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Intermittency of near‐bottom turbulence in tidal flow
on a shallow shelf
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[1] The higher‐order structure functions of vertical velocity fluctuations (transverse
structure functions (TSF)) were employed to study the characteristics of turbulence
intermittency in a reversing tidal flow on a 19 m deep shallow shelf of the East China Sea.
Measurements from a downward‐looking, bottom‐mounted Acoustic Doppler
Velocimeter, positioned 0.45 m above the seafloor, which spanned two semidiurnal tidal
cycles, were analyzed. A classical lognormal single‐parameter (m) model for intermittency
and the universal multifractal approach (specifically, the two‐parameter (C1 and a)
log‐Levy model) were employed to analyze the TSF exponent x(q) in tidally driven
turbulent boundary layer and to estimate m, C1, and a. During the energetic flooding tidal
phases, the parameters of intermittency models approached the mean values of e� ≈ 0.24,eC1 ≈ 0.15, and e� ≈ 1.5, which are accepted as the universal values for fully developed
turbulence at high Reynolds numbers. With the decrease of advection velocity, m and C1

increased up to m ≈ 0.5–0.6 and C1 ≈ 0.25–0.35, but a decreased to about 1.4. The results
explain the reported disparities between the smaller “universal” values of intermittency
parameters m and C1 (mostly measured in laboratory and atmospheric high Reynolds
number flows) and those (m = 0.4–0.5) reported for oceanic stratified turbulence in the
pycnocline, which is associated with relatively low local Reynolds numbers Rlw. The
scaling exponents x(2) of the second‐order TSF, relative to the third‐order structure
function, was also found to be a decreasing function of Rlw, approaching the classical
value of 2/3 only at very high Rlw. A larger departure from the universal turbulent regime
at lower Reynolds numbers could be attributed to the higher anisotropy and associated
intermittency of underdeveloped turbulence.
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1. Introduction

[2] By its very nature, turbulence in geophysical flows is
highly intermittent in space and time. Turbulence char-
acteristics such as the kinetic energy etr, its dissipation ",
eddy diffusivities K, scalar dissipation c, turbulent scales Ltr
are subjected to sharp variations with typical spatial scales
of tens/hundreds meters vertically/horizontally and temporal
scales ranging from minutes to hours. Such mesoscale
inhomogeneity of hydrophysical fields is called “external or
outer intermittency,” and is associated with variations of

mean fields, patchiness of turbulent regions and presence of
interfaces that separate turbulent and nonturbulent regions
[Sreenivasan, 2004]. Conversely, the small‐scale, fine‐scale
intermittency of turbulence or internal intermittency occurs
at spatial scales from meters to millimeters, and is usually
confined within turbulent regions (layers, patches, wakes,
plumes, etc.). It is attributed to random inhomogeneous
spatial distribution of vortex filaments within turbulent
regions, where they stretch and dissipate energy in isolation
[Kuo and Corrsin, 1971].
[3] Mesoscale intermittency is a phenomenon character-

istic of turbulent mixing in oceans, seas, large lakes and
reservoirs, which may not be observed in other turbulent
flows. The measured vertical and horizontal sizes of turbu-
lent zones in the upper ocean are subjected to specific
statistical regularities. Their probability distributions appear
to be approximately lognormal while the distances between
turbulent regions follow a double exponential distribution
[Lozovatsky et al., 1993; Pozdinin, 2002]. Internal intermit-
tency, however, is inherent to any high Reynolds number
turbulent flow [Monin and Yaglom, 1975] due to its inho-
mogeneous microstructure.
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[4] Internal intermittency of turbulence in oceans and
lakes affects processes at the scales of inertial‐convective
and diffusive subranges [Tennekes and Lumley, 1972].
Among them are the viscous dissipation of energy,
biochemical processes (planktonic mating, predator‐prey
contacts, chemical reactions [Seuront and Schmitt, 2005]),
thermal convection and redistribution of salinity concentra-
tion or multi/double diffusive convective fluxes [Sánchez
and Roget, 2007]. The influence of small‐scale turbulent
fluctuations on the propagation of light and sound in the
ocean is an important problem for various applications of
ocean optics and acoustics [Tyson, 1991; Colosi et al., 1999].
[5] In application to aquatic ecosystems, turbulent oscil-

lations of various scales influence aggregation, incubation
and foraging processes of small‐scale planktonic organisms
[Druet, 2003]. Internal intermittency can affect phyto and
zooplankton species less than several millimeters in size
[Peters and Marrasé, 2000], specifically, floating micro-
scopic algae that are responsible for photosynthesis in
coastal oceans [Margalef, 1985, 1997]. Zooplankton larger
than ∼1 cm usually do not react to small‐scale intermittency
of turbulence [Squires and Yamazaki, 1995, 1996].
[6] Intermittency of biochemical (plankton, nitrites) and

scalar (fluorescence concentration, temperature) variables
have been studied by Seuront and coauthors in a series of
papers [e.g., Seuront et al., 1999, 2001, 2002; Seuront and
Schmitt, 2005]. In particular, it was found that phytoplank-
ton patchiness substantially increased the predator‐prey
encounter rates, but the encounter was much less influenced
by turbulence when " was considered as an intermittent
variable rather than a mean value [Seuront et al., 2001]. The
patchiness of small‐scale phytoplankton distribution in a
tidal current (the Eastern English Channel) increased with
decreasing turbulence intensity [Seuront and Schmitt, 2005]
and it varied depending on the phase of tidal cycle. This
finding is directly consistent with the present results.
[7] The first results on intermittency of ocean turbulence

at scales of inertial‐convective subrange, with application
to scalar dissipation c, were presented by Fernando and
Lozovatsky [2001] and for the velocity field and " by
Seuront and Schmitt [2001] and Yamazaki et al. [2006].
Seuront and Schmitt [2001] concluded that fluorescence is
more intermittent than the velocity, but less intermittent than
the conductivity fields in the Neko Seto Sea, offshore the
Japanese coast. The distributions of " and c in deep ocean
and shallow waters, at the scales from tens of centimeters
to several meters that are affected by internal as well as
external intermittencies, were found to be approximately
lognormal [e.g., Baker and Gibson, 1987; Gibson, 1991;
Gregg et al., 1993; Rehmann and Duda, 2000; Lozovatsky
and Fernando, 2002; Lozovatsky et al., 2006; Yamazaki
and Lueck, 1990; Davis, 1996], but they disputed the
applicability of lognormal approximation to the distribution
of " in the ocean.
[8] Most theoretical studies on internal intermittency (see

reviews of Lesieur [1990], Frisch [1995], and Seuront et al.
[2005]) employed a suite of scaling models, either of the
fluctuations of "r or qth‐order statistical moments of velocity
increments hDVr

qi, which are also called the qth‐order
structure functions (SF). The angle brackets indicate
ensemble averaging over a specific volume in the inertial
subrange with a characteristic radius r. Laboratory experi-

ments, DNS, and atmospheric measurements have produced
voluminous literature on internal intermittency (see reviews
of Sreenivasan and Antonia [1997], Anselmet et al. [2001],
Tsinober [2001], Vassilicos [2001], Seuront et al. [2005], and
Lovejoy and Schertzer [2007]). Specific findings of previous
theoretical and laboratory studies will be given in sections 5
and 6 in relation to our results.
[9] In all, despite recent progress, small‐scale intermit-

tency within turbulent patches of the pycnocline or in the
surface and bottom boundary layers has not been exten-
sively studied and remains a relatively unexplored area in
physical oceanography, though its oceanic applications
abound. The goal of this paper is to investigate internal
intermittency of marine turbulence near the seabed during
different phases of a nonstratified reversing tidal flow and
determine whether the intermittency parameters depend on
the boundary layer and microscale Reynolds numbers. The
analysis is based on measurements of vertical velocity
w using a bottom mounted Acoustic Doppler Velocimeter
(ADV). An overview of the scaling concepts in relation to
structure functions analysis is given in section 2. Section 3
contains a brief summary of the measurement site and its
hydrography as well as averaged turbulence parameters. The
data have already been analyzed for mean flow and tidally
induced temporal variations of averaged dissipation rate and
friction velocity [Lozovatsky et al., 2008a, 2008b]. The
methodology of the SF analysis and calculation of the
scaling exponents of the transverse structure functions (TSF)
as well as the dissipation rate are presented in section 4,
followed by the results in section 5. This includes the evo-
lution of basic turbulence parameters (section 5.1) and
transverse structure function exponents (TSFE) during the
tidal cycle (section 5.2), a comparison of scaling exponents
with log‐Levy and lognormal intermittency models
(section 5.3) and a discussion of dynamical relevance of
model parameters (section 5.4). The dependence of the
second‐order TSFE on microscale turbulent Reynolds
number is presented (section 5.5). The possible influence
of Taylor hypothesis on evaluating TSFE is addressed in
section 6 as well as other sources of uncertainty that may
affect results. Conclusions are given in section 7.

2. Structure Functions and Intermittency Models

[10] The wide range of scales of ocean processes affected
by turbulent motions naturally calls for a scaling approach
of studying intermittency of ocean turbulence. To para-
phrase Landau on Kolmogorov’s [1941a] turbulent cascade,
“… in a turbulent field the presence of curl of the velocity
was confined to a limited region…” (cited by Frisch [1995]),
which indicates the essence of turbulence intermittency. To
account for fluctuations of " (and c) at the scales r of locally
isotropic turbulence in inertial‐convective and viscous
spectral subranges, Kolmogorov [1962] and Oboukhov
[1962] suggested a refined similarity hypothesis (RSH). It
argues that the velocity increment DVr over a separation
distance r is specified not by the mean dissipation rate e"
but the dissipation "r averaged over a specific volume of
radius r < Lo, which leads to the following scaling relation

�Vr � "rrð Þ1=3; ð1aÞ
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where Lo is an external turbulent scale and DVr is the
increment of any component (u, v or w) of velocity fluc-
tuations in the longitudinal (x) and transverse (y) and (z)
directions, respectively. Accordingly, the qth‐order veloc-
ity increment

�Vq
r � "q=3r r q=3: ð1bÞ

The probability distribution of "r was considered lognor-
mal, which is based on Kolmogorov’s [1941b] postulate
that the sizes of particles resulting from a series of
successive statistically independent breaking must be
asymptotically lognormal. Yaglom [1966] and Gurvich and
Yaglom [1967] theoretically derived an explicit cascade
intermittency model, wherein transfer of kinetic energy
down the cascade occurs with the breakdown of turbulent
eddies, which produce lognormally distributed "r with the
variance

�2
log "r

¼ A" þ � log
L�
r

� �
; ð2aÞ

where A" depends on the large‐scale motions and m is an
intermittency factor that accounts for stretching of the
probability distribution function of log "r [e.g., Monin and
Yaglom, 1975; Frisch, 1995].
[11] For the scalar dissipation rate cr (e.g., fluctuations

of temperature, conductivity, fluorescence concentration)
[Gibson, 1981]

�2
log�r

¼ A� þ �sc log
L�
r

� �
; ð2bÞ

where msc is the intermittency factor of the scalars
corresponding to cr and Ac depend on the characteristics
of mean flow. Both intermittency factors m and msc are
assumed universal, with canonical values m ≈ 0.25 and
msc ≈ 0.35 for very high Reynolds number turbulence, with
msc having lesser statistical confidence than m [Sreenivasan
and Kailasnath, 1993].
[12] The lognormal model of intermittency led to the

modification of Kolmogorov‐Oboukhov original scaling
(the −5/3 laws for the spectral densities and 2/3 laws for the
second‐order structure functions) by small additives m/9
and msc/9. The modified spectral functions are [Monin and
Yaglom, 1975]

Eu �ð Þ ¼ cK"
2=3
r ��5=3þ�=9 and Esc �ð Þ ¼ csc�r"

�1=3
r ��5=3þ�sc=9;

ð3Þ

where cK and csc are universal constants. Equations (2a)
and (2b) have been utilized for empirical estimation of m
and msc in laboratory experiments [e.g., Gibson et al.,
1970] and for ocean turbulence. For mesoscale intermit-
tency, m and msc ranged between 0.44 and 0.5 (see review
of Gibson [1998]). The same numbers (msc = 0.44) were
obtained by Fernando and Lozovatsky [2001] by analyzing
microstructure of oceanic conductivity (temperature) in the
thermocline. Although the lognormal model of intermit-

tency is simple and convenient, as discussed by Novikov
[1970, 1990], Frisch [1995], and Seuront et al. [2005], it
is mathematically ill posed.
[13] The application of multifractal theory [Mandelbrot,

1974] to study turbulence was the next important step for
understanding and quantifying the multiscale nature of the
intermittency phenomenon. The cascade of energy flux can
be thought of as a multiplicative process where larger eddies
are randomly modulated by smaller eddies to determine the
fraction of energy transfer from larger to smaller scales
[Seuront and Schmitt, 2005], which naturally entertains a
multifractal approach as a tool. This approach associates
each intermittency level pr (a fraction of the volume Lo

3

occupied by turbulence of characteristic scale r = gnLo,
0 < g < 1) with its own fractal dimension D = log N(n)/log n,
where N is a number of self‐similar structures and n−1 is a
fraction (reduction) factor. In the simplest case of a b model
[Fournier and Frisch, 1978], pr is assumed to decrease at all
levels by the same constant factor 0 < b < 1, so that after
n (= log(r/Lo)/log g) breakdowns, pr = bn = (r/Lo)

3−D,
where 3 − D = log b/log g (see Frisch [1995, chapter 8] for
details).
[14] The multifractal models are based on the scaling

assumption that if "r
q/3 has a power law variation with r in

the inertial subrange then all qth‐order statistical moments
of velocity increments (i.e., qth‐order structure functions)
can be written as

�Vq
r

� � ¼ Cq "rrð Þ� qð Þ; ð4Þ

where the constant Cq may depend on large‐scale flow
characteristics. The exponent function x(q) signifies the
multiscale transfer process specified by statistical moments
of order q. The scaling exponent, which is universal
(x(q) = q/3) for nonintermittent Kolmogorov turbulence
under very high local Reynolds numbers r("rr)

1/3/n, is
thought to be universal for intermittent turbulence whence x
is a nonlinear function of q [Sreenivasan and Antonia, 1997].
[15] A number of models (see review of Seuront et al.

[2005]) have been suggested to specify x(q) in (4). Here
we choose the log‐Levy multifractal model [Schertzer and
Lovejoy, 1987], since it has already been used in several
oceanographic applications cited above. Note that the
log‐Levy model is stable under addition of the logarithm of
the process variable [Feller, 1971; Mandelbrot, 1983]. For
the scaling exponent x(q) this model gives

� qð Þ � � fm ¼ q

3
� C1

�� 1

q

3

� ��

� q

3

h i
; ð5Þ

where C1 and a reflect the multifractal nature of intermit-
tency in point. Seuront et al. [2005] suggested that C1 and a
have universal values close to 0.15 and 1.5, respectively, for
very high Reynolds numbers. The Levy distribution index
0 < a < 2 and the multifractal codimension of mean C1

characterizes the intermittency of the turbulent field in a
way that sparseness and variability of the localized events
(singularities) increase with increasing C1 and decreasing a.
Note that in a d‐dimensional space with fractal dimension
D, the quantity d‐D is called the codimension [Frisch,
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1995]. For a quadratic polynomial function (a = 2), equation (5)
gives the scaling exponent for the lognormal intermittency
model

� qð Þ � �lm ¼ q

3
� �

18
q2 � 3q
� 	

; ð6Þ

which has the same intermittency factor m as in equation (2a).

3. Measurements and Background Hydrology

[16] The data taken in a shallow water tidal current,
including a bottom‐mounted Acoustic Doppler Velocim-
eter (ADV) measurements and hourly CTD profiles, were
used in the study. The measurements were conducted on
14 December 2005, about 1.2 km offshore the northeastern
coast of China (36.04°N, 120.32°E) at a water depth of 19 m.
The measurement volume of a downward looking Nortek
6 MHz ADV “Vector” was set up at zs = 0.45 m above
the bottom for a 25 hour period, covering two complete
semidiurnal tidal cycles. The ADV sampling rate was 16 Hz;
the data were recorded continuously.
[17] A nearly unidirectional reversing tidal flow [Lozovatsky

et al., 2008a, Figure 6] dominated mesoscale dynamics at the
test site (see also Figure 1). The M2 amplitude of the west‐
directed flood current u(t) of ∼0.35–0.42 m/s was twice that of
the eastern ebb current; the amplitude of transversal horizontal

component v(t) was much smaller ∼0.05 m/s. The M2 ampli-
tude of surface elevation was 1.1 m. The reversing tidal flow
was affected by seiches of ∼2.3 hour period generated in the
semienclosed Jiaozhou Bay located 2 km away. The seiching
modulation of zonal velocity during the ebb tide was compa-
rable with the tidal magnitude. The shallow water column was
well mixed due to winter cooling from the sea surface and tidal
mixing in the bottom boundary layer (BBL). The variations of
the turbulent kinetic energy, averaged dissipation rate and
friction velocity in the flow are given by Lozovatsky et al.
[2008b].

4. Method

[18] To analyze the intermittency in tidal boundary layer
turbulence, 25 hour records of the ADV current components
were subdivided into 44 segments. Each segment contained
215 = 32628 individual samples (time interval ∼ 34 min),
which is relatively long to provide sufficient multiplicative
averaging of higher‐order SF calculations (see section 4.2),
thus minimizing errors to an acceptable level. On the other
hand, turbulent fluctuations in the segments should be rel-
atively stationary to yield reliable spectra and structure
functions. Our tests showed that a 34 min segment is a good
compromise between the above competing factors.

Figure 1. The surface elevation d; the magnitude U; and direction �o of near‐bottom current, its stream-
wise u and transverse v components. The segment‐averaged “−5/3” dissipation rate e"nb is represented by
bars and the tidal dissipation "td is represented by stars. The near‐bottom Reynolds number Renb (circles
with crosses) coincides with the U curve.
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4.1. Spectra and the Dissipation Rate

[19] It is known [Stapleton and Huntley, 1995; Voulgaris
and Trowbridge, 1998] that vertical velocity fluctuations w′
obtained from a bottom‐mounted ADV have a lower noise
level at higher frequencies compared to those of u′ and v′;
this was also observed in our measurements. The spectral
densities of all velocity components contained a relatively
wide inertial subrange, and at frequencies f > 3–4 Hz the
spectra of horizontal components were affected by noise
while it was not the case for the spectra of the vertical
component [Lozovatsky et al., 2008b, Figure 2a]. Therefore,
only the w(t) records were used in further analysis.
[20] The mean dissipation e"nb at each segment i (see

Figure 1) was estimated from the inertial subranges of the
frequency counterpart of the Kolmogorov wave number
spectra

Ewi �ð Þ ¼ Ui=2	ð Þ2=3cwe"2=3nb f �5=3; ð7Þ

with cw = 0.67 [Sreenivasan, 1995] for one dimensional
spanwise velocity spectrum and the magnitude of mean
current Ui = (huii2 + hvii2)1/2. Several examples of the
compensated k5/3Ewi (k) spectra (k = �/2p) are shown in
Figure 2 for high, low, and intermediate Renb, where Renb =
(DU/zs)Ltr

2 /n is the near‐bottom Reynolds number; here DU
is the ADV velocity at zs (thus, Uz=0 = 0), n the molecular
viscosity, Ltr = �zs the characteristic turbulence scale above
the seafloor, and � the von Karman’s constant. At each
segment, the power spectral densities (PSD) were calculated
using 1024 consecutive samples of w′ with a 128‐point
spectral window and by further averaging PSD of 32 non-
overlapping sections. Although the initial records wi(t) were

quasi‐stationary, they were detrended before spectral pro-
cessing. The w measurements of ADV were of high quality
[see Lozovatsky et al., 2008a, 2008b], and thus the despiking
procedure of Goring and Nikora [2002] was not used, which
affects the signal structure.
[21] The inertial subrange of PSDs was typically well

identifiable (Figure 2), which allowed investigations of
“internal” intermittency using equations (5) and (6). At
several segments, however, the −5/3 subrange was ill defined
(e.g., segments 8, 24, and 30; an example is given in
Figure 2), which were excluded from further analysis.

4.2. Calculation of the Structure Function Scaling
Exponents

[22] The streamwise structure function of the vertical
velocity (transverse SF or TSF) is defined as

sqi rð Þ � �wq
r

� � ¼ w xþ rð Þ � w xð Þ½ �q; ð8Þ

where x is the along‐flow distance, r = n(Ui /Df ) is the SF
increment in the x direction, Ui is the magnitude of mean
velocity at every segment (i = 1–44) containing 32628
samples each, Df = 16 Hz the sampling frequency and
n = 1, 2, … 32. Taylor’s “frozen turbulence” hypothesis
was employed to transform w(t) at each segment to the
spatial series w(x). The applicability of Taylor’s hypothesis
was tested by calculating the ratio rmsi(w′)/Ui; it never
exceeded 2.5% at segments close to high and low tides
(minimum advecting velocity) and mostly took values
below 1%. Possible impacts of Taylor hypothesis on SF
exponents is further addressed in section 5.
[23] Periods close to high and low tides (low Renb)

showed a narrow inertial range (see Figure 2) and hence
evaluation of x(q) directly from the inertial‐dissipative
subrange of si

q(r) could be subjected to substantial uncer-
tainty. To overcome this problem, Benzi et al. [1993] sug-
gested to scale the modulus of the qth‐order SF not with
respect to r, but with the modulus of the third‐order struc-
ture function ∣s3(r)∣ ≡ S3(r). It is known [Kolmogorov,
1941c] that for r � h, where h = (n3/")1/4 is the Kolmo-
gorov scale, S3(r) ∼ "r is accurate and therefore Si

3(r) should
not be affected by intermittency. In Figure 3, examples of
log Si

3(r) against log(r) are shown, and a wide “+1” sub-
range is evident for high Renb segments. This subrange
almost disappears when Renb is low. Based on this rigorous
result of the classic self‐similarity theory, Benzi et al. [1993]
argued that the velocity increment (Dwr

q in our case) satisfies
the equation

�w rð Þj jqh i ¼ Aq �w rð Þ3
D E


 


� qð Þ

¼ Bq �w rð Þj j3
D E� qð Þ

� Sq rð Þ;
ð9Þ

which is “… somehow more fundamental than the self‐
similar scaling with respect to r…” because it is valid even at
moderate and low Reynolds numbers. Here Aq and Bq are
two different sets of constants and the modulus accounts for
the negative SF of odd orders. Equation (9) is sometimes
referred to as the extended self‐similarity, ESS [e.g., Benzi et
al., 1993, 1995; van de Water and Herweijer, 1999; Hao et
al., 2008]. The ESS allows for encompassing a wide scaling
range even if the turbulence is not fully developed and the

Figure 2. Examples of compensated spectral densities
k5/3Ewi (k). The spectra are arranged with respect to the
near‐bottom Reynolds number Renb from the highest (seg-
ment 41) to the lowest (segment 8). The inertial subranges
are shown by horizontal lines. The 95% confident bounds
(valid for every spectrum) are shown for the spectrum 8.
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separation between the dissipative and the integral turbulent
scales is narrow (e.g., experiments of Camussi et al. [1996]
(laboratory) and Briscolini et al. [1994] (numerical); also
detailed discussions on this topic are given in these papers).
Formally, it was suggested to plot log Si

q(r) versus log Si
3(r)

instead of log(r). Such plots (Figures 4 and 5) show linear
sections of SFs with good accuracy for moderate and low
Renb; on the other hand, the inertial subrange in spectral
densities was hardly detectable for the same Renb.
[24] The scaling Si

q(r) versus Si
3(r) was applied in the

range Lint > r > LK, where

Lint ¼ co rms w
0

� �h i3
=e" ð10Þ

is the integral turbulent scale and LK = cdsh is the scale of
maximum of dissipation. An approximate match between
Lint and the low‐wave number end of the inertial subrange in
Ew(�) spectra was attained with co = 0.6. Although the
constant cds that defines LK could be as small as ∼5–7
[Gregg et al., 1996; Camussi et al., 1996] or as large as 30
[van de Water and Herweijer, 1999], an intermediate esti-
mate cds = 15 [Monin and Yaglom, 1975] was used to fit the
log10 Si

q(log10 Si
3) functions inside the inertial subrange,

which did not necessarily cover all scales r. This also jus-
tifies the use of Lint and LK in evaluating SF of all orders,
although the inertial subrange of higher‐order structure
functions extends to smaller scales [Frisch, 1995].

[25] Our tests with high‐order Si
q(r) (qmax = 14; rmax =

32 × Ui /Df ) showed that a confident linear fit in the range
Lint > r > LK can be applied to log10 Si

q versus log10 Si
3

functions at almost all observational segments if q < 7–8.
A few segments with the highest Renb (e.g., Figure 4)
showed perfect linear fits for SF of much higher q = 11–12.
To obtain confident scaling functions x(q) for different
tidal phases and evaluate intermittency models given by
equations (5) and (6), Si

q(r) for all segments were calculated
using the absolute values of streamwise increments of ver-
tical velocity h∣Dwr

q∣i for q = 1–7 in the r range (1–32) ×
Ui/Df. Note that final estimates of Si

q(r) at the largest sepa-
ration scale were obtained by averaging more than 1000
individual samples of Dw′(r), ensuring minimal statistical
error of Si

q(r). Indeed, the error of the seventh‐order SF after
averaging is equal to the error sw of an individual original
sample of w, namely 7sw

ffiffiffiffiffiffiffiffiffiffiffiffi
2=103

p
≈ sw. Several examples

of Si
q(r) versus Si

3(r) are shown in Figure 5, which exhibit
clear linear sections (solid circles) in log10 scale. Scaling
exponents x(q) for every segment were determined by the
least squares fits applied to these sections.

5. Results

5.1. Basic Characteristics of Turbulence Near the
Seafloor

[26] The averaged kinetic energy dissipation rate near the
bottom e"nb (spectral estimates, equation (7)) generally

Figure 3. The third‐order transverse structure functions for several segments. The “+1” subranges are
highlighted by bold lines. The arrows correspond to the turbulent integral scale Lint.
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followed the mean flow magnitude U, which specified the
near‐bottom Reynolds number Renb in the range 5 × 103 –
8 × 104 (see time variations of e"nb, U, and Renb in Figure 1).
The highest e"nb = 3 × 10−5 W/kg was associated with tidal
flooding and the lowest with ebbing. The periodic modu-
lation of h"nbi during the ebb tide with a period of ∼2 hours

was consistent with seiching in the nearby Jiaozhou Bay
[Lozovatsky et al., 2008a]. The near‐bottom diffusivity
Knb = e"nb1/3Ltr4/3 was ∼3 × (10−4 – 10−3) m2/s [Lozovatsky et
al., 2008b], which is about an order of magnitude larger
than that observed on nontidal shelves [Lozovatsky and
Fernando, 2002; Roget et al., 2006].

Figure 4. Examples of TSF plots showing Si
q(r) versus Si

3(r) for relatively (a) high Renb ∼ 4 × 104

(segment 36) and (b) low Renb ∼ 7 × 103 (segment 11). The numbers near the curves (2, …, 14) des-
ignate the even order TSFs. The range Lint > r > LK is highlighted by solid circles. The linear sections
of the structure functions (in log10‐log10 scale) are well defined up to q = 11–12 in Figure 4a but only
up to q = 7–8 in Figure 4b.
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Figure 5. Examples of TSF plots showing Si
q(r) versus Si

3(r) (q = 1–7) for segments with high ((a) 17
and (b) 39), moderate ((c) 35 and (d) 43), and low ((e) 23 and (f) 33) Renb. The linear sections (in log10‐
log10 scale) are well defined and coincide with Lint > r > LK range highlighted by solid circles.
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[27] The tidal dissipation rate "td = ctdUbt
3 /H , which is also

shown in Figure 1, was calculated using the barotropic
tidal velocity Ubt (ADCP data) and the mean water depth
H = 19 m [MacKenzie and Leggett, 1993]. The constant
ctd ≈ 0.003 that needed to match the spectral estimates ofe"nb in Figure 1 was two times smaller than that (0.006) of
Bowers and Simpson [1987]. The correspondence betweene"nb and "td is especially good during two periods (6.5 < t <
12.5 hours and t > 20.5 hours) of almost unidirectional
westerly (’ ∼ 270°) flow with relatively high advection
velocity (Figure 1).
[28] The turbulent kinetic energy etr and friction velocity

u* were calculated by Lozovatsky et al. [2008b] using the
near‐bottom ADV covariance measurements. It was found
that the drag coefficient Cd = u*

2/U2 was approximately
constant, with median value 1.65 × 10−3. The classical

parameterization of wall dissipation e"nb =
u3
*
�
 appeared to

be valid as well as e"nb = c"
e3=2tr
Ltr
, with the constant cs being

close to the generally acceptable value of 0.08 [e.g., Mellor
and Yamada, 1982; Lozovatsky et al., 2006].

5.2. TSF Exponents in a Tidal Cycle

[29] The five‐point running averaged estimates of x(q =
1–5) are shown in Figure 6 (x(3) = 1 by definition). The
exponents x(1) and x(2) are above the classical values 1/3
and 2/3, respectively, in all segments. The low‐frequency
variations of the first two scaling exponents (Figure 6
(bottom)) generally follow the tidal cycle, showing a
decreasing trend as the tidal velocity increases and reaching
maxima at t ∼ 9 and 21 hours, corresponding to the maxima of
Renb shown in Figure 6 (middle). The near‐bottom Reynolds
number Rnb was compared with the microscale turbulent
Reynolds number

R�w ¼ rms w
0

� �
�w=�; ð11Þ

which is the major governing parameter for turbulence in the
inertial‐dissipative subrange [Tennekes and Lumley, 1972].
The Rlw is based on rms(w′) and the modified Taylor
microscale

�w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0ð Þ2= dw0=dxð Þ2

q
: ð12Þ

Figure 6. The running averaged estimates of the scaling exponents z(q) for (bottom) q = 1, 2 and
(top) q = 4, 5, and (middle) the near‐bottom (Renb) and local microscale (Rlw) Reynolds numbers; note
z(3) = 1.
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Rlw was selected over the conventional Rl = rms(u′)l/n,

where l =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0ð Þ2= du0

=dxð Þ2
q

is the longitudinal Taylor
microscale, because of the measurement accuracy con-
siderations mentioned in section 4.2. The variations of Rlw
almost mimic those of Renb (Figure 6 (middle)) suggesting
a quasi‐homogeneous energy cascade at scales between Ltr
and lw.
[30] The higher‐order exponents x(4) and x(5) are always

below their classical values of 4/3 and 5/3, respectively,
(Figure 6 (top)) but unlike x(1) and x(2) they show a
growing trend with increasing Renb and Rlw. This tendency
is well correlated with the curvature of the empirical xi(q)

functions that cross the classic q/3 curve at q = 3 (see
Figures 7 and 8). A departure of xi(q) from the classical
values appears to be pronounced at lower Renb (underde-
veloped turbulence). In section 5.4, a physical interpretation
of this tendency with decreasing Rlw is given.

5.3. Intermittency Parameters

[31] The scaling exponents xi(q) of TSF were approxi-
mated by equations (5) and (6) using the standard cftool
utility of Matlab. The examples of xi(q) with respective
multifractal (equation (5)) and lognormal (equation (6)) fits
are shown in Figure 7 for representative segments. All
empirical exponents xi(q) can be nicely fitted by equation (5)
with a coefficient of determination above 0.98. In segments

Figure 7. Examples of the empirical scaling exponents
x(q) for q = 1–7 at several segments (numbered in the insert)
and their approximations by (a) the multifractal (equation
(5)) and (b) lognormal (equation (6)) models. The symbols
show empirical results and the lines show model predic-
tions. The best‐fit values of model parameters are given for
each segment in the insets (C1 and a in Figure 7a and m in
Figure 7b).

Figure 8. The scaling exponents x(q) for q = 1–7 for
segments with the highest Renb. The (a) multifractal
(equation (5)) and (b) lognormal (equation (6)) model ap-
proximations are shown. The segment numbers (17–41) and
the corresponding model parameters (C1 and a (Figure 8a)
and m (Figure 8b)) are given in the insets.
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with the highest integral turbulent Reynolds number Rint

(Figure 8)

Rint ¼ rms w
0

� �
Lint=�; ð13Þ

where Lint is given in equation (10), the scaling exponents
yield the mean and the rms boundaries of the codimension
parameter eC1 = 0.148 ± 0.016 and the Levy parametere� = 1.46 ± 0.13. Both are in good agreement with the
“universal” values Ĉ1 = 0.15 and �̂ = 1.5 obtained in previous
high Reynolds number laboratory and atmospheric mea-
surements cited in section 2.
[32] At the segments with low Rint (segments 5, 13, 23,

29 in Figure 7a), the scaling exponents xi(q) substantially
depart from the classic function xi(q) = q/3, demonstrating
an amplification of C1 compared to Ĉ1. This tendency is not
monotonic, and at few segments with low Reint, C1 was also
low (e.g., segments 28 and 31 not shown in Figure 7a).

[33] The lognormal approximation (equation (6)) of the
same experimental xi(q) functions yielded high‐confidence
fits (Figures 7b and 8b). The intermittency parameter m
followed the variations of C1, generally out of phase with
Renb and Rint (see Figure 9). In section 2, it was mentioned
that a universal value of �̂ ∼ 0.25 is expected [Sreenivasan
and Kailasnath, 1993] in well‐developed high Reynolds
number turbulent flows. For the highest Reint segments, the
scaling exponents follow the lognormal intermittency model
with a mean e� = 0.237 ± 0.033 (Figure 8b), which is close to
the suggested �̂ = 0.25. This shows that internal intermit-
tency of turbulence during energetic tidal flow phases can be
satisfactorily described by either a multifractal intermittency
model or a classical lognormal model with universal inter-
mittency parameters. In segments with moderate and low
Reint, m generally exceeded �̂, sometimes increasing to 0.5
or beyond (see Figure 7b), although, as in the case of C1,
this tendency is not monotonic.

Figure 9. Parameters of the multifractal (equation (5), C1 and a) and lognormal (equation (6), m)
intermittency models. The near‐bottom (Renb) and integral turbulent (Rint) Reynolds numbers are mainly
in phase with a and out of phase with C1 and m. The intermittency parameters are shown with 95% confi-
dence bounds. Two periods of flooding current with highest Renb and Rint recorded are highlighted.
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[34] The running average of the intermittency parameters
shown in Figure 9 indicate that the temporal variations of m,
C1 and a are all affected by the semidiurnal tidal cycle and
seiching, which is evident from temporal variations of Renb
and Reint.

5.4. Dependence on the Turbulent Reynolds Number Rlw

[35] In order to illustrate the dependence of m, C1, and a
on internal flow parameters, they are plotted in Figure 10
as a function of the microscale Reynolds number Rlw
(equation (11)), which is a variant of Rl = rms(u′)l/n. This
modification, however, precludes direct comparison of our
results with most laboratory experiments, where Rl is spec-
ified. Despite high scatter, the data show a general increase
of m and C1 with decreasing Rlw (Figures 10 (top) and 10
(middle)). The best least squares power trends are given

with 95% confidence bounds and the coefficients of
determination r2. The empirical functions so obtained are

� ¼ 0:23þ R�0:8
�w and C1 ¼ 0:13þ R�0:9

�w ; ð14Þ

implying that m and C1 have similar dependencies on Rlw,
attaining asymptotic values mo = 0.23 and C1

o = 0.13 at high
Rlw > 500–700. Both estimates are close to the universal
values of �̂ and Ĉ1 expected from turbulence intermittency
models at high Reynolds numbers. A weak (statistically in-
significant) dependence of a on Rlw is shown in Figure 10
(bottom). The mean value of a, e� = 1.53 ± 0.39, however,
matches well with the universal �̂ = 1.5–1.55 cited by Seuront
et al. [2005] for log‐Levy multifractal intermittency model. It
should be reminded that the analysis here was based on TSF.
[36] Qualitatively similar dependence of xi(q) on Rl has

been reported by Hao et al. [2008, Figure 6] for TSF. These
authors, however, found that the scaling exponents for the
longitudinal structure functions are independent of Rl. In
order to compare laboratory findings with our results,
Figure 6 of Hao et al. [2008] was digitized, wherein the
scaling exponent x(q = 0–8) of TSF is shown for Rl = 120,
184, 250, and 350. The empirical functions x(q) were then
approximated by multifractal (equation (5)) and lognormal
(equation (6)) intermittency models. The resulting intermit-
tency parameters are shown in Figure 10 by stars. The
laboratory and field data agreed well in the range of the
variability of m and a. We conclude that the oceanographic
and laboratory measurements of TSF show an increasing
tendency of intermittency parameters with decreasing Rlw,
which is evident from Figure 10.

5.5. Scaling Exponent of Second‐Order SF as a
Function of Rlw

[37] As pointed out before, refined similarity hypothesis
(RSH) suggests that spectral densities of velocity compo-
nents and the corresponding second‐order SF must deviate
in the inertial subrange from the classic “−5/3” and “2/3”
laws, respectively, due to internal intermittency. If the in-
termittency parameters C1 and m are dependent on Rlw at
relatively low Rlw < 500–700 (equation (14)), then the
scaling exponent of the second‐order SF x(2) can be a
function of Rlw as well. Based on the concept of incomplete
self‐similarity, Barenblatt [1996] showed that the limiting
behavior of the first moments of the velocity field takes the
form of an inverse logarithmic dependence on the Reynolds
number [see also Barenblatt et al., 1999; Barenblatt and
Chorin, 2004]. Therefore, the higher moments are ex-
pected to converge to a limit at the same or a lower rate with
increasing Re. For the second‐order structure function S(q=2),
the following formula has been suggested [Barenblatt and
Goldenfeld, 1995; Barenblatt et al., 1999]

S q¼2ð Þ rð Þ ¼ e"rð Þ2=3 c0 þ c01
lnRe

� � r




� ��1= lnRe

; ð15Þ

where c0, c01, and g1 are constants, and ln Re ≡ log Re
is the natural logarithm of a Reynolds number Re. If Re
is taken as Rlw and empirical values of S(q=2) exponent
xi(2) are plotted against log Rlw, then a decreasing trend
of x(2) is well evident with increase of log Rlw (see

Figure 10. The dependencies of intermittency parameters
m, C1, and a on the local turbulent Reynolds number Rlw

.
The least‐squared fits with 95% lower and upper confident
bounds (for m and C1) are shown. The laboratory data of
Hao et al. [2008] are shown by stars (see text for details).
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Figure 11a). In the spirit of equation (15), this trend could
be approximated as

� 2ð Þ ¼ exp S q¼2ð Þ
h i

¼ 2=3þ �1= logR�wð Þn: ð16Þ

The least squared fit of equation (16) to data gave g1 = 0.77
and n = 1.63 with r2 = 0.76 for the entire range of log Rlw
variability (log Rlw = 4–7.5). The rate of increase of x(2) at
low Rlw is substantially higher than the inverse logarithmic
rate that equation (15) predicts. If only high Rlw are
considered and the approximation (16) with n = 1 is enforced
for log Rlw > ∼ 5.1 (Rlw > 150), the inverse logarithmic
function fits the data reasonably well with g1 = 0.24.

6. Discussion

6.1. Universality of x(2)
[38] The behavior of x(2) at low Reynolds numbers

suggested by Barenblatt and Goldenfeld [1995] appears to
be born out by our data, but the rate of increase is not in
par with that predicted by the inverse logarithmic rate
(equation (15)). Note that the 2/3 power law for x(2) is
expected only at very high Rlw. For the range of Reynolds
numbers considered in this paper, x(2) somewhat exceeded

2/3 and was close to 0.7 for log Rlw > 6, which is consistent
with the laboratory results of Benzi et al. [1995]. Benzi et al.
[1999] also concluded that the universal (Reynolds number
independent) value of x(2) is close to 0.7 rather than 2/3.
This assertion is not supported by the presented data, which
show the possibility of further reduction of x(2) toward
classical 2/3 at very high Rlw.

6.2. Test of Taylor Hypothesis

[39] Our analysis of turbulence intermittency in a tidal
BBL and several laboratory experiments [e.g., Shen and
Warhaft, 2000; Pearson and Antonia, 2001; Cleve et al.,
2004; Arenas and Chorin, 2006; Hao et al., 2008] have
shown that x(q) is a function of Re. The Re dependence of
x(q), however, has been disputed [e.g., Benzi et al., 1999;
Castaing, 2006] mainly on the basis that Taylor hypothesis
may fail at low Rl by introducing a bias to SF exponents.
Responding to the concern of Castaing [2006], Sreenivasan
[2006] questioned whether the relationship between x(q) and
Rl can be affected by Taylor hypothesis, calling for direct
and accurate spatial turbulent measurements to resolve the
concern. To our knowledge, no such measurements exist,
but the numerical simulations on SF without using Taylor
hypothesis [e.g., Briscolini et al., 1994] have confirmed the
applicability of ESS in flows with Rl as low as 32.
[40] Although the rmsi(w′) in the tidal flow never ex-

ceeded several percents of the mean advection velocity Ui,
we decided to study the influence of Taylor hypothesis on
our data by running an additional test recommended by
Castaing [2006]. Restricting frozen turbulence hypothesis to
the Kolmogorov time scale th = (n/e")1/2, Castaing [2006]
suggested that the “Taylor separation distance” dm = Uth
must exceed the dissipation scale (LK = 15h) in order to
develop a reasonable linear range in SF. Using our measure-
ments, the ratio dm/LK was calculated for each data segment
by employing spectrally obtained estimates of the mean
dissipation rate e". The ratio dm/LK is shown in Figure 11b
as a function of log(Rlw), which can be inspected vis‐à‐
vis the plot of x(2) versus log(Rlw) in Figure 11a. For
log(Rlw) > 5, the results show dm/LK > 6, suggesting that
even for not very high turbulent Reynolds numbers Taylor
hypothesis should work well (Rlw > 150). As such, the weak
inverse logarithmic dependence of x(2) on Rlw observed for
log(Rlw

) > 5 can be accepted with confidence. The samples
of x(2) at log(Rlw) < 5, which show a faster increase of
the scaling exponent with decreasing Rlw, were in the
range 3 < dm/LK < 6, which is not sufficient to invalidate
Taylor hypothesis. The break of x(2) behavior observed at
log(Rlw) ≈ 5, nevertheless, raises concerns of whether there
is a breakdown of Taylor hypothesis when log(Rlw) < 5.

6.3. Influence of Anisotropy and the Nature of the Flow

[41] The scaling exponents of TSF can be differently
affected by the Reynolds number compared to those of the
longitudinal SF due to anisotropy, which was found in some
laboratory studies [Antonia et al., 2002]. The nature of the
flow may also influence the Rlw dependence of x(q) and
intermittency model parameters. For example, in the oceans,
the intermittency in a reversing highly sheared tidal flow
over the seabed (current case) may have different scaling
compared to wave‐generated turbulence, flow near the sea
surface (drift currents), currents around and behind obstacles

Figure 11. (a) Scaling exponent of the second‐order TSF
z(2) as a function of the natural logarithm of local turbulent
Reynolds number log Rlw

approximated by equation (15)
(dotted line) using the adjustable parameter of equation (16)
g1 = 0.24 (25 samples for log Rlw

> 5.1). A modification
for this formula (with n = 1.63 and g1 = 0.77) was applied to
the entire Rlw

variability (bold line). (b) The ratio between the
“Taylor separation distance” dm = Uth and LK = 15h,
where h = (n3/e" )1/4 and th = (n/e" )1/2 are the Kolmogorov
length and time scales, respectively, and U the mean velocity
for each segment.
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(seamounts), parallel shear and jets flows (equatorial counter
currents) and river plumes. After all, large‐scale structures of
these flows are different, and the assumption was made that
the selected averaging period was appropriate to analyze
only the universal turbulent structures and energy cascade.
The use of isotropic assumption in calculation of the dissi-
pation rate instead of utilizing the full three‐dimensional
energy dissipation tensor [e.g., Hosokawa et al., 1996;Wang
et al., 1996] may affect Rlw and Rl calculations, and hence
the dependence of x(q) on corresponding Reynolds numbers.
All these factors may influence specific forms of the scaling
laws given by equations (14) and (16), but the tendencies of
increasing m, C1, and x(2) with decreasing Rlw is expected to
hold. The intermittency parameters and the scaling exponent
of the second‐order SF approach their universal asymptotic
values at very high Reynolds numbers.

7. Conclusions

[42] The ADV measurements of vertical velocity (w) in a
tidal current on a shallow shelf of the East China Sea were
used to calculate higher‐order transverse structure functions
(TSF) in the streamwise direction, based on which the in-
termittency characteristics of turbulence near the seafloor
were studied. It was found that at fairly low Reynolds
numbers Re the TSF scaling exponents x(q) (with respect to
the third‐order TSF) progressively deviate from the classical
universal turbulent regime x(q) = q/3 as Re decreases,
possibly due to higher intermittency of underdeveloped tur-
bulence. The second‐order TSF scaling exponent x(2) shows
an inverse logarithm dependence on the microscale turbulent
Reynolds number Rlw for Rlw > 150, supporting the theo-
retical formulation of Barenblatt and Goldenfeld [1995].
[43] The application of the classical single‐parameter (m)

lognormal model and two‐parameter (C1 and a) log‐Levy
multifractal model for scaling of SF exponents x(q) shows
that during high‐speed flooding phases of tidal flow the
mean intermittency parameters are e� ≈ 0.24, eC1 ≈ 0.15, ande� ≈ 1.5. These are close to the canonical universal values for
well‐developed turbulence at high Reynolds numbers. When
the turbulent Reynolds number Rlw drops below ∼100, m and
C1, showed a tendency to increase up to m ∼ 0.5–0.6 and
C1 ∼ 0.25–0.35.
[44] The relationships between m, C1 and Rlw were ap-

proximated by power law functions (equation (14)) with
asymptotic values of mo = 0.23 and C1

o = 0.13 at very high
Reynolds numbers. The dependence of intermittency para-
meters on Reynolds number delineated in this study helps
to resolve the controversy between small universal values
of m and C1 obtained previously in high Reynolds number
laboratory and atmospheric flows and relatively large values
of m = 0.4–0.5 reported for stratified ocean turbulence [Baker
and Gibson, 1987; Gibson, 1991; Fernando and Lozovatsky,
2001]. Note that turbulent patches in the pycnocline are
usually associated with relatively low Rlw. The dependence
of intermittency parameters on microscale Reynolds number
obtained in laboratory experiments of Hao et al. [2008] is in
general agreement with the results of the present study for
tidally induced turbulence in the marine bottom boundary
layer. The influence of Reynolds number Rl on the scaling
exponents of transverse and longitudinal structure functions
is expected to depend on the nature of the flow and anisot-

ropy of turbulence, which must be addressed in future
studies. Small‐scale as well as mesoscale intermittencies of
turbulence in natural waters should be taken into account in
developing new parameterizations of vertical and lateral
mixing for advance numerical models of oceanic and atmo-
spheric dynamics.
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