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Welcome to CoDawork 2015 
CoDaWork 2015, the 6th international Workshop on Compositional Data analysis, 
offers a forum of discussion for people concerned with the statistical treatment and 
modelling of compositional data or other constrained data sets, and the interpretation 
of models or applications involving them. The primary goal of the workshop is to 
identify important potential lines of future research and gain insight as to how they 
might be tackled. 

CoDaWork 2015 intends to bring together specialist researchers, data analysts, 
postgraduate students, as well as those with a general interest in the field, to 
summarize and share their contributions and recent developments.  

Compositional data (CoDa) are typically defined as vectors of positive components 
and constant sum, usually 100% or 1. These conditions render most classical statistical 
techniques incoherent on compositions, as they were devised for unbounded real 
vectors. However, there are many more types of data having the same limitations: as 
soon as the variables of a data set show the relative importance of some parts of a 
whole, data should be considered compositional. Examples of disguised compositions 
are data presented in ppm, ppb, molarities, or any other concentration units. Aitchison 
introduced the log-ratio approach to analyse CoDa back in the eighties. His solution 
was based on transforming the data vector with some log-ratio transformations, and 
applying classical techniques to the scores so obtained. This became the foundation of 
modern CoDa analysis, nowadays based on an own geometric structure for the 
simplex, an appropriate representation of the sample space of CoDa. The validity of 
these considerations is not restricted to CoDa: there are many more data sets which 
sample space is not obeying the rules of real numbers, or that can be given an own, 
alternative, meaningful geometric structure. Examples abound in the natural and social 
sciences: vectors of positive amounts, functional data, spherical data, ordered variables, 
etc. CoDa analysis insights may be of good use to scientists working with these data 
sets, and vice versa. 

Practitioners interested in CoDA can find in the website: www.compositionaldata.com 
a forum for the exchange of information, material and ideas. Also a free software can 
be found there, the Compositional Data Package (CoDaPack), which implements 
presently the most elementary the compositional statistical methods. It can be 
downloadable from: http://ima.udg.edu/codapack. This software has been developed 
and is maintained by the research group pn compositional data analysis of the 
Universitat de Girona, and is oriented to users coming from the applied sciences, with 
no extensive background in using various computer packages. 

In www.compositionaldata.com also R Packages can be found: zCompositions, 
compositions, robCompositions. 
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A Logistic Normal Mixture Model

Allowing Essential Zeros

John Bear and Dean Billheimer
Statistical Consulting Lab, University of Arizona, U.S.A.
jbear@email.arizona.edu, dean.billheimer@arizona.edu

June 16, 2015

Abstract

The usual candidate distributions for modeling compositions, the Dirichlet and the
logistic normal distribution, do not include zero components in their support. Methods
have been developed and refined for dealing with zeros that are rounded, or due to a
value being below a detection level, Palarea-Albaladejo et al. (2014); Pawlowsky-Glahn
and Buccianti (2011); Martin-Fernandez et al. (2011); Palarea-Albaladejo and Martin-
Fernandez (2008); Fry et al. (2000). Methods have also been developed for zeros in
compositions arising from count data, Billheimer et al. (2001); Bacon-Shone (2008);
Daunis-i-Estadella et al. (2008).

However, essential zeros, cases where a component is truly absent, in continuous
compositions are still a problem. Aitchison and Kay (2003) proposed an approach for
extending the logistic normal distribution to model essential zeros. They posited a mix-
ture of additive logistic normal distributions of different dimension, related by common
parameters. They discussed possible ways of estimating parameters but did not derive
estimators for location or dispersion parameters. We continue their approach, and by
imposing an additional constraint, develop a likelihood, and show ways of estimating
parameters for location and dispersion. The proposed likelihood, conditional on param-
eters for the probability of zeros, is a mixture of additive logistic normal distributions
of different dimensions whose location and dispersion parameters are projections of a
common location or dispersion parameter. For some simple special cases, we contrast
the relative efficiency of different location estimators.

1 Introduction

An essential zero in compositional data is a zero component which is not caused by rounding
or some other difficulty in measurement, but rather, is genuinely believed to be zero. This is
fundamentally a different problem than that addressed by recent work on rounded zeros, or
below-detection level zeros, such as in Palarea-Albaladejo et al. (2014), Martin-Fernandez
et al. (2011), Palarea-Albaladejo and Martin-Fernandez (2008), Fry et al. (2000), Aitchison
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(1986). Although there are workable Bayesian approaches to zeros in compositions from
count data, Billheimer et al. (2001); Bacon-Shone (2008); Daunis-i-Estadella et al. (2008),
essential zeros in continuous compositions still present a problem.

We develop an approach proposed by Aitchison and Kay (2003) to extend the logistic
normal distribution to accommodate essential zeros. Aitchison (1986) and Aitchison and
Kay (2003) note that a key feature compositional data is that ratios of the components
contain all pertinent information about the composition. Essential zeros complicate this
feature in that they contain no information about the other components of the composition.
In addition, an observation containing an essential zero is at the boundary of the simplex
and is a composition of smaller dimension.

2 Previous Work

In addition to the work mentioned above, there have been other approaches to zeros in
compositions. Work by Butler and Glasbey (2008) mapped a latent Gaussian variable to
a composition, but seems only to work for two and three place compositions. In contrast,
Leininger et al. (2013) have developed a more practical treatment of compositions as coming
from a latent Gaussian random variable where the compositional component is zero when
the latent Gaussian component is less than or equal to zero. They develop a hierarchical
power model with the transformation Yk = (max(0,Zk))

γ

1+
∑d
k′=1(max(0,zk′ )

γ
where zk is the kth normal

component and Yk is the corresponding compositional component. To estimate parameters
they use MCMC. One limitation of their approach is also a limitation of ours: we require
one component of the composition to be strictly positive.

Work by Stewart and Field (2011) uses a multiplicative logistic normal mixture model
that allows them to consider the univariate log odds for the ith component to be normally
distributed where the ith component is not zero. It works well for their applications, in
particular regression, but does not capture covariance easily.

Scealy and Welsh (2011) transform compositions into directional data on the hyper-
sphere, and develop a regression model using the Kent distribution, Kent (1982), which
tolerates zeros provided there are not very many.

Our goal here is to extend the additive logistic normal distribution to handle essential
zeros for continuous data.

3 Definitions (from Aitchison, 1986)

Definition: If

x = (x1, x2, . . . , xd, xD)T , and xi ≥ 0, and
D∑
i=1

xi = 1.
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then x is called a composition.
Definition: The d-dimensional simplex embedded in D-dimensional real space is the set
defined by

S d = {(x1, . . . , xD) : x1 > 0, . . . , xD > 0;
D∑
i=1

xi = 1}.

Convention: d = D − 1.
Definition:

If x = (x1, x2, . . . , xd, xD)T , then x−D = (x1, x2, . . . , xd)T .

Definition: The additive logratio transformation, φ, is defined as follows:

φ : S d → Rd

x 7→ y =(log(x1/xD), log(x2/xD), . . . , log(xd/xD))T .

We define the shorthand:

log(x−D/xD) = (log(x1/xD), log(x2/xD), . . . , log(xd/xD))T .

Since φ is one-to-one, its inverse exists. It is called the logistic transformation, φ−1, defined
as:

xi = exp(yi)/{exp(y1) + · · ·+ exp(yd) + 1} (i = 1, . . . , d),

xD = 1− x1 − x2 − . . .− xd
= 1/{exp(y1) + · · ·+ exp(yd) + 1}.

4 Simplifying Assumption

In this section we outline our method for building a mixture distribution for dealing with
compositions containing essential zeros, but leave most of the details about the weights for
later. A key simplifying assumtion we make throughout is that one of the components of
the composition, the Dth component, is never zero. We allow zeros anywhere else but not
in the last component.

Let x = (x1, x2, . . . , xd, xD)T be a composition with xi < 1 for all i ∈ {1, 2, . . . , d,D}
and xD > 0. For i ∈ {1, 2, . . . , d}, consider two possibilities. Either xi = 0 or xi > 0. Let
W = {i : i ∈ {1, 2, . . . , d}, xi > 0}. That is, W is the set of indices for the components
of x (other than xD) which are nonzero (positive). For any given composition x, W is
the set of all the indices of the nonzero components of x. There are 2d − 1 possible sets
W . There are 2d − 1 and not 2d because W cannot be empty. If W were empty that
would require that xD = 1 in order for x to be a composition, but we have already said
we require all xi < 1 including xD. Each pattern of zeros corresponds to a different set
W . We index them as W` with ` ∈ {1, 2, . . . , 2d − 1}. They are elements of the power set,

3



W` ∈P({1, 2, . . . , d}). Sometimes we refer to these sets with incidence vectors where the
ith component VW` i = 1 ⇐⇒ xi > 0 and VW` i = 0 ⇐⇒ xi = 0.

Each W` has some probability of occurrence, P (W`). The probabilities must sum to
one,

2d−1∑
`=1

P (W`) = 1.

We use the probabilities P (W`) as the weights in a mixture distribution. For the other
distributions making up our mixture, we use logistic normal distributions L (x;µW`

,ΩW`
)

derived from a single parent logistic normal distribution L (x;µ,Ω) . They are in fact
projections from the parent. We will call the distributions derived from the parent distri-
bution subdistributions once we define them. So the mixture distribution will be denoted
as follows, once we define a few more terms,

g(x;µ,Ω) =
2d−1∑
`=1

P (W`)L (x;µW`
,ΩW`

).

In the parent distribution, L (x;µ,Ω), µ is a d-place location parameter vector, µ ∈ Rd,
and Ω is a d× d positive definite dispersion matrix. To ease the discussion we will refer to
µ and Ω as mean vector and variance-covariance matrix respectively, although they are
not moments of the distribution. For the distributions derived from the logistic normal
parent distribution, the parameters µW`

and ΩW`
are defined in terms of the parameters

µ, and Ω, and the set of indices of nonzero components of x, W`, and a selection matrix
BW`

.
Next we define our selection matrix BW`

. W` ⊂ {1, 2, 3, . . . , d} is a nonempty set of
indices (of the nonzero components of x), and without loss of generality we can order the
indices from least to greatest:

W` = {j1, j2, . . . , jJ} where 0 < j1 < j2 < . . . < jJ ≤ d.

Now we define our J × d selection matrix, BW`
= [Bi,m].

For i ∈ {1, 2, . . . , J}, and m ∈ {1, 2, . . . , d}, with W` = {j1, j2, . . . , jJ},

we define the elements of [Bi,m] to be

Bi,ji = 1 and Bi,m6=ji = 0.

For example, let x = (.2, 0, .3, 0, .25, .25), a 6-place composition, with x6 > 0. The set of
nonzero indices is W` = {1, 3, 5}, and the selection matrix is
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BW`
= B(1,3,5) =

 1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

 .

Now it is easy to define µW`
and ΩW`

. We define:

µW`
= (BW`

)(µ).

ΩW`
= (BW`

)(Ω)(BT
W`

).

With this structure in place, the mixture distribution can now be more fully specified.

g(x;µ,Ω) =

2d−1∑
`=1

P (W`)L
||W`||(x;µW`

,ΩW`
) where

• ||W`|| refers to the cardinality of the set W`.

•
∑
P (W`) = 1.

• µ is a d-place vector in Rd.

• µW`
is a subvector of µ corresponding to the W` pattern of zeros.

• ΩW`
is a submatrix of a d × d positive definite covariance matrix corresponding to

the W` pattern of zeros.

4.1 Multivariate Normal Foundation

In our approach there is a tight correspondence between the yi parts of a multivariate
normal vector and the xi parts of a composition, possibly one containing essential zeros.

yi = log(xi/xD) for i = 1, 2, 3, . . . , d.

Composition: x = (x1, x2, x3, . . . , xd, xD )T

| | | |
Logratio transformed vector: y = log(x−D/xD) = (y1, y2, y3, . . . , yd, � )T

When there is an essential zero in the composition in one of the xi slots, e.g., in x2, we use
� as a placeholder so things line up, for example:

Composition: x = (x1, 0, x3, . . . , xd, xD )T

| | |
Logratio transformed subvector: y = log(x−{2,D}/xD) = (y1, �, y3, . . . , yd, � )T
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When we have an essential zero in the ith component of the composition, we have a se-
lected subvector of the y’s which does not contain an element corresponding to yi. The
requirement that xD > 0 is what allows us to maintain this strict correspondence between
xi and yi.

Next we turn to defining an extension to Aitchison’s logistic normal distribution. Recall
Aitchison defined the logistic normal distribution (without zeros) as:

Let x = (x1, x2, x3, . . . , xd, xD)T be a composition.

Let y = log(x−D/xD) = (y1, y2, y3, . . . , yd)T .

Then we define x to have a logistic normal distribution with location µ and dispersion Ω,

written x∼L (µ,Ω), if y∼N (µ,Ω).

Note also that if y is distributed as a multivariate normal, y∼N (µ,Ω), and B is a selection
matrix as mentioned in Section 4, then By is also multivariate normal with distribution:

By∼N (Bµ,BΩBT ).

And finally, recall that also in Section 4 we used W` to represent the set of indices of the
nonzero components of x. BW`

is the selection matrix that selects those components when
we perform these matrix multiplications:

µW`
= (BW`

)(µ).

ΩW`
= (BW`

)(Ω)(BT
W`

).

With all these definitions in place we are now in a position to define a logistic normal
distribution with essential zeros.
Definition:

Let x = (x1, x2, x3, . . . , xd, xD)T be a composition with xD > 0.

Let W` = {i1, i2, . . . , ir} ⊂ {1, 2, . . . , d} be a nonempty set of indices of nonzero

components of x.

Let BW`
be the corresponding selection matrix.

Let y = log(BW`
x−D/xD) = (yi1 , yi2 , . . . , yir)

T = φ̃(x,W`, D) be the logratios of the nonzero

components of x.

If for every set W` of indices of nonzero components of x, we have y∼N (µW`
,ΩW`

), then x
has a logistic normal distribution with essential zeros, written x∼L (µ,Ω), with probability
density function

g(x;µ,Ω) =
2d−1∑
`=1

P (W`)L
||W`||(x;µW`

,ΩW`
).
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where ∑
P (W`) = 1.

µ is a d -place vector in Rd.

µW`
is a subvector of µ corresponding to the W` pattern of zeros.

Ω is a d× d positive definite covariance matrix.

ΩW`
is a square submatrix of Ω, corresponding to the W` pattern of zeros.

Now we extend the notation for the inverse of the logratio transformation, φ−1 from
Aitchison (1986). We use the new symbols, φ̃ and φ̃−1. We define them in terms of W and
D, the maximum index. Let W ⊂ {1, 2, . . . , d} be a pattern of zeros, i.e., a set of indices of
nonzero components of x and denote them: W = {i1, i2, . . . , ir}, and let j ∈ {1, 2, . . . , d,D}.
Now we define φ̃−1.

φ̃−1(y,W,D) = (x1, . . . , xd, xD)T where, (1)

xj =


exp(yj)/{exp(yi1) + exp(yi2) + . . .+ exp(yir) + 1} if j ∈W
0 if j /∈W & j ∈ {1, . . . , d}
1/{exp(yi1) + exp(yi2) + . . .+ exp(yir) + 1} if j = D.

For the case whereW = {1, 2, . . . , d} the composition x = (x1, x2, . . . , xD)T has the additive
logistic normal distribution, L d(µ,Ω).

4.2 Common Expectations and Variances

The definition of φ̃−1 enables compositions from different subdistributions to be used to
estimate parameters of their shared parent distribution. Let x1 = (x11, x21, . . . , xD1)

T , and
let x2 = (x12, x22, . . . , xD2)

T with

x1∼L
|W1|(µW1

,ΩW1), and (2)

x2∼L
|W2|(µW2

,ΩW2). (3)

The two sets of nonzero indices, W1,W2 need not have any elements in common, nor do
they need to have the same number of elements, though x1 and x2 both have D elements.
Suppose they have an index, m, in common: m ∈ W1 ∩W2. By properties of the logistic
normal distribution (Aitchison (1986), p. 116), and the definition of φ̃−1 in Equation 1 we
have:

E log(xm1/xD1) = Eym = µm = Eym = E log(xm2/xD2). (4)

And similarly,

Var[log(xm1/xD1)] = Var[ym] = σ2m, and (5)
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Var[log(xm2/xD2)] = Var[ym] = σ2m. (6)

Thus, compositions from different subdistributions of the same logistic normal distribution
can be used to estimate the parameters of their shared parent distribution.

5 Data Blocks

Now that we have a correspondence between multivariate normal variables and composi-
tions with zeros, we could derive a density function using the standard formula for trans-
formed variables, analogous to Aitchison (1986), chapter 6. However, for estimating param-
eters it is more convenient to work in the space of the transformed variables (multivariate
normal projections).

Here we apply the techniques and notation of block matrices and matrix calculus to
do some preparation in order to build a likelihood and attack the problem of finding
estimators for the parameters. We discuss two sets of estimators, a general maximum
likelihood estimator, and a simpler pair of estimators reminiscent of method of moments
estimators.

5.1 Block Matrices of Compositions

We write a collection of compositional data with zeros, X, as a column of blocks of com-
positions where each block, X`, has a particular pattern of zeros throughout. That is, for
a particular block, X`, and i ∈ {1, 2, . . . , d}, the ith column of X` is either all positive, or
all zero.

Let X
n×D

=


X1

X2
...

Xb

 (7)

The dimensions of the blocks are: X1
r1×D

, X2
r2×D

, . . . , Xb
rb×D

and the sum of their vertical dimen-

sions is r1 + r2 + . . .+ rb = n, where n is the number of data points.
We use ` to indicate a block, and t to indicate a composition (row) in that block. Next

we define the patterns of zeros in each block. Here i ∈ {1, 2, . . . , D}. For ` ∈ {1, 2, . . . , b},
let W` ⊂ {1, 2, . . . , d} be the set of indices of strictly positive components of X`.

For ` ∈ {1, 2, . . . , b},X` = [xti] where


xti > 0 if i = D,

xti > 0 if i ∈W`,

xti = 0 if i /∈W` and i 6= D.

(8)
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Each row of X` is required to be a composition. For each row t, where 1 ≤ t ≤ r`,
D∑
i=1

xti = 1.

Since each X` consists entirely of compositions, the overall matrix X does too.

5.2 Transformations - Ratios and Logratios

First we define the logratio transformation, φ, for the case where there are no zeros, i.e.,
xi > 0,∀i ∈ {1, 2, . . . , D}.

φ : S d → Rd (9)

x 7→ y = (log(x1/xD), log(x2/xD), . . . , log(xd/xD))T , and (10)

xT 7→ yT = (log(x1/xD), log(x2/xD), . . . , log(xd/xD)). (11)

Next we extend φ to φ̃ for a block matrix of compositions, X
r`×D

which may contain zeros.

We do this by defining a selection matrix BW`
corresponding to set W`. We still have

W` ⊂ {1, 2, 3, . . . , d} being a nonempty set of indices of the nonzero components of x, and
without loss of generality we can order the indices from least to greatest:

W` = {j1, j2, . . . , jJ} where 0 < j1 < j2 < . . . < jJ < D. (12)

Now we define our (J + 1)×D selection matrix, BW`
= [Bp,m]. We use J + 1 here because

we construct the selection matrix so that the final, Dth, component of the data is always
selected. This is slightly different than before. Previously we constructed B to conform to
the parameters µ(d× 1) and Ω(d× d).

For p ∈ {1, 2, . . . , J + 1}, and m ∈ {1, 2, . . . , D}, with W` = {j1, j2, . . . , jJ}, (13)

we define the elements of [Bp,m] to be Bp,jp = 1 and Bp,m6=jp = 0. (14)

X`B
T
W`

is a matrix where each row vector is a composition without zeros.

X`B
T
W`

=


xT
1

xT
2
...

xrT`

BT
W`

=


x11 x12 . . . x1(J+1)

x21 x22 . . . x2(J+1)
...

...
...

xr`1 xr`2 . . . xr`(J+1)

 . (15)

We define φ̃(X`,W`, D) = φ(X`B
T
W`

) =


φ(xT

1 )
φ(xT

2 )
...

φ(xT
r`

)


r`×(J+1)

=


yT
1

yT
2
...

yT
r`


r`×J

. (16)
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Let Y`
r`×J

= φ̃(X`,W`, D) (17)

Each row vector in Y` is a vector of reals, all potentially from the multivariate normal
distribution corresponding to the `th pattern of zeros. Note that we cannot form a single
block matrix, Y, from the collection of Y` because they can have different numbers of
columns.

5.3 Means

The matrix Y` contains rows of compositions with the same pattern of zeros. We refer to
the tth row vector of Y` as yT

`t. We refer to the mean as the vector ȳ`, and define it as:

ȳ`
J×1

=
1

r`
(1T

r`
Y`)

T . (18)

Here we are using 1r` to represent an r` × 1 column vector of ones. ȳ` is a column vector.
We define it this way because of how we intend to use it in quadratic forms from the
multivariate normal density.

6 Simple Estimators

6.1 Mean

It is also possible to construct simpler estimators relying on properties of the normal
distribution. For the location, if X

n×D
= [xti] is a collection of n compositional data points

with zeros, and the Dth component always strictly positive, we can define a simple estimator

of the mean,
∗
µ = (

∗
µ1,

∗
µ2, . . . ,

∗
µd)T . Let ni be the number of elements of the ith column of

X that are nonzero. For i ∈ {1, 2, . . . , d}, and t ∈ {1, 2, . . . , n}, define

∗
µi =

1

ni

∑
{t:xti 6=0}

log(xti/xtD). (19)

By the assumption of normality of the logratios, the estimator
∗
µ is unbiased. The maximum

likelihood estimator, µ̂, being unbiased, must have at least as small a variance, but this

simple estimator,
∗
µ, may be more convenient in some cases, e.g., where the data set is

large.

6.2 Variance

Here we show how to find estmators for variances and covariances using maximum likeli-
hood estimators for normal random variables. For a single random composition, x, with

10



components x1, x2, . . . , xD, we substitute log(xi/xD) into the MLE for variances of normal

random variables. We use
∗
σ
2

ii for the estimator of the variances of the logratios log(xi/xD),
for i ∈ {1, 2, . . . , d}, and t ∈ {1, 2, . . . , ni}.

∗
σ
2

ii =
1

ni

∑
{t:xti 6=0}

(
log(xti/xtD)− ∗µi

)2
. (20)

If we want an unbiased estimator, we can divide by (ni − 1) instead of ni. As with means,

the different
∗
σii are based on different numbers of observations, ni.

6.3 Covariance

It only makes sense to talk about estimating the covariance of the variables log(xi/xD) and
log(xj/xD) when both xti and xtj are not 0 so we define nij = ||{t : xti 6= 0 & xtj 6= 0}||.
That is, nij is the number of data points where both xti and xtj are not 0. As we did
with variance, we can start with the canonical maximum likelihood formula for estimating
covariance among normally distributed variables, and substitute in appropriate logratios.

∗
σij =

1

nij

∑
{t:xti 6=0 & xtj 6=0}

(log(xti/xtD)− ∗µi)(log(xtj/xtD)− ∗µj) (21)

Note that
∗
σij is based on nij observations, while

∗
µi and

∗
µj are based on ni and nj ob-

servations, respectively. The formula in Equation 21 is based on the maximum likelihood
estimator for covariance of normal variables. For unbiased estimators we would divide by
(nij − 1) instead of nij .

Our estimator for the d× d variance-covariance matrix is
∗
Ω = [

∗
σij ].

7 Maximum Likelihood Estimators

For the case where there are no zeros, the location estimator described earlier is a maximum
likelihood estimator, but in general the the estimator we found earlier is not an MLE. From
now on we will call that estimator the simple estimator, to contrast it with the maximum
likelihood estimator, which we derive next.

We start by finding the location MLE given Ω for 3-part compositions, show it is
unbiased, and then show the relative efficiency of the simple estimator with to the MLE.
Assume we have a set of logistic normal compositional data with b different patterns of
zeros:

x11, . . . ,x1r1
i.i.d.∼ L |W1|(BW1µ,BW1ΩBT

W1
)

x21, . . . ,x2r2
i.i.d.∼ L |W2|(BW2µ,BW2ΩBT

W2
)

11



...

xb1, . . . ,xbrb
i.i.d.∼ L |Wb|(BWb

µ,BWb
ΩBT

Wb
). (22)

In a block of data, as in 22, we use x`t to refer to the tth composition of the compositions
with W` for their pattern of zeros. We define y`t = φ̃(x`t,W`, D), and to ease notation, we
write in terms of y`t.

7.1 Likelihood

First we write the full likelihood and log likelihood for D-place compositions, and then
restrict ourselves to 3-place compositions. The full likelihood is:

L(µ,Ω|r1, . . . , rb,y11, . . . ,ybrb) = (23)

b∏
`=1

r∏̀
t=1

P`

(2π)|W`|/2|BW`
ΩBT

W`
|1/2

exp
[
− 1

2
(y`t −BW`

µ)T (BW`
ΩBT

W`
)−1(y`t −BW`

µ)
]
.

The constant

b∏
`=1

r∏̀
t=1

P`

(2π)|W`|/2|BW`
ΩBT

W`
|1/2

(24)

is independent of µ, so for purposes of maximizing the likelihood with respect to µ, we can
treat it as a single constant, C.

L(µ,Ω|r1, . . . , rb,y11, . . . ,ybrb)

= C

b∏
`=1

r∏̀
t=1

exp
[
− 1

2
(y`t −BW`

µ)T (BW`
ΩBT

W`
)−1(y`t −BW`

µ)
]

(25)

= C exp
[
− 1

2

b∑
`=1

r∑̀
t=1

(y`t −BW`
µ)T (BW`

ΩBT
W`

)−1(y`t −BW`
µ)
]
. (26)

Taking the log gives:

logL(µ,Ω|r1, . . . , rb,y11, . . . ,ybrb) (27)

= logC − 1

2

b∑
`=1

r∑̀
t=1

(y`t −BW`
µ)T (BW`

ΩBT
W`

)−1(y`t −BW`
µ). (28)

For the simple case of three-part compositional data with some zeros in component one, and
some zeros in component two, the parent distribution for the transformed data is bivariate
normal,

N (µ,Ω) where µ =

[
µ1
µ2

]
, and Ω =

[
s11 s12
s12 s22

]
(29)
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For the full bivariate normal distribution,

A = Ω−1 =
1

s11s22 − s212

[
s22 −s12
−s12 s11

]
. (30)

For the two univariate normal distributions, the inverses of the variances are: 1
s11

and 1
s22

.
In these formulas,
y1j1 is the jth data point among the univariate data from the first component.
y2j2 is the jth data point among the univariate data from the second component.
y3j is a 2-place vector with data from both components,[

y1j1
�

] [
�
y2j2

] [
y3j1
y3j2

]
. (31)

We also define their means.

1

r1

r1∑
j=1

y1j1 = ȳ11
1

r2

r2∑
j=1

y2j2 = ȳ22
1

r3

r3∑
j=1

y3j =

[
ȳ31
ȳ32

]
(32)

7.1.1 Partial Derivatives

∂ logL(µ|Y,Ω, r1, r2, r3)

∂µ1
=

1

s11
r1(ȳ11 − µ1) +

s22
s11s22 − s212

r3(ȳ31 − µ1) +
−s12

s11s22 − s212
r3(ȳ32 − µ2) (33)

∂ logL(µ|Y,Ω, r1, r2, r3)

∂µ2
=

1

s22
r2(ȳ22 − µ2) +

s11
s11s22 − s212

r3(ȳ32 − µ2) +
−s12

s11s22 − s212
r3(ȳ31 − µ1) (34)

7.1.2 MLE for Location, Given Ω

We set the partial derivatives equal to zero, replace µ with µ̂, and solve. The result is:

µ̂1|Ω, r1, r2, r3 =
(r1ȳ11 + r3ȳ31)(r2 + r3)s11s12 − r1ȳ11r2s212 + (ȳ22 − ȳ32)r2r3s11s12

(r1 + r3)(r2 + r3)s11s22 − r1r2s212
(35)

µ̂2|Ω, r1, r2, r3 =
(r2ȳ22 + r3ȳ32)(r1 + r3)s11s12 − r2ȳ22r1s212 + (ȳ11 − ȳ31)r1r3s12s22

(r1 + r3)(r2 + r3)s11s22 − r1r2s212
(36)
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In the case where there are no univariate data from the second component, i.e, r2 = 0,
we have:

(µ̂1|Ω, r1, r2, r3)
∣∣∣
r2=0

=
r1ȳ11 + r3ȳ31

(r3 + r1)
=

1

(r3 + r1)

 r3∑
j=1

y3j1 +

r1∑
j=1

y1j1

 . (37)

That shows that when we have r2 = 0, the MLE (µ̂1|Ω, r1, r2, r3) is equal to our simple
estimator for µ1. Similarly, when r1 = 0, (µ̂2|Ω, r1, r2, r3) is equal to our simple estimator

for µ2. It also turns out that (µ̂1|Ω, r1, r2, r3)
∣∣∣
r3=0

= ȳ11, and when r3 = 0, the simple

estimator is also ȳ11, so they are equal in that case as well.

7.2 Unbiasedness of Conditional MLE for 3-Part Composition

To show that µ̂|Ω, r1, r2, r3 is unbiased, we start by pointing out the expectations of the
various means:

E[ȳ11] = E

 1

r1

r1∑
j=1

y1j1

 =
1

r1

r1∑
j=1

E [y1j1] = µ1 (38)

E[ȳ22] = E

 1

r2

r2∑
j=1

y2j2

 =
1

r2

r2∑
j=1

E [y2j2] = µ2 (39)

E

[[
ȳ31
ȳ32

]]
= E

 1

r3

r3∑
j=1

y3j

 =
1

r3

r3∑
j=1

E [y3j ] =

[
µ1
µ2

]
(40)

When we take the expectation, the term with (ȳ22− ȳ32) vanishes because E[ȳ22] = E[ȳ32].
That leaves only terms with E[ȳ11] = µ1 and E[ȳ31] = µ1, which we can factor.

µ̂1|Ω, r1, r2, r3 =
(r1ȳ11 + r3ȳ31)(r2 + r3)s11s12 − r1ȳ11r2s212 + (ȳ22 − ȳ32)r2r3s11s12

(r1 + r3)(r2 + r3)s11s22 − r1r2s212
(41)

E [µ̂1|Ω, r1, r2, r2] =
µ1
[
(r1 + r3)(r2 + r3)s11s12 − r1r2s212

]
(r1 + r3)(r2 + r3)s11s22 − r1r2s212

= µ1 (42)

This shows that µ̂1 is unbiased. By symmetry we get that µ̂2 is unbiased.

