update equations. In this work the

PruneAndMerge subroutine was implemented as described in [96], but an

alternative Gaussian mixture reduction algorithm can be substituted at the

user’s discretion. The same may be said about the Resample subroutine for

resampling the parent particles.

117

Function Predict(Dk−1)

Input: Prior parent state particle and conditional daughter PHD

Output: Predicted sensor state and object PHD

// Sample sensor transition density

for n = 1 . . .M do

x
(n)
k|k−1 ∼ π(x̃|x)

ω
(n)
k|k−1 ← ω

// Predict daughter PHD

forall the {µ(j)
k−1,P

(j)
k−1, w

(j)
k−1} in D̃k−1 do

w
(j)
k|k−1 = w

(j)
k−1

µ
(j)
k|k−1 = f(µ

(j)
k−1)

P
(j)
k|k−1 = F(j)P

(j)
k−1F

(j),T + W(j)Q(j)W(j),T

end

D̃
(n)
k|k−1 = {µ(j)

k|k−1,P
(j)
k|k−1}

J
j=1

end

return Dk|k−1 = {x(n)
k|k−1, ω

(n)
k|k−1, D̃

(n)
k|k−1}

M
n=1

The Predict subroutine generates a prediction for a parent particle and its

conditional daughter Gaussian mixture PHD. The outer For loop implements

sampling of the parent state transition density and replication of the daughter

PHD. However, depending on the nature of the parent transition model, good

performance can be achieved with M = 1, simplifying the implementation of

the filter.

118 APPENDIX A. SC-PHD FILTER PSEUDOCODE

Function PreUpdate(Dk|k−1,Zk)

Input: Predicted sensor particle and multi-object PHD, measurements

Output: Pre-update terms for SC-PHD daughter update

forall the {µ(j),P(j), w(j)} in Dk|k−1 do

ẑ = h−1(X, µ(j)) // Predicted measurement

S = HP(j)HT + R // Innovation covariance

K = P(j)HTS−1 // Kalman Gain

P(j|·) = (I−KH)P // Updated covariance

for i = 1 . . . |Z| do
// single-object likelihood

p(z(i)|µ(j), y) = N (z(i); ẑ,S)

µ(j|i) = µ+ K(z − ẑ) // Updated mean

end

end

D̂o|s = {µ(j|i),P(j|i)} j=1...J
i=1...|Z|

return p(·|·,x), D̂k|k−1

In the PreUpdate subroutine, single-object measurement likelihoods for each

measurement and each term within the daughter Gaussian mixture are com-

puted. The Gaussian mixture terms are also updated with the measurements

via a Kalman update, but not yet reweighted. Depending on the numerical

stability properties of the implementation, the updated covariance may not

be symmetric. Using the alternative, Joseph formulation of the update can

help address this issue, as well as further subroutines to enforce symmetry.

The remainder of the SC-PHD update is performed by the Update subrou-

tine. Here, the predicted and preupdated daugther PHD terms, along with

measurement-driven birth terms are concatenated and reweighted to form

the final updated PHD.

119

Function Update(Dk|k−1, D̂k|k−1, pz|µ,x)

Input: Predicted multi-object PHD and pre-update terms

Output: Updated multi-object PHD

forall the µ(j),P(j), w(j) in Dk|k−1 do

// Non-detection terms

µ
(j)
nd = µ(j); P

(j)
nd = P(j); wnd = w(j)

// Detection terms

for i = 1 . . . |Z| do
µ

(j|i)
d = µ(j|i); P

(j|i)
d = P(j|i);

// from D̂k|k−1

w
(j|i)
d = w̃(j)pDpz|s,o(zi|µ̃(j), y)

end

// Measurement-derived birth terms

for i = 1 . . . |Zk| do
µ

(i)
0 = h−1(y, zi); P

(i)
0 = R∗; w

(i)
0 = w0

end

// Normalize weights

// compute multi-object likelihood

Ñ =
∑J

j=1 w̃
(j)

LZk(x) = exp(Ñ)

for i = 1 . . . |Z| do
ηzi = κ(zi) +

∑J
j=1w

(j|i)
d + 2w0

for j = 1 . . . J do

w
(j|i)
d / = ηzi

end

w
(i)
0 / = ηzi

LZk(x) = LZk(x)× ηzi
end

end

// Concatenate terms

µk|k = [µ
(1...J)
nd , µ

(1...Jk|k−1|1...|Zk|)
d , µ

(1...|Zk|)
0]

Pk|k = [P
(1...J)
nd ,P

(1...Jk|k−1|1...|Zk|)
d ,P

(1...|Zk|)
0]

wk|k = [w
(1...J)
nd , w

(1...Jk|k−1+1...|Zk|)
d , w

(1...|Zk|)
0]

return {µk|k,Pk|k, wk|k, LZk(x)}

120 APPENDIX A. SC-PHD FILTER PSEUDOCODE

Bibliography

[1] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial

on particle filters for online nonlinear/non-gaussian bayesian tracking.

Signal Processing, IEEE Transactions on, 50(2):174 –188, Feb. 2002.

[2] J. Aulinas, C. S. Lee, J. Salvi, and Y. R. Petillot. Submapping SLAM

based on acoustic data from a 6-DOF AUV. In AUV”, 8th IFAC Con-

ference on Control Applications in Marine Systems (IFAC/CAMS),

RostockWarnemnde, pages 15–17, 2010.

[3] J. Aulinas, X. Llado, J. Salvi, and Y. Petillot. Selective submap joining

for underwater large scale 6-DOF SLAM. In Intelligent Robots and

Systems (IROS), 2010 IEEE/RSJ International Conference on, pages

2552–2557, Oct 2010.

[4] J. Aulinas, X. Lladó, J. Salvi, and Y. Petillot. SLAM base Selective

Submap Joining for the Victoria Park Dataset. In 7th IFAC Sympo-

sium on Intelligent Autonomous Vehicles (IFAC/IAV), Lecce (Italy)

September, pages 6–8, 2010.

[5] B. Bacca, J. Salvi, and X. Cuf́ı. Long-term mapping and localization

using feature stability histograms. Robotics and Autonomous Systems,

61(12):1539–1558, 2013.

[6] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot. Consistency

of the EKF-SLAM algorithm. In Intelligent Robots and Systems, 2006

IEEE/RSJ International Conference on, pages 3562–3568. IEEE, 2006.

121

122 BIBLIOGRAPHY

[7] S. Barkby, S. B. Williams, O. Pizarro, and M. Jakuba. Incorporating

prior maps with bathymetric distributed particle SLAM for improved

AUV navigation and mapping. In IEEE OCEANS, pages 6–12, October

2009.

[8] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust

features (SURF). Comput. Vis. Image Underst., 110(3):346–359, June

2008.

[9] P. Bernhard. Chain differentials with an application to the mathemati-

cal fear operator. Nonlinear Analysis: Theory, Methods & Applications,

62(7):1225–1233, 2005.

[10] M. Bosse, P. Newman, J. Leonard, and S. Teller. SLAM in large scale

cyclic environments using the atlas framework. International Journal

Robotics Research, 23(12):1113–1139, 2004.

[11] F. Bourgeois and J.-C. Lassalle. An extension of the munkres algorithm

for the assignment problem to rectangular matrices. Commun. ACM,

14:802–804, December 1971.

[12] M. Cannaud, L. Mihaylova, N.-E. E. Faouzi, R. Billot, and J. Sau.

A probabilistic hypothesis density filter for traffic flow estimation in

the presence of clutter. In Proc. from the IEEE Sensor Data Fusion

Workshop: Trends, Solutions, Applications, 2012.

[13] J. Civera, O. G. Grasa, A. J. Davison, and J. M. M. Montiel. 1-

point RANSAC for extended kalman filtering: Application to real-time

structure from motion and visual odometry. J. Field Robot., 27:609–

631, September 2010.

[14] D. Clark. Faa di Bruno’s formula for Gateaux differentials and interact-

ing stochastic population processes. Arxiv preprint arXiv:1202.0264,

2012.

[15] D. Clark, C. Lee, and S. Nagappa. Single-cluster PHD filtering and

smoothing for SLAM applications. In ICRA, 2012.

BIBLIOGRAPHY 123

[16] D. Clark and R. Mahler. Generalized PHD filters via a general chain

rule. In Information Fusion (FUSION), 2012 15th International Con-

ference on, pages 157–164. IEEE, 2012.

[17] D. Clark, I. Ruiz, Y. Petillot, and J. Bell. Particle PHD filter multi-

ple target tracking in sonar image. Aerospace and Electronic Systems,

IEEE Transactions on, 43(1):409–416, 2007.

[18] D. Clark, I. T. Ruiz, Y. Petillot, and J. Bell. Particle PHD filter

multiple target tracking in sonar image. IEEE TRANSACTIONS ON

AEROSPACE AND ELECTRONIC SYSTEMS, 43(1):409–416, JAN

2007.

[19] D. Clark, B. Vo, and J. Bell. GM-PHD filter multi-target tracking in

sonar images. Proc. SPIE Defense and Security Symposium. Orlando,

Florida [6235-29], 2006.

[20] D. E. Clark and J. Houssineau. Faa di Bruno’s formula for Gateaux

differentials and interacting stochastic population processes. ArXiv e-

prints, Feb. 2012.

[21] D. E. Clark and J. Houssineau. Faa di Bruno’s formula for chain dif-

ferentials. arXiv preprint arXiv:1310.2833, 2013.

[22] D. J. Daley and D. Vere-Jones. An introduction to the theory of

point processes. Vol. I. Probability and its Applications (New York).

Springer-Verlag, New York, second edition, 2003. Elementary theory

and methods.

[23] S. J. Davey. Simultaneous localization and map building using the

probabilistic multi-hypothesis tracker. Robotics, IEEE Transactions

on, 23(2):271–280, 2007.

[24] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localiza-

tion for mobile robots. In IEEE International Conference on Robotics

and Automation (ICRA99), May 1999.

124 BIBLIOGRAPHY

[25] F. Dellaert and M. Kaess. Square root SAM: Simultaneous localization

and mapping via square root information smoothing. The International

Journal of Robotics Research, 25(12):1181–1203, 2006.

[26] G. Dissanayake, P. Newman, H. Durrant Whyte, S. Clark, and

M. Csorba. A solution to the simultaneous location and map build-

ing (slam) problem. IEEE Transactions on Robotics and Automation,

17(2):229–241, May 2001.

[27] A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultaneous localiza-

tion and mapping without predetermined landmarks. In in Proc. 18th

Int. Joint Conf. on Artificial Intelligence (IJCAI-03, pages 1135–1142.

Morgan Kaufmann, 2003.

[28] A. I. Eliazar and R. Parr. Hierarchical linear/constant time slam using

particle filters for dense maps. In Advances in Neural Information

Processing Systems 18, pages 339–346, 2006.

[29] O. Erdinc, P. Willett, and Y. Bar-Shalom. The bin-occupancy filter and

its connection to the PHD filters. Signal Processing, IEEE Transactions

on, 57(11):4232–4246, 2009.

[30] C. Estrada, J. Neira, and J. Tardós. Hierarchical SLAM: real-time ac-

curate mapping of large environments. IEEE Transactions on Robotics,

21(4):588–596, August 2005.

[31] R. Eustice, O. Pizarro, and H. Singh. Visually augmented naviga-

tion in an unstructured environment using a delayed state history. In

Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE In-

ternational Conference on, volume 1, pages 25–32. IEEE, 2004.

[32] R. Eustice, H. Singh, J. Leonard, M. Walter, and R. Ballard. Visu-

ally navigating the RMS Titanic with SLAM information filters. In

Proceedings of Robotics: Science and Systems, Cambridge, USA, June

2005.

BIBLIOGRAPHY 125

[33] R. M. Eustice, H. Singh, and J. J. Leonard. Exactly sparse delayed-

state filters for view-based SLAM. IEEE Transactions on Robotics,

22(6):1100–1114, 2006.

[34] N. Fairfield, G. Kantor, D. Jonak, and D. Wettergreen. Autonomous

exploration and mapping of flooded sinkholes. The International Jour-

nal of Robotics Research, 29:748–774, 2010.

[35] M. F. Fallon, M. Kaess, H. Johannsson, and J. J. Leonard. Effi-

cient AUV navigation fusing acoustic ranging and side-scan sonar. In

Robotics and Automation (ICRA), 2011 IEEE International Confer-

ence on, pages 2398–2405. IEEE, 2011.

[36] J. Folkesson, P. Jensfelt, and H. Christensen. Graphical SLAM using

vision and the measurement subspace. In Proc. of the IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS’05),

Aug. 2005.

[37] D. Fox. Adapting the sample size in particle filters through KLD-

sampling. International Journal of Robotics Research, 22:2003, 2003.

[38] U. Frese. Treemap: An o(log n) algorithm for simultaneous localization

and mapping. In IN SPATIAL COGNITION IV, C. FREKSA, ED,

pages 455–476. Springer Verlag, 2005.

[39] K. Granstrom, C. Lundquist, and O. Orguner. Extended target track-

ing using a gaussian-mixture PHD filter. Aerospace and Electronic

Systems, IEEE Transactions on, 48(4):3268–3286, October 2012.

[40] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard. A tutorial

on graph-based SLAM. Intelligent Transportation Systems Magazine,

IEEE, 2(4):31–43, 2010.

[41] J. Guivant and E. Nebot. Improving computational and memory re-

quirements of simultaneous localization and map building algorithms.

In In IEEE International Conference on Robotics and Automation,

pages 2731–2736, 2002.

126 BIBLIOGRAPHY

[42] J. E. Guivant and E. M. Nebot. Optimization of the simultaneous

localization and map-building algorithm for real-time implementation.

IEEE Transactions on Robotics, 17(3):242–257, 2001.

[43] J. Houssineau and D. Laneuville. PHD filter with diffuse spatial prior

on the birth process with applications to GM-PHD filter. In Infor-

mation Fusion (FUSION), 2010 13th Conference on, pages 1 –8, july

2010.

[44] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis. Analysis and

improvement of the consistency of extended Kalman filter based SLAM.

In Robotics and Automation, 2008. ICRA 2008. IEEE International

Conference on, pages 473–479. IEEE, 2008.

[45] N. Hurtos, X. Cuf́ı, Y. Petillot, and J. Salvi. Fourier-based registra-

tions for two-dimensional forward-looking sonar image mosaicing. In

Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International

Conference on, pages 5298–5305, Oct. 2012.

[46] S. Julier and J. Uhlmann. Unscented filtering and nonlinear estimation.

Proceedings of the IEEE, 92(3):401–422, Mar 2004.

[47] S. J. Julier and J. K. Uhlmann. A counter example to the theory of

simultaneous localization and map building. In Robotics and Automa-

tion, 2001. Proceedings 2001 ICRA. IEEE International Conference

on, volume 4, pages 4238–4243. IEEE, 2001.

[48] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental

smoothing and mapping. IEEE Trans. on Robotics, TRO, 24(6):1365–

1378, Dec 2008.

[49] J. Knight, A. Davison, and I. Reid. Towards constant time SLAM

using postponement. In Proc. IEEE/RSJ Conf. on Intelligent Robots

and Systems, Maui, HI, volume 1, pages 406–412. IEEE Computer

Society Press, Oct. 2001.

BIBLIOGRAPHY 127

[50] C. Lee, D. Clark, and J. Salvi. SLAM with single cluster PHD fil-

ters. In Robotics and Automation (ICRA), 2012 IEEE International

Conference on, pages 2096–2101. IEEE, 2012.

[51] C. S. Lee, D. Clark, and J. Salvi. Slam with dynamic targets via

single-cluster PHD filtering. Selected Topics in Signal Processing, IEEE

Journal of, 7(3):543–552, June 2013.

[52] J. Leonard and H. Durrant-Whyte. Simultaneous map building and

localization for an autonomous mobile robot. In Intelligent Robots and

Systems ’91. ’Intelligence for Mechanical Systems, Proceedings IROS

’91. IEEE/RSJ International Workshop on, pages 1442 –1447 vol.3,

nov 1991.

[53] F. Lu and E. Milios. Globally consistent range scan alignment for

environment mapping. AUTONOMOUS ROBOTS, 4:333–349, 1997.

[54] R. Mahler. Multitarget bayes filtering via first-order multitarget mo-

ments. IEEE Trans. Aerospace and Electronic Systems, 39(4):1152–

1178, October 2003.

[55] R. Mahler. PHD filters of higher order in target number. Aerospace and

Electronic Systems, IEEE Transactions on, 43(4):1523 –1543, 2007.

[56] R. Mahler, B.-T. Vo, and B.-N. Vo. Cphd filtering with unknown clutter

rate and detection profile. Signal Processing, IEEE Transactions on,

59(8):3497 –3513, aug. 2011.

[57] R. P. S. Mahler. Statistical Multisource-Multitarget Information Fusion.

Artech House, Inc., Norwood, MA, USA, 2007.

[58] R. Martinez-Cantin and J. Castellanos. Unscented SLAM for large-

scale outdoor environments. In Intelligent Robots and Systems, 2005.

(IROS 2005). 2005 IEEE/RSJ International Conference on, pages 3427

– 3432, aug. 2005.

128 BIBLIOGRAPHY

[59] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A

factored solution to the simultaneous localization and mapping prob-

lem. In Proceedings of the AAAI National Conference on Artificial

Intelligence, pages 593–598, Edmonton, Canada, 2002. AAAI.

[60] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM 2.0:

An improved particle filtering algorithm for simultaneous localization

and mapping that provably converges. In Proceedings of the Sixteenth

International Joint Conference on Artificial Intelligence (IJCAI), Aca-

pulco, Mexico, 2003. IJCAI.

[61] D. Moratuwage, B.-N. Vo, S. Wijesoma, and D. Wang. Extending the

bayesian RFS SLAM framework to multi-vehicle SLAM. In ICRA,

2012.

[62] J. Moyal. The general theory of stochastic population processes. Acta

Mathematica, 108:1–31, 1962. 10.1007/BF02545761.

[63] J. Mullane, S. Keller, and M. Adams. Random set versus vector based

SLAM in the presence of high clutter. In IEEE ICRA 2012: Workshop

on Stochastic Geometry in SLAM, May 2012.

[64] J. Mullane, B.-N. Vo, M. Adams, and B.-T. Vo. Random Finite

Sets for Robot Mapping and SLAM - New Concepts in Autonomous

Robotic Map Representations, volume 72 of Springer Tracts in Ad-

vanced Robotics. Springer, 2011.

[65] J. Mullane, B.-N. Vo, M. D. Adams, and W. S. Wijesoma. A random

set formulation for bayesian slam. In IROS, pages 1043–1049, 2008.

[66] K. Murphy. Bayesian map learning in dynamic environments. In Ad-

vances In Neural Info. Proc. Systems (NIPS), pages 1015–1021. MIT

Press, 2000.

[67] C. Musso, N. Oudjane, and F. Le Gland. Improving regularised particle

filters. In Sequential Monte Carlo methods in practice, pages 247–271.

Springer, 2001.

BIBLIOGRAPHY 129

[68] S. Nagappa and D. Clark. On the ordering of the sensors in the iterated-

corrector probability hypothesis density (phd) filter. Proceedings of

SPIE, 8050:80500M, 2011.

[69] E. M. Nebot. Ute data parameters. http://www-personal.acfr.

usyd.edu.au/nebot/experimental_data/modeling_info/Ute_

modeling_info.htm, February 2003.

[70] J. Neira and J. Tardós. Data association in stochastic mapping us-

ing the joint compatibility test. IEEE Transactions on Robotics and

Automation, 17(6):890 – 897, December 2001.

[71] P. M. Newman, J. J. Leonard, and R. J. Rikoski. Towards constant-

time SLAM on an autonomous underwater vehicle using synthetic aper-

ture sonar. In Robotics Research. The Eleventh International Sympo-

sium, pages 409–420. Springer, 2005.

[72] Nvidia Corporation. CUDA C Best Practices Guide. Technical report,

NVIDIA Corporation, 2011.

[73] N. Oudjane and C. Musso. Progressive correction for regularized par-

ticle filters. In Information Fusion, 2000. FUSION 2000. Proceedings

of the Third International Conference on, volume 2, pages THB2–10.

IEEE, 2000.

[74] M. A. Paskin. Thin junction tree filters for simultaneous localization

and mapping. In G. Gottlob and T. Walsh, editors, Proceedings of

the Eighteenth International Joint Conference on Artificial Intelligence

(IJCAI-03), pages 1157–1164, San Francisco, CA, 2003. Morgan Kauf-

mann Publishers.

[75] L. M. Paz, J. Tardós, and J. Neira. Divide and conquer: EKF SLAM in

O(n). IEEE Transactions on Robotics, 24(5):1107–1120, October 2008.

[76] P. Piniés, L. M. Paz, and J. D. Tardós. Ci-graph: An efficient approach

for large scale slam, May 12-17 2009.

130 BIBLIOGRAPHY

[77] P. Piniés and J. D. Tardós. Large scale SLAM building condition-

ally independent local maps: Application to monocular vision. IEEE

Transactions on Robotics, 24(no. 5):1094–1106, October 2008.

[78] D. Ribas. Underwater SLAMfor Structured Environment Using an

Imaging Sonar. PhD thesis, University of Girona, 2008.

[79] B. Ristic, S. Arulampalam, and N. Gordon. Beyond the Kalman Filter.

Artech House, 2004.

[80] B. Ristic, D. Clark, B.-N. Vo, and B.-T. Vo. Adaptive target birth

intensity for PHD and cphd filters. Aerospace and Electronic Systems,

IEEE Transactions on, 48(2):1656 –1668, april 2012.

[81] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer

Texts in Statistics. Springer, 2nd edition, 2004.

[82] D. Salmond. Mixture reduction algorithms for point and extended

object tracking in clutter. Aerospace and Electronic Systems, IEEE

Transactions on, 45(2):667 –686, april 2009.

[83] D. Schieferdecker and M. Huber. Gaussian mixture reduction via clus-

tering. In FUSION ’09. 12th International Conference on, 2009.

[84] D. Schuhmacher, B.-T. Vo, and B.-N. Vo. A consistent metric for

performance evaluation of multi-object filters. IEEE Transactions on

Signal Processing, 56(8-1):3447–3457, 2008.

[85] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial

relationships in robotics. In UAI, pages 435–461, 1986.

[86] N. Sünderhauf and P. Protzel. Towards a robust back-end for pose

graph slam. In ICRA, pages 1254–1261, 2012.

[87] A. Swain and D. Clark. First-moment filters for spatial independent

cluster processes. Proceedings of SPIE, 7697:76970I, 2010.

BIBLIOGRAPHY 131

[88] A. Swain and D. Clark. The single-group PHD filter: an analytic

solution. In International Conference on Data Fusion, 2011.

[89] A. Swain and D. Clark. The PHD filter for extended target tracking

with estimable extent shape parameters of varying size. In Information

Fusion (FUSION), 2012 15th International Conference on, pages 1111–

1118. IEEE, 2012.

[90] J. D. Tardós, J. Neira, P. M. Newman, and J. J. Leonard. Robust

mapping and localization in indoor environments using sonar data.

International Journal of Robotics Research, 21(4):311–330, 2002.

[91] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent

Robotics and Autonomous Agents). The MIT Press, 2001.

[92] S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and H. Durrant-

Whyte. Simultaneous localization and mapping with sparse ex-

tended information filters. International Journal of Robotics Research,

23(7/8):693–716, 2004.

[93] M. Uney, D. Clark, and S. Julier. Information measures in distributed

multitarget tracking. In Information Fusion (FUSION), 2011 Proceed-

ings of the 14th International Conference on, pages 1–8. IEEE, 2011.

[94] R. van der Merwe, N. de Freitas, A. Doucet, and E. Wan. The Un-

scented Particle Filter. In Advances in Neural Information Processing

Systems 13, Nov 2001.

[95] T. Vidal-Calleja, J. Andrade-Cetto, and A. Sanfeliu. Conditions for

suboptimal filter stability in SLAM. In Intelligent Robots and Sys-

tems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International

Conference on, volume 1, pages 27–32. IEEE, 2004.

[96] B.-N. Vo and W.-K. Ma. The gaussian mixture probability hypothesis

density filter. Signal Processing, IEEE Transactions on, 54(11):4091

–4104, 2006.

132 BIBLIOGRAPHY

[97] B.-N. Vo, S. Singh, and A. Doucet. Sequential monte carlo methods for

multitarget filtering with random finite sets. Aerospace and Electronic

Systems, IEEE Transactions on, 41(4):1224 – 1245, oct. 2005.

[98] B.-T. Vo, B.-N. Vo, and A. Cantoni. Analytic implementations of the

cardinalized probability hypothesis density filter. IEEE Transactions

on Signal Processing, pages 3553–3567, 2007.

[99] S. Williams, G. Dissanayake, and H. Durrant-Whyte. Efficient simul-

taneous localisation and mapping using local submaps. In Australian

Conference on Robotics and Automation (ACRA), pages 128–134, 2001.

[100] S. B. Williams, G. Dissanayake, and H. F. Durrant-Whyte. An efficient

approach to the simultaneous localisation and mapping problem. In

ICRA, pages 406–411, 2002.

[101] T. M. Wood, C. A. Yates, D. A. Wilkinson, and G. Rosser. Simplified

multitarget tracking using the PHD filter for microscopic video data.

IEEE Trans. Circuits Syst. Video Techn., 22(5):702–713, 2012.

	Acknowledgments
	List of publications
	List of acronyms and initialisms
	List of figures
	List of tables
	Contents
	Abstract
	Resumen
	Resum
	1. Introduction
	2. State of the art
	3. Mathematical prerequisites
	4. Multi-object moment filters
	5. SLAM with SC-PHD filters
	6. GPU implementation of the SC-PHD filter
	7. Underwater vehicle application of SC-PHD SLAM
	8. Concluding remarks
	Appendix A: SC-PHD filter pseudocode
	Bibliography