7.3 General Maximum Likelihood Estimators

For the general case of maximum likelihood estimators for higher dimensions than shown
here, the log likelihood can be differentiated, and the score functions can be solved with a
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computer algebra system. In addition, the Hessian can be checked to verify the solution is
a maximum. We have done this for the case of 3-part compositions and don’t anticipate
any obstacles to extending the program to handle the general case of D-dimensions.

8 Variances of Location Estimators

Next we find variances of the two location estimators, the MLE, and the simple estimator.
Both are unbiased. A question we need to answer is, what is the efficiency of the simple

estimator relative to the MLE. We have been using µ̂ for the MLE. We continue to use
∗
µ

for the simple estimator (of the location). In our discussion,

efficiency(
∗
µ1, µ̂1) =

Var(µ̂1)

Var(
∗
µ1)

. (43)

8.1 Variance of Location MLE, µ̂

Next we derive the variance of the location MLE, µ̂|Ω, r1, r2, r3. Recall that

µ̂1|Ω, r1, r2, r3 =
(r1ȳ11 + r3ȳ31)(r2 + r3)s11s12 − r1ȳ11r2s212 + (ȳ22 − ȳ32)r2r3s11s12

(r1 + r3)(r2 + r3)s11s22 − r1r2s212
.

(44)

First we rewrite the expression so that each of the ȳ terms stands alone.

µ̂1|Ω, r1, r2, r3 =

(r23 + r2r3)s11s22ȳ31 − r2r3s11s12ȳ32 + r2r3s11s12ȳ22 + ((r1r3 + r1r2)s11s22 − r1r2s212)ȳ11
(r23 + (r2 + r1)r3 + r1r2)s11s22 − r1r2s212

(45)

To find the variance of µ̂1|Ω, r1, r2, r3, we need to replace r1ȳ11 with
∑r1

j=1 y1j1; r2ȳ22 with∑r2
j=1 y2j2; r3ȳ31 with

∑r3
j=1 y3j1; and r3ȳ32 with

∑r3
j=1 y3j2. We also make some other

substitutions to simplify the algebra.

Let k31 = (r3 + r2)s11s22. (46)

Let k32 = r2s11s12. (47)

Let k22 = r3s11s12. (48)

Let k11 = (r3 + r2)s11s22 − r2s212. (49)

Let kdenom = (r23 + (r2 + r1)r3 + r1r2)s11s22 − r1r2s212. (50)

With these in place, we get

µ̂1|Ω, r1, r2, r3 =
1

kdenom

k31 r3∑
j=1

y3j1 − k32
r3∑
j=1

y3j2 + k22

r2∑
j=1

y2j2 + k11

r1∑
j=1

y1j1
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=
1

kdenom

 r3∑
j=1

(k31y3j1 − k32y3j2) + k22

r2∑
j=1

y2j2 + k11

r1∑
j=1

y1j1

 . (51)

The y2j2 are i.i.d. univariate normal; the y1j1 are i.i.d. univariate normal; and the y3j are
i.i.d bivariate normal, so the variance of the estimator is:

Var(µ̂1|Ω, r1, r2, r3) =(
1

kdenom

)2
Var

 r3∑
j=1

(k31y3j1 − k32y3j2)

+ Var

k22 r2∑
j=1

y2j2

+ Var

k11 r1∑
j=1

y1j1

 .
(52)

Var(y2j2) = s22 and Var(y1j1) = s11, so

Var(µ̂1|Ω, r1, r2, r3) =

(
1

kdenom

)2
Var

 r3∑
j=1

(k31y3j1 − k32y3j2)

+ k222r2s22 + k211r1s11

 .
(53)

To find the variance of the remaining sum requires the facts that y3j are i.i.d., and that
Cov(y3j1, y3j2) = s12.

Var

 r3∑
j=1

(k31y3j1 − k32y3j2)

 =

r3∑
j=1

Var(k31y3j1 − k32y3j2)

=

r3∑
j=1

[Var(k31y3j1) + Var(k32y3j2)− 2k31k32Cov(y3j1, y3j2)]

=

r3∑
j=1

[
k231s11 + k232s22 − 2k31k32s12

]
=r3

[
k231s11 + k232s22 − 2k31k32s12

]
. (54)

With that we can write the variance of the MLE, µ̂1.

Var(µ̂1|Ω, r1, r2, r3) =(
1

kdenom

)2 [
r3
(
k231s11 + k232s22 − 2k31k32s12

)
+ k222r2s22 + k211r1s11

]
. (55)

Substituting the values for the k’s back in gives:

Var(µ̂1|Ω, r1, r2, r3) =
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r3
(
(r3 + r2)

2s311s
2
22 + r22s

2
11s

2
12s22 − 2r2(r3 + r2)s

2
11s

2
12s22

)
+ r2r

2
3s

2
11s

2
12s22 + r1s11((r3 + r2)s11s22 − r2s212)2

((r23 + (r2 + r1)r3 + r1r2)s11s22 − r1r2s212)2
(56)

Symmetry also gives the variance of µ̂2 given Ω.

Var(µ̂2|Ω, r1, r2, r3) =
r3

(
(r3 + r1)

2s322s
2
11 + r21s

2
22s

2
12s11 − 2r1(r3 + r1)s

2
22s

2
12s11

)
+ r1r

2
3s

2
22s

2
12s11 + r2s22((r3 + r1)s22s11 − r1s212)2

((r23 + (r2 + r1)r3 + r1r2)s11s22 − r1r2s212)2
(57)

Next we find the variance of the simple estimator for the location so we can compare
the two.

8.2 Variance of Simple Location Estimator,
∗
µ

Our simple estimator for the location is
∗
µ =

[ ∗
µ1
∗
µ2

]
. Here we concern ourselves with

Var(
∗
µ1) and then rely on symmetry to arrive at the variance of

∗
µ2.

∗
µ1 =

1

r1 + r3

 r1∑
j=1

y1j1 +

r3∑
j=1

y3j1

 (58)

Var(
∗
µ1) = Var

 1

r1 + r3

 r1∑
j=1

y1j1 +

r3∑
j=1

y3j1


=

1

(r1 + r3)2
Var

 r1∑
j=1

y1j1 +

r3∑
j=1

y3j1


=

1

(r1 + r3)2
(r1s11 + r3s11)

=
s11

r1 + r3
. (59)

By symmetry, Var(
∗
µ2) =

s22
r2 + r3

. (60)

8.3 Relative Efficiency of Location Estimators

The first thing we show is that when the covariance element of Ω is zero, i.e, s12 = 0, then

µ̂ =
∗
µ.

Var(µ̂1|Ω, r1, r2, r3) =
r3

(
(r3 + r2)

2s311s
2
22 + r22s

2
11s

2
12s22 − 2r2(r3 + r2)s

2
11s

2
12s22

)
+ r2r

2
3s

2
11s

2
12s22 + r1s11((r3 + r2)s11s22 − r2s212)2

((r23 + (r2 + r1)r3 + r1r2)s11s22 − r1r2s212)2
(61)
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Evaluate at s12 = 0.

Var(µ̂1|Ω, r1, r2, r3)
∣∣∣
s12=0

=
r3
(
(r3 + r2)

2s311s
2
22

)
+ r1s11((r3 + r2)s11s22)

2

((r23 + (r2 + r1)r3 + r1r2)s11s22)2
(62)

Factor numerator and denominator.

Var(µ̂1|Ω, r1, r2, r3)
∣∣∣
s12=0

=
(r3 + r2)

2s311s
2
22(r3 + r1)

(r3 + r1)2(r3 + r2)2s211s
2
22

=
s11

r3 + r1
=
∗
µ1. (63)

Similarly,

Var(µ̂2|Ω, r1, r2, r3)
∣∣∣
s12=0

=
s22

r3 + r2
=
∗
µ2. (64)

We have already shown in Section 7.1.2 that when r2 = 0, µ̂1 =
∗
µ1, and when r1 =

0, µ̂2 =
∗
µ2; and when r3 = 0, µ̂1 =

∗
µ1, and µ̂2 =

∗
µ2. Next we need to compare the variance

of
∗
µ with the variance of µ̂ in cases where the estimators are not obviously the same.

To do this we wrote a program to calculate the ratios of the variances, Var(µ̂1)/Var(
∗
µ1)

and Var(µ̂2)/Var(
∗
µ2) for each of the possible combinations of r1, r2, and r3 such that

r1 + r2 + r3 = 100, for two different cases of Ω,

Ω =

[
1 0.2

0.2 1

]
and Ω =

[
1 0.8

0.8 1

]
. (65)

In all three figures, we plot Var(µ̂2)/Var(
∗
µ2) versus Var(µ̂1)/Var(

∗
µ1). In Figure 1 we use a

small covariance term, s12 = 0.2. In Figure 2 we use a large covariance, s12 = 0.8. In both
figures, we shade by the size of r1 relative to r2.
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Figure 1: Efficiency of
∗
µ Relative to µ̂ with Low Covariance (0.2)

Figure 1 shows the relationship between efficiency of
∗
µ1 and

∗
µ2 and the relative sizes

of r1 and r2. In the worst case, when r1 >> r2, the efficiency of
∗
µ1 approaches 1, and

the efficiency of
∗
µ2 falls off toward 0.97. A point to note here is that for a relatively small

covariance, 0.2, the simple estimator,
∗
µ has a variance almost as small as that of µ̂. We

will save discussion of the bands or striations for Figure 3.
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Figure 2: Efficiency of
∗
µ Relative to µ̂ with High Covariance (0.8)

Figure 2, which shows efficiency based on a covariance of 0.8, has the same pattern as

Figure 1, but with larger variances for
∗
µ, smaller efficiency. Here the worst cases can have

an efficiency of less than 0.5 for either component of
∗
µ, though when the efficiency of

∗
µ1 is

that small, the efficiency of
∗
µ2 is very near 1.

20



0.6

0.8

1.0

0.6 0.8 1.0
Var(mle1)

Var(simple1)

V
ar

(m
le

2)
V

ar
(s

im
pl

e2
)

0

25

50

75

r3

Relative Efficiency: Covariance=0.8

Figure 3: Efficiency of
∗
µ Relative to µ̂ with High Covariance (0.8) and Relative to r3

Figure 3 shows the same points, for a covariance of 0.8, but shaded by the value of r3.
To help decipher it, we show a subset of the points in Figure 4.
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Figure 4: Efficiency of
∗
µ Relative to µ̂ with High Covariance (0.8). r3 ∈ {1 : 4, 61 : 64}.

Figure 4 shows a subset of the points, only the points where r3 ∈ {1, 2, 3, 4, 61, 62, 63, 64}.
When r3 is very small there is a wide range of possibilities for r1 and r2. The four leftmost
points in the upper left of Figure 4 are points where r1 is 1 or 2; r2 is somewhere between
94 and 97, and r3 is 2, 3, or 4. In these cases, the sample for estimating µ1 is very small,
from 3 to 6 points, some from univariate data and some from the bivariate data. In that
case, the MLE has a much smaller variance than the simple estimator. In that same case,
there is a much larger sample from univariate data for estimating µ2, upwards of 90 points,
plus a handful of points from the bivariate data. In that case, the difference between the

variance of
∗
µ2 and µ̂2 is very small.

Graphs with negative covariances, −0.2, and −0.8 look the same as with positive co-
variances, and are omitted for the sake of brevity.
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8.4 Summary of Relative Efficiency

Both the simple estimator for the location,
∗
µ, and the maximum likelihood estimator,

µ̂, are unbiased given Ω. The simple estimator’s efficiency relative to the MLE tends to
decrease as the covariance component of Ω increases. We say “tends” because even with a

covariance of 0.8, there are cases where the efficiency of both components of
∗
µ relative to

µ̂ is very close to one.

When there are relatively few zeros, and they are balanced,
∗
µ has a variance almost

as small as µ̂. The more zeros there are, or the more unbalanced their distribution is, the
larger the variance of one or more components of the simple estimator.

9 Subcompositional Coherence

One of the key reasons for using the logistic normal approach is that, in the base case
without zeros, it preserves subcompositional coherence. That is, parameter estimates based
on a subcomposition will be consistent with estimates based on the whole composition
(componentwise equality for shared components).

In the presence of zeros, do we maintain that property? It depends on which estimators
are used. We have shown that in general when there are zeros, the MLE for the mean is not
the same as the simple estimator for the mean. The maximum likelihood estimator does
not preserve subcompositional coherence when we have zeros. The simple estimators, by
construction, do preserve subcompositional coherence provided the same Dth component
is in both.

Thus for inference, there is a choice to be made between maintaining subcompositional
coherence and maximizing likelihood. Issues of zeros and subcompositional coherence are
discussed in Scealy and Welsh (2014).

10 Discussion

The goal has been to extend the additive logistic normal distribution to cope with essential
zeros. We have done that by requiring that the final component of each composition be
nonzero, and by projecting compositions with zeros onto smaller dimensional subspaces,
thereby addressing the issues of division by zero, and the log of zero. We arrive at a mixture
of logistic normals where each distribution has a mean and a covariance parameter which
are projections from a common mean and covariance.

We construct two sets of estimators, simple estimators,
∗
µ,
∗
Ω, and maximum likelihood

estimators, µ̂, Ω̂. These are estimated using all of the compositions in the data, regardless of
where the zeros occur, assuming only that theDth component is always nonzero. The simple
estimators preserve subcompositional coherence, while the maximum likelihood estimators
do not.
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In compositional data zeros are a common occurrence. We developed this logistic
normal mixture model with the intention of making analysis of such data easier. For
future work, we plan to extend existing compositional data methods for inference, graphing,
clustering, etc., to work with this distribution.
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Abstract

We present the first results of an experiment which is aimed at ultimately produc-
ing recommendations for analysing archaeologic ceramics specimens using hand held
XRF analysis devices. In the experiment we study the effects of different measurement
durations, different number of measured points, and three different types of surface
treatments (breakage, polished, grounded) when analysing ceramics specimens, while
controlling for nine different types of clay and three different types of temper (no
temper, sand, rock), in total almost 1 000 analysed points. For each measurement, the
proportions of 36 different elements and all other elements are estimated. In those cases
with multiple measurements of a specimen, the compositional centre of the measure-
ments is calculated. A complicating issue in the analysis is the large number of parts
found to be below detection limit; 13 elements have more than 50 % of the measure-
ments below detection limit and for more than half of those (almost) all measurements
are below detection limit. We try nine different strategies for imputing the values. Each
estimated elemental composition is compared to a reference estimate using the simpli-
cial distance. The log distances are finally analysed using analysis of variance with
main and interaction effects. We find that the different surface treatments have the
greatest effect on the distances: grounded specimens yield the most accurate estimates
and polished surfaces the least. We also find a significant effect of increasing the number
of measured points, but less effect of increasing the duration of the measurements.

Key words: Archaeologic XRF analyses, Archaeometric experiment, Ceramics anal-
ysis, Elemental composition analysis, Simplicial distance.



1 Introduction

X-ray fluorescence (XRF) analysis, using hand held devices, has gained increased popularity among
archaeologist during the recent years, primarily because of its portability and relatively low cost.
The analysis produces an estimate of the elemental composition of a specimen. There is, however,
not any real knowledge or agreement of how the analyses should be done to obtain the best results.
For how long time should a specimen be analysed? How many points on a specimen should be
analysed? Which would be preferable, to analyse one point for four minutes or two different points
for two minutes each?

To obtain a good measurement one also needs to consider the type of surface that is being anal-
ysed. When an archaeologic artefact is encountered, the surface has usually been exposed to
various chemical and mechanical interactions with surrounding materials, changing the elemental
composition of the surface. Hence the surface might not be representative of the rest of specimen.
To overcome this one could ground the specimen to a fine powder which would mix all parts of the
specimen and also remove any effect that large grains might have on the analysis. Another option
would be to break off a small piece of the specimen to create a fresh breakage surface gaining access
to the interior of the specimen. A third more controllable option would be to remove a part of
the surface of the specimen by polishing it with a suitable tool. An important question is how the
choice of treatment will affect the analysis. Is one alternative preferable to the others?

In an attempt to answer the questions above, we present some first results of an experiment in
which we study the effects of number of points measured, measurement duration, and treatment of
the surface. The design of the experiment is described in more detail in Section 2 and the results
of the experiment are presented in Section 3.

2 Experimental design

Nine different, comercially available, clays were purchased. The clays are listed in Table 1. Each
clay was partitioned into three parts and different types of temper was applied, i.e. different
materials were added to the clays to control for shrinkage as is commonly done in pottery. Sand
was added to the first partition, to the second partition crushed rock was added, and to the third
partition no temper was added. From the in all 27 different clay partitions, small samples were
produced resembling potsherds and fired in a modern kiln.

Table 1: The nine different clays used in the experiment.

No. Clay type Description Firing temp.

1 Earthenware black 970–1040�
2 Earthenware red, 25 % grog 0.2 mm up to 1220�
3 Earthenware pale red, mix of natural blue and red clay
4 Earthenware white 1020–1140�
5 Earthenware white, 25 % grog 0–0.5 mm 1000–1280�
6 Stoneware white 1000–1300�
7 Earthenware red 1000–1150�
8 Stoneware black, 40 % grog 0–0.5 mm 1220–1260�
9 Earthenware red, all lime has been washed/removed

From each of the 27 different types of potsherds three replicates was then prepared for analysis
in one of three ways: one potsherd was broken to create a breakage surface commonly found in
archaeologic ceramic samples, one potsherd was polished using a diamond polishing disc to give
a “perfect”, smooth surface, and one potsherd was grounded to a fine power to give a complete



mixture of the sample removing any differences between the surface and the interior of the potsherd.
This produced in total 81 different samples. The elemental composition of each sample was then
analysed at 1 and 5 points, during 60 and 380 seconds, yielding in theory 972 measurements.
However, due to the human factor the number of points analysed were in a few cases four or six
instead of five, yielding in total 971 measurement. The analysis was done using a portable XRF
device providing measurements of 36 elements plus a “Balance” containing all other elements.

2.1 Measurements below detection limit

Looking at the measurements it was noted that a fairly large amount of measurements were be-
low the detection limit (BDL). The number of BDL measurements for each element is given in
Table 2. It should be noted that five elements (chlorine, cobalt, selenium, antimony, and bismuth)
have more than 99 % BDL measurements, and silver, cadmium, and tin have all more than 90 %
BDL. Furthermore, magnesium, nickel, copper, tungsten, and gold have more than 50 % BDL
measurements.

Table 2: The number of measurements below detection limit (BDL) for each element. In total the analysis comprises
971 measurements. Note that all measurements of selenium and bismuth were below detection limit, and all but
one of antimony. Also chlorine, cobalt, silver, cadmium, and tin had more than 90 % measurements below detection
limit.

Si Ti Al Fe Mn Mg Ca K P S V Cr
0 0 0 1 432 634 1 0 410 274 24 83

Ni Cu Zn Rb Sr Y Zr Nb Ba Pb Th Cl
656 530 25 0 0 1 1 1 11 21 85 965

Co As Se Mo Ag Cd Sn Sb W Au Bi U
968 315 971 221 931 922 918 970 658 854 971 422

It is of course problematic to analyse data with such a large amount of measurements BDL. At
least two main strategies are conceivable: elements could be excluded or measurements could be
imputed. As in all such cases, it becomes a question of retaining information but not altering
the data too much. Imputing data is of course not a problem when only a limited number of
measurements are imputed, but one can question the reasonableness of imputing almost all values.
We have chosen to try different ways of excluding and imputing in order compare the effects of
the different strategies. The procedure was done in two steps. First three data sets were created
with all elements with more than 50 %, 90 %, and 99 % BDL, respectively, removed. In those cases
where elements with observed measurements where excluded, the observed measurements were
added to the balance. Secondly, three imputation schemes were implemented to each data set.
A non-parametric imputation with 0.65 of the detection limit and a model-based lognormal with
either fixed or random imputation values (Palarea-Albaladejo and Mart́ın-Fernández 2013). All
imputation was done using the functions multRepl and multLN in the R package zCompositions
(Palarea-Albaladejo and Mart́ın-Fernández 2014). To provide some sort of comparisons of the
effects of the imputation, the first two principal components for the nine data sets are plotted in
Figure 1(A) and third and fourth are plotted in Figure 1(B). The plots in Figure 1(B) indicate
that the major difference between the data sets might be between only retaining elements with less
than 50 % BDL and keeping more elements. On can clearly see in Figure 1(A) that the random
imputation adds more variation, as intended.

2.2 Assessing the accuracy of the measurements

In order to assess the accuarcy of the measurement a reference (or “truth”) is needed. During the
summer of 2013, we made an agreement with a colleague in Germany who had access to analytical
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equipment of greater accuracy to analyse the 27 different clay-temper combinations. To date we
have not received the results, but hopefully the will arrive in the near future. However, we still
needed a reference, so we decided to use the results we had. It was deemed that the grounded
samples would provide the best estimates, and theory (and common sense?) suggested that longer
duration would also provide better measurements. So, for every clay-temper combination the
centre composition (Aitchison 1989)

C (g(x11, . . . , xn1), . . . , g(x1D, . . . , xnD)) ,

where C(x) = (x1, . . . , xD)/
∑n

i=1 xi, i.e. the closure operation, and g(x1, . . . , xn) = (x1 · · ·xn)1/n,
i.e. the geometric mean, of all the 380 seconds measurements was calculated. This was done
separately for the nine different imputation schemes, thus obtaining nine different reference sets.

3 Analysis

For each combination of clay, temper, treatment, number of measured points, and measurement
duration, we calculate the compositional centre of the measurements. Thus, for one measured
point we keep that measurement and for five points we calculate the centre of the five points. This
is repeated for all imputation schemes resulting in nine data sets of 324 compositional estimates.
For each estimate we calculate the simplicial distance (Aitchison 1983, p. 64)

dS(x,y) =

√√√√ D∑
i=1

(
log

xi
g(x)

− log
yi
g(y)

)
,

where g(·) denotes the geometric mean, from the corresponding reference composition, i.e. the
composition of that combination of clay and temper, resulting in nine sets of 324 distances. The
calculations are done using the R package compositions (van den Boogaart, Tolosana, and Bren
2014).

The logarithm of the distances are analysed using analysis of variance. (The logarithm of distances
are used as the distances are only positive and are expected to have a skew distribution. The
decision is further strengthened by the fact that Box-Cox transformations indicate an optimal
λ ≈ 0.2, i.e. fairly close to 0.) We model the effect of different treatments, number of points
and measurement duration including all two-way interactions, controlling for different clays and
temper.

In Table 3 we present results of the analysis of variance for one of the imputation schemes, the
fixed lognormal with less than 50 % BDL. It can be noted that the clearly most significant factor
is the treatment, i.e. if the measurement was done on a breakage surface, a polished surface, or on
the grounded sample. The least significant factor is the duration of the measurement. The results
are similar for the other imputation schemes. The only difference is that the duration becomes
significant when the number of elements is increased.

To get an idea of how the distances differ for different factor levels, we calculate the change in esti-
mated mean value for the various combinations of treatment, number of points and measurement
duration compared to the baseline of one measured point for 60 seconds on a breakage surface. The
values are presented in Table 4. The shortest distances are found when the samples are grounded
and the longest for the polished surfaces, with the breakage surfaces in-between. An interest-
ing observation is that, whereas the accuracy of the measurements are improved with increased
measurement duration for the grounded sample, the accuracy deteriorates with increased measure-
ment duration for polished surfaces. For increased number of measurements the, the accuracy is
improved for 380 seconds duration for both breakage and polished surfaces but deteriorated for
the shorter duration.

Figure 2 shows normal QQ plots of the residuals for each of the nine different analyses (imputation



Table 3: The results of the analysis of variance for lognormal fixed imputation retaining only elements with less
than 50 % BDL. The results for the other imputation schemes are similar. The treatment (breakage, polished or
grounded) is the most significant factor and the duration of measurements the least significant. The main difference
between the imputation schemes is that duration is significant when more elements are retained, but not when only
elements with less than 50 % BDL are retained.

Factor Df Sum Sq Mean Sq F value p-value

Clay 8 4.478 0.560 0.9154 0.5038
Temper 2 1.616 0.808 1.3212 0.2683
Treatment 2 272.422 136.211 222.7604 0.0000∗∗∗

Duration 1 1.880 1.880 3.0746 0.0805
Points 1 10.266 10.266 16.7887 0.0001∗∗∗

Treatment:Duration 2 19.024 9.512 15.5560 0.0000∗∗∗

Treatment:Points 2 9.652 4.826 7.8924 0.0005∗∗∗

Duration:Points 1 3.476 3.476 5.6848 0.0177∗

Residuals 304 185.887 0.611

Significance codes: 0 *** 0.001 ** 0.01 * 0.05

Table 4: Changes in estimated mean value of the log distances for the various combinations of treatment, number of
points and measurement duration. The changes are compared to the baseline of one measured point for 60 seconds
on a breakage surface. The estimates come from the analysis of the lognormal fixed imputation data set retaining
only elements with less than 50 % BDL.

Points Duration Treatment
Breakage Polished Grounded

1 60 s 0 0.26998 −0.91252
380 s 0.14817 0.86613 −1.49240

5 60 s 0.04198 0.41486 −1.54592
380 s −0.22417 0.59669 −2.54012

schemes). The plots indicate that the residuals have a slightly skewed distribution possibly violating
the normality assumption.

Apparently, the treatment has the greatest impact on the distances, and especially whether or not
the sample was grounded. Since grounded samples were used to create the elemental reference
compositions, we rerun the analyses without the grounded samples, i.e. with only breakage and
polished surfaces. In all the nine data sets treatment and the interaction between treatment and
duration are the only significant effects. As the results are similar for all data sets, we provide as
an illustration in Table 5, the estimated changes in mean values of the log distances for the various
combinations of treatment, number of points and measurement duration for the same data set as
above, i.e. the lognormal fixed imputation with less than 50 % BDL. We note that the breakage
surface still provides shorter distances than the polished surface. An interesting observation is
that for breakage surfaces, the mean distance decreases when either the number of points or the
measurement duration is increased, but when both are increased not much is gained.

4 Conclusions and future research

We have investigated how the accuracy of the elemental composition analysis of clay specimens,
using a hand held XRF analysis device, is affected by different types of surface treatments, different
number of points measured, and different measurement durations. Our prior belief was that the
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Figure 2: Normal QQ plots of the residuals for the nine different imputation schemes.

more points and the longer the duration, the better the accuracy. We also believed that a grounded
specimen would produce the most accurate measurements. These suppositions are confirmed by
the analyses.

We can conclude that a grounded specimen is the most important factor in obtaining an accurate
measurement. We are actually a bit surprised by the large differences between the three surface
treatments. The polished surface should provide an optimal surface for the XRF device, but
turns out to yield the worst results. A possible explanation could be that the samples have been
polluted by substances from the polishing disc, even though this seems unlikely. Another possible
explanation could be that the polished surface prevents the analyst from avoiding the large grains
of temper etc., which is easily done with a breakage surface. It is, however, a gratifying result that
the breakage surface does so well. Grounding and, to a slightly lesser extent, polishing are both
destructive treatments, which are often not an option for an archaeologist. One reason for the
popularity of the handheld XRF device is that it can be used on artefacts in e.g. museums without
damaging or even removing them. Grounding the specimen is thus an optimal but perhaps more
theoretical strategy.

At least for breakage surfaces and grounded samples, the most accurate measurements are obtained
when using both five points and a measurement duration of 380 seconds per point. (This is not
the case for polished surfaces, which is rather puzzling.) However, from a practitioner’s point of
view, it should be noted that five measurements each during 380 seconds means that the total
time of the analysis is more than 30 minutes, not counting the time setting up the equipment,



Table 5: Changes in estimated mean value of the log distances for the various combinations of treatment, number of
points and measurement duration. The changes are compared to the baseline of one measured point for 60 seconds
on a breakage surface. The estimates come from the analysis of the lognormal fixed imputation data set retaining
only elements with less than 50 % BDL.

Points Duration Treatment
Breakage Polished

1 60 s 0 0.26998
380 s −0.12913 0.58883

5 60 s −0.23531 0.13757
380 s −0.22416 0.59670

preparing the specimen and moving the specimen between the analyses. Since time is limited (for
most of us), the question becomes whether it is preferable to analyse a specimen at only one point
for 380 seconds or at five points for 60 seconds each? (In each case the total time of analysis is
about six minutes.) Our findings clearly show that measuring five points during 60 seconds yields
more accurate estimates than one point during 380 seconds. It should be noted though, that for
breakage and polished surfaces a single measurement of 60 seconds gives more accurate estimate
when the grounded samples are included in the analysis.

This has been a first report from an ongoing experiment. It is of course highly unsatisfactory to use
the same measurements that are analysed to estimate the reference values. We are therefore eagerly
looking forward to getting new independently estimated reference values. In this paper an analysis
of 971 measurements was presented. In total, the experiment to date consists of more than 1 800
measurements and more than 139 hours of XRF analysis device running time. In order to obtain
a balanced experiment, about half of the measurements were excluded, as not all combinations of
the factors are currently measured. It remains thus to complete the measurement sequence. This
will also allow us to identify any threshold values in number of points and measurement duration:
How much is gained in accuracy when increasing the number of points from one to three compared
to increasing the number of points from three to five? Is there an optimal combination of number
of points and measurement duration? It also remains as future research to investigate why the
breakage and polished surfaces yielded more accurate measurements when measured only once for
60 seconds, than compared to five measurement for 60 seconds and to one measurement for 380
seconds. Is there a reason for this, or is it some sort of artefact of the extremely strong treatment
effect?

Our conclusions in this experiment so far are that an archaeologist intending to do an elemental
analysis of a ceramic specimen using a hand held XRF analysis device should ground the specimen
if possible, and if not possible find a fresh breakage surface, and analyse the specimen at five
points for 60 seconds each or, time permitting, for 380 seconds each, and finally calculate the
compositional centre of the measurements.
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Abstract 

 
In the geosciences, radiogenic and stable isotope data are often used along with 

chemical concentrations to help determine sources of and processes affecting 

geochemical variation. Though some work combining isotopic data with concentration 

data has been done using compositional data analysis (CoDa), a number of questions 

remain. Tolosana-Delgado and others (2005) showed that concentrations (e.g. SO4) can 

be split into separate parts (e.g. 
34

SO4, 
32

SO4) based on their isotopic ratios. They also 

showed that an isometric log-ratio (ilr) transform of a stable isotope ratio is proportional 

to values expressed in classical delta notation and therefore the delta notation can 

simply be scaled to compare isotopic data and log-ratio transformed elemental/ionic 

data simultaneously. Puig and others (2011) applied this result to discriminant analysis 

of groundwaters by separating centered log-ratio (clr) transformed compositional data 

from untransformed isotopic data and scaling both sets to an equal variance. We are 

expanding on this idea to show the utility of ilr transformations and clr-biplots for 

combining elemental data with not only stable isotope data, but also with radiogenic 

isotopes, which are generally not presented using delta notation. 
 

In the present study, we use multiple data sets of deep formation brines and compare 

traditional mixing models to their CoDa counterparts to delineate fluid movement 

between reservoirs. Concentrations of individual isotopes are calculated using isotopic 

ratios and global mean isotopic abundances. One key result is that isotope parts (e.g. 
18

O, 
17

O, 
16

O, 
2
H, 

1
H, 

87
Sr, 

86
Sr) can simply be modelled by the major ion concentration 

(H2O, Sr) in a clr-biplot as they are perfectly dependent. Another important result is that 

an ilr transformation of radiogenic isotope parts (e.g. 
86

Sr and 
87

Sr in 
87

Sr/
86

Sr) can, like 

stable isotopes in delta notation, be treated as a linear function of the isotopic ratio, 

scaled only by a constant.  

 

Key words:   radiogenic isotopes, stable isotopes, produced waters, basin brines 

 



1   Introduction 
 

In the geosciences, variations in both radiogenic (i.e., isotope systems where one or more isotopes are 

created from the radioactive decay of a parent isotope) and stable (i.e., non-radiogenic) isotope ratios are 

often combined with variations in chemical concentrations to interpret geologic processes. Radiogenic 

isotope ratios (e.g. 
87

Sr/
86

Sr) in minerals are a product of initial isotopic abundances, partitioning of 

elements during crystallization, and subsequent radioactive decay over time. Particular minerals and rock 

types often have a specific radiogenic isotopic signature that may be imparted onto waters that interact 

with them. Radiogenic isotopes therefore are often used to determine the origin of fluids from rocks with 

a known or assumed isotopic composition or to determine mixing relationships between multiple sources. 

Stable isotopes of a given element (e.g. 
16

O, 
17

O, 
18

O or 
1
H, 

2
H), on the other hand, partition from one 

another during numerous geologic and biologic processes. Variations in stable isotopes can record 

evidence of specific processes (e.g. evaporation) or mixing between fluids that previously underwent 

different geologic processes over time (e.g. mixing between isolated basin reservoir brines and fresh 

meteoric water).    
 

Isotopic ratios are directly measured as proportions (e.g. 
18

O/
16

O) using a mass spectrometer, whereas 

major cation (e.g. Ca, Na) and anion (e.g. SO4, Cl) concentrations are measured as parts of a whole fluid. 

In traditional approaches, isotopic ratios are included together with concentrations during data analysis. 

However, if we want to combine isotopic ratios and concentration data in compositional data analysis 

(CoDa), particularly for multivariate analyses, it is important to have a comprehensive understanding of 

how to properly transform all relevant data into the Euclidean geometry of real space.   

 

Previous studies (Tolosana-Delgado and others, 2005; Puig and others, 2011) have addressed the 

incorporation of stable isotopes into CoDa, but there has yet to be a comprehensive development of 

procedures for different CoDa techniques. Tolosana-Delgado and others (2005) showed that chemical 

concentrations (e.g. SO4) can be split into separate parts (e.g. 
34

SO4, 
32

SO4) based on their isotopic 

proportions. They also showed that an ilr transform of a stable isotope ratio is proportional to values 

expressed in classical delta notation (expressed as per mil or parts per thousand relative to a standard) and 

therefore the delta notation can simply be scaled to compare isotopic data and major element 

concentrations simultaneously. Puig and others (2011) applied this result to discriminant analysis of 

groundwaters by separating clr transformed compositional data from raw isotopic data and scaled both to 
have equal variances. Here we show the utility of ilr transformations and clr-biplots for combining 

elemental data with not only stable isotope data, but also with radiogenic isotopes, which are generally 

not presented using delta notation. 

 

This study aims to focus on three things: 

 

1. Interpretation of isotopes using ilr transformed subcompositions 

2. Interpretation of isotopes in clr-biplots 

3. Discussion of scaling constituents with small log-ratio variances 

 

To address these issues, we focus on isotopic and compositional data for produced waters, which are the 

waters co-generated with hydrocarbons during oil and gas development. Produced waters may include 

portions of water originally present in geologic formations (formation water) prior to oil and gas 

production, waters injected for well stimulation and hydraulic fracturing, and water condensing from the 

gas phase. In many cases the salinity of these fluids can exceed that of bulk modern seawater (~35g/L) by 

several times. Analyzing produced waters can help understand basin scale hydrogeology and the transport 

of injected fluids. Isotopic data are particularly useful in answering these types of questions because they 
can demonstrate whether fluids in different reservoirs have mixed, and therefore whether injected fluids 

have been transported from one reservoir to another. We use two comprehensive chemical and isotopic 

datasets of formation water to address CoDa of isotopes: 1) formation waters from potash mine shafts in 

Saskatchewan, Canada (Jensen and others, 2006) and 2) formation brines from a Permian salt dome in the 

North German Basin (Kloppman and others, 2001). We focus on two stable isotope systems (O and H) 

and one radiogenic isotope system (Sr).  

 

 

 

 

 



2   Treatment of isotopic data 
 
Display of stable isotopic ratios on a manageable scale is often done using delta notation, in which the 

isotope ratio in question is normalized to a standard and multiplied by a factor of 1000.  For example: 

 

 

𝛿 O18 = 1000 ∗

(
O18

O16 )
𝑠𝑎𝑚𝑝𝑙𝑒

− (
O18

O16 )
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

(
O18

O16 )
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

 (1) 

 

And 

 

 

𝛿𝐷 = 𝛿2H = 1000 ∗

(
H2

H1
)
𝑠𝑎𝑚𝑝𝑙𝑒

− (
H2

H1
)
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

(
H2

H1
)
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

 (2) 

 

In the case of high salinity samples, such as many produced waters, large differences exist between 

isotopic ratios of H and O depending on whether they were measured on a concentration (mass) basis or 

an activity basis. For correct conversion of the data into ilr or clr transformed results and for comparison 

with concentration data, use of O and H isotopic data on a concentration basis is critical. Results 

presented in an activity basis can be converted to a concentration basis using the methods of Sofer and 

Gat (1972; 1975). Strontium isotopic data are often presented as a simple isotopic ratio of the radiogenic 

to stable isotope 
87

Sr/
86

Sr, not normalized to any standard. They are measured as a mass ratio and are 

therefore expressed on a concentration basis.   

 

As Tolosana-Delgado and others (2005) point out, isotopic data in delta notation are proportional to log-
ratios, but multiplied by a different scaling factor. Unlike SO4 concentration data that can be split into 

proportions by its isotopic ratio, O and H isotopes of water must be treated differently because the 

concentration of pure H2O in aqueous samples is not usually measured. Further, to do certain CoDa 

transformations it may be useful to treat each individual isotope of O and H as a separate concentration 

(e.g. 
16

O, 
17

O, 
18

O, 
1
H, 

2
H, 

86
Sr, 

87
Sr, etc.). To do this, in this study, we use the following procedure: 

 

  All concentration data are presented in units of mg/kg solution (ppm). The H2O concentrations were 

calculated as the difference between the samples’ density and total dissolved solids (TDS) 

concentration, where TDS is equivalent to the sum of all dissolved ions in the fluid. For samples 

where density was not reported, it was estimated using its relationship with TDS known from brine 

samples from the Permian Basin of West Texas. Water concentrations are therefore perfectly 

dependent on the concentration of the other ions and inversely correlated with TDS.  

 

 Based on stoichiometric relationships, H2O concentrations were converted to concentrations of O and 

H in water in the solution. For O and H isotopic data in delta notation, 
18

O/
16

O and 
2
H/

1
H ratios were 

determined from Equations 1 and 2, using the known composition of standard mean ocean water. 

Assuming the 
17

O/
16

O ratio is constant and that of the average global abundances, and assuming 
3
H is 

negligible, the concentrations of 
16

O, 
17

O, 
18

O, 
1
H, and 

2
H were individually calculated. For Sr 

isotopes, the Sr concentration in mg/kg solution is split into 4 isotopic concentrations (
84

Sr, 
86

Sr, 
87

Sr, 

and 
88

Sr) using the average global abundances for 
84

Sr, 
86

Sr, and 
88

Sr, and the measured 
87

Sr/
86

Sr 

ratio.  

 

 

3   Interpretation of isotopic data 
 

3.1   Interpretation of isotope data using ilr transformed subcompositions 

 
Ilr transformation of subcompositions can be utilized to interpret brine geochemistry. Engle and Rowan 

(2013) showed that not only can ilr transformations of the Na-Cl-Br system reveal halite dissolution and 

seawater evaporation trends common in certain environments that are apparent in traditional ratio plots, 



but they also more clearly show secondary processes such as albitization or incorporation of clays. Engle 

and Blondes (2014) used ilr transformations of produced waters in the Permian Basin, USA, to link 

geochemical variation to thermodynamic mineral equilibration models. The incorporation of isotopes into 

such studies would be an important advancement for the study of basinal brine geochemistry.  

 

Figure 1A shows a common plot of hydrogen and oxygen isotopes in water for brines from the North 

German Basin (Kloppman and others, 2001) and from potash mine shafts in Canada (Jensen and others, 

2006). The global meteoric water line (GMWL) represents the isotopic composition of terrestrial surface 
and near surface waters (Craig, 1961). The position of a given data point along that line is a function of 

many variables, dominantly latitude, elevation, and temperature. Evaporative loss results in “heavier” 

δ
18

O values that plot to the right of the GMWL. Deep formation brines that previously experienced 

evaporation but have not interacted with surface waters tend to plot here.  

 

The Permian North German Basin brines (Kloppman and others, 2001) plot directly on the GMWL, 

suggesting they are of meteoric origin. The formation waters from the potash mine shafts in 

Saskatchewan (Jensen and others, 2006) have a wide range in isotopic composition that is nearly as broad 

as all known terrestrial water compositions (Rozanski and others, 1993). This makes it particularly useful 

to detect differences between the traditional plot and a similar one created using the ilr transform of a 

four-part subcomposition, with each part being the individual isotopic concentrations. At first glance, the 

plots look identical except for the values on the axes, suggesting that the difference is simply one of scale. 

However, it is apparent from a close look at Figure 1B that the GMWL shows some curvature at the top 

right of the plot. Though these differences do exist, given that these data span nearly the entire range in 

observed values for the isotopic composition of natural waters it is small enough to be negligible and the 

ilr transformation does not appear to offer any benefits in this type of plot.  

 
We can also examine radiogenic 

87
Sr/

86
Sr isotopes in a similar way. Figure 2A again shows the Kloppman 

and others (2001) data set, color-coded by water type where fresh is < 1 g/L TDS, brackish is 1-10 g/L 

TDS, saline is 10-100 g/L TDS, and brine is > 100 g/L TDS. This plot of 
87

Sr/
86

Sr vs. 1/Sr is a standard 

way to show mixing between Sr isotopic compositions, as pure mixtures of two end-members will fall 

along straight lines in this type of plot. The black line in this figure is a hypothetical linear mixture 

between the most fresh and the most saline (brine) sample in the data set. One can quickly infer that these 

samples do not derive their chemical and isotopic variation from simple mixing of these two end-

members. Using a two-part ilr transformation for the Sr isotopes 
87

Sr and 
86

Sr (Fig. 2B), the same scaling 

relationship observed in Figure 1B is apparent, whereby the log-ratio of a small variation is simply that 

small variation scaled. Figure 2C shows a three-part ilr transformation with 
87

Sr, 
86

Sr, and H2O. Similar 

interpretations of mixing can be done by comparing the data to the models in real space, yet the mixing 

relationship is no longer linear.  

 

 

 
 

 
Figure 1: H and O isotopes of water, presented (A) in standard delta notation and (B) as a four-part ilr transformation. GMWL is the 

global meteoric water line. Note the slight curvature of the GMWL in figure 1B.  



 

 
 

 
Figure 2: Sr isotope plots of brines. (A) Traditional presentation of strontium isotopes in which mixing is linear. (B) Two-part ilr 

transformation for the y-axis using 
87

Sr and 
86

Sr. (C) Three-part ilr transformation using 
87

Sr, 
86

Sr, and H2O.  



3.2   Interpretation of isotopes using clr-biplots 

 
Principal component analysis of clr-biplots are useful for showing multivariate compositional data on a 

single plot (Aitchison and Greenacre, 2002). When derived from the covariance matrix of clr-transformed 

variables, the length of the links between the ray end points approximate the relative logratio variance 

between those two variables. Figure 3A shows covariance clr-biplot of only TDS and all of the O and H 

isotopes of water. The H2O concentration is also shown for illustrative purposes to compare the individual 

isotope rays to the H2O ray, but it is a redundant variable since [H2O] = [
18

O + 
17

O + 
16

O + 
2
H + 

1
H]. All 

isotopes of O and H in water lie on the same ray as H2O, which is unsurprising as their concentrations are 

completely dependent on one another and sum to H2O. The scores are more clearly seen in the “form” 

version of the biplot (Fig. 3B), in which the relationship between the scores and the coordinate axes are 

more visible. Here we see that the 1st coordinate axis contains the entirety of the variability and again 

there is a clear salinity trend. Though the rays and the links between them have less meaning in the form 

biplot, small deviations are visible between the numerators in the isotopic ratios (
18

O, 
2
H) and the ray that 

represents H2O, 
16

O, 
17

O, and 
1
H. The longer ray between 

1
H and 

2
H relative to the ray between 

18
O and 

16
O on the biplot confirms theory and observation that the larger mass differences between isotopes in the 

hydrogen system (
2
H is has twice the mass of 

1
H) produces more isotopic fractionation than the oxygen 

system (
18

O only has 12.5% more mass than 
16

O). Nearly 100% of the variance is found in the link 

between TDS and H2O and the scores project along this link as one would expect according to salinity. 

Comparison of the samples scores with the link between the water isotopes confirms that with a couple of 

exceptions, the fresh and brackish water samples tend to be isotopically heavy, and as salinity increases 

the samples generally get isotopically lighter. This type of plot thus appears to provide insights into 

connections between water salinity and O and H isotopic compositions. 

 

 

4  Discussion and Conclusions 
 

Interpreting variations in isotopic ratios is a valuable tool in the geosciences. A great number of natural 
processes can generate measurable differences in isotopic composition that are supported by models and 

experiments. However, though isotopes in a set of data may vary greatly relative to their mean, their 

variation is minor relative to the major components in the system and become negligible in multivariate 

clr approaches. The small relative variance is partially the reason that conversion of isotopic to ratio to ilr 

balances yields little change. As such, ilr transformations of subcompositions of sets of isotopes allow 

isotopic variation to be visible, but their interpretations and benefits when compared to simple logratios 

are unclear. However, as Tolosana-Delgado and others (2005) and Puig and others (2011) have shown for 

stable isotopes and we have shown here for radiogenic isotopes, familiar isotopic compositions either in 

delta notation or as simple ratios can be plotted against ilr transformed data without any loss of 

information; there is only a difference in scale. 

 

 
 

 
Figure 3: clr-biplots of Kloppman and others (2001) data. Only TDS, H2O and the O and H isotopes are plotted. (A) Covariance 

biplot. (B) Form biplot. 



 
The small log-ratio variations of isotopic data are swamped by major element compositions in clr-biplots. 

For multivariate approaches, either the data need to be scaled to a common variance (Puig and others, 

2011) or another approach must be taken in data pre-processing or interpretation. In the case of O and H 

in brines, the isotopic system is largely controlled by the TDS/H2O ratio, which suggests that the clr-

biplot is a useful tool for examining differences in isotopic compositions of water as a function of salinity, 

an important characteristic of brines.  
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Abstract

Our aim is to introduce a regression model for the conditional probablity distributions,
of observable random variables as a function of regressors. The approach linear models
in Bayes spaces. Bayes spaces are a generalisation of the Aitchison Simplex, which
can be seen as the space of all distributions with support 1, . . . , n to probablity dis-
tributions on arbitrary measure spaces. Compositional linear models on the Aitchison
simplex turn out to be equivalent to multivariate logistic regression if written in alr rep-
resentation. Then, likelihood theory for generalized linear models is used to estimate
the regression coefficients based on observed realisation of the random variable instead
of observed compositions as in compositional regression. This idea is generalized to-
wards Bayes spaces, generating a technique allowing to define and estimate models for
the conditional distribution of an observed quantity as a Bayes-space-linear function of
regressors.

Key words: Multinumial Logistic Regression, Bayes Spaces, Compositional
Regression



1 Introduction

Bayes Hilbert spaces generalize the Aitchison Simplex towards a vector space of probability dis-
tributions. Using the Aichison vector space structure of the simplex it was possible to generalize
multivariate linear regression, analysis of variance and linear models to compositional response vari-
ables with compositional coefficients (van den Boogaart and Tolosana 2013, page 95-175). Bayes
spaces allow to generalize this further to distributional response variables (van den Boogaart,
Egozcue, and Pawlowsky-Glahn 2014) using distributional coefficients. We take this one step fur-
ther towards linear modelling of the distribution of the response variable by a linear model in Bayes
spaces . This is done by identifying logistic regression and multinomial logistic regression as linear
models in the Aitchison simplex and then generalizing them towards Bayes spaces, i.e. a model
which regression coefficients are objects from a Bayes Space (Lehmann, 2014). The result allows
to mathematically describe the whole conditional distribution by a linear model in Bayes spaces.
This approach has been described mathematically in (Lehmann 2014) and sucessfully used in (van
den Boogaart, K. G. et al. 2014) for a novel geostatistical simulation procedure. This contribution
discusses practical considerations and estimation for using it in general purpose regression. First
we need to explain the model itself.

1.1 Multinomial logistic regression

Logistic regression formulates the conditional probability that an event takes place by a linear
model

logit(p1) =

p∑
j=1

bjfj(X)

for the logit transform

logit(p) = ln
p

1− p
where p1 = P (Y = 1|X) is the conditional sucess probablity of a conditional binary response Y
given contitions X and fj being known functions, such as f1(x) ≡ 1 or f2(x) = x1, as in any
general linear model. Typically an intercept f1(x) ≡ 1 is assumend to be present in the model.
Considering the probablity distribution for the binary response variable Y to as a composition
p = (p1, 1− p1) allows to replace the logit with alr(p) = ln p1

p2
= ln p1

1−p1 = logit(p1):

logit(p1) = alr (p) =

p∑
j=1

fj(X)bj

Multinomial logistic regression now replaces the logit by a log ratio against a special component
for probablity:

ln
p1
pd

= alr(p)1 =

p∑
j=1

fj(X)bj1

...

ln
pd−1
pd

= alr(p)d−1 =

p∑
j=1

fj(X)bj d−1

for k = 1, . . . , d − 1, which are the components of an alr transform. We can thus read this as a
equation in alr transforms:

alr(p) =

p∑
j=1

fj(X) alr(βj)



where βj := alr−1((bjk)k). Applying alr−1 on both sides we get a perfect compositional linear
model

p =A

p⊕
j=1

fj(X)� βj

where the βj are compositional parameters of a compositional linear model. These parameters can
be estimated just like usual linear regression through a maximum likelihood estimator. These are
computed in a usual way for generalized linear models by the Fisher scoring method.

While the model equation looks perfectly like the general form of a compositional regression model,
the data observed from it is different. In a compositional regression model we observe a composition
as dependent variable, i.e. often a normal distribution on the simplex with some residual covariance
matrix Y ∼ ND

S (alr(p),Sε) . On the other hand, here we observe the realisation of a random
variable distributed according to the resulting composition, i.e often a multinomial variate Y ∼
Mu(p, n).

1.2 Bayes Hilbert Spaces

We would now like to generalize this concept towards a general regression for distributions, where
the dependent variable might come from an arbitrary sample space, discrete, continuous, or even
compositional. This is done by generalizing the approach from the Aitchison simplex to a Bayes
space.

The Bayes space B2 (P0) is a space of all σ-finite measures mutually absolutely continuous to the
measure P0 having an log-square-integrable P0-density. (i.e. having a strictly positive Radon-
Nýkodim derivative with respect to P0, which logarithm is square integrable), identified via a
Bayes-equivalence relationship:

µ =B(P0) ν :⇔ ∃c ∈ R+ : ∀A : µ(A) = cν(A)

The Bayes-equivalence corresponds to the scale equivalence principle of Aitchison (1997) for com-
positions. As for compositions, we have two operations perturbation ⊕ and power transform �
making the Bayes space a vector space. These operations are defined as

(µ⊕ ν) :=B(P0)

∫
A

dµ(x)

dP0(x)

dν(x)

dP0(x)
dP0(x)

and

(α� µ) :=B(P0)

∫
A

(
dµ(x)

dP0(x)

)α
dP0(x)

P0 is the neutral element of this vector space. A clr transform is definded as a mapping to the
functions with P0 integral 0:

clr(µ)(x) = ln
dµ(x)

dP (x)
−
∫

ln
dµ(x)

dP (x)
dP0(x)

The inner product of the Bayes Hilbert Space is defined by the L2(P0) inner product of the clr-
transforms.

An Aitchison simplex is a special case of a Bayes-Hilbert-Space, where P0 is the counting measure on
the set of components. In general, Bayes Hilbert are infinite dimensional and do contain improper
priors along with distribution. However, they are finite dimensional and only contain distributions
if P0 has a finite support, as in the case of the simplex. See (van den Boogaart et al. 2014) for
details on Bayes Hilbert spaces.



2 Bayes space regression model

2.1 The model equation

We can now formally reinterpret the model equation of a compositional regression model in Bayes
spaces:

PY |X =B(P0)

p⊕
j=1

fj(X)� βj (1)

Here PY |X is a conditional distribution and the regression parameters βj ∈ B2(P0) are now ar-
bitrary elements of the Bayes space, i.e. measures. For a fixed choice of parameters this model
would allow to compute a conditional distribution for every value of X.

2.2 Practical Challenges

Using this model as a statistical model introduces some practical challenges. First, the allowable
space for βj is now an infinite dimensional space, while the observations are only a finite set of
values from a finite dimensional space. Multiple different choices for the βj will thus fit equally
and arbitrarily well. The model is too flexible and overparametrized. Our proposal is to restrict
the model to a finite dimensional space, which is rich enough to model various distributions, but
at the same time has a reasonably low number of parameters. Our proposal is based on the usual
estimation process of functions in numerical computations by replacing the full space of functions
by a smaller subspace of approximating functions. I.e. we find a basis of measures with:

βj =
N⊕
l=1

cjl � αj

and get regression model with real parameters:

PY |X =B(P0)

p⊕
j=1

fj(X)cjl � αl

where cjl is now a matrix of paramters and αl ∈ B2(P0) a set of well chosen basis functions defining
a space for numerical approximation of the distribution and its dependence on X.

The second challenge is that, unlike the Aitchison simplex, the Bayes space does contain functions
which are not distributions: without further restrictions, Equation (1) might result in an improper
prior. However, there is a simple trick to avoid this. According to van den Boogaart, Egozcue and
Pawlowsky-Glahn (2014) the subset of all functions with finite P0-density contains only distribu-
tions and is dense in B2(P0). One way to avoid problems with distributions completely would thus
be to choose the αl as measures with finite P0-density.

2.3 Parameter estimation

In this model, the joint distribution of n realisations of the dependent variable is given by an

exponential family. The distribution density with respect to
n
⊗
i=1

P0 is given by:

f(Y |X) =
n∏
i=1

exp (Xt
iC

tS(Yi))∫
exp (Xt

iC
tS(y)) dP0(y)



=
exp (

∑n
i=1 trS(Yi)XiC)∏n

i=1

∫
exp (Xt

iC
tS(y)) dP0(y)

=
exp (tr (

∑n
i=1 S(Yi)Xi)C)∏n

i=1

∫
exp (Xt

iC
tS(y)) dP0(y)

where S(y) :=
(

ln
(
dαj(y)
dP0(y)

))
j
. It is thus an exponential family with sufficient statistic

∑n
i=1 S(Yi)Xi

and the matrix C = (cjk)jk as natural parameters. As the domain of valid parameters is the whole
real space Rp×N the parameter space is open and linked to a regular exponential family (Johansen
1979). Parameters can be estimated by a maximum likelihood estimator, typically efficiently com-
putable through a Fisher scoring algorithm:

vec(Cs+1) = vec(Cs)−var
Cs

(
vec

(
n∑
i=1

S(Yi)Xi

))(
ECs

[
vec

(
n∑
i=1

S(Yi)Xi

)]
− vec

(
n∑
i=1

S(Yi)Xi

))
The expected value and the variance can be computed by numerical integration:

ci(C) :=

∫
exp (trS(Yi)XiC) dP0(y)

ei(C) :=
1

ci(C)

∫
S(Yi) exp (trS(Yi)XiC) dP0(y)

EC

[
vec

(
n∑
i=1

S(Yi)Xi

)]
=

n∑
i=1

ei(C)Xi

vi(C) :=
1

ci(C)

∫
S(y)tS(y) exp (trS(Yi)XiC) dP0(y)− ei(C)tei(C)

var
C

(
vec

(
n∑
i=1

S(Yi)Xi

))
=

n∑
i=1

vi(C)⊗Xt
iXi

We use a Monte Carlo Method with a fixed sample form P0 to do the integrations. Using a fixed
sample removes the variablity between the iterations, keeps the numerical error constant between
the iterations, and thus allows the deterministic iteration to converge despite the random error of
the Monte Carlo integration.

3 Numerical example

For a worked example we use R (R Development Core Team 2011). As a reference measure P0 we
use the uniform distribution on [0, 1], which is described by a simulation function:

> P0 = runif

The basis αl, l = 1, . . . , N for the approximation is a user choice. The number of model parameters
is proportional to the number of basis elements. The number should thus be chosen dependent
on the size of the dataset available. In this first example we use a basis formed by polynomials of
degrees 1 to 4 in clr representation (Fig. 1), described by their P0-density:

> dalpha = function(y) exp(-outer((y-0.5)*2,1:4,"^"))

For the simulation of the regression we need independent variables:

> n = 1000

> X = cbind(1,rnorm(n),rnorm(n))
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Figure 1: Basis functions used.

and to simulate a dataset, we require true regression coefficients

> (C = sign(matrix(-rnorm(ncol(X)*length(dalpha(0))),nrow=ncol(X))))

[,1] [,2] [,3] [,4]

[1,] -1 1 -1 1

[2,] 1 1 1 -1

[3,] 1 1 -1 1

To simulate this regression model we have used a simplified rejection sampling algorithm:

> sim <- function(fc,n) apply(fc,1,function(fc) {

+ p=exp(log(dalpha(u<-P0(n)))%*%fc);

+ sample(u,1,prob=p/sum(p))

+ })

> Y <- sim(X%*%C,1000)

> par(mfrow=c(1,2))

> plot(Y~X[,2],pch=20);abline(lm(Y~X[,2]))

> plot(Y~X[,3],pch=20);abline(lm(Y~X[,3]))

The actual estimation routine is quite compact:

> ProbRegEst <-function (Y,X,Dalpha=dalpha,P0=P0,C0=matrix(0,p,N),IS=P0(10000),iter=30) {

T = t(X)%*%log(Dalpha(Y))# Regression Statistics of data

S = log(Dalpha(IS)) # Statistics of integration sample

N = ncol(T) # Number of statistics

p = ncol(X) # Number of parameter vectors

n = nrow(S) # Integration sample size

conv=numeric(iter) # Space to store iterations
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Figure 2: Scatterplots showing the dependency of the random variable Y on the explanatory variables as described
by the simulated model. Only a weak correlation is visible.

C = c(C0) # Initial Parameter vector

for(i in 1:iter) { # loop over iterations

expCS = exp(X%*%structure(C,dim=dim(C0))%*%t(S)) # scaled conditional densities

w = expCS/rowSums(expCS) # integration weights

ES = w%*%S # expected values for each case

ET = t(X)%*%ES # expected value of overall statistics

# variance per case:

VS = (w%*%((S[,rep(1:N,N)]*S[,rep(1:N,each=N)])))-(ES[,rep(1:N,N)]*ES[,rep(1:N,each=N)])

# variance of overall Statistics:

aux = t(X[,rep(1:p,p)]*X[,rep(1:p,each=p)])%*%VS

VT = structure(aperm(structure(aux,dim=c(p,p,N,N)),c(1,3,2,4)),dim=c(p*N,p*N))

conv[i] = sum((T-ET)^2) # convergence criterion

C = C - solve(VT,c(ET-T)) # Fisher scoring iteration

}

structure(C,dim=dim(C0),conv=conv) # Return parameter and convergence

}

This command has as parameters: the realisations of the dependent variable Y, the design matrix
of the Bayes space linear model X containing a constant 1 column and the regressors as columns,
the P0-density functions of the αl basis elements and a random number generator function P0 for
the reference measure P0. The following parameters are optional: C0 is the starting parameter
value for the Fisher Scoring iteration, initialized to a 0 matrix by default; the fixed intergration
sample IS initialized to a Monte Carlo sample by default; and the number of iterations iter.

The actual estimation is done by

> (Cest <- ProbRegEst(Y,X,dalpha,P0,iter=10))

[,1] [,2] [,3] [,4]

[1,] -0.8324125 0.3455492 -1.1221907 1.5539929

[2,] 0.7547944 0.9398062 1.1863786 -1.2216265

[3,] 0.9075868 1.9917717 -0.9443885 -0.1474773
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Figure 3: The first seven simulated data points, with their conditional density in the simulation (solid) and the
estimated conditional density refitted from the dataset

attr(,"conv")

[1] 2.646810e+05 2.749298e+04 5.069689e+02 2.553945e+01 2.825084e-01

[6] 3.600114e-05 4.820561e-13 2.249705e-25 2.221432e-26 1.454028e-26

> C

[,1] [,2] [,3] [,4]

[1,] -1 1 -1 1

[2,] 1 1 1 -1

[3,] 1 1 -1 1

In this example the algorithm shows a fast convergence in only a few steps, towards a result
numerically identical to a maximum likelihood solution. The fitted parameters show a considerable
relative error with respect to their true values, which is not a suprise when estimating 12 parameters
from only thousand data points. Figure 3 compares true and predicted distributions for the first
seven samples.

4 Conclusions

Linear models in Bayes spaces provide a natural way of regressing the whole conditional distri-
bution against covariables. The resulting probablity regression can be seen as a generalisation of
Multinomial logistic regression. Through the choice of the approximating basis and the models
design matrix, the user has considerable influence on the ability of the model to approximate the
dependence. The more flexible the models get, the more parameters must be estimated and the
more data is needed for a stable estimation. The current estimation approach works efficiently, but
not yet very reliably. From time to time the estimator does not converge. This can have different
types of reasons. One is that for some data sets of the same model, a maximum likelihood estimator
does not exist. The second is that the algorithm might diverge without a step size control.
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Abstract 
 

Water geochemistry is often investigated by considering a large number of variables, 
including major, minor and trace elements. Some of these are usually highly correlated 
due to coherent geochemical behaviour, but the effect of anthropic factors tends to 
increase data variability, sometimes obscuring the natural laws governing their 
relationships. In this framework it may be difficult to identify geochemical features 
linked to natural phenomena as well as to separate geogenic anomalies from the 
anthropogenic ones or to define background or baseline concentrations for single 
chemical elements. This is particularly true at regional level where numerous 
phenomena may interact and mix together, forming a complex pattern not easy to 
interpret. The identification of background or baseline values is also complicated due to 
the compositional nature of chemical variables, so that under the Compositional Data 
Analysis Theory (CoDA) single background or baseline values lose their meaning. 
However they are fundamental references for public institutions and government 
policies. In this contribution a new approach is proposed aimed at investigating the 
regionalised structure of the geochemical data by considering the joint behaviour of 
several chemical elements or compositions. The approach is based on the robust CoDA 
theory so that the proportionality features of abundance data are fully taken into 
account, enhancing their relative multivariate behaviour, as well as the influence of 
outliers. An application example is presented for the water compositions sampled in 
Tuscany Region, a surface of about 23,000 km2, a project sponsored by the regional 
government.  
  
Key words: water geochemistry; background values; baseline values; compositional 
data analysis; robust statistics. 

 



1   Introduction 
 
 

Geogenic or ‘natural background’ substances in the environment are known to occur as 
concentrations in air, soils and waters that can be hazardous for life forms. As reported in Nordstrom 
(2015) it may be difficult for water chemistry to refer to ‘natural background’ as unpolluted or pristine 
preindustrial conditions. This happens because 1) a widespread global contamination by several trace 
constituents has occurred, 2) natural variations can be large so that a single analytical result for a given 
element or compound cannot be useful, 3) the effect of scale and study objectives could have played a 
very important role in the determination of background (Reimann and Garrett, 2005). One of the most 
interesting discussions on this subject is reported in Matschullat et al. (2000). These authors recognise 
that the citation of single values for a geochemical background is neither useful for the identification of 
the geogenic contribution nor for the determination of an anthropogenic contamination, because single 
values do not yield information about natural deviation. Another term, geochemical baseline, is often 
closely associated with geochemical background and they are often used as synonyms (e.g., Nieto et al. 
2005 Galuzska, 2007). However, the geochemical baseline has to be considered as the natural background 
in an area heavy polluted by human activities. 

The knowledge of groundwater chemistry and of associated background (baseline) values for 
elements and compounds is a priority for human health as established by the environmental organisms 
and institutions of many industrialised and developing countries (World Health Organisation, 1992; UN-
Water, 2011). Notwithstanding the importance of this item, the definition of the background or baseline 
content in water is difficult and cannot be based only on a good analytical phase and on a time-limited 
sampling campaign. In fact, water chemistry can vary in space depending on changing climate conditions 
as well as on the contribution of anthropogenic pollution. Moreover, in the same place the abundance of 
chemical species can change in time due to the effect of several environmental and anthropic factors. 
Consequently it is evident that single concentration values are not able to give representative information 
about the influence of complex phenomena as occurring in groundwater systems. In this natural reservoir 
only simultaneous chemical equations are able to describe the different mineral/water equilibriums and 
the investigation of data variability assumes a fundamental role. For these motifs it is our opinion that 
only a compositional approach is able to describe the conditions of such a complex phase as the 
groundwater chemistry (Aitchison, 1986; Buccianti et al., 2014). Moreover, due to the expected presence 
of anomalous values, robust methods can improve the compositional approach (Rousseeuw, 1984; 
Maronna and Zamar, 2002; Verboven and Huber, 2005; Daszykowski et al., 2007). Thus the combination 
of compositional and robust methods applied on water chemistry in anthropic areas permits us to evolve 
the concept of baseline for single values to that of compositional baseline. The approach can be extended 
to different scales in groundwater investigation and represents an implementation, moving from the value 
of single variables to that of compositions when the joint distribution of D variables is considered 
(Buccianti and Gallo, 2013; De Caritat and Grunsky, 2013).  

 
 

 
2   Material and methods 
 
 
2.1   Data sources 
 

The geochemical data used in the present study refer to groundwater samples actually stored in the 
GEOBASI database (Raco et al., 2015) representing the official repository for the geochemical 
composition of geological media of Tuscany Region (Central Italy). The chemical compositions of 6,808 
cases (spring and wells)	  were considered, 6,435 of which were geo-referenced and checked through the 
inspection of the original field maps. For those samples where the main composition (Ca, Mg, Na, K, 
HCO3, SO4 and Cl) was available, the quality of the geochemical data was checked by means of a simple 
charge balance and only those waters having a percentage deviation  < 10  (4,804 samples) were taken 
into account for further processing. For the sake of clarity it should be noted that all the geochemical data 
were used, including those repeatedly analysed over time, so that variability could be also affected by 
seasonality (Fig. 1). 

The investigated area corresponds to the Tuscany Regional district and has a surface of about 
23,000 km2. Tuscany is bordered to the northern and southern sectors by the Northern Apennine, an 
orogenic belt formed by the Cretaceous to Miocene compressive phase related to the collision of the 
European and African plates. The metamorphic Paleozoic basement (e.g. phyllitic to quarzitic and 



micaschists rocks to Triassic evaporitic anyhydrites), the Mesozoic and Cenozoic carbonate and 
evaporitic formations, overlain by flysch series, as well as granite intrusions and volcanic rocks are 
typical lithologies (Carmignani et al., 2004). 
 
 

  
 
Figure 1: Position of all the water samples for which the chemical composition is stored in the GEOBASI repository. Cases located 

in red and brown areas correspond to groundwaters located in alluvial and fracture rock aquifers, respectively. 
 
 
2.1   Statistical methodologies 
 

In this contribution our aim is to shift the attention from the investigation of single variables of 
compositional data set to their joint multivariate behaviour.  To achieve this target, the principles of 
CoDA (Compositional Data Analysis) theory were followed (Aitchison, 1982), implemented by the 
application of multivariate robust methodologies (Maronna and Zamar, 2002; Daszykowski et al., 2007). 
Compositional data are vectors of positive values quantitatively describing the contribution of D parts of 
some whole, which carry only relative information (Aitchison, 1982; Aitchison, 1986). Due to these 
features, the Euclidean geometrical approach to the statistical analysis of compositions may give 
misleading results since compositional data pertain to the simplex sample space and not to the real one 
(Egozcue and Pawlowsky-Glahn, 2006; Buccianti and Magli, 2011; Buccianti, 2013). The simplex 
sample space is governed by the Aitchison geometry, and has all the properties of a (D-1) dimensional 
Euclidean space (Egozcue and Pawlowsky-Glahn, 2006). To work in these unconstrained conditions, 
compositions need to be expressed as vectors of values that belong to such a space. In our case the 
isometric log-ratio (ilr) transformation, proposed by Egozcue et al. (2003) was adopted.  Notwithstanding 
its theoretical advantages and practical properties, its use may be compromised when coordinates have to 
be interpreted from a geochemical point of view. However if the concept of balance between groups of 
parts, originated by a sequential binary partition, is considered (Egozcue and Pawlowsky-Glahn, 2005), 
this path may be highly simplified. In a sequential binary partition in each of the D-1 steps of the 
procedure the compositional parts are divided into two non-overlapping groups; the resulting D-1 ilr 
variables represent balances between these groups in RD-1: 
 

𝑖𝑙𝑟! =
!×!
!!!

𝑙𝑜𝑔 ! !!
! !!

                             (1) 

 
with i = 1, 2, …, D-1 and where g(c+) represents the geometric mean of the r variables of the numerator of 
the balance, g(c-) the geometric mean of the s variables of the denominator. The matrix of  ilr coordinates 
was then analysed by robust methods with the aim to identify samples with anomalous behaviour but 
simultaneously avoiding their effect on the classical estimates. For this purpose, the robust distance of a 
composition, labelled RDi, is used to detect whether it is an outlier composition or not. It is defined as: 
 



𝑅𝐷! = 𝐱! − 𝝁!"# !𝚺!"#!! 𝐱! − 𝝁!"#                   (2) 
 
with 𝜇!"# and Σ!"# as the MCD location and scatter estimates. This robust distance is a robustification 
of the Mahalanobis one where classical mean and empirical covariance matrix are used as estimates of 
location and scatter. Under the normal assumption, the outlier compositions are those compositions 
having a robust distance larger than the cut-off value 𝜒!!!,!.!"#!  . Robust estimates of the compositional 

centre µ  and scatter matrix Σ  can be obtained by using the Minimum Covariance Determinant (MCD) 
estimator (Rousseeuw, 1984; Verboven and Huber, 2005). For each composition the RDi value from the 
robust centre was determined and the results mapped to highlight the regionalised behaviour of the 
investigated groundwaters. The mapping of robust Mahalanobis distance by using different 
methodologies and approaches is able to indicate 1) in which part of the investigated area the pressure 
toward anomalous behaviours is higher, 2) where the compositions nearest to the barycentre are and 3) if 
spatial continuity is present in limited portions of the territory. Important information about the 
geochemical processes, their diffusion and influence in the different parts of the investigated areas can be 
consequently obtained (Filzmoser and Hron, 2008; Filzmoser et al., 2009a, 2009b; Filzmoser et al., 2012). 

All the analyses have been performed by using robust routines developed in Matlab and R 
(Verboven and Hubert, 2005; R Development Core Team , 2015). 
 
 
3 Results and discussion 
 

In the investigation of the main groundwater composition of Tuscany Region the first step was to 
transform variables by using the isometric log-ratio conversion. To achieve this aim the sequential binary 
partition proposed by Egozcue and Pawlowsky-Glahn (2005) was adopted where in each of the D-1 steps 
of the procedure the compositional parts were split into two non-overlapping groups; the resulting D-1 ilr 
variables represented balances between these groups in RD-1. Thus the balances between two groups of 
parts are orthogonal log-ratio contrasts between geometric means of the selected non-overlapping groups.  
The sequential binary partition of [Eq. (1)] was chosen so that all the cations were rationed versus 
(symbol |) all the anions [Ca, Mg, K, Na | HCO3, Cl, SO4], then [Ca, Mg | K, Na], [Ca | Mg], [K | Na], 
[HCO3 | Cl, SO4] and finally  [Cl | SO4]. In this conversion the geometric means are central values in each 
group of parts, their ratio measures the relative weight of each group and the logarithm provides the 
appropriate scale; the square root coefficient of [Eq. (1)] is a normalising constant which allows the 
comparison of numerically different balances. A positive balance means that, in (geometric) mean, the 
group of parts of the numerator has more weight in the composition than the group of the denominator 
(and conversely for negative balances). The calculus of the robust distance RDi from the barycentre was 
obtained by using the Minimum Covariance Determinant (MCD) estimator (Verboven and Hubert, 2005). 
From a statistical point of view it was possible to discriminate 901 anomalous compositions. These under 
the normal assumption have a robust distance larger than the cut-off value χD−1,0.975

2

 
with comparison to 

the remaining 3543 cases. Their relative position is reported in Figure 2. As we can see, compositions 
below the statistical threshold (grey points) cover most part of the Region, while composition above this 
reference point (black points) mainly pertain to the coastal areas (saline intrusion) and to some zones 
where presence of mineralisation, geothermal activities or pollution due to anthropic contributions can 
explain the presence of geochemical anomalies. This discrimination is supported by the chemical 
composition of the sample nearest to the robust barycentre pertaining to a typical Ca-HCO3 geochemical 
facies (composition in mg/L equal to HCO3 = 581, Ca = 168, Cl = 803, Mg = 32.7, K = 3.4, Na = 67.9, 
SO4 = 97.6) and by the composition of the samples with the higher distance from the robust barycentre 
pertaining to a Ca-SO4 geochemical facies (composition equal to HCO3 = 4.8, Ca = 356, Cl = 270, Mg = 
104, K = 2.4, Na = 250, SO4 = 1250).  
The histogram of the robust Mahalanobis distance for the data below the statistical threshold (n = 3543) is 
reported in Figure 3. Its analysis is important to understand how compositions move from the barycentre. 
If the robust barycentre is candidate to be a compositional baseline the investigation of variability of 
compositional changes as monitored by the behaviour of the robust Mahalanobis distance is not a 
secondary feature.   
The RDi data distribution appears to be slightly asymmetrical and apparently classical normal or 
lognormal models are not able to describe it. A model that leads towards much heavier tails is the power 
law distribution, often used to describe inhomogeneous and irregular distribution of element 
concentrations in several geological situations. When a probability density function displays a heavy non-



Gaussian tail, this may be indication of the presence of multifractal processes. This also indicates that the 
system as a whole is experiencing a non-linear dissipation in the energy interchange among different 
scales. From this perspective the shape of a probability density function can be a powerful diagnostic tool 
in environmental problems. 
A nonnegative random variable X is said to have a power law distribution if: 
 

𝑃𝑟 𝑋 ≥ 𝑥 ≅ 𝑐𝑥!                 (3) 
 
 
for constants c > 0 and α > 0, so that asymptotically the tails fall according to the power α. For a power 
law distribution usually α falls in the range 0 < α ≤ 2, in which case X has infinite variance. If α ≤ 1 then 
X also has infinite mean. The scaling exponent α is usually called the fractal dimension. From a general 
point of view, the model leads to much heavier tails than other common models explaining the 
concentration of minor and trace elements in geological materials (Goncalves, 2001; Ma et al. 2014).  
 

 

 
 

Figure 2: Position of the groundwater samples below (grey points) and above (black points) the statistical cut-off value. 
 
 
 

 

 
Figure 3: Histogram of the Mahalanobis distance of groundwater samples below the cut-off value χD−1,0.975
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Figure 4: Cumulative number N of samples whose robust Mahalanobis distance is higher than a given value RDi. 
 

 
An interesting feature of this distribution model is that if X has a power law distribution, then in a log-log 
plot of Pr[X ≥ x] the pattern of points will be described by a straight line. The graphical analysis is often 
used to visualize breaks in the data distribution (change in slope and presence of more than one straight 
line) and to investigate geochemical anomalies versus background (Agterberg, 2014). Results for the 
studied groundwater data are reported in Figure 4. 
As we can see a single straight line is not sufficient to describe all the data. Apparently, compositional 
changes that move compositions from the robust barycenter are multifractal and the physical-chemical 
reasons for this behavior could be related to the presence of non-linear interactions between different 
scales and to the inhomogeneous character of dissipation of the chemical reactions. In general 
multifractality is a property of a dynamical system in which energy dissipation cannot be neglected. This 
condition leads to the presence of extended areas (or intervals) of low fluctuations intermittent with small 
areas of extremely large fluctuations. The spatial distribution of the RDi values is reported in Figure 5. 

 

 
 

Figure 5: Spatial distribution of the RDi values. Values increase from yellow (0.2879) to brown (3.80) (median value = 2.023) . 

robust Mahalanobis distance RDi

0.2879 0.7879 1.2879 1.7879 2.2879 2.7879 3.2879 3.7879

N
 (>

R
D

i)

100

101

102

103

104



As we can see, compositions similar to that of the robust barycenter (yellow points) are near to or in some 
cases they overlap compositions very far from this reference (brown points), indicating that the chemistry 
of our samples can change in a short spatial range.  
On the whole, results indicate that the investigated water-rock system developed under conditions far 
from equilibrium as a progressively self-organizing dissipative structure (Kondepudi and Prigogine, 
1998). A “dissipative structure” is a non-equilibrium system, far from an equilibrium state, and should be 
supported by continuous inputs and outputs of materials in open conditions. Several authors have 
discussed the features of dissipative structures for groundwater flow systems and human activity appears 
to be a significant perturbation factor (Xu and Du, 2014). In this respect, the evolution of the investigated 
groundwater system may be attributable to a dissipative process of macroscopic states being permuted by 
ones influenced by natural and human factors. Consequently the groundwater system is an open and 
complicated framework where interactions are governed by non-linear dynamics. In this context the 
identification of baseline compositions appears to be more representative of single values in the 
understanding of the processes working in the investigated area. 
 
 
 
4 Conclusions 
 

The term “ geochemical baseline”, officially introduced in 1993 in the context of the 
International Geological Correlation Program (IGCP Project 360), Global Geochemical Baselines , refers 
to the natural variation in the concentration of an element in the media of the superficial environment. 
The term can indicate the actual content of an element in the superficial environment matrices at a given 
point in time. It includes the geogenic natural concentrations (natural background) and the anthropogenic 
contribution.  

Compositional changes from the robust barycenter for groundwater chemistry of Tuscany 
Region were analyzed by investigating the behavior of the robust Mahalanobis distance from it. The 
distance was calculated after having transformed original concentrations by using balances (isometric log-
ratio transformation). The aim was to verify if the robust barycenter could be considered a possible 
compositional baseline.  Results indicate that the distance obeys the power law distribution and displays 
properties of multifractality.  In this perspective compositional changes are neither completely 
deterministic not totally chaotic. Rather they are in an intermediate state, which possesses a property of 
multifractality in spatial domain and probable intermittency in time. Since fractal structures form 
spontaneously only in the presence of a complex dissipative structure it is evident that the investigated 
groundwater system is an open and complicated framework where interactions are governed by non-linear 
dynamics. Moreover, compositional changes are characterized by self-similarity patterns. This means that 
the physical-chemical laws that control spatial and temporal variability on one scale also control patterns 
and spatial variability on other scales, implying scale-independence. All of the previous results, even if 
preliminary, require caution in the definition of baseline concentrations for single values without the use 
of a compositional approach and a global conceptual model of the groundwater system for all its inter-
connected components. 
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Abstract 

 

Microeconometric analysis of tourist expenditure as a function of traveller 

characteristics has focused on total absolute expenditure, on absolute expenditures per 

trip budget parts, and in relative terms per trip budget parts. The analysis of absolute trip 

expenditure by budget parts confounds how much (budget volume) and how (budget 

allocation) tourists spend, while that of trip budget share ignores budget volume. In this 

paper, using tools of compositional data analysis with a total and MANOVA, we bring 

trip budget share and trip total expenditure together. Multivariate MANOVA tests are 

invariant to the choice of total, which may be e.g. the log geometric mean of any 

number of absolute expenditures of components. We show how trip budget components 

can be combined with a choice of total expenditure alternatives, according to the 

researchers’ questions. We provide an illustration with low cost airline users travelling 

to Spain. Results show that some variables affect only the expenditure allocation, some 

others affect only the total, and some affect both: how and how much tourists spend. 

 

Kew words: CODA with a total; tourist expenditure; trip budget share; isometric log-

ratio transformation; MANOVA 

 



1   Introduction 
 

Microeconometric analysis of expenditure made by individual tourists as a function of traveller 

characteristics has focused on a single expenditure variable, on absolute expenditures per trip budget 

parts, and on expenditure in relative terms (share) per trip budget parts. The vast majority of 

microeconomic tourism demand studies (24 out of 27 in the review of Wang and Davidson, 2010) 

concern the prediction of one single aggregated expenditure variable. 

  

Another stream of research is that which analyses tourist expenditure per trip budget part (e.g. lodging, 

food, transportation and sightseeing/entertainment). A common argument for studying tourist expenditure 

per budget part is that it provides vital information to travel organizers and destination marketers. Not all 

budget parts have the same economic impact on each destination or on each tourism industry. Besides, 

knowing expenditure by tourist products is useful when designing the appropriate marketing strategies. 

For this purpose, researchers have used several methods, such as MANOVA (multivariate analysis of 

variance) for qualitative predictors, and MANCOVA (multivariate analysis of covariance) or SUR 

(seemingly unrelated linear regressions) for quantitative predictors (Lehto and others, 2001; Marcussen, 

2011; Wang and others, 2006). Since part expenditure in absolute terms is related to total expenditure, a 

common finding in these studies is that some of the explanatory variables affect all budget elements about 

equally. For example, Marcussen (2011) found that hotel accommodation, eating in restaurants and 

staying at the capital city led to higher expenditure in all budget parts; and Lehto and others (2001) found 

that certain countries of origin had higher expenditures in all budget parts. 

 

Such results with explanatory variables affecting all budget parts about equally will never be obtained 

when analyzing expenditure allocation in relative terms, in other words, as budget share (proportion of the 

trip budget devoted to each budget part). By definition, budget share devoted to one budget part can only 

increase if share devoted to at least one other part decreases. A further argument for studying share is that 

a large absolute expenditure on a given trip budget part may either correspond to a tourist with a large 

overall budget or to a tourist who devotes a large share of the trip budget to that part. The study of trip 

budget share isolates the effects on how a given trip budget is distributed and results are more clearly 

interpretable in terms of budget allocation. On the negative side, information about total expenditure (how 

much they spend) is lost. 

 

The empirical analysis of budget share commonly implies estimating an almost ideal demand system of 

equations (Deaton and Muellbauer, 1980). This system directly fits budget share as dependent variables in 

a set of simultaneous regressions (Coenen and van Eekeren, 2003; Fleischer and others, 2011).  

 

The almost ideal demand system has a serious methodological drawback. Let xi1, xi2,...,xiD, be the absolute 

expenditures of individual i in each of the D budget parts. Compared to absolute data, budget share lies in 

a constrained D−1 dimensional space. A D-term budget share measured on individual i, zi1, zi2,...,ziD has 

the following constraints:
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and conforms to what the literature refers to as compositional data. Aitchison (1986) and Pawlowsky-

Glahn and Buccianti (2011) warn against the serious problems that arise when using standard statistical 

analysis tools on compositional data. Compositional data are non-normal and heteroskedastic. The 

presence of an error term with an unbounded distribution (usually normal), results in a non-zero 

probability that actual share lies outside the [0,1] interval (Fry, 2011). In other words, the in fact bounded 

distribution of budget share results in a misspecification of the almost ideal demand system and of any 

model fitting percentage share with an unbounded error distribution. Aitchison (1986) started the 

compositional data analysis (CODA) log-ratio approach to tailor statistical analysis to this constrained 

space and overcome this limitation. The CODA methodology has since been applied to family budgets 

(Fry and others, 1996; McLaren and others, 1995) and to trip budgets (Ferrer-Rosell and others, 2015; in 

press). 

 

Even if specialized CODA techniques are available (e.g. Ronning, 1992; Thió-Henestrosa and Martín-

Fernández, 2005), the easy way involves transforming compositional data so that they can be subject to 

standard and well-understood statistical techniques (Aitchison, 1986; Ferrer-Rosell and others, 2015; in 



press; Fry and others, 1996; McLaren and others, 1995). In short, this implies using the transformed share 

by means of logarithms of ratios, instead of the raw share. Log-ratios recover the full unconstrained −∞ to 
∞ range1.   
 

The analyses of absolute trip expenditure by budget parts and of trip budget share both have limitations. 

The first confounds budget volume (how much) and budget allocation (how) while the second ignores 

budget volume altogether. The analyses of trip budget share and of overall expenditure volume provide 

answers to different though complementary research questions and managerial purposes. In this paper we 

propose to predict budget share and total budget volume within the same MANOVA or MANCOVA 

model. The approach we follow is an extension of that of Pawlowsky-Glahn and others (in press) of 

adding a total to the log-ratios. Once share and total volume have been transformed, the analysis is no 

more complicated than standard MANOVA or MANCOVA, and any standard software can be used.  

 

The paper is structured as follows. We first review some of the most common log-ratio transformations. 

We then present the way how a total is combined with the log-ratios in Pawlowsky-Glahn and others (in 

press), we suggest new possibilities of such combination, and derive the properties of a MANOVA or 

MANCOVA model with such combinations. We finally present a MANOVA illustration of trip budgets 

of low cost airline users. 

 

 

2   Log-ratio transformations 
 

Several log-ratio transformations have been suggested in the early CODA literature (Aitchison, 1982; 

Egozcue and others, 2003). Any log-ratio may be computed either from absolute expenditure or from 

share.  

 

The centred log-ratio transformation (clr) computes the log-ratios of each component over the geometric 

mean of all the components, including itself. 
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The clr transformation makes Euclidean distances in the transformed space meaningful. Thus, the clr 

transformation is commonly used for statistical techniques which are based on a metric, such a cluster 

analysis. On the negative side, it must be noted that in the clr no dimension is lost: one log ratio is a linear 

combination of the remaining. Thus, the clr is not appropriate for modelling because it leads to a singular 

covariance matrix.  

 

Egozcue and others (2003) and Egozcue and Pawlowsky-Glahn (2005) introduced the isometric log-ratio 

transformation (ilr) which preserves distances in the transformed space while using only D−1 log-ratios, 
so that covariance matrices can be inverted. It can thus be used in virtually all standard statistical analyses 

based on the assumption that data are realisations of real random vectors, which support the real space 

endowed with the usual Euclidean geometry (Mateu-Figueras and others, 2011). Contrary to the clr, this 

alternative transformation is more flexible in that the denominator is not the same in all log-ratios. For 

this reason, ilr log-ratios can easily be tailored to economically meaningful research questions and 

hypotheses. Unlike the clr, the ilr does not have a unique algebraic expression but its computation will 

depend on each case. Certainly, the ilr can be viewed as the coordinates with respect to an orthonormal 

basis in our constrained space. Thus each basis yields different ilr coordinates (Egozcue and others, 

2003). The next section gives the requirements an ilr transformation has to fulfil, and the illustration 

provides guidelines to compute it. 

 

 

3   MANOVA and MANCOVA of log-ratios with a total 
 

Pawlowsky-Glahn and others (in press) study the properties of the space defined by a composition and a 

total and conclude that the clr or the ilr transformation together with a total computed as √D times the 

                                                           
1
 Related developments are the indirect addilog system (Houthakker, 1960) and the generalised addilog system (Bewley, 1982). 



logarithm of the geometric mean of all absolute values makes distances in the combined space 

meaningful.  

 

The use of logarithms is attractive for economic analysis of expenditure for a number of reasons (Thrane, 

2014) and becomes a must when it is to be combined with share. Pawlowsky-Glahn and others (in press) 

show that the space of logarithms of absolute values by parts, which is commonly used in economic 

analysis of expenditure by budget parts, [see Eq. (3)] leads to the same distances as the space generated 

by Equation (4): 
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Pawlowsky-Glahn and others (in press) already pointed at the fact that alternative totals may make sense 

for particular purposes, once their statistical properties are derived. This paper shows that for MANOVA 

and MANCOVA, modelling ilr log-ratios and the logarithm of the raw geometric mean (without 

multiplying by the rather hard-to-interpret constant √D) of the absolute values of any number of 

components is equivalent to modelling the logarithms in Equation (3). This is so because MANOVA and 

MANCOVA results are preserved under change of basis (Mateu-Figueras and others, 2013). 

 

This makes it possible to build tailor made log-ratios which are interpretable with respect to particular 

research objectives or questions (e.g. a log ratio of the geometric mean of at-destination expenditures over 

transportation expenditure to find the drivers of the allocation of the budget parts which are spent at 

destination) and to focus on tailor-made total absolute expenditure(s) which are more relevant to the 

problem at hand (e.g. absolute expenditure in activities within a research on active tourism). 

 

If log-ratios and total are chosen following the guidelines above, the transformed data (yi1 to yiD-1 log-

ratios and ti total) and the logarithms of absolute expenditure [Eq. (3)]. are related through the ΨΨΨΨ matrix: 
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As an example we use the same transformation we will use in the illustration section. We have three 

expenditure components and we compute the total as the logarithm of the geometric mean of the last two. 

The transformed data are the following function of the logarithms of absolute expenditure: 
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The first D−1 rows of ΨΨΨΨ fulfil the requirements of an ilr transformation: they have zero sum, they have 
unit sums of squares, and each pair of rows among the first D−1 have zero scalar products. The last row 
only contains zero values and one or more equal positive values adding up to 1. These are sufficient 

conditions for ΨΨΨΨ being a matrix associated with the isomorphism between the space in Equation (3) and 

the space generated by Equation (4).  

 

MANOVA and MANCOVA multivariate tests and statistics (e.g., Pillai’s trace, Hotelling’s trace or 

Wilk’s Lambda) are invariant to how ilr log-ratios are computed and to the choice of which components 



are in the geometric mean which is used as total. These tests answer the question whether an explanatory 

variable is relevant for tourist expenditure as a whole. 

 

Univariate tests referring to the total and to each particular log-ratio are not invariant to the choice. If the 

log-ratios and total have been selected with respect to particular research questions, these tests can be 

directly related to them. Hence the importance of the interpretability of each log-ratio and of the selected 

total. 

 

If interpretable log-ratios and totals are built, separate ANOVA and univariate regression models for each 

log-ratio and for the total will yield the same results as regards the univariate tests (Thrane, in press). The 

main strength of the multivariate approach is the multivariate tests. When the number of variables is 

large, which is often the case in tourist expenditure research (Thrane, 2014), the number of univariate 

tests grows large and leads to type-I risk inflation and to capitalization on chance. A small number of 

multivariate tests reduce error inflation: univariate tests are only interpreted for variables which are 

statistically significant according to the multivariate tests. 

 

 

4   Zero expenditure 
 

If the xid variables contain zeros, neither logarithms nor log-ratios can be computed. An obvious initial 

procedure to reduce zeros is to amalgamate small and conceptually similar components with many zeros 

into larger ones. In tourism budget research it can be useful to group together all expenditure on activities 

or all expenditure on food, for instance. Nevertheless, one must be aware that amalgamation is a decision 

which prevents the separate analysis of the amalgamated components, as the usual addition is a non-linear 

operation in the geometry of the simplex. 

 

In certain instances, some zero components result from individual characteristics, which are called 

essential zeros in the CODA literature (Aitchison, 1986). Another typology of zeros encountered in the 

CODA literature is the rounding zero, that is, a component which is present but is too small to be detected 

by the measurement instrument. This is typical in chemical, biological and geological compositions, and 

the CODA literature offers ample instruments to deal with rounding zeros.  

 

A classic essential zero example in economics is in household budget research when measuring 

expenditure on tobacco; it will essentially be zero if all members are non-smokers. In many instances it is 

not clear whether zero expenditures come closer to being essential or rounding zeros. Tourists may spend 

a certain amount on activities and shopping on certain trips, but not on others and so surveys of only one 

trip will unavoidably contain some zeros of this type. Tourists may also forget or fail to report trivial 

expenses, like post-card shopping, local bus tickets, going to a museum, and the like (Legohérel, 1998). 

Fry and others (2000) claim that in both situations zeros can be proxied by a value below the smallest 

non-zero expenditure, and thus be treated as rounding zeros. Simulations show this method performs well 

if the proportion of zeros is below 10% (Martín-Fernández and others, 2011). 

 

In the illustration, zeros were present only in one budget category (activities and shopping, 4.7 % zeros). 

The minimum amount spent by the non-zero group was 2 euro. Zeros were replaced with 1.30 euro, 

which roughly corresponds to the price of a city bus ticket, the entrance to a subsidized local museum, or 

a cheap souvenir. Given the small proportion of zeros in this category, no distortion is expected due to the 

substitution. 

 

 

5   Illustration 
 

5.1   Chosen log-ratios and total  
 

In this illustration we consider the same ilr transformation as Ferrer-Rosell and others (in press), with 

emphasis on interpretability with respect to the researchers’ questions or hypotheses.  

 

In general, an interpretable log-ratio transformation is easy to compute whenever there is an interpretable 

sequential binary partition of components into pairs of groups of components, according to the 

researchers’ objectives (Pawlowsky-Glahn and Egozcue, 2011). These partitions start by dividing 

components into two clusters and then continue by subdividing one of the clusters into two until each 



component constitutes its own cluster. D components always involve D−1 partitions. These partitions are 
best understood with a tree diagram. 

 

A meaningful log-ratio transformation starts by taking ratios of the geometric means of the two 

component clusters at each partition. Numerators and denominators are interchangeable. In our 

illustration we consider xi1=transportation expenditure, xi2=accommodation and food, xi3=activities and 

shopping. An interpretable sequential partition is shown in Figure 1. 

 

 
 

 

Figure 1: Sequential partition of budget parts in our illustration. 

 

The sequential partition in Figure 1 implies that the research questions involve the allocation of total 

expenditure between transportation and at-destination expenditure and the allocation of at-destination 

expenditure. 

 

The first log-ratio compares transportation expenditure with the geometric mean of accommodation and 

food on the one hand and activities and shopping on the other. This ratio is used to observe the share of 

transportation compared to at-destination expenses. Larger values show a higher relative importance of 

transportation expenses. 
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The second log-ratio is a ratio of accommodation and food over activities and shopping. This ratio 

indicates how tourists allocate at-destination expenses. 
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As regards the total, we focus on studying the economic impact at destination and we choose the 

logarithm of the geometric average of the two absolute at-destination expenditures: 
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The choice of the relevant total is as dependent on objectives and research questions as the choice of log-

ratios. For instance, if we would have focused on the impact on the hospitality industry we could just 

have chosen ln(xi2).  

 

These log-ratios and total imply the following ΨΨΨΨ matrix in Equation (5), which fulfils all sufficient 
conditions but the unit sum of squares in the first D−1 rows: 
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Hence, each of the D−1 first rows is multiplied by the appropriate constants, from which the matrix 
expression in Equation (6) is obtained. The final log-ratios are: 
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5.2   Sample and variables 
 

In this illustration we use secondary official statistics data from the Encuesta de Gasto Turístico 

(EGATUR) conducted by the Instituto de Estudios Turísticos (IET), an official agency of the Spanish 

Ministry of Industry, Energy and Tourism. The EGATUR survey asks about tourist expenditure, and trip 

and traveller characteristics. It was conducted in 27 major Spanish airports in 2012, by computer assisted 

personal interview when tourists were about to leave the country. The sample is non-proportionally 

stratified by country of residence, airport and month. All expenditure variables are provided per person 

(not per travel group). 

 

The universe in this paper is a subset of the EGATUR universe which consists of European leisure 

visitors arriving by low cost airlines and spending between one and 120 nights in Spain. Flights from 

outside Europe are excluded because these airlines mostly operate short-haul flights. The study is centred 

on only those trips with one single destination, thus excluding multi-stage trips. Tourists who have 

essential zeros in accommodation (tourists who own a house at the destination, or tourists who stay with 

friends or relatives), and tourists who do not decide how much they spend on certain components 

(business and study trips, package tourists, trips paid for by the company, gifts or contests) are also 

excluded. The final sample size is n = 14,446.  

 

The following traveller characteristics are used as predictors: travel group, country of residence, 

education, self-reported income category, being repeat or first-time visitor, gender, age, and professional 

status. Since all variables are qualitative, we use MANOVA.  

 

5.3   Results 
 

Answering the question whether explanatory variables are relevant for tourist expenditure as a whole, 

gender is the only variable which is not globally significant (p-value > 0.01 in the first column of Table 

1). For this variable no further tests are interpreted.  

 

On the other hand, regarding univariate tests referring to the chosen total (how much) and to each 

particular log-ratio (how), we found that education is not significantly related to the total expenditure 

made at destination; that income category is not significantly related to y2 (i.e., to the allocation of at-

destination budget between accommodation-food and activities-shopping); and that having or having not 

been to Spain before does not significantly predict either y1 or y2 (p-value > 0.01 in second to fourth 

columns in Table 1). 

 



Table 1. Hypothesis test p-values 
 

Variable 
Multivariate  

Pillai’s trace test 
Univariate F tests 

  

y1: log-ratio 

transportation 

/at-destination 

y2: log-ratio 

accommodation 

/activities 

t: log geometric mean 

accommodation 

activities 

Travel group 0.000 0.000 0.000 0.000 

Country of residence 0.000 0.000 0.000 0.000 

Education 0.000 0.000 0.000 0.028 

Reported income category 0.000 0.000 0.192 0.000 

Repeat visitor 0.000 0.825 0.051 0.000 

Gender 0.190 0.030 0.169 0.114 

Age 0.000 0.000 0.000 0.000 

Professional status 0.000 0.000 0.000 0.000 

 
Table 2. Category frequencies and parameter estimates 

 

Variable Parameter 
Category 

Freq. 

y1: log-ratio 

transportation 

/at-destination 

y2: log-ratio 

accommodation 

/activities 

t: log geometric mean 

accommodation 

activities 

 Intercept  0.057 1.690** 4.975** 

Alone 15.7% -0.077** 0.026 -0.077** 

With family 17.0% 0.103** -0.111** 0.103 

With friends 19.8% -0.083** -0.238** -0.083** 

Travel 

group 

With partner 47.5% 0 0 0 

Germany 10.3% -0.127** -0.117** 0.234** 

Italy 17.4% -0.265** -0.200** -0.044 

France 8.7% -0.157** -0.229** 0.027 

Benelux 11.4% -0.053* -0.133** 0.043 

Scandinavia 11.0% -0.004 -0.221** 0.363** 

Austria, Swit., Liech. 3.3% -0.094* -0.287** 0.284** 

Other 5.7% -0.203** -0.259** 0.025 

Country 

of 

residence 

UK & Ireland 32.2% 0 0 0 

Up to high school 28.2% 0.068** 0.106** 0.034 
Education 

University degree 71.8% 0 0 0 

High income 23.7% -0.098** 0.016 0.259** 

Low income 3.0% 0.001 -0.072 0.118* 
Reported 

income 

category Medium income 73.3% 0 0 0 

Yes 23.0% -0.003 -0.036 -0.077** Repeat 

visitor  No 77.0% 0 0 0 

Female 46.7% 0.025 0.021 -0.021 
Gender 

Male 53.3% 0 0 0 

+45 retired 6.1% -0.070** 0.192** 0.193** 

15-24 11.7% -0.109** -0.171** 0.148** 

+45 not retired 28.5% -0.008 0.057* 0.094** 
Age 

25-44 53.6% 0 0 0 

Homemaker 2.1% 0.186** 0.295** -0.101 

Unemployed 2.8% 0.041 0.165** -0.218** 

Low level employee 4.9% 0.219** 0.236** -0.352** 

Students 6.6% 0.161** 0.139* -0.355** 

High level employee 9.7% 0.050 0.091* 0.054 

Self employed 14.2% 0.024 0.019 -0.002 

Prof. 

status 

Mid level employee 59.7% 0 0 0 

The last (most frequent) category in each variable acts as reference. 

* t-test p-value < 0.01; ** t-test p-value < 0.001 



As examples of how the results of this type of analysis can be interpreted, we provide one example 

affecting expenditure allocation (how), one affecting expenditure volume (how much) and one affecting 

both (Table 2). 
 

Education does not affect how much tourists spend at destination. However, this variable does affect how 

tourists distribute their trip budget. Tourists with up to secondary education spend comparatively less at 

destination, and within the expenditures done at destination, they spend comparatively less on activities 

and shopping, and more on accommodation and food.  

 

Tourists repeating visit to Spain spend absolutely less at destination than those who are for first time in 

Spain. No differences are found between first-timers and repeat visitors in how they allocate their trip 

budget.  

 

Age affects both how and how much tourists spend at destination. Regarding trip budget allocation, 

retired tourists spend comparatively more at destination and less on transportation, and within at-

destination expenses, they spend relatively more on accommodation and food. While young (15-24 years’ 

old) travellers also spend comparatively less on transportation, within at-destination expenses they spend 

comparatively more on activities and shopping. They are the age group who spends comparatively the 

most on activities. As far as the at-destination expenditure volume is concerned, old and young tourists 

spend more than medium-age travellers.  

 

 

6   Conclusions and discussion 
 

Expenditure allocation and expenditure volume are both interesting to tourism scholars and managers 

alike. In this paper we have combined compositional analysis of trip budget share with the analysis of a 

trip budget total and have shown how log-ratios and totals can be tailored to the research questions. 

 

The approach in this paper avoids confounding how tourists distribute their expenditure and how much 

they spend. Table 1 shows which variables affect expenditure allocation and which affect total 

expenditure. On the contrary, the common modelling of the log absolute expenditures in each budget part, 

usually leads to concluding that certain tourist characteristics affect all budget parts about equally. When 

running the latter analysis with the same data, results show that high income earners, tourists travelling 

alone, retired tourists, and tourists coming from Germany, Scandinavia, Austria, Switzerland and 

Liechtenstein spend more in all budget parts, which hides the effects on budget allocation. The suggested 

approach is basically a rotation of the common approach by means of a change of basis. As such it yields 

identical multivariate tests, while leading to more interpretable univariate tests and estimates. It also 

shares its statistical assumptions, which have to be checked for the particular data set at hand by means of 

the usual diagnostics in MANOVA and MANCOVA models. 

 

The appeal of the CODA methodology for studying tourism budgets lies in the fact that, once the 

variables have been transformed, the researcher can use standard and well understood statistical models. 

The CODA methodology offers the potential to construct tailor-made log-ratios which are intuitive to 

interpret and suit the research questions at hand. A partition tree of components is a clear and useful tool 

in this respect. The CODA methodology has been rightly criticised for ignoring the total even when it is 

available. Drawing from Pawlowsky-Glahn and others (in press) this paper shows alternative ways to 

include the total in the analysis, which can also be tailored to the research questions. 

 

Zero expenditure has deserved wide attention both in the econometric literature and in the standard 

CODA literature. Further research is needed as to zero replacement or analysis when compositions are 

combined with a total which is known and of interest. The illustration contained in this paper is of course 

limited by the available variables in the EGATUR survey. Further research is needed with a 

comprehensive list of predictors (Thrane, 2014). 
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Abstract

Standard analysis of compositional data under the assumption that the Aitchison geom-
etry holds assumes a uniform distribution as reference measure of the space. Weighting
of parts can be done changing the reference measure. The changes that appear in the
algebraic-geometric structure of the simplex are analysed, as a step towards under-
standing the implications for elementary statistics of random compositions.

Key words: Simplex, sigma-additive measures, subcomposition, weighting, Bayes
space

1 Introduction

When analysing a composition, some parts may heavily influence the results. For instance, inaccu-
racies in the measurements in some not fully relevant parts can dominate the analysis, producing
a large contribution to variability or to distances. Also, relevance of parts in a given problem
can call for weighting techniques to adapt the simplex geometry accordingly. There are a number
of weighting techniques that can be useful in this sense. Among them, the change of reference
measure of the simplex has several implications that need to be fully understood for a consistent
analysis. This contribution is aimed at showing changes that appear in the algebraic-geometric
structure of the simplex.

In compositional analysis one of the most fruitful concepts is that of subcomposition (Aitchi-
son, 1986). Some reasonable principles for an analysis of subcompositions to be coherent were
established in Aitchison (1992). Beyond the idea that compositional analyses should be scale in-
variant, they included the assumption that distances between compositions should be greater than
or equal to those observed in a subcomposition. This principle, called subcompositional dominance
(Aitchison, 1992; Aitchison et al., 2000; Egozcue, 2009), points out a change of the geometry of
subcompositions (for instance, a change in inter-distances between two data-points in the subcom-
position) with respect to the original geometry of the full composition. Taking a subcomposition
can be considered as an extreme case of down-weighting, since the influence of some parts of the
composition is removed from the analysis. However, there are cases in which the complete removal
of the influence of some parts of the original composition is not desirable. This motivates the idea
of weighting compositions as a continuous transition from the full composition, endowed with the
corresponding Aitchison geometry (Pawlowsky-Glahn and Egozcue, 2001), to a subcomposition,
endowed with the induced Aitchison geometry, which differs in dimension and metrics (distances,
inner product, norm).

Apparently, there are many ways of weighting compositions performing a transition from a full
composition to a subcomposition. However, fulfilling all coherence requirements is quite challeng-
ing. One option deserving attention is the one proposed for Bayes spaces (van den Boogaart et al.,
2010; Egozcue et al., 2013) and, more specifically, for Bayes Hilbert spaces (Egozcue et al., 2006;
van den Boogaart et al., 2014). In the last reference, it is shown that the simplex, endowed with
the Aitchison geometry, is a particular case of Bayes Hilbert space. In the development of Bayes



Hilbert spaces, a reference probability measure is introduced as a parameter regulating the geome-
try of the measures and densities in the space. This kind of approach provides a way of coherently
introducing weighting strategies, both in the simplex and in the analysis of compositional data.
The present aim is to start studying the change of reference measure in the simplex, being con-
scious that there is a long way from the general theory of Bayes Hilbert spaces to applications
in compositional data analysis. The main difficulties are interpretative, as usual in compositional
data analysis.

The structure of the paper is as follows: Section 2 translates the milestones of Bayes Hilbert spaces
into the case of compositions, with special emphasis in the role of the reference measure. Section
3 introduces the clr with respect to an arbitrary reference measure in the simplex, following the
definition in van den Boogaart et al. (2014) for general Bayes Hilbert spaces. Section 4 gets into
details of metric concepts under a change of the reference measure, such as orthogonality, bases,
and balances.

2 Change of reference measure for compositions

Consider D categories c1, c2, . . . , cD; they represent a partition of a whole, Ω, also called measurable
space. A D-part composition x = (x1, x2, . . . , xD) in the D-part simplex SD assigns a proportion
xi to the category ci. Assuming that the composition is closed to 1, the proportion assigned to
the whole space Ω is just 1. For any subset of categories, the proportion assigned is the sum of the
corresponding proportions. For instance, the proportion assigned to the subsets {c1} and {c1, c2}
are x1 and x1 +x2, respectively. From this point of view, the composition x defines a finite additive
measure on Ω, which is denoted µx{·}. The argument of this measure is any subset of Ω. Examples
are µx{Ω} = 1, µx{∅} = 0, µx{c1} = x1, µx{c1, c2} = x1 + x2.

Measures can be represented by densities. The idea is that sums (integrals) on a subset of Ω
give the measure of this subset. In the case of the simplex SD, the density is identified with the
composition x, as for any subset A ⊆ Ω it satisfies

µx{A} =
∑
ci∈A

xiP0{ci} , P0{ci} = 1 , i = 1, 2, . . . , D ,

where the uniform measure P0{·} on Ω has been made explicit as reference measure. Note that
P0{Ω} = D and addends of sums (integrals) along the composition are equally weighted with 1 =
P0{ci}. The reference measure specified as p0 = (P0{c1}, P0{c2}, . . . , P0{cD}) is compositionally
equivalent to the neutral element of the simplex. The conclusion is that a composition x ∈ SD
defines a measure µx on Ω specifying the measure of each elementary subset {ci} and, at the
same time, x is the density of µx with respect to the uniform reference measure P0, which density
is p0. When P0 is the uniform reference measure there is no need to distinguish between x as a
composition, as a measure or as a density. These facts change when weights are introduced through
the reference measure.

A first step for introducing weights is a change of reference measure. Let be p = (p1, p2, . . . , pD)
an arbitrary array of positive weights, as in the case of the uniform reference measure p0. The
corresponding measure P is then characterised by P{ci} = pi, for i = 1, 2, . . . , D, and by the

measure of the whole space, P (Ω) =
∑D
i=1 pi. A question is now to look for a composition y which

gives the density of the measure µx with respect to the new reference measure P . Note that p is
its density with respect to the uniform measure P0. Such a composition is y = x	 p, where p is
now treated as a composition, despite the fact that p is not closed to 1 but to P (Ω). In fact, for
A ⊆ Ω,

µx{A} =
∑
ci∈A

yi pi =
∑
ci∈A

xi
pi

pi ,

thus the measure µx is now recovered from two different densities, x when considering the uniform
reference P0 and y for a reference P . If the reference measure is represented by the array of weights



p, the new density is just a perturbation of x, a shift in the simplex y = x	 p, recalling that the
perturbation-difference 	 includes the closure, C, and consequently x	p = x	Cp. From now on,
the composition x	 p is denoted y(p), or simply y if clear from the context.

Perturbation and powering in the simplex change when the reference measure is changed. Specifi-
cally, consider x1 and x2 compositions (densities) in SD with respect to the uniform reference P0.

Let y
(p)
1 , y

(p)
2 be the compositions (densities) when the reference measure is changed to P , which

weights are in p. The perturbation, ⊕p, and powering, �p, in SD with the reference P operate as

y
(p)
1 ⊕p y

(p)
2 = y

(p)
1 ⊕ y

(p)
2 ⊕ p =

[
(y

(p)
1 ⊕ p)⊕ (y

(p)
2 ⊕ p)

]
	 p ,

α�p y
(p)
1 = (α� y

(p)
1 )⊕ p ,

where y
(p)
i ⊕p = xi. Following van den Boogaart et al. (2010) and van den Boogaart et al. (2014),

a weighted perturbation and powering can be defined for the compositions y
(p)
1 and y

(p)
2 such

that they operate linearly in the weighted simplex. However, standard perturbation and powering
are easily interpreted and computed in the applications; therefore, its use is recommended, thus
avoiding linear operations with the shifted densities y(p) = x 	 p. In practice, the weighted
compositions will be used in the computation of distances and inner products as explained in the
next Sections.

3 Centred log-ratio with respect to a reference measure

In van den Boogaart et al. (2014), the clr-transformation of a density f with respect to a given
reference measure P , is defined as

clrP (f)(x) = log f(x)− 1

P{Ω}

∫
Ω

log f(ξ) dP (ξ) , x ∈ Ω , (1)

where Ω is the measurable set where the density f is defined. In the present case Ω is the set
of the D parts or categories of SD, named ci, i = 1, 2, . . . , D. Therefore, the values of x in
such an expression correspond to the ci’s. Since f is a density of a measure with respect to the
reference measure P , it can be identified with the composition y = x	p as introduced in Section
2. With these identifications, the clrp-transformation of the simplex with respect to the measure
P , represented by p, is

clrp(y) =

(
log

y1

gp(y)
, log

y2

gp(y)
, . . . , log

yD
gp(y)

)
, gp(y) = exp

(
1

sp

D∑
i=1

pi log yi

)
, (2)

where sp =
∑D
i=1 pi, and gp(·) denotes a weighted geometric mean of the parts yi. Note that p,

the reference measure of the categories ci, is not closed to D, and P{Ω} = sp. The fact that,
for P0 as uniform reference measure, sp0

= D is also remarkable. An important characteristic of
clrp(y) is that the weighted sum of its D components is zero, that is

D∑
i=1

pi log
yi

gp(y)
= 0 , (3)

generalising the ordinary clr in SD, for which the sum of its components (weights equal to 1)
is null. This has a geometric interpretation in the space RD, where a point has coordinates
log(y) = (log y1, log y2, . . . , log yD). As illustrated in Figure 1, which shows a scheme for D = 2,
to obtain the ordinary clr of a generic point log(y), the point is orthogonally projected onto a
hyperplane through the origin whose orthogonal vector is (1, 1, . . . , 1) (Aitchison, 1986; Pawlowsky-
Glahn et al., 2015). When using a non-neutral p = (p1, p2, . . . , pD) the procedure to get clrp(y) is



●

●

●

●
log x1

log x2

(log x1,log x2)

(1,1)

clr

clrP

P

Figure 1: Generic 2-part composition (x1, x2), log-transformed into (log x1, log x2) in R2
+. Two reference measures

with densities (1, 1) (uniform, blue arrow) and p (red arrow) are considered. The point (log x1, log x2) is projected,
parallel to the reference arrow, on the clr-plane (blue) and on the clrp-plane (red), thus obtaining the respective
transformations.

to orthogonally project the point log(y) onto a hyperplane whose orthogonal vector is p, as shown
by the inner product in RD implicit in Equation (3). Summarising, clrp is a projection of log(y)
on a hyperplane whose normal vector is p.

A particular case of interest is that of

pi = 1 , i = 1, 2, . . . , D − 1 , pD = ε , (4)

for which P (Ω) = (D − 1) + ε. When ε → 0, the D-th part is down-weighted from 1 to ε � 1.
For small enough ε, the weighted geometric mean gp in Equation (2) approaches the ordinary
geometric mean of the first D − 1 parts of y. A consequence is that the first D − 1 components
of clrp(y) approach the ordinary clr of the subcomposition formed by (y1, y2, . . . , yD−1). This
suggests that this kind of reference measures may approach the induced Aitchison geometry on
the subcomposition.

4 Metrics under change of reference

The clr transformation can be used to define the inner product in SD, as was done in Bayes Hilbert
spaces (van den Boogaart et al., 2014). There, the proposed definition was

〈y1,y2〉B2 =
1

P{Ω}
〈clrP (y2), clrP (y1)〉 ,

where 〈·, ·〉 is the ordinary inner product in RD. This definition leads to an inner product in SD
which, for a uniform reference measure p = (1, 1, . . . , 1), is

〈y1,y2〉a =
1

D
〈clr(y2), clr(y1)〉 , (5)

which is not the standard in compositional data analysis due to the factor 1/D. This inner product
is not suitable for compositional data analysis, as it does not fulfill the principle of subcompositional
dominance of distances. For instance, consider the 3-part compositions u = (0.1, 0.7, 0.2) and
v = (1/3, 1/3, 1/3). Their distance, in the geometry induced by the inner product (5) in S3, is
d3(u,v) = 0.805. Taking the subcomposition formed by the first and second part and computing
the distance in S2 according to (5), the result is d2(u,v) = 0.973. Since d3(u,v) < d2(u,v), the
principle of subcompositional dominance is violated.



To match the present definition to the standard practice in compositional data analysis (Aitchison,
1986; Aitchison and Egozcue, 2005; Egozcue et al., 2011; Pawlowsky-Glahn et al., 2015) and the
subcompositional dominance of distances, the factor 1/D in (5) is suppressed.

In the case of using a reference measure represented by the weights p, the appropriate definition
of the weighted Aitchison inner product is

〈y, z〉p =
D∑
i=1

pi log
yi

gp(y)
log

zi
gp(z)

, (6)

where y = y(p), z = z(p) are in SD. The expression in the right hand side of Equation (6) is an
inner product of the involved clrp as real vectors with respect to the measure P . Note that, for
the reference measures in Equation (4), the weights of the reference measure add neither to one
nor to D.

The weighted Aitchison norm is readily derived from the inner product as ‖y‖2p = 〈y,y〉p. Also
the distance comes from the inner product. However, it is preferable to give the explicit expression

d2
p(y, z) =

D∑
i=1

pi

(
log

yi
gp(y)

− log
zi

gp(z)

)2

.

These definitions coincide with those of the ordinary Aitchison geometry of SD whenever p =
(1, 1, . . . , 1). When the weights p are not uniform, the inner product differs from the ordinary
Aitchison inner product and, consequently, also norm and distance are different.

To get a further intuition of what is changing with p, it is instructive to build orthonormal basis
of the simplex according to the change of reference. It allows to show how these bases are under
change of p in particular cases.

A straightforward technique for obtaining orthonormal basis of the simplex and their respective
coordinates is that of sequential binary partitions (SBP) (Egozcue et al., 2003; Egozcue and
Pawlowsky-Glahn, 2005, 2006). When using a non-uniform reference measure with the weights
p, the procedure is based on partition coded as in Table 1, but the formulae to obtain the contrast
matrix are modified. Table 1 shows a generic sign code for an SBP, adding weights p as column
labels (second row) for further comment on the generalised technique.

Table 1: A generic table of an SBP for a five-part composition. Weights from the reference measure are placed in
the second row, under the part label. Rows are labelled as balances bi for further reference.

parts y1 y2 y3 y4 y5

weights p1 p2 p3 p4 p5

b1 +1 −1 −1 −1 +1
b2 +1 0 0 0 −1
b3 0 +1 −1 −1 0
b4 0 0 +1 −1 0

Denote the entries of the matrix code as θij , i = 1, 2, . . . , D − 1, j = 1, 2, . . . , D. For the case in
Table 1, D = 5 and, for instance, θ32 = +1. When using the standard uniform reference measure
with p = (1, 1, . . . , 1), the clr coefficients of a balancing element in the basis are given by

ψij =


+ 1
n+
i

√
n+
i n

−
i

n+
i +n−

i

if θij = +1

− 1
n−
i

√
n+
i n

−
i

n+
i +n−

i

if θij = −1

0 if θij = 0 ,

(7)



where n+
i , n−i denote the number of +1, −1 in the i-th row of the sign code table, respectively.

When using the reference measure which weights pj are not uniform, these formulas for the clrp
of balancing elements are the same except that n+

i , n−i are

n+
i =

∑
θij=+1

pj , n−i =
∑

θij=−1

pj .

The contrast matrix Ψ, with entries ψij , i = 1, 2, . . . , D, j = 1, 2, . . . , D − 1, fulfils the conditions

Ψ diag(p) Ψ> = ID−1 , diag(p) Ψ>Ψ = ID −
1

D
p>1 , (8)

where Im is the (m,m)-identity matrix; p and 1 = (1, 1, . . . , 1) are taken as row vectors, and
diag(p) is a (D,D) diagonal matrix with entries equal to the components of p. The first condition
is equivalent to saying that balancing elements are unitary compositions mutually orthogonal. In
fact, their clrp are unitary and orthogonal in the weighted Euclidean geometry.

Coordinates of a composition y ∈ SD with respect to an orthonormal basis are found carrying
out the inner product of a balancing element in the basis with the composition y = x	 p. These
coordinates will be named weighted isometric log-ratio coordinates and denoted by ilrp. In the
particular case in which they are obtained using an SBP, they are called weighted balances. For
simplicity, these weighted balances are denoted bi, i = 1, 2, . . . , D − 1, with no reference to the
weights associated with the change of measure (as shown in Table 1). The ilrp coordinates can be
obtained using the matrix expression

ilrp(y) = b = clrp(y) diag(p) Ψ> , (9)

where compositions and their clrp, ilrp transforms are considered row-vectors. Note that each
component of b = (b1, b2, . . . , bD) is a weighted inner product of clrp(y) with the corresponding
clrp of a balancing element. The inverse ilrp transformation is readily obtained using the properties
(8) of Ψ

y = C exp(Ψ>ilrp(y)) ,

which is formally identical to the inverse ilr with uniform reference measure.

Although Equation (9) is useful from a computational point of view, an explicit expression of
balances gives a more detailed insight on the meaning of weighted balances. Consider a sign code
of a step in an SBP, for which n+

i , n−i are given. The corresponding weighted balance is

bi =

√
n+
i n
−
i

n+
i + n−i

log


(∏

(θij=+1) y
pj/n

+
i

j

)
(∏

(θij=−1) y
pj/n

−
i

j

)
 ,

where the products span on the parts corresponding to the sign code θij . When the weights pj = 1,
the balance reduces to the standard balances, as n+

i , n−i are then the number of +1 and −1 in
the i-th row of the sign code respectively. The main feature, when the reference is not uniform, is
that the ratios within the logarithm are ratios of a kind of weighted geometric means. Note that,
in general, n+

i , n−i are not integers and each part is powered to the weight corresponding to that
part. When some pj is small, relative to other weights, it plays a minor role in these weighted
geometric means. Furthermore, the weighted balances are scale invariant log-contrasts, that is, if
the composition y is multiplied by a positive constant, the weighted balance remains unaltered.

A critical point whenever there is a change in the geometry of compositions is the subcompositional
dominance of distances. In the standard approach, the distance between any two compositions x1,
x2 ∈ SD is da(x1,x2). After taking a given subcomposition in Sd, d < D, the distance between

the respective subcompositions, x
(d)
1 ,x

(d)
2 , satisfies da(x

(d)
1 ,x

(d)
2 ) ≤ da(x1,x2). In this case, both

spaces have integer reference measures P (ΩD) = D and P (Ωd) = d and the corresponding weights
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Figure 2: Evolution of weighted square-distances between three measures represented by the compositions x1 =
(0.1, 0.7, 0.2), x2 = (0.5, 0.3, 0.2), x3 = (0.9, 0.08, 0.02) with respect to the uniform reference in S3. With yi = x	p,
square-distance curves are dp(y1,y2) (black), dp(y1,y3) (blue), dp(y2,y3) (red). Reference measure is p = (1, 1, ε)
and x-axis is scaled as P (Ω) = 1 + 1 + ε. The three square-distances monotonically increase from P (Ω) = 2 to
P (Ω) = 3. The end points of the curves at P (Ω) = 2 and P (Ω) = 3 are equal to standard Aitchison square-distances
in S2 and S3 respectively.

y1 y2

y3

Figure 3: The unit circle (black) in the uniform reference. After change of origin to (1, 1, ε), ε = 0.5 (brown), 0.1
(blue), 0.05 (green), and 0.01 (red), the circle is shifted towards the vertex y3



are (1, 1, 0) and (1, 1, 1) respectively. When changing reference measure by down weighting some
of the weights, it is expected a dominance of distances as it occurs when taking subcompositions.
The dominance of distances can be stated as follows.

Proposition (dominance of distances) Let x1, x2 be two compositions in SD, endowed with the
uniform reference measure, which weights are (1, 1, . . . , 1). Consider two reference measures, P1

and P2, represented by their respective weights p1 = (p11, p12, . . . , p1D) and p2 = (p21, p22, . . . , p2D),

such that all their components are 0 < pki ≤ 1, for k = 1, 2, i = 1, 2, . . . , D and Pk(Ω) =
∑D
i=1 pki.

Define the compositions y
(pk)
j = xj 	 pk for k = 1, 2 and j = 1, 2. Then,

p1i ≤ p2i, i = 1, 2, . . . , D implies dp1
(y

(p1)
1 ,y

(p1)
2 ) ≤ dp2

(y
(p2)
1 ,y

(p2)
2 ) .

It is worth to remark that the notation of distances like dp1
(y

(p1)
1 ,y

(p1)
2 ) could be changed to

dp1
(x1,x2), as distances assigned to shifted y’s are taken as equal to original compositions x’s.

This is due to the fact that x and y are densities of the same measure, with respect to different
reference measures.

Figure 2 shows the evolution of square-distances between three compositions x1 = (0.1, 0.7, 0.2),
x2 = (0.5, 0.3, 0.2), x3 = (0.9, 0.08, 0.02) with respect to the uniform reference in S3 when the
reference measure changes progressively. The reference measure is (1, 1, ε), with epsilon going
from 0 to 1. The plot is scaled according the P (Ω) = 1 + 1 + ε. The square-distances increase
monotonically, from distances corresponding to the subcomposition (y1, y2) to square-distances
with the standard reference p0 = (1, 1, 1). This result is expected after the previous proposition.

An experiment has been conducted to show how the changes of reference modify distances and
shapes. Five different reference measures p = (1, 1, ε) have been considered with ε equal to 1, 0.5,
0.1, 0.05, 0.01, so that they approach progressively the geometry of the subcomposition of the two
first parts. The unit circle centered at the neutral element was shifted by the five reference mea-
sures. Figure 3, shows this unit circle (black) and the sequence of perturbations as a consequence
of the change of origin. Note that the transformed circle is shifted to the vertex which weight is
reduced, as expected after dividing each part by the corresponding weight.

After the change of origin, each point on the circles was ilr-transformed using the corresponding
weights according the SBP sign code

y1 y2 y3

+1 −1 −1
0 +1 −1

which has been selected to avoid a balance representing the subcomposition y1, y2. Figure 4 (left
panel) shows the coordinates of the circles to show the changes of the distances between points on
the same circle. Note that the centers of the ellipses do not coincide, as they correspond to the
closure of the reference measure (1, 1, ε). The main feature is the progressive stretch of the original
circle. For very small ε the ellipse tends to degenerate into a segment following the direction of the
subcomposition y1, y2. Similarly, Figure 4 (right panel) shows the deformation of a grid originally
at −1, 0, 1 in both axes (black). The new references are ε = 0.1 (blue), and 0.01 (red). The grid is
progressively tilted and distances between nodes decrease as ε also decreases. Although straight-
lines are preserved, their angles change, thus showing the change of geometry when changing the
reference.

5 Conclusions and further research

A weighting strategy for the analysis of compositions is proposed. It is based on the theory of
Bayes Hilbert spaces. However, some modifications have been introduced to fulfill the desirable
principle of dominance of distances when down-weighting some parts of the composition. When
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Figure 4: Left panel: the five circles in Figure 3 after weighted ilr-transformation. Reference measures are (1, 1, ε),
ε = 1 (black), ε = 0.5 (brown), 0.1 (blue), 0.05 (green), and 0.01 (red). Left panel: a regular grid at points −1,
0, −1 in both axes after change of origin and weighted ilr transformation. Weights are (1, 1, ε), ε = 1 (black), 0.1
(blue), and 0.01 (red).

the weights considered are unitary in each part, that is, when there is no down-weighting, the
approach is reduced to the standard compositional data analysis. If some parts are down-weighted
approaching zero, the weighted geometry of the simplex reduces to the ordinary Aitchison geometry
of the corresponding subcomposition.

In order to use the proposed weighting approach, it seems advisable to deal with compositions
as usual for linear operations, using the standard perturbation and powering. When distances
or inner products are involved in the analysis, they are computed in two steps: first, shifting
the compositions by 	p, that is, dividing each part by the corresponding weight; and second,
computing clrp or ilrp to find the required distances or inner products in a straightforward way.

Statistical consequences of weighting compositions need to be studied in the future. Standard tools
of exploratory analysis, as variation matrix, biplots or balance dendrograms, clustering and others,
will be affected by weighting. The reason is that distances between compositions and computation
of variances-covariances are affected as well. As a consequence the proposed weighting approach
is only a first step towards developing effective weighting techniques applicable to compositional
data analysis.
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Semi-parametric density estimation with TrioScale
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Abstract

The TrioScale display transforms three-dimensional compositions to unbounded two-
dimensional coordinates. Then it is easy to estimate a smooth density for better visu-
alization of scatterplots. We use penalized least squares smoothing of a detailed two-
dimensional histogram and back-transformation for display of a density in a ternary
diagram.

Originally we derived TrioScale by representing logarithms of proportions as negative
squared distances from anchor points. An equivalent but simpler interpretation uses
cyclic log-ratios, resulting in an unbounded triangular diagram with linear log-ratio
axes. We also establish an equivalence to the isometric log-ratio transform.

We apply our smoothing procedure to real-world data.

Key words: Smoothing, compositional data, visualization.



1 Introduction

Anyone doing serious work on compositional data is familiar with the ternary diagram. It is an
insightful way of presenting observations, but it also has limitations. The most obvious one is that
all data points have to lie within an isosceles triangle, or on its boundary. Hence small fractions
are hard to judge, the same is true for fractions close to 1.

When the number of data points is large, points start to overlap each other and patterns become
hard to judge. This problem is not unique to ternary diagrams. Any scatterplot with many dots
suffers from it. A solution is to estimate the local density of the data points and color code it,
to get an intensity image. Apart from making the picture more attractive and more clear, it also
makes graphic files smaller, reducing demands on storage, transmission speed and printing time.

Several approaches have been proposed and most of them have been implemented in R software.
The hexbin plot, in the R package hexbin (Carr, 2014), divides the x−y plane into small hexagons,
counts the number of observations in each of them and plots them, filled with colors proportional
to the counts. The scatterplot smoother of Eilers and Goeman (2004) counts observations in small
bins on a rectangular grid, and applies penalized least squares smoothing in both directions of
the grid. Kernel smoothers replace each observation by a small “hill” with a two-dimensional
Gaussian shape and adds up all the hills, to get a smooth surface that can be evaluated at any
desired resolution. In that way a color-coded image of the density can be obtained and displayed.

When we consider using these smoothing algorithms to compositional data, we encounter various
problems. The scatterplot smoother needs a complete rectangular grid, so it cannot be applied
directly. The hexbin smoother might work, if we cover the triangle with small enough hexagons.
As far as we are aware, no implementation is available. The kernel smoother has been implemented
in the ggtern package. It presents attractive figures, with color gradients and level contours. But
it also suffers from the typical kernel smoother disease: spreading beyond the boundaries of the
data. An example is shown in Figure 1. The cloud of data points gets quite narrow in the right
corner, but this is not reflected in the density estimate. It has to be cut off sharply at the edges of
the triangle.

To get out of his rut, we propose to first transform the data to another, unbounded, domain, and
use the scatterplot smoother there. We use the TrioScale transformation, which was proposed
by us at CoDaWork 2013 (de Rooij and Eilers, 2013). We believe it to be an attractive way to
represent compositional data and the results of (logistic) models. If one shares our conviction, the
final result would be the smooth density in TrioScale coordinates. Nevertheless, it is useful and
interesting to transform back to the ternary diagram. To do this properly, one has to apply the
proper geometrical back-transformation to match locations in both coordinate systems, but also
correct the density values by the Jacobian of the transformation.

The plan of the paper is as follows. To make it self-contained, we present a summary of TrioScale
in Section 2. There we also show that, although TrioScale is defined by distances to anchor points
in the plane of new coordinates, it can also be expressed in logs of cyclic ratios of fractions (p1/p2,
p2/p3 and p3/p1). In Section 3 we discuss the fitting and display of bivariate normal distributions.
In section 4 presents the scatterplot smoother and applies it to simulated and real data. The back-
transformation to the ternary diagram is discussed there too. Section 5, the Discussion, closes the
paper.
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Figure 1: An example of kernel density smoothing in the ternary diagram. Left: data points. Right density
estimate as produced by the R package ggtern.

2 TrioScale in a nutshell

The origins of TrioScale lie in the ideal point classification model (De Rooij, 2009) In the cases of
three classes there are three class points (to be estimated from the data) with coordinates (uj , vj),
for j = 1, . . . ,. A triple of proportions, p, is represented by a point with coordinates (u, v) in
such a way that pj = c exp(−d2j ), where d2j = (u − uj)

2 + (v − vj)
2, the squared distance to the

corresponding class point. The value of c is chosen such that
∑

j pj = 1. In the Appendix we show
how to compute u and v for given p and class point positions. However, we will call them anchor
points, because in TrioScale we do not estimate them, but set their positions ourselves, usually
forming a triangle with equal sides, like in the familiar ternary diagram.

An alternative interpretation is based on cyclic log-ratios. Figure 2 shows three anchor points and
a line perpendicular to the line connecting A and B and crossing it at D. It is easy to prove that
|AE|2 − |BE|2 = |AD|2 − |BD|2, independent of the position of point E on the perpendicular.
If A has coordinates (u1, v1), B coordinates (u2, v2) and E coordinates (u, v), then we have that
log p1 − log p2 = b, a constant. Hence log(p1/p2) is constant on the line through D and E. In a
similar way any perpendicular on AC defines a constant log(p1/p3). Where the two perpendiculars
cross, we find (u, v). With proper choice of the anchor points, the relationship between the log-
ratios and the coordinates of the point (u, v) is very simple: u = log(p2/p1) and v = (2 log(p3/p1)−
log(p2/p1))/

√
3. See the Appendix for details.

We do not use log-ratios themselves as new coordinates, but linear combinations of them. In fact
they are scaled version of the default isometric log-ratio transform (ilr). The default choice of
ilr in the R package compositions (van den Boogaart et al., 2014) gives u′ = log(p2/p1)/

√
2 and

v′ = (2 log(p3/p1)− log(p2/p1))/
√

6, so u = u′√2 and v = v′
√

2.

We use oblique axes for the log-ratios to map from a composition, constrained to the simplex, to an
unbounded two-dimensional space. In fact we effectively stretch the sides of the familiar ternary
triangle without limits.

In Figure 3 we show four ternary diagrams for different selections of metals in the Kola data set in
the R package StatDA (Filzmoser, 2013). The corresponding TrioScale plots appear in Figure 4.

Note that the anchor points are not shown, because they play no role anymore in the alternative
interpretation of TrioScale. Only axes for the three log-ratios have to be drawn. We can move
them to a parallel position any distance we like. In Figure 4 the axes are identical for all three
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Figure 2: Diagram supporting the TrioScale mapping. The difference |AE|2 − |BE|2 is constant for any position
of E on the perpendicular through D. If log p2 = exp(−|BE|2) and log p1 = exp(−|AE|2), the log-ratio log(p2/p1)
is constant on the perpendicular.

log-ratios, in all four panels. To see more detail, it is convenient to limit the range of each axis
and position it close to the cloud of points. That has been done in Figure 5.
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Figure 3: Kola data set (moss). Four selected triples of metals. Presentation as standard ternary plots.
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Figure 4: Kola data set (moss). Four selected triples of metals. Presentation in TrioScale coordinates. The three
axes represent logs of ratios of the metals indicated at both of their ends.
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Figure 5: Kola data set (moss). Four selected triples of metals. Presentation in TrioScale coordinates. The three
axes represent logs of ratios of the metals indicated at both of their ends. Contours of bivariate normal distributions
added.

3 Parametric distributions

After TrioScale mapping, observations form a cloud of points in a two-dimensional Euclidean space.
Familiar multivariate statistical techniques can be used to describe their distribution. The bivariate
normal distribution is an obvious choice. Figure 5 shows that this might be a reasonable idea, even
for data that show rather extreme patterns in the ternary diagram.

We believe that statistical analysis should be done in the TrioScale space. Nevertheless, it is
illustrative to map the elliptic contours back to the ternary diagram. This is done in Figure 6.
Notice that we take account of the Jacobian of the transformation. That increases the density near
the corners and edges of the ternary diagram.

In the literature on distributions for compositional data one can find proposals for normal distri-
bution with and without scaling by the Jacobian (Egozcue et al., 2003). The ellipse contours
obtained from the R package compositions (van den Boogaart et al., 2014) does not account for
the Jacobian. See the next section for the technical details of transforming a density numerically.

Apparently the bivariate normal distribution does not give a perfect fit. In most of the triples of
metals there is a strong suggestion of a skewed shape. This becomes more noticeable if we compute
the singular value decomposition and plot the distributions of the scores on both axes, as is done
in Figure 7. In three of four cases we see a skew distribution on the first singular vector. We will
not discuss possibilities for complicated parametric models, as we feel that this would take us too
far afield. Instead we present non-parametric density estimation in the section that follows.

4 The scatterplot smoother

If a scatterplot contains many points, it is hard to judge their density well. Eilers and Goeman
(2004) proposed a fast solution. They form a two-dimensional histogram and smooth it along the
rows and then along the columns (or the other way around, with identical results). The procedure
is very fast en even when written in pure R it can handle hundreds of thousand of data points in
less than a second. Application in TrioScale coordinates is straightforward. Figure 8 shows results
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Figure 6: Transformed elliptic contours of the bivariate normal distribution (in TrioScale space), shown in the
ternary diagram.
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Figure 7: Histograms of the elements of first (SV 1) and second (SV 2) singular vectors.
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Figure 8: Kola data set (moss). Four selected triples of metals. Presentation in TrioScale coordinates. The three
axes represent logs of ratios of the metals indicated at both of their ends. Scatter plot smoothing.

for the chosen subsets of the Kola moss data.

The scatterplot smoother gives a pleasant display and a better view of the distribution of the data.
In Figure 8 the skewness of three of the data clouds is clearly visible Also there is a suggestion, in
the two right panels, of a mixture of two convex-shaped components.

To transform a smooth density back to a ternary diagram we use the following procedure, which
is inspired by the way van den Boogaart and Tolosana-Delgado (2013) compute contours for the
Dirichlet distribution.

• Save the smooth density (in TrioScale coordinates) in the matrix H, together with the cor-
responding u and v grids.

• Form a fine grid in the (x, y) ternary coordinates.

• Transform to compositions.

• Select only those grid points where each composition is larger than 0.001 and smaller than
0.999.

• For each grid point do the following

– Transform the compositions to Trioscale coordinates.

– Determine the corresponding element of H. Let its value be f .

– Compute the determinant of the Jacobian matrix of the transformation from (x, y) to
(u, v). Let that be g.

– Save the product of f and g in a matrix, index by x and y.

The result is a matrix with proper density values for a ternary display. It can be shown as an
image and enhanced with contours, if desired, see Figure 9.
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Figure 9: Kola data set (moss). Four selected triples of metals. Back-transformed non-parametric densities in
ternary diagrams.

5 Discussion

We have shown how to use TrioScale to change from bounded compositions to unbounded coor-
dinates in a plane and do density smoothing there. Numerical back-transformation gives proper
density estimates in the ternary diagram. The unpleasant artifacts of direct use of kernel estima-
tors, which do not respect boundaries, are avoided.

Visualization is not only math but also psychology. This is even more important in the ternary
diagram. Close to corners and edges densities can become quite narrow. Whereas contour lines
help interpretation in TrioScale coordinates, where they generally are reasonably spaced, they can
get too close together in the ternary diagram and become a nuisance.

Our color scale is linear in the value of the density. In some case it might be preferably to
use a square root (or other power smaller then 1) to enhance low-density regions. We use
rev(heat.colors(100)) for the scale. It runs from white to red, which is pleasant when printed
on paper. R itself and the package colorspace offer many other color scales.

The annotation of the axes may need more attention. A slight problem is that round numbers for
the natural logarithms are not easy to interpret on the probability scale, as they correspond to
e ≈ 2.72, e2 ≈ 7.39 et cetera, which are not round numbers. Logarithms to base 10 lead to more
familiar, but rather large ratios. A compromise might be to use logarithms to base 2. Numbers
like 2, 4 and 8 are easy to handle in one’s head.
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Appendix

How do we get from a composition vector p to its position in the TrioScale plane? Let this point
have coordinates (u, v) and let the coordinates of anchor point j be (uj , vj). Then we have that

log pj = −(u− uj)
2 − (v − vj)

2 + log c, (1)

where c is the normalizing constant. Thus

log
pj
pk

= (u− uk)2 + (v − vk)2 − (u− uj)
2 − (v − vj)

2. (2)

After simplification we get one linear equation in u and v:

2(uj − uk)u + 2(vj − vk)v = rjk = log
pk
pj
− u2

k + u2
j − v2k + v2j . (3)

From the log-ratio of p2 and p1, and that of p3 and p1 follow two linear equations. The solution
for (u, v) is found by solving[

u2 − u1 v2 − v1
u3 − u1 v3 − v1

] [
u
v

]
=

[
r21/2
r31/2

]
. (4)

We can simplify these equations by a proper choice of the coordinates of the anchor points. Take
u1 = v1 = v2 = 0, u2 = 2, u3 = 1 and v3 =

√
3. Also we can switch to u′ = 2u and v′ = 2v Then

we get [
2 0

1
√

3

] [
u′

v′

]
=

[
r21
r31

]
=

[
log(p2/p1)− 4
log(p3/p1)− 4

]
. (5)



We can drop the -4 terms: they lead to a shift in the (u, v) plane and absolute coordinates are not
relevant for a graphical display. After inverting the matrix on the left-hand side we find the simple
transformations:

u = log(p2/p1); v = 2 log(p3/p1)/
√

3− log(p2/p1)/
√

3, (6)

where we have dropped the accents.

These simple linear equations in the log-ratios of proportions look similar to those for the coordi-
nates in the ternary diagram

x = p2 + p3/2; y = p3
√

3/2, (7)

which are expressed in the proportions themselves.

Notice that the log-ratios log(p2/p1) and log(p3/p1) define lines in the plane and the crossing of the
lines determines a position in that plane. This is different from using the log-ratios themselves as
new coordinates. Conversely, from the point in the u, v plane follow log-ratios, but its coordinates
are not log-ratios themselves.

When we transform from (x, y) to (u, v) and f(u, v) is the density on the (u, v) plane, we have that

density f̆(x, y) = f(u, v)g(x, y). Here g = |G|, where the bars indicate the determinant and G is
the matrix of partial derivatives:

G =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
=

(
1
p1

+ 1
p2

1√
3
( 1
p1
− 1

p2
)

1√
3
( 1
p1
− 1

p2
) 1

3 ( 1
p1

+ 1
p2

+ 4
p3

)

)
. (8)

It may seem a bit unusual to express the partial derivatives in terms of the proportions instead of x
and y, but the expressions are simple and we compute p anyway. After some algebraic manipulation
we find that

|G| = 4

3
(

1

p1p2
+

1

p1p3
+

1

p2p3
). (9)
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Abstract

Relatedness is of great interest in population-based genetic association studies. These
studies search for genetic factors related to disease. Many statistical methods used
in population-based genetic association studies (such as standard regression models,
t-tests, logistic regression) assume that the observations (individuals) are independent.
These techniques can fail if independence is not satisfied.

Allele-sharing is a powerful data analysis technique for analyzing the degree of depen-
dence between individuals. Two individuals can share 0, 1 or 2 alleles for any genetic
marker. This sharing may be assessed for alleles identical by state (IBS) or identical
by descent (IBD). Starting from IBS alleles, it is possible to detect the type of rela-
tionship of a pair of individuals by using graphical methods. Typical allele-sharing
analysis consists of plotting the fraction of loci sharing 2 IBS alleles versus the fraction
of sharing 0 IBS alleles (Rosenberg, 2006). Compositional data analysis can be ap-
plied to allele-sharing analysis because the proportions of sharing 0, 1 or 2 IBS alleles
(denoted by p0, p1 and p2) can be considered as a 3-part-composition. This paper
provides a graphical method to detect family relationships by plotting the isometric
log-ratio transformation of p0, p1 and p2 in ilr-coordinates. On the other hand, the
probabilities of sharing 0, 1 or 2 IBD alleles (denoted by k0, k1, k2), which are termed
Cotterman’s coefficients (Cotterman, 1941), depend on the relatedness: monozygotic
twins, full-siblings, parent-offspring, avuncular, first cousins, etc. It is possible to infer
the type of family relationship of a pair of individuals by using maximum likelihood
methods (Thompson, 1975; 1991). As a result, the estimated vector of k̂ = (k̂0, k̂1, k̂2)
for each pair of individuals can be considered as a 3-part-composition and plotted in a
ternary diagram to identify the degree of relatedness.

An R package has been developed for the study of genetic relatedness based on ge-
netic markers such as microsatellites and single nucleotide polymorphisms from human
populations, and is used for the computations and graphics of this contribution.

Key words: Allele sharing, identical by state, identical by descent, Cotterman’s coef-
ficients, ternary diagram, isometric log-ratio transformation.



1 Introduction

The application of statistics in genetics and molecular biology has become an active field of re-
search over the last decades. Studies of family relationships in genetic data analysis are crucial in
population-based genetic association studies (Foulkes, 2009). The main aim of research in these
association studies is to find genetic factors related to disease. These studies assume that indi-
viduals from human populations are independent. The dependence between individuals, e.g. the
presence of related individuals in a database, can invalidate the statistical methods applied in
association studies such as regression models or t-tests. Thus, it is important to detect the degree
of relatedness of a pair of individuals in the database. This can help to avoid such dependence by
removing one individual of the detected pair.

Genetic datasets are composed of genetic markers that are helpful to find the possible DNA regions
related to a disease of interest such as cancer. Single nucleotide polymorphisms (SNPs) and
microsatellites or short tandem repeats (STRs) are common genetic markers in population-based
genetic association studies (Laird and Lange, 2011). SNPs are common throughout the human
genome, they occur once every 300 nucleotides on average in the DNA sequences formed by the
base pairs adenine (A), cytosine (C), guanine (G) and thymine (T). It is well known that there
are approximately 10 million SNPs in the human genome. Consequently, SNPs are mostly used
for large scale genetic association studies. We give an example of a SNP for three individuals who
have the following DNA sequences on a pair of chromosomes at a specific locus: ID1=(CCGATC,
CCAATC), ID2=(CCGATC, CCGATC) and ID3=(CCAATC, CCAATC). Note that for the first
individual the sequences differ only at the third base pair for the alleles G and A and for the second
and the third individual the same alleles appear at the third base. Thus, the third position is a
SNP, in this case a G/A polymorphism. The three individuals have a SNP coded by the genotypes
GA, GG and AA, respectively, at this specific locus.

On the other hand, microsatellites are short DNA sequences which are repeated. The length of the
repeated DNA sequences is constant for each STR and ranges from 2 to 6 nucleotides. Unrelated
individuals have genetic variability because their alleles of determined regions of DNA vary. As a
result, microsatellites are very powerful to distinguish each individual from the population due to
the presence of genetic variability between individuals. Particularly, the number of the repeated
sequences across STRs varies between unrelated individuals. For this reason, they are also used for
forensic DNA studies. There are two ways to code an STR: by recording the total size in base pairs
of the repeating sequences; or by considering only the number of repeats of a particular sequence.
For instance, an individual has the following DNA sequences on a pair of chromosomes at a specific
locus: ID1 = (ATTATTATTATT, ATTATTATTCCC). This is a trinucleotide repeat ATT that
can be coded as an STR of (4,3) repeats or as an STR of size (12,9).

Allele sharing analysis is a classical technique for analyzing the degree of dependence between
individuals. Two individuals can share 0, 1 or 2 alleles for any genetic marker. The larger the
number of shared alleles between a pair of individuals across genetic markers, the more likely they
are to be closely related. Thus, individuals from the same family share on average more alleles than
unrelated individuals. Allele sharing can be considered by state if the DNA composition of the
alleles is identical but the alleles do not come from a common ancestor (identical by state, IBS).
It can also be considered by descent if the alleles originate from a common ancestor (identical by
descent, IBD). We consider both methods for relatedness research in the rest of this paper.

This paper is organized as follows. Section 2 gives an overview of the IBS allele sharing analysis
and the application of ilr-coordinates. Section 3 presents the basic principles of the IBD allele
sharing and the representation of the family relationships in a ternary diagram. Sections 2 and 3
treat examples of IBD and IBS studies with microsatellite and SNP data. An R package that can
simulate data for the studies is discussed (still in development). Finally, Section 4 summarizes the
principal conclusions of this article.



2 Identical by state studies

IBS studies ignore if the alleles of any pair of individuals are derived from a common ancestor.
The IBS sharing of a pair of individuals can be calculated from the genotype data. Then, two
individuals share 0 IBS alleles if they have no alleles in common (e.g. AA and GT); share 1 IBS
allele if one individual has only a single allele in common with the other individual (e.g. AA and
AT or AA and TA; the position of the alleles is irrelevant), and 2 IBS alleles if they have identical
genotypes (e.g. AA and AA). Occasionally, the number of shared alleles may be missing (NA) if
some individual has missing genotyping information (e.g. AA and NA or NA and NA).

This approach is usually considered for all the pairs of individuals from a human population across
genetic markers. Then, for each pair of individuals we have a vector of 0, 1 or 2 shared alleles as
large as the number of genetic markers in the database. Consequently, it is possible to build a vector
p of the proportions of shared alleles (0, 1, 2) for each pair of individuals denoted p = (p0, p1, p2)
respectively. Classical IBS allele sharing consists of plotting the proportion of sharing 2 IBS alleles
(p2) versus the proportion of sharing 0 IBS alleles (p0) for all pairs of individuals from a given human
population (Rosenberg, 2006). This graphical method is powerful to detect family relationships by
observing the pairs of individuals with higher values of p2. It is known that family relationships
of degree zero, that is, monozygotic twins (MZ), usually have values of p2 close to 1. Parent-
offspring pairs (PO) usually have values of p0 close to 0. Full-siblings (FS), half-siblings (HS),
avuncular (AV), grandparent-grandchild (GG) are also family relationships that can be detected
by this graphical method. Unrelated individuals (UN) usually have higher values of p0. However,
the plot p2 versus p0 ignores the constraint p0 + p1 + p2 = 1 and the relative information of the
component p1.

For this reason, we propose the isometric log-ratio (ilr) transformation (Egozcue et al., 2003) of
the vector (p0, p1, p2) in order to preserve the relative information of the 3 parts. The resultant
ilr-coordinates can be plotted to detect family relationships in IBS studies.

By construction, the first ilr-coordinate (z1) interprets the balance between p2 and p0. Note
that this coordinate captures the information of the graphical method explained before by Rosen-
berg. The second ilr-coordinate (z2) corresponds to the balance between p0, p2 and p1. The
ilr-coordinates are defined as follows:


z1 = 1√

2
ln
(

p2

p0

)
z2 =

√
2√
3

ln
(√

p0p2

p1

) (1)

MZ, PO, FS, HS, AV, GG pairs have higher values of z1 whereas unrelated individuals have lower
values of z1.

2.1 Example

We present an R package called IBS.IBD.studies. This package contains a sample from the Maya
population of 25 individuals extracted from a world-wide database from the Noah A. Rosenberg
Research lab at Stanford University (Rosenberg, 2002; 2006). This world-wide database is derived
from the Human Genome Diversity Cell Line Panel (HGDP) (Cavalli-Sforza, 2005). For each
individual, the sample from the Maya population includes 5 columns with their individual code
number assigned by the HGDP (ID), the population code number assigned by Rosenberg’s lab
(Pop.Code), the population name (Pop.Nam), the geographic information (Geographic) and the
region of the population (Region). The genetic information consists of 377 microsatellites (STRs)
labeled by their respective “locus names” (D12S1638, D14S1007, ...). Table 1 shows a glance at
the database of the Maya population.



Table 1: A glance at the Maya population.

ID Pop.Code Pop.Nam Geographic Region D12S1638 D14S1007 D9S1779 D9S1825 ...
854 86 Maya Mexico AMERICA 120 130 142 129 · · ·
854 86 Maya Mexico AMERICA 120 124 124 129 · · ·
855 86 Maya Mexico AMERICA 126 NA 124 137 · · ·
855 86 Maya Mexico AMERICA 120 NA 124 129 · · ·
856 86 Maya Mexico AMERICA 126 130 124 135 · · ·
856 86 Maya Mexico AMERICA 126 128 124 129 · · ·
857 86 Maya Mexico AMERICA 126 128 124 135 · · ·
857 86 Maya Mexico AMERICA 126 128 124 129 · · ·

...
...

...
...

...
...

...
...

...

Each individual from the Maya population is listed in two consecutive lines. For instance, the
genotype for the individual ID=854 for the STR D12S1638 is (120,120). The allele “120” indicates
the total size in base pairs of the repeating DNA sequence. An individual whose genotyping
information is missing, is coded by NA (not available).

We use the functions allelesharing() and percentages() from the IBS.IBD.studies R pack-
age. The first function computes the shared IBS alleles for each genetic marker and for each pair
of individuals. Using percentages(), the proportions of sharing 0, 1 or 2 IBS alleles (p0, p1, p2)
for each pair of individuals from the sample are obtained.

Figure 1 plots the fraction of loci sharing 2 IBS alleles (p2) versus the fraction of sharing 0 IBS
alleles (p0) for all pairs of individuals from the Maya population. The family relationships docu-
mented by Rosenberg (2006) are represented in different colours. Observe that outlying individuals
correspond to family relationships of the first degree (PO and FS) and the second degree (AV or
GG); relationships of the third degree such as first cousins (FC) are more difficult to detect and
are mixed with unrelated individuals (UN).

Figure 1: Plot of the fraction of loci sharing 2 IBS alleles (p2) versus the fraction of sharing 0 IBS alleles (p0) for
all pairs of individuals from the Maya population.
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Figure 2 shows the representation in ilr-coordinates of all pairs of individuals of the Maya popula-
tion. The ilr-coordinates are built by using the function ilr() from the R package compositions
(Boogaart et al., 2013). According to the first ilr-coordinate (z1), the distance between the two
PO pairs and the UN pairs from the Maya population equals three units, whereas the distance
between the FS pair and the UN pairs is approximately one unit. The second ilr-coordinate also
discriminates the related individuals from the unrelated individuals. According to the second ilr-
coordinate (z2), the distance between PO and UN is two units; the distance between FS and UN
is one unit. The AV, GG, FC pairs are the points which are closest to the unrelated pairs in the
data.

Figure 2: Representation of all pairs of individuals from the Maya population in ilr-coordinates.
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Comparing Figures 1 and 2, we note that, PO pairs are more outlying in ilr-coordinates.

3 Identical by descent studies

We have shown that IBS studies offer graphical methods to detect relatedness between individuals
from human populations. Here, we present IBD studies in order to identify accurately which type of
family relationship belongs to each pair of individuals. The degree of relatedness can be inferred by
considering the number of IBD alleles shared. The probabilities of sharing 0, 1 or 2 IBD alleles are
called Cotterman’s coefficients (Cotterman, 1941) and are denoted by k0, k1 and k2 respectively.
These probabilities depend on the relatedness: monozygotic twins (MZ), parent-offspring (PO),
full-sibs (FS), half-sibs (HS), avuncular (AV), grandparent-grandchild (GG), first cousins (FC) or
unrelated individuals (UN) and are presented in Figure 3 (left). Note that HS, AV and GG have
exactly the same Cotterman coefficients and is not possible to distinguish them, unless we build a
pedigree tree for the given human population under study. The set of IBD probabilities has the
2-simplex as its domain. For this reason, it is possible to represent all the family relationships in
a ternary diagram as is shown in Figure 3 (right).



Figure 3: Left: Cotterman’s coefficients for the different type of family relationship and degree of relatedness.
Right: Representation of the Cotterman coefficients in a ternary diagram.

Type of Relative Degree k0 k1 k2
Monozygothic twins 0 0 0 1
Parent-offspring 1 0 1 0
Full-siblings 1 1/4 1/2 1/4
Half-siblings/ avuncular/ 2 1/2 1/2 0
grandchild-grandparent
First cousins 3 3/4 1/4 0
Unrelated ∞ 1 0 0
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In practice, genetic data contains information for estimating the IBD probabilities. However, these
probabilities depend on the genotypes and the allele frequencies from the human population under
study. For this reason, a good estimation procedure of the Cotterman coefficients is needed. If
the estimated IBD probabilities are close or coincide with the theoretical Cotterman coefficients
from Table 3 (left) for a given relationship, then that relationship is inferred. Many articles have
been found in the literature on the estimation of Cotterman’s coefficients. Maximum likelihood
estimation is the best estimation method (Milligan, 2003; Weir, 2006). We do not detail the steps of
this method in this contribution, nevertheless, a detailed explanation of the Cotterman coefficients
and their estimation can be found in CoDaWork 2015 by Graffelman and Galván (2015). In this
article, we compute the maximum likelihood estimates of k0, k1 and k2 by using the function
cotterman() from the IBS.IBD.studies R package. This function uses the optimization routines
from the Rsolnp R package (Ghalanos and Theussl, 2014).

Once the estimates of (k0, k1, k2) are obtained, graphical methods such as the plot of k1 versus
k0 (Nembot-Simo et al., 2013) or k2 versus k1 (Moltke and Albrechtsen, 2014) are commonly
used to identify the degree of relatedness. These plots separate the related individuals from the
unrelated individuals, however, they ignore the relative information of the remaining part of the
3-part-composition k = (k0, k1, k2). Therefore, it seems logical to plot the Cotterman coefficients
in a ternary diagram as an additional graphical method in order to identify relatedness. This way,
the information of the IBD probabilities is preserved for all pairs of individuals and the family
relationships are inferred by comparing the estimates with the theoretical values of k0, k1 and k2
plotted in Figure 3 (right). The Cotterman coefficients can be plotted in a ternary diagram by
using the function ternaryDiag() from the robCompositions R package (Templ et al., 2014) as
shown by the examples below.

3.1 Examples

In his Section we use simulated and empirical datasets and plot them in a ternary diagram in
order to identify relationships. The functions simSNP() and children() from the R package
IBS.IBD.studies can be used to simulate genetic marker data with given family relationships.
First, we generate a sample of 20 unrelated individuals with 1000 genetic markers. The function
simSNP() simulates random single nucleotide polymorphisms (SNPs), giving categorical variables
with the three genotypes AA, AB and BB. All SNPs have minor allele frequency of 0.5. SNPs are
simulated independently and under the assumption of Hardy-Weinberg Equilibrium: p2A+2pApB +
p2B = 1 (Foulkes, 2009). Thus, each SNP is a random sample of a multinomial distribution of size
20 (the number of unrelated individuals). The theoretical genotype probabilities of AA, AB and
BB are 0.25, 0.5 and 0.25 respectively. Each individual is labeled by ‘ID’ as shown in Table 2.



Table 2: A glance at the simulated dataset.

Individuals SNP1 SNP2 SNP3 SNP4 · · · SNP1000
ID1 AA AB AB AB · · · BB
ID2 AA BB AB BB · · · AB
ID3 BB AB AB AA · · · BB
ID4 AB BB AB AA · · · AB
ID5 AB AB BB AA · · · BB

...
...

...
...

...
...

...
ID20 BB AA AB AA · · · BB

Once the sample is generated, we use the function children() to build a pedigree tree as follows.
Because we know that a child always has received one allele from the father and one allele from
the mother, the function children() chooses one allele randomly across SNPs from the individual
‘ID1’ and one allele from the individual ‘ID2’ to generate a child. This new individual is labeled by
‘ID21A’. Analogously, we produce another child labeled by ‘ID21B’. Thus, ‘ID21A’ and ‘ID21B’
are a full-siblings pair. We complete the pedigree tree by generating a child (labeled by ‘ID22’)
from the individuals ‘ID2’ and ‘ID3’ in order to originate two half-siblings pairs, which correspond
to the pairs ‘ID21A’-‘ID22’ and ‘ID21B’-‘ID22’. An additional family relationship was created, a
duplicated individual of ‘ID15’ (labeled by ‘ID23’); hence, ‘ID15’ and ‘ID23’ represent a monozy-
gotic twin pair. Thus, the new simulated population consists of 24 individuals. The simulated
relationships are composed of one MZ pair, six PO pairs, one FS pair and two HS pairs as shown
in Figure 4.

Figure 4: The simulated family relationships. Left: a pedigree tree consisting of six PO pairs, one FS pair and two
HS pairs. Right: a MZ pair.

We again study the Maya population (Section 2.1) as an empirical example.

Figure 5 shows the ternary diagrams of the estimated Cotterman coefficients (k0, k1, k2) for all pairs
of individuals of the simulated human population and the Maya population respectively. All the
family relationships of degree zero, one and two are close to the theoretical probabilities described
in Figure 3. However, relationships of degree three such as FC in Figure 5 (right) are difficult to
discriminate from UN or AV.



Figure 5: Ternary diagrams of the estimated Cotterman coefficients (k0, k1, k2) for all pairs of individuals from the
simulated data (left) and the Maya population (right).
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4 Conclusion

This article is focused on the annotation of the relatedness between individuals in genetic data.
We stress the importance of the detection of family relationships as a tool for quality control in
population-based genetic association studies. The statistical methods used in these studies can fail
if the dependence between individuals is not documented. We have shown two classical approaches
in relatedness research and we have applied tools from compositional data for the identification of
family relationships.

First, the IBS allele sharing analysis provides a graphical tool for detecting related individuals.
This graph plots the proportion of sharing 2 IBS alleles versus the proportion of sharing 0 IBS
alleles. We propose an additional graphical method by using the isometric log-ratio transformation
of the vector of proportions of sharing 0, 1 or 2 IBS alleles. We plot the ilr-coordinates for all pairs
of individuals and use this plot to identify relationships.

Finally, the IBD allele sharing analysis offers an accurate estimation of relatedness by using Cot-
terman’s coefficients. Plots of k1 versus k0 or k2 versus k1 are used to represent graphically the
family relationships from a population. These plots ignore the constraint k0 + k1 + k2 = 1 and we
state that ternary diagrams may be useful to identify family relationships. The theoretical values
of k0, k1 and k2 form reference points in the ternary diagram for the standard relationships.
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Abstract

High throughput sequencing is used for many different types of experimental analyses
including 16S rRNA gene sequencing, transcriptomics and metagenomics. All of these
experiments represent random sampling of sequence fragments derived from an under-
lying unknown distribution of fragments and attempt to determine which, if any, of the
sampled fragments are differentially abundant between predefined groups. These data
typically are composed of thousands of fragments in only a small number of samples.
The number of sequence reads binned to each fragment represents a single estimate
of the underlying frequency of the fragment in each sample. The values obtained are
compositional because the total number of sequences obtained is trivially determined
by the instrument itself and provides no information about the number of random frag-
ments in the input pool. In addition, in many instances, the investigator is interested
in the relative, and not the absolute abundance, of the fragments.

We show that the variation due to sampling alone (technical variation) in compositional
datasets derived from high-throughput sequencing is large and inversely related to the
number of reads mapping to a fragment. Ignoring this technical variation can lead to
false positive inference regardless if the data is treated as a composition or not. We find
that a two-step procedure that incorporates a Baysian estimate of fragment abundance
along with the centred log-ratio transformation markedly improves specificity with no
loss of sensitivity.

Key words: Bayesian estimation, centred log-ratio, transcriptomics, metage-
nomics, 16S rRNA gene sequencing, ALDEx2



1 Introduction

High throughput sequencing studies, that generate as outputs thousands to billions of sequence
tags, are becoming the norm in the life sciences. That these experiments generate compositional
data can be understood with two statements. First, the total number of sequence tags obtained
in an experiment are of no importance. Second, the sequence tags are binned into features where
the difference between features is exponential and best explained by ratios. These features can
represent genes as in 16S rRNA gene sequencing, transcriptomics and metagenomics or single-
nucleotide variant abundances after differential growth experiments. The experimentalist in these
experiments is interested in knowing which features, if any, are differentially abundant between two
or more distinct groups. Furthermore, all experiments of this type explicitly or implicitly examine
sub-compositions. Finally, each individual experimental design is analyzed using different sets of
underlying assumptions that are derived from historical dogma, despite having the same under-
lying data structure. Fernandes (2014) demonstrated that tools developed for one experimental
design (e.g. RNA-Seq) do not translate well to other experimental designs (e.g. 16S RNA gene
sequencing).

These data are necessarily sparse, and complex. There are often hundreds or thousands of features,
and the expense of these experiments prevents the collection of sufficient sequence tags to ensure
that all features are covered by at least one sequence tag. Thus, the treatment of features with
zero counts is a pervasive problem when treating these data as compositions (Lovell et al. 2011).
It is assumed that features with zero counts across all samples are removed because they are unin-
formative. For the remainder where one approach is to delete features where one or more samples
have zero counts (Lovell et al. 2011; Lovell et al. 2014). This removes the problem of zero count
features at the expense of potentially excluding the most important features from consideration.
Another approach, is to replace the zero counts with an expected value calculated in some way.
Several approaches with differing underlying assumptions are in use, and Mart́ın-Fernández(2014)
suggested that a Bayesian-Laplace approach to be the most reasonable. Regardless of the method
used to treat zero count features, these analyses use maximum-likelihood approaches to determine
feature abundance prior to analyses.

We have found that the variation due to sampling alone (technical variation) in compositional
datasets derived from high-throughput sequencing is large and inversely related to the number
of reads mapping to a fragment (Fernandes et al. 2013). Ignoring this technical variation can
lead to false positive inferences regarding differential abundance if the data are not treated as
compositions. We have found that a two-step procedure incorporating a Bayesian estimate of
feature abundance along with analyses conducted after centred-log-ratio transformation markedly
improves specificity with no loss of sensitivity, and that the increase in specificity derived almost
entirely from the exclusion of low-count (including zero count) features (Fernandes et al. 2014).

Our paper explores how the analyses differ when the value of zero is assigned using different
approaches with, and without Bayesian estimation of the technical variation. Our initial work
showed that a uniform prior added to all values was able to encompass the estimated technical
variation in a sparse dataset (Fernandes et al. 2013). However, we observed that this approach
slightly overestimated technical variation of low count and zero count features, suggesting that this
approach had less than optimum power.

We will compare uniform priors that replace 0, uniform priors added to all values, and the prior
estimation methods from the zCompositions package that produce non-uniform estimates of the
actual zero value. We will examine a real differential growth experimental dataset for which an
objective standard of truth is known. We argue that these results are generalizable across other
datasets including RNA-seq datasets and 16S rRNA gene sequencing experiments.



2 Results

High throughput sequencing is a technology that delivers thousands to millions of reads that
correspond uniquely to genes or other features in a genome, or to bins that represent sequence
variants. Figure 1A shows several different study designs that are common in the literature.
Regardless of design a very large number of molecules, shown in the orange box in Figure 1A are
randomly sampled to produce a library that is then sequenced. The sequencing instrument delivers
a much smaller random sample of the actual input. In addition, the act of sequencing converts
the data from unconstrained to constrained proportional data because the instrument can deliver
a fixed upper number of sequence reads. This hard upper bound means that all such analyses
generate compositional data regardless of the actual study design. These experiments all aim to
ask the question, ”what gene or feature has a different abundance between groups A and B?”
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Figure 1: High-throughput sequencing affects the shape of the data. Panel A illustrates the workflow by which
high throughput sequencing samples the DNA or RNA from an environment. There are many more molecules that
are sampled than can be incorporated into the library, or that can be sequenced on the instrument. The capacity of
the instrument itself determines the number of reads observed. The orange box shows the representative number of
molecules in the initial sample, and the blue box shows the maximum number of reads that are obtained from the
instrument. These reads are assigned to features such as genes or operational taxonomic units or other bins, and a
table of the reads per feature is output. Panel B illustrates how the data is distorted during the process. The input
DNA or RNA usually has no fixed sum and is randomly sampled sequentially during the library preparation and
sequencing steps. The output from the instrument is proportional because the instrument can deliver only a fixed
upper limit of reads, regardless of the number of molecules in the input. Panel B.1 shows the number of reads in
the input tube for 15 steps where the open square and circular features are held at a constant number and the black
feature is increasing in abundance by 2-fold each step. Panel B.2 shows the output in proportions (or ppm) after
random sampling to a constant sum, as occurs on the sequencer. Panel B.3 shows the shape of the data following
centre log-ratio transformation.



Figure 1B shows how sequencing distorts the data. Many processes examined by high throughput
sequencing can be thought of as linear compositional processes. Consider a mixture of many
distinctive molecules in vector x = [x1, x2, ...xn] over time or space increments i. For each increment
we can determine the abundance of each molecule using Equation 1:

xi = x0 × 2(λi) (1)

where λ is the growth rate. If λ = 0 for all but one of the members of vector x and λ = 1 for one
member, then one member will double in abundance at each increment and all remaining members
will be unchanged at each increment. Figure 1B.1 shows such a thought experiment where the
values are plotted as counts of molecules. Producing a library and sequencing it generates a set
of counts per gene that are scaled by the maximum number of reads delivered by the machine.
In other words, the counts for gene xi are per-gene probabilities pi and are formally equivalent
to a random multivariate Poisson sample of the original group of DNA molecules. We model this
process by sampling from the Dirichlet distribution according to Equation 2:

[p1, p2, ...pn] ∼ Dirichlet[x1, x2, ...xn]. (2)

A single Dirichlet instance done in this way generates a single Bayesian estimate of the underlying
posterior probabilities for each feature, and multiple samples generate a full posterior distribution
(Fernandes et al. 2013). Panel 1B.2 shows the posterior values for a single Dirichlet instance from
the counts in Panel 1B.1. Here we can see that the constant sum constraint that results from the
finite read limit of the instrument severely distorts the underlying shape of the data. Figure 1B.3
demonstrates that applying the standard centred log-ratio transform of Aitchison (1986) to the
vector of probabilities p in Panel 1B.1

clr(p) = [log2
p1
g(p)

, log2
p2
g(p)

, ...log2
pn
g(p)

] (3)

reconstitutes the essential shape of the data, with the actual data points for now some variability
because of random sampling. In this equation, g(p) is the geometric mean of the vector p. This
transformation is convenient because it reconstitutes the essential shape of the original data, and
because there is a one to one mapping between the values in the original and in the transformed
dataset. Furthermore, this transformation is easily interpretable because it is simply a ratio be-
tween the abundance of a gene or feature in the sample and the average abundance of all genes or
features in the sample.

2.1 Data from high-throughput sequencing is highly variable

Data from high throughput sequencing experiments are often thought of as point estimates de-
spite being random samples of the input molecules, and despite several experiments showing that
sequencing the same DNA library will produce somewhat different count tables at the same se-
quencing depth (Marioni et al. 2008; Bottomly et al. 2011). Figure 2 shows an example of this
variability. Marioni (2008) did an experiment where two aliquots of the same RNA-seq library
were run in duplicate, and the resulting reads were mapped to the > 20000 genes in the human
genome. Replicate runs did not return exactly the same number of reads per gene: for example,
when the genes in one replicate contained zero counts, the same genes in the other replicate often
had non-0 reads. This imprecision extended across the range of per-gene counts as shown for a few
replicate read values in Figure 2. This imprecision is proportionally larger for small count values,
and smaller for large count values. For example, the range of counts observed in replicate B when
genes in replicate A contain one count span the range of 0-14 in this example: a difference of over
10-fold. By comparison, when genes in replicate A contain 64 counts the corresponding genes in
replicate B span counts from 38-91: a difference of less than 50%. See Figure 1 of Fernandes (2013)
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Figure 2: Technical replicate variation of an RNA-seq experiment showing the the count observed for features from
a one replicate of an RNA-seq dataset as a function of the count for the same feature in the other replicate. The
base value count is give above each histogram, and the location of this count in the histogram is shown as the black
bar.

for a demonstration that the proportional error does indeed span the entire range of expression
values in this dataset.

The imprecision can be modelled by sampling instances from a Dirichlet distibution (Fernandes
et al. 2013; Fernandes et al. 2014) as in Equation 2. Figure 3 shows quantile-quantile plots
comparing the distribution of true technical variation to the distribution of technical variation
estimated by drawing instances from the Dirichlet distribution. That is for a vector of counts
x, xDir = Dirichlet[x] ×

∑
x. Sampling multiple Dirichlet instances returns a distribution of the

posterior probabilities of each feature in the vector x, and conserves probability. These plots show
that the Dir instances slightly over-estimate the mean abundance when the counts are low but
approach the observed distribution when counts are in double digits. We conclude that drawing
Dirichlet instances is an acceptable proxy for true technical replication in these datasets.

2.2 False positive results because of unaccounted variation

One problem when analyzing such data is that the available datasets – whether derived from 16S
rRNA gene sequencing, transcriptomics, or other experiments – are exploratory and so generally
lack a standard of truth. This makes it difficult to develop and test tools without modelling a
dataset. While modelled datasets have some allure because the parameters can be closely con-
trolled, we prefer to examine the behaviour of different approaches in real biological datasets be-
cause they often have unanticipated error and less predictable behaviour than modelled datasets.

McMurrough (2014) generated a selective growth (selex) dataset for which a standard of truth can
be inferred. This dataset compares the growth of a set of 1600 sequence variants in the I-LtrI
endonuclease under two conditions. The first condition is a non-restrictive condition where the
growth of all variants is unconstrained. The second condition is restrictive for growth, unless the
I-LtrI endonuclease is active and can cleave and inactivate the gene encoding Ccdb, a DNA gyrase
toxin. The gyrase toxin is dose-dependent so cleavage of a fraction of the plasmids containing
the gene confers slower growth (Smith and Maxwell 2006), and under the conditions of the assay,
the toxin would be bacteriostatic if no cleavage occurred. Thus in this experimental design the



Figure 3: QQ plots comparing the actual distribution of technical variation to the distributions of 100 Dirichlet
instances for genes in the Marioni dataset that have the counts indicated above each plot. The red line illustrates
equivalence.

difference between inactive variants between the two conditions would be one of dilution alone, and
no variant should become less abundant during the experiment. Variants that cleave the toxin gene
would confer a growth advantage, and would become more abundant over the time of the assay.
Furthermore, McMurrough (2014) showed that the in vitro enzymatic activity of the endonuclease
is strongly correlated with the output of the selective growth experiment.

The abundance of each variant in the mixture can be modelled by Equation 1. At time zero if
each variant is contained in vector n0 = [n1, n2, n3...n1600], over time increments, the change in
abundance in the non-selected growth conditions can be modelled with λ = 1 and the variation
in λ being small. The experimental conditions allowed for approximately 16 doublings, or time
increments. Therefore at the last increment of the non-selected time series, we anticipate that
the initial relationships between the abundances of each of the 1600 variants will be essentially
unchanged. In contrast, the selected variants are under strongly differential selection. Here the
most active variants will have λ = 1, that is, these variants grow at the same rate in the selected
and unselected conditions. The least active variants will have λ = 0, that is, these variants
will not change in actual abundance during selection, but will become relatively less abundant
when compared to their active counterparts. Inactive variants are known to be by far the most
abundant in each sample. Intermediate positive values of λ are expected, and no negative values
are expected. Finally, it is possible for individual samples to demonstrate differences in apparent
λ under selection. This can occur if a variant is partially active, and cleaves all the toxin genes
in a particular cell by chance. This event is heritable and so would allow the cell to grow at the
maximum rate. Thus, the sample in which this occurred would have an apparent increase in λ for
that variant in that sample.

The question we wish to address with this dataset is: can we identify from the growth experiment
alone which variants are likely to be active? Active variants will have had a maximum of 16 cell
doublings becoming much more abundant, inactive variants will stay at the same abundance and
variants with partial activity will become only somewhat more abundant. In addition, we wanted
to know the effect on our inference of the different approaches to estimating the zero values. We
first examined the dataset using a biplot to show the relationship between the samples and the
variants.
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Figure 4: Biplot showing the relationship between samples and variables in the selex dataset. Zero values were
adjusted using the count zero multiplicative approach using the zCompositions R package, and the biplot was
generated using the compositions R package. The vast majority of the variables cluster around the centre of the
dataset. The red arrows to the left show that the 7 non-selected replicates are very similar, and the selected replicates
on the right exhibit some variability. The differences between samples are driven by variation in a small number of
variables. In this dataset, component 1 explains 52.4% of the variability and component 2 explains 10.4%.

A compositional biplot generated with the compositions R package (van den Boogaart and Tolosana-
Delgado 2008) following zero replacement using the CZM approach from the zCompositions R
package (Palarea-Albaladejo and Mart́ın-Fernández 2015) is shown in Figure 4. The first two com-
ponents of this biplot explained 52.4% and 10.4% of the variance in the data. The selected and
non-selected samples separate clearly on the first component, and this separation is driven largely
by the abundance of the variants on the right side which McMurrough (2014) demonstrated to be
the highly active variants. However, it is difficult to quantitate the magnitude of their abundance
change from this analysis. This figure shows that the non-selected samples, which cluster on the
left side, are essentially redundant since the links between them are exceedingly short. The se-
lected samples are much more diverse, and some of the links from the origin are nearly orthogonal.
Inspection of the data finds that this diversity is driven by only a few variables, and that these
variables separate the X1 and X2 sample sets: these sets are from identical experiments performed
with different batches of the same cell type. Examinination of the underlying count table shows
that these variants are indeed strongly different in abundance between the X1 and X2 sets. For ex-
ample the I:E:V:E variable has 17933 reads in sample X2 DS but has zero reads in sample X1 DS.
This is an example of a single stochastic event that conferred a growth advantage to this variant in



this sample. It is important to note that this large stochastic variation has important consequences
when examining datasets because such variation is not unusual in real biological datasets.

2.2.1 Not accounting for sampling results in many false positive identifications

The selex dataset is unique because we have a validated truth for some of the features that dif-
ferentiate the conditions (McMurrough et al. 2014). In this dataset we have unambiguously
biochemically identified variants that are active and those that are not. Based on this prior infor-
mation, we expect that approximately 60 variants would exhibit substantial activity in this assay,
and so substantial deviation from this number would indicate many false positive results.

One approach that is widely used in the literature is to reduce the values from the count table
to proportions or normalized counts through Maximum Likelihood approaches, then to conduct
univariate statistical tests for each variant, and (sometimes) to correct for multiple testing (see
for example the 16S rRNA analysis methods in Hsiao (2013)). These approaches often treat zero
values as actual zeros, thus making no adjustments. Applying this simple method using an unpaired
Wilcoxon test, and applying the Benjamini-Hochberg correction (Benjamini and Hochberg 1995)
to the resulting P values reveals that 1593 of 1600 variants are identified as having a differential
abundance between the selected and non-selected conditions with an adjusted P value cutoff of
0.05. This is clearly at odds with the known biology of the underlying dataset.

A potentially more rigorous, yet still simple approach is to adjust the zero values in this dataset
using one of the available methods that are implemented in the zCompositions R package (Palarea-
Albaladejo and Mart́ın-Fernández 2015) and then to treat the data as compositions by applying
Equation 3 before performing univariate statistical tests. Recall from Figure 1 that this transfor-
mation recapitulates the essential shape of the data, and there is a one to one mapping of variant
counts to centred log-ratio values. The range of values for zero replacement by different methods
are given in the Prior column of Table 1. Interestingly, three of these zero correction methods
returned values greater than 1 for some of the zero values, this likely was a result of the very large
difference between the selected and non-selected count values in the two groups. In addition, we
applied two other approaches to deal with zero values. The first, labeled uniform replacement,
replaces all zero values with 0.5 but does not adjust other values in the dataset. This is akin to
adding a pseudo count to zero values. The second labelled uniform prior, applies a uniform prior
adjustment to all values in the selex dataset. For this we use the minimally informative Jeffrey’s
prior of 0.5. The Comp 1 and Comp 2 columns in Table 1 show the percentage variation explained
by a clr compositional bipolar using each of these zero adjustments in the first two principle com-
ponents. Only the biplot that used the square-root Bayesian multiplicative method appears to
result in a transformation that explains substantially less of the variation in the dataset.

Table 1: Numbers of distinguishing features identified in the selex growth experiment observed with different
approaches to assign prior expectations to zero count features.

Prior assignment Prior Comp 1 Comp 2 Point Dir
Count zero 0.325452 - 0.325910 0.524 0.104 874 91
Geometric Bayesian 0.061279 - 4.890273 0.504 0.108 355 82
Square root 0.006854 - 3.102299 0.452 0.118 1008 DNR
Bayes-Laplace 0.030497 - 4.883747 0.480 0.108 435 133
Uniform replacement 0.5 0.556 0.098 958 74
Uniform Prior 0.5 0.528 0.102 868 84

This approach was tested by adjusting zero values in the count table by the identified method,
closing the resulting vectors, applying the centred log-ratio transform to each sample and then sub-
jecting the features to unpaired Wilcoxon tests. Again P values were adjusted using the Benjamini-
Hochberg method and an adjusted P value of 0.05 was used as the threshold for significance. Table



1-Point shows the results of this approach. Here we see that all of the methods substantially
improve upon the naive approach, with between one-quarter and two-thirds of the variables being
identified as differential. In this dataset, the square root Bayesian multiplicative method provides
the largest number of positive identifications, and the Geometric Bayesian multiplicative correction
provides the smallest number of positive identifications, although no method is able to strongly
distinguish the known small number of true positives from a much larger number of false positives.

2.2.2 Accounting for sampling reduces false positive identifications

One substantial shortcoming of these approaches is that the inherent technical variation in the
dataset that results from random sampling during sample preparation and sequencing as shown
in Figure 2 is not taken into account. It is becoming an accepted practice to account for the
sampling using Dirichlet multinomial mixture models, where each sample is represented by a
vector of probabilities, rather than point estimates (Holmes et al. 2012). For example, Ding
(2014) recently used this approach to partition microbiomes into different community states in a
robust manner. We applied this approach by generating 128 Dir instances of the selex dataset
using Equation 2 with a uniform prior of 0.5, and then conducted per-variant Wilcoxon tests on
each instance. The mean Benjamini-Hochberg adjusted P value for each variant was tabulated,
and again the cutoff used was an adjusted P value of 0.5. Surprisingly, this approach, which takes
into account the inferred technical variation, again resulted in 1593 of the 1600 variants as being
differentially abundant between the selected and non-selected groups. This is more than the 868
variants detected when variation was not taken into account but the centred log-ratio transform was
applied, and equivalent to the naive method accounting for neither variation nor the compositional
nature of the data. Thus, simple averaging across inferred the technical variates is not sufficient
to screen out false positive variants in this dataset.

Finally, we used an approach that combined generating 128 Dirichlet instances of the data followed
by applying the centred log-ratio transformation before conducting significance tests. This method
is implemented in the ALDEx2 R package for the analysis of high throughput sequencing datasets
(Fernandes et al. 2013; Fernandes et al. 2014), and is available at Bioconductor.

As implemented, the ALDEx2 package uses the uniform zero replacement value of 0.5. One purpose
of this investigation was to determine if using one of the more rigorous zero replacement models
from the zCompositions package would increase our selectivity because, as shown in Table 1, these
adjustments output non-uniform estimates of the underlying value of zero based on abundances of
the same feature in different samples.

We applied the same seven methods to adjust the value of zero in the selex dataset, and an
overview of the results are shown in the Dir column of Table 1. We again used Wilcoxon tests
on the two groups and corrected the resulting P values using the Benjamini-Hochberg approach.
Significance was assumed if the mean adjusted P value across all 128 instances was less than 0.05.
In this analysis the substituted values of zero in the adjusted datasets serve as prior estimates of
the range of values that zero could assume in each of the Dirichlet instances. The square root
Bayesian multiplicative approach was incompatible with generating Dirichlet instances because
many of the prior values that replaced zero generated Dirichlet posterior estimates that were not
distinguishable from zero. Modelling uniform priors indicated that this occurred when the prior
for zero was less than approximately 0.05. The remaining six approaches were compatible with the
approach, and resulted in substantially smaller numbers of variants being identified as significantly
different between the selected and non-selected groups. In this analysis, the Geometric Bayesian
multiplicative, uniform replacement and uniform prior approaches were approximately similar, the
count zero multiplicative approaches was nearly as selective, and the Bayes-Laplace approach was
least selective.

Figure 5 shows a variance-variance plot of the output from an analysis using the uniform prior
replacement with a value of 0.5. Note that in this plot the vast majority of variants have an
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Figure 5: Variance-variance plot showing the median maximum centred log-ratio scaled difference within each group
plotted vs. median between group difference for each variant. Dotted lines represent the approximate location of
effect sizes, which is calculated as the median between to within group difference. Variants are coloured if their
activity was validated in vitro, have a star if they failed to grow reliably in individual culture in vitro. Variants
that exhibit a significant increase in abundance using the Wilcoxon test with a mean Benjamini-Hochberg adjusted
P value of > 0.05 are shown as large grey dots. The analysis was done with a uniform prior of 0.5 applied to the
dataset. Also shown are the six variants that were outliers on component 2 of the clr biplot in Figure 4

estimated between group difference of approximately zero, that only a small number have a positive
between group difference, and no variants have a strong negative between group difference. This fits
with the experimental design where variants could increase in abundance if the endonuclease was
active, but not decrease in abundance if it was not. In this plot the variants with a mean Benjamini-
Hochberg adjusted P value determined by an unpaired Wilcoxon test are indicated by the large grey
dots. Variants that were tested for enzymatic activity in vitro are indicated by coloured central
dots. Variants that had near wild type enzymatic activity in vitro are in the sector marked as > 8.
There were four variants that had partial enzymatic activity in vitro. Many variants were tested
for growth in pure culture. Variants AEAE, SEGE, ADGD and GDAD exhibited variable, partial
growth under these conditions, with the GDAD variant exhibiting the weakest growth. Thus, there
is a strong relationship between the observed results in this experiment, and the results observed
in vitro.

There is remarkable concordance between the data viewed in this way, and the same data viewed
as a point estimate in the compositional biplot. The biplot shows that the most distinguishing
variants between the selected and non-selected groups, i.e., the variants that drive the separation
on principle component 1, are those in the upper left quadrant of Figure 5. In addition, the
variants that drive the separation on principle component 2, are those that exhibit the largest



within-condition difference. For example, the GEME, AEME, PDME, IEVE, PEQD, and DEAD
variants that were strongly separated on component 2 on the biplot, are among those with the
largest within group difference on the variance-variance plot.
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Figure 6: Variance-variance plots showing how the prior values for zero determined by the count zero multiplicative
(CZM), geometric Bayesian multiplicative (GBM) and Bayes-Laplace (BL) methods alter the variation of the data.
Red dots represent those that are called differential, black dots are not differential and the lines represent effect
sizes of 1 and -1. The cutoff used was a Benjamini-Hochberg adjusted P value of 0.05 from an unpaired Wilcoxon
test.

Finally, we examined the effect of the different zero replacement methods on the shape of the
variance-variance plot to determine why these different approaches deliver slightly different results
after Dirichlet sampling log-ratio transformation. As shown in Figure 6 all the prior estimation
methods delivered similar differences between conditions for the true positive variants. These all
exhibited an increase in abundance of about 216 relative to their mean abundance in the unselected
group. In particular, the CZM plot was remarkably similar to the plot that used a uniform prior of
0.5, with the major difference between the two approaches being a slight broadening of the within-
group difference. This is perhaps not surprising since the prior values of zero using this approach
are non-uniform in a narrow range of near 0.325. In contrast the non-uniform prior values for zero
count variants from both the GBM and BL ranged over much larger values. The vast majority of
values were between zero and one, but the GBM method had an average of 197.4 zero replacements
that were greater than one, and the BL had an average of 55 replacements that were greater than
one. Examination of the variance-variance plots of these two approaches showed that between-
group difference for many variants was not significant, but tended to be strongly negative. This
result is incompatible with the known biology of the experiment, where no variant is expected
to become less abundant than average in the selected dataset. Therefore, in this dataset, the
geometric Bayesian multiplicative and the Bayes-Laplace substitution methods are distorting the
underlying data. This distortion likely contributes to the greater number of variants identified as
significantly different between the selected and non-selected groups.

3 Discussion

High throughput sequencing datasets are very different from other types of datasets to which
compositional approaches are often applied. High throughput sequencing datasets result from
random sampling of a large number of DNA fragments, and the act of sequencing these DNA
fragments on the instrument results in data that has the constant sum constraint. The estimation
of the true abundance of genes or features with low counts exhibits a very large proportional error.
However the posterior distribution of the underlying abundance of each feature can be estimated
by generating multiple instances of the data by sampling from a Dirichlet distribution. These
datasets are necessarily very sparse, but in many cases the sparsity is informative. For example, in
16S rRNA gene sequencing it is difficult to argue that a particular taxonomic group would never



be observed if we generated sufficient sequencing reads. As another example, gene expression is
stochastic, and the number of transcripts for a given gene is observed not to be zero when large
populations of cells are sampled, even if the gene in question is ‘not expressed’ (Munsky et al.
2012).

The centred log-ratio approach is intrinsically attractive in a biological context for two reasons.
First, it can be intuitively explained to biologists as being similar to quantitative PCR, a familiar
technique where the ratio between the gene of interest and a gene assumed to be at a constant level
is determined. The centred log-ratio approach merely extends this analogy to the ratio between
the gene of interest and all other genes in the system. Second, biologists understand that many of
the processes that they study, cell growth, enzyme kinetics, etc, are exponential processes. Less
well understood is that the underlying data is not ‘set in stone’ but actually represents a snapshot
of what would have been observed had the experiment been done again.

A common criticism of using log-ratio approaches when analyzing such sparse data is the problem
of zero observed counts. Structural zeros, those features that contain zero in every sample, are
always excluded, and do not cause problems. However, count zeros that occur in one condition
but not the other are problematic because log-ratio transformations cannot be performed when the
underlying data contains one or more features with a zero value (Aitchison 1986). Much work has
been put into this problem because of the prevalence of features with values of zero are common
in many kinds of datasets. Several approaches have been developed to determine the best point
estimate of the actual underlying value of zero in these datasets (Pawlowsky-Glahn et al. 2015),
and they are implemented in zCompositons R package (Palarea-Albaladejo and Mart́ın-Fernández
2015). Less work has been done modelling this in a Bayesian framework where the distribution of
probable values for each variable are taken into account.

Here we have examined the effect of using various approaches to estimating the value of zero on both
point estimates and Bayesian distributions derived from Dirichlet multinomial sampling. We have
found that point estimates, whether modelled as proportions or centre log-ratio transformed values,
cannot distinguish features that differ between conditions. We found that estimating the technical
variation alone is also unsuitable. However, the combination of estimating technical variation and
the centre log-ratio transformation provides a large increase in selectivity. We further observe that
methods that generate priors in a narrow range give outputs that closely mimic a dataset derived
from a differential growth experiment, and that methods that generate priors with broad ranges
generate posterior distributions that are different from the known underlying distribution.

The selex dataset is an extreme example of the type of data that is analyzed by high through-
put sequencing. It has a small number of features that exhibit a marked difference in abundance
between conditions, and is very sparse. Other experimental designs will have much smaller dif-
ference in abundance of features. For example, in the case of RNA-seq it is more common to
examine differential abundance of a small number of genes that are themselves relatively rare in
the cell. This would be akin to comparing steps 1 and 2 in Figure 1B.1. In this simple case, any
approach would likely give reasonable answers. However, comparing gene expression between cells
from different tissues, or gene expression in RNA from environmental samples, would introduce
more extreme distortions in the underlying data and could give false positive and false negative
results (Fernandes et al. 2013; Macklaim et al. 2013; Fernandes et al. 2014). In the case of 16S
rRNA gene sequencing experiments, it is likely that many conditions would have wildly divergent
underlying abundances because bacterial growth is an exponential process, and such samples are
more difficult to analyze.
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Abstract

An application of compositional data analysis in the fields of bio-geochemistry and
microbial ecology is presented. In the surface layer of aquatic sediments, bacterial pro-
cesses contribute to the conversion of bound nitrogen into nitrogen gas. These natural
processes represent a way to reduce the negative impacts of nutrient over-enrichment
(eutrophication) and, therefore, have been the subject of many biogeochemical and
ecological studies. By using isotope tracking experiments with 15N the contribution of
the different bacterial processes to the nitrogen conversion can be investigated. Mass-
spectrometry measurements of nitrogen gas produced by incubated sediments samples
produces compositional data sets consisting of 3-part compositions of nitrogen gas con-
taining 28N2,

29 N2 and 30N2. Under the null hypothesis of 100% classical microbial
denitrification, these 3 parts are expected to occur in Hardy-Weinberg proportions.
We use tools from compositional data analysis such as ternary diagrams and isometric
log-ratio transformations of the data to test this hypothesis. We found evidence that
classical denitrification, although probably predominant, coexisted with other processes
like Anammox coupled to ammonium oxidizers, and had to reject the Hardy-Weinberg
law as a model for the data.

Key words: Eutrophication, isotope tracking, Anammox process, nitrate reduction,
ammonium oxidation, isometric log-ratio transformation, Hardy-Weinberg equilibrium.



1 Introduction

This paper concerns an application of compositional data analysis in the fields of bio-geochemistry
and microbial ecology. In the surface layer of aquatic sediments, bacterial processes contribute to
the conversion of bound nitrogen into nitrogen gas. These natural processes represent a way to
reduce the negative impacts of nutrient over-enrichment (eutrophication) and, therefore, have been
the subject of many biogeochemical and ecological studies (Deutsch and others, 2010; Kana and
others, 1998; Nielsen, 1992). These processes are typically studied experimentally by using isotope
tracking. It consists of adding nitrate to the water column that is labeled with the heavy isotope
15N (i.e., 15NO−

3 ). The naturally predominant N isotope is 14N at a proportion of (1−p) = 0.9963,
and the natural abundance of 15N is p = 0.0037. The experimental incubation of such a system
results in the production of three different forms of dinitrogen gas (28N2,

29 N2 and 30N2) that
differ in mass according their isotopic composition (14N and 15N) and the produced amounts can
be measured by using mass-spectrometry. The reaction zone is anoxic and located just below the
oxic–anoxic transition zone in the sediment. The 15NO−

3 arrives in this zone by molecular diffusion
from the water column, while the 14NO−

3 arrives by diffusion from the surficial oxic sediment layers,
where it is produced by nitrification, and partly also from the water column (when the 15N labeling
of this nitrate is not complete). Hence by knowing the proportion of 15N labeled nitrate in the
water column it becomes possible to quantify the link between nitrification and denitrification.
The relative amounts of the three types of N2 form a composition that can be represented in a
ternary diagram (Aitchison, 2003). This diagram can be interpreted in the same manner as is done
in genetics (Graffelman & Morales-Camarena, 2008), and gives rise to a molecular formulation
of the Hardy-Weinberg principle. The Hardy-Weinberg law is a cornerstone principle of modern
genetics, and states that under random combination of the alleles of a diallelic marker, the genotype
frequencies AA, AB and BB will occur in the relative proportions p2, 2p(1−p) and (1−p)2, where
p is the allele frequency of the A allele. The genotype frequencies can be represented in a ternary
diagram with the three genotypes as vertices. The base of the triangle is 0-1 axis for the allele
frequency, and a parabola inside the diagram represents the Hardy-Weinberg proportions. In the
context of our microbiological experiments, The Hardy-Weinberg parabola is predicted for the
classical denitrification of nitrate, because the random combination of 14NO−

3 and 15NO−
3 implies

that 28N2,
29 N2 and 30N2 will be produced in the relative proportions (1 − p)2, 2p(1 − p) and p2

where p is the relative proportion of 15NO−
3 in the reaction zone for the denitrification. A ternary

diagram can be constructed with the three types of nitrogen gas as vertices. The base of the
triangle is a 0-1 axis for the relative amount of 15N , and a parabola inside the diagram represents
the expected Hardy-Weinberg proportions under classical denitrification, as depicted in Figure 1.

The Hardy-Weinberg proportions for the isotopic composition of dinitrogen are, however, disturbed
by the anaerobic oxidation of ammonium into nitrogen with nitrite (NO−

2 ) as the electron donor,
the so-called Anammox process (Kuenen, 2008). The nitrite for this process may be provided
either by i) the reduction of nitrate into nitrite in the anoxic zone (Anammox coupled to nitrate
reduction) or by ii) the oxidation of ammonium into nitrite (Anammox coupled to ammonium
oxidizers). When classical denitrification coexists with i) the isotope compositions will fall above
the parabola, and when it coexists with ii) they are below the parabola. Thus, the following
processes play a role in the denitrification process:

• Classical denitrification

14NO−
3 +15 NO−

3 −→28 N2,
29 N2,

30 N2.

The random combination of 14NO−
3 and 15NO−

3 implies that 28N2,
29 N2 and 30N2 will be

produced in the relative proportions (1−p)2, 2p(1−p) and p2 where p is the relative proportion
of 15NO−

3 in the reaction zone for the denitrification.

• The Anammox process

14,15NO−
2 +14 NH+

4 −→ 2H2O +28 N2,
29 N2.



In this process, the random combination of 14NO−
2 and 15NO−

2 implies that 28N2 and 29N2

will be produced in the relative proportions (1−p) and p respectively. The nitrite used in the
Anammox process can come from two sources. It can be produced by ammonium oxidation
(14NH+

4 −→14 NO−
2 ). If this would be the only process in operation, all freed nitrogen gas

would be of type 28N2, as indicated by the green dot in Figure 1. Alternatively, nitrite can
be produced by nitrate reduction (14,15NO−

3 −→14,15 NO−
2 ). If the latter would be the only

process in operation, no 30N2 would be produced, and the final nitrogen gas composition is
restricted to be on an edge of the ternary plot, as indicated by the red line in Figure 1.

The combination of these processes determines the final composition of the freed nitrogen gas, and
it is of interest to quantify the relative contribution of these processes to the final composition.

●

29N2

30N2
28N2

15 N

●

Figure 1: Ternary plot for nitrogen compositions. The blue curve corresponds to classical denitrification (Hardy-
Weinberg equilibrium). The red dot corresponds to a sample with proportions 0.3, 0.6 and 0.1 of 28N2,29 N2 and
30N2 respectively, and this composition has a fraction of 0.4 of isotope 15N and a fraction of 0.6 of isotope 14N .
The green dot represents Anammox combined with ammonium oxidation. The red edge represents Anammox with
nitrate reduction.

We explore the effect of mixing the compositions obtained by classical denitrification and the
Anammox process by combining the theoretical compositions under classical denitrification and
Anammox in combination with nitrate reduction by taking a convex linear combination of the
composition of two processes. That is to say, the finally resulting observed composition y =
(28N2,

29 N2,
30 N2) is thought to originate as

y = t · xcd + (1− t) · xan,

where xcd represents the nitrogen composition produced by classical denitrification (cd), xan the



nitrogen composition produced by Anammox with nitrate reduction (an), and t a mixing proportion
(0 ≤ t ≤ 1). Though xcd and xan are not experimentally directly measured, they could be estimated
as ((1−p)2, 2p(1−p), p2) and (1−p, p, 0) respectively. Likewise, the observed compositions can also
be conceived as a mixing of classical denitrification (cd) and Anammox with ammonium oxidation
(aa) giving

y = txcd + (1− t)xaa,

where xaa would be represented by (1, 0, 0). The effect of mixing the two processes on the final
composition is graphed in the ternary diagrams in Figure 2 for different values of t.

A
29N2

30N2
28N2

t=0.10
t=0.25
t=0.50
t=0.75
t=1.00

B
29N2

30N2
28N2

t=0.10
t=0.25
t=0.50
t=0.75
t=1.00

Figure 2: Nitrogen compositions obtained under mixing of classical denitrification with Anammox and nitrate
reduction (A) and mixing of classical denitrification with Anammox and ammonium oxidation (B).

.

Figure 2A shows that classical denitrification and Anammox in combination with nitrate reduction
gives compositional curves that are always above the Hardy-Weinberg parabola. The Hardy-
Weinberg parabola is obtained for t = 1. Classical denitrification and Anammox with ammonium
oxidation gives parabolas that are always below the Hardy-Weinberg parabola (Fig. 2B). In its most
general formulation, the observed nitrogen composition is the result of the three aforementioned
processes, and a model for the data could be written as

y = t1 · xcd + t2 · xan + t3 · xaa + ε, (1)

with mixing constants satisfying t1 + t2 + t3 = 1 and 0 ≤ ti ≤ 1, and ε an error term. It of
ecological interest to estimate the relative contribution of the three processes, i.e. to estimate the
mixing parameters in Equation (1). This is part of ongoing work.

2 Experimental data and results

A set of 11 sediment samples (cores sampled in Etang du Méjean close to Montpellier in France) was
incubated with different relative amounts of 15NO−

3 added in the water column (fractions of 0.00,
0.25, 0.50, 0.75 or 1.00 of 15NO−

3 with respect to the total amount of nitrate (15NO−
3 +14 NO−

3 )),
and the relative amounts of 28N2,

29 N2 and 30N2 produced were measured by mass-spectrometry
(Kana and others, 1998). The experimental data are represented in Figure 3 and are seen to fall



on or below the Hardy-Weinberg parabola of classical denitrification. The observed proportions
of 15N in nitrogen gas are seen to be somewhat below the experimentally applied proportions of
15NO−

3 in the water column. This can be explained by the fact that some 14NO−
3 was present in

the sediments, where it was most likely produced through nitrification. Hence, the nitrate diffusing
from the water column (15NO−

3 /
14NO−

3 according the experimental addition in the water column)
mixes in the sediment with this 14NO−

3 to result in a lower 15NO−
3 /

14NO−
3 in the sedimentary

reaction zone where the N2 is produced. It is of interest to formally test the null hypothesis of 100

●●●

●

Watercolumn
 Ratio

0.00
0.25
0.50
0.75
1.00

29N2

30N2
28N2

Figure 3: Ternary plot for nitrogen compositions of 11 sediment samples incubated with different amounts of the
15N isotope.

percent classical denitrification. This can be done by a test on the mean of the isometric log-ratio
coordinates, as proposed by Graffelman & Egozcue (2011). Under the null hypothesis of Hardy-
Weinberg equilibrium, the mean of the second isometric log-ratio coordinate is −

√
2/3 ln (2). The

null of 100% classical denitrification can thus be tested by a one-sample t-test on the second
isometric log-ratio coordinate. This gives T = 3.99 with a p-value 0.0025, leading us to reject
the null hypothesis. This suggests that classical denitrification, although predominant, coexisted
with Anammox coupled to ammonium oxidizers. It is clear that the pattern of the observed
compositions in Figure 3 can not be explained by a combination of classical denitrification and
Anammox coupled to nitrate reduction alone.

3 Conclusions

Experimental data collected in microbial ecology like the data set studied here is sometimes of
compositional nature. Graphical tools from compositional data analysis like ternary diagrams and



log-ratio transformations are useful for analyzing such datasets.
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Abstract

Compositional data is often transformed by taking log-ratios prior to the statistical
analysis. The transformed variables are usually assumed to be approximately normally
distributed. In this situation, random compositions follow (approximately) a normal
distribution on the simplex. This justifies the posterior use of standard statistical
techniques that rely on the normality assumption, such as Student t-tests, regression
modeling, analysis of variance and other techniques and models. As a consequence,
results supporting the asymptotic normality of log-ratio transformations are worth to
be studied. In this contribution, a multinomial sampling scheme is considered. The
distribution of the proportions of the counts in each category are transformed by an
isometric log-ratio transformation (ilr). The asymptotic distribution of these coordi-
nates is shown to be normal, and its mean and covariance parameters are expressed as
functions of the multinomial probabilities. The theory is based on the known mean and
variance of a multinomial variable and its asymptotic normal distribution. Following
a previous study for trinomial variables (Graffelman, 2011), the delta-method, applied
to the maximum likelihood estimators of frequencies, provides the asymptotic nor-
mal distribution of the isometric log-ratio coordinates. As a consequence, proportions
from multinomial counts are asymptotically normal on the simplex and its parameters
(center and variability) depend only on the multinomial parameters. Theoretical and
simulated examples are presented.

Key words: Delta-method, multinomial counts, compositional data, normal on the
simplex.



1 Introduction

Multinomial sampling is a frequent way of collecting data. A random sample of individuals is
classified into a set of well-defined categories. The final result is a vector of counts which reports
how many individuals are classified in each category. Examples of this kind of sampling appear
everywhere. In social science, surveyed individuals are classified according preferences, social
classes, educational levels, age, gender, etc. In geoscience, millions of counts of different chemical
elements are obtained from automatic spectrometers or other automatic measurement devices.
Similarly, in biology and health science data may come from few counts of individuals or enormous
amount of counts coming from genomic experiments. Most of the times, interest is not focused on
the total number of counts but on the probability of the outcome of the multinomial experiment in
a particular class. Accordingly, the relevant information to estimate these probabilities is conveyed
by the proportions of counts assigned to each category or class. This very old but effective practice
may become problematic when the number of counts in some categories is small or even zero. In this
situation of scarcity of counts, the traditional way of estimation of the underlying probabilities, that
is, the ratio of counts in a category over the total number of counts, becomes poor and confusing.
A typical situation is that a category obtains a zero count in the sampling process, leading to
an unreliable estimate (null) for that category. This problem affects not only zero-counts but all
relatively small counts that typically occur for less probable categories. Dramatically, estimating
these small probabilities is often the goal of the analysis.

In many scenarios, multinomial count data are presented as proportions. Assume that n multi-
nomial experiments provide counts classified into D categories. The counts in such categories are
denoted (n1, n2, . . . , nD), where ni are non-negative integers. The proportions of counts or rela-
tive frequencies are then f = (f1, f2, . . . , fD), with fi = ni/n, which are the maximum likelihood
estimators of the multinomial probabilities p = (p1, p2, . . . , pD). The asymptotic distribution of
f is known to be a multivariate normal distribution when considering f as a real vector of RD.
Historically, the first result of this kind was the DeMoivre-Laplace theorem (Chow and Teicher,
1997). Extensions for the multinomial distribution are available elsewhere (Rohatgi, 1976). The
use of the multivariate normal distribution, as an asymptotic approximation of the multinomial
distribution or its respective frequencies, is in contradiction with the nature of the vector of pro-
portions f . The multivariate normal distribution is supported on the whole RD, while the vector
of proportions f can only take values in a unitary D-part simplex, SD, which is a restricted mani-
fold within RD. With small or moderate counts, the asymptotic multivariate normal distribution
assigns some non-zero probability to events of negative proportions or proportions larger than one
and thus becomes an inappropriate model.

The practice in compositional data analysis consists of assuming that the multinomial parameters
p constitute a composition in SD (Pawlowsky-Glahn et al., 2015). Accordingly, estimators of p
such as f are also assumed compositional. The simplex SD endowed with its Aitchison geometry is
a Euclidean vector space (Pawlowsky-Glahn and Egozcue, 2001). As a consequence, its elements,
such as p and f , can be represented by Cartesian coordinates, commonly called ilr-coordinates
(Egozcue et al., 2003).

The most important probability distribution defined in the simplex is the logistic normal distribu-
tion (Aitchison and Shen, 1980; Aitchison, 1982), also known as normal on the simplex (Mateu-
Figueras et al., 2013). Its relevance comes from the fact that the normal distribution on the
simplex is the distribution appearing as a central limit distribution when a large number of ran-
dom compositions is repeatedly perturbed (Aitchison, 1986). A random composition is said to be
normally distributed on the simplex when its random ilr-coordinates follow a multivariate normal
distribution. Due to these properties, the normal distribution on the simplex is the first candidate
to be an asymptotic distribution in many situations and, particularly, in the present case.

The main goal of this study is to investigate the probability distribution of the ilr coordinates of
the estimated frequencies f , under multinomial sampling. The multivariate normal distribution
has been used for the log-ratio coordinates of f for several decades, but a formal proof for the



asymptotic normality of the ilr-coordinates seems not to have been provided. The expectation of
the coordinates was intuitively and correctly proposed, but the description of their variability has
remained unclear. This contribution provides a solution for this problem. The remainder of this
paper is organized as follows. Section 2 recalls some known concepts regarding ilr-coordinates and
the Aitchison geometry of the simplex. Section 3 develops the asymptotic distribution theory using
the so-called delta-method (Casella and Berger, 2002). Finally, Section 4 presents some examples
where the asymptotic distribution plays a role.

2 Coordinates and normal distribution on the simplex

Let x = (x1, x2, . . . , xD) be a composition in SD, which will be treated as a column vector when

using matrix notation. It is assumed that
∑D
i=1 xi = 1, although vectors with proportional positive

components are compositionally equivalent. For a vector w with positive components which do
not add to 1, define the closure operation C(w) consisting of dividing each component by the sum
of them, so that the resulting components add to 1.

As mentioned, the simplex SD, endowed with the perturbation and powering operations, and the
Aitchison inner product, is a Euclidean space of dimension D − 1. Cartesian coordinates of x,
called ilr-coordinates are obtained through a so called contrast matrix V, which is of order D by
D − 1 and satisfies the following properties

V′V = I(D−1) , VV′ = ID −
1

D
11′ ,

where Ik is the identity matrix of order k by k and 1 is a column vector with ones in all its
components (Egozcue et al., 2011). The D−1 ilr-coordinates of x, associated with a given contrast
matrix V, are obtained as

ilr(x) = y = V′ ln(x) , x = ilr−1(y) = C (exp(Vy)) , (1)

where ln and exp operate componentwise.

A comfortable and intuitive way of obtaining V and the corresponding ilr-coordinates is by defining
a sequential binary partition (SBP) (Egozcue and Pawlowsky-Glahn, 2005, 2006). It consist of
partitioning the parts of the composition x into two groups of parts, coded as +1 and −1. Each of
these groups are divided into two groups again, until all remaining groups contain only one part.
When a part does not participate in the partition of a group it is marked with a zero. The following
array of codes is an example for a 5-part composition; each column represents a partition.

Θ =


+1 +1 0 0
+1 −1 0 +1
+1 −1 0 −1
−1 0 +1 0
−1 0 −1 0

 (2)

From this kind of SBP code matrices, the corresponding contrast matrix is built from

vij = θij
1

n
(θij)
j

√√√√ n+j · n
−
j

n+j + n−j
, i = 1, 2, . . . , D ; j = 1, 2, . . . , D − 1 ,

where n+j , n−j are the number of +1, −1 in the j-column respectively, and n
θij
j is one of n+j , n−j

depending of the sign in θij . For instance, the first column of the contrast matrix V corresponding
to the code Θ in (2) is

v1 =

(
+

1

3

√
6

5
, +

1

3

√
6

5
, +

1

3

√
6

5
, −1

2

√
6

5
, −1

2

√
6

5

)′
.



The expression of ilr-coordinates corresponding to the contrast matrix X are obtained using Equa-
tion (1). The j-coordinate is

yj = ilrj(x) =

√√√√ n+j · n
−
j

n+j + n−j
ln
g(x+

j )

g(x−j )
,

where g(x+
j ) and g(x−j ) are the geometric mean of parts of x coded as +1, −1 in the j-column

of Θ. These kind of coordinates are called balances for the ratio of geometric means appearing
as argument of the logarithm which, depending on the problem, may be easily interpretable. For
instance, the first balance-coordinate associated with the column v1 is

y1 =

√
6

5
ln

(x1x2x3)1/3

(x4x5)1/2
.

When x is a random composition, its ilr-coordinates are also random and the distribution of x can
be defined through the distribution of its ilr-coordinates. Particularly, x has a normal distribution
on the simplex whenever its ilr-coordinates are multivariate normal distributed. The parameters
of the normal on the simplex are usually taken as the mean, µy, and variance-covariance matrix
Σy of the ilr-coordinates. These facts can be written as

x ∼ NSD (µy,Σy) , y ∼ ND−1(µy,Σy) ,

where it should be taken into account that parameters (µy,Σy) depend on the selected contrast
matrix for performing the ilr-coordinates (Pawlowsky-Glahn et al., 2015).

3 Asymptotic theory

Consider a multinomial sampling scenario in which n multinomial observations are given, and the
observed relative frequencies are in f . As f is the maximum likelihood estimator of the the multino-
mial probabilities p, in asymptotic conditions, the distribution of f approaches (weak convergence
in distribution or law) to the multivariate normal distribution

f
D−→ N (µf ,Σf ) , µf = p , Σf = Dp − pp′ ,

where Dp is diagonal and has the multinomial probabilities in p as entries. The present goal is to
look for the asymptotic distribution of the ilr-coordinates of f , denoted ŷ, associated with a given
contrast matrix V, as was developed for D = 3 by Graffelman (2011).

For a regular transformation of parameters g, according to the multivariate delta method (Casella
and Berger, 2002), the asymptotic centered distribution of the maximum likelihood estimator g(f)
is

√
n (g(f)− g(p)) ≈ N

(
0,

(
∂g

∂p

)
Σf

(
∂g

∂p

)′)
, (3)

where Σf is the covariance matrix of f . When applied to the maximum likelihood estimator f of
the multinomial probabilities p, transformed into y = ilr(p), the transformation is identified as
g(p) = ilr(p) which is given in Equation (1). The computation of derivatives in Equation (3) can
be carried out as

∂ilr(p)

∂p
=
∂V′ ln p

∂p
= V′


1
p1

1
p2

. . .
1
pD

 = V′D−1p .



The covariance matrix Σŷ becomes

Σŷ = V′D−1p ΣfD
−1
p V = V′D−1p (Dp − pp′) D−1p V = V′D−1p V −V′11′V = V′D−1p V ,

since V′1 = 0. Note that the covariance matrix V′D−1p V is, in general, not diagonal and, therefore,
the ilr-coordinates of f will be correlated. However, these correlations have a structure that only
depends on p and the chosen contrast matrix V. The matrix V′D−1p V is diagonal only for equal
multinomial probabilities, which correspond to p equal to the neutral element of the simplex. We
note that the total variance in Σŷ is given by

tr(V′D−1p V) = tr(VV′D−1p ) = tr((I− 1

D
11′)D−1p ) = tr(D−1p )− tr(

1

D
11′D−1p ) =

D − 1

D

D∑
i=1

1

pi
,

which effectively only depends on p. Substituting the values of derivatives and the covariance
matrix in Equation (3) the asymptotic distribution of ŷ = ilr(f) satisfies

√
n(ŷ − y)

D−→ ND−1(0,V′D−1p V) ,

where y = ilr(p); the D over the limit arrow denotes convergence in distribution or in law. This
statement can be alternatively written as

ŷ
D−→ ND−1(y,

1

n
V′D−1p V) (4)

4 Examples

We present two examples of our asymptotic result in Equation (4). The first example is theoretical,
and obtains the covariance matrix of the ilr-coordinates for a genetic problem. The second example
is numerical and investigates the convergence to the asymptotic distribution.

4.1 Compositional test for Hardy-Weinberg equilibrium for a diallelic
genetic marker

Consider the following sequential binary partition for the three genotypes AA, BB, AB with
respective frequencies pAA, pBB and pAB :

AA BB AB
+1 +1 −1
+1 −1 0

The first partition is a balance between homozygotes and heterozygotes, and the second partition
splits the AA and BB homozygote. The associated contrast matrix is

V =

 +1/
√

6 +1/
√

2

+1/
√

6 −1/
√

2

−2/
√

6 0

 . (5)

Then, the asymptotic covariance matrix of the ilr-coordinates of f is

V′D−1p V =

[
+1√
6

+1√
6

−2√
6

+1√
2

−1√
2

0

] 1
pAA

0 0

0 1
pBB

0

0 0 1
pAB
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+1√
6
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−2√
6

0
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 1
6

(
1
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+ 4

pAB
+ 1

pBB

)
1

2
√
3

(
1

pAA
− 1

pBB

)
1

2
√
3

(
1

pAA
− 1

pBB

)
1
2

(
1

pAA
+ 1

pBB

)  ,

which is exactly the covariance matrix obtained previously in Graffelman (2011).
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Figure 1: Difference between the sample mean value of balances and asymptotic mean value. First, second, third
and fourth balances in black, blue, red and green curves respectively.

4.2 Convergence to the asymptotic distribution

A simulation of multinomial sampling has been conducted in order to check convergence of balance-
coordinates to the asymptotic parameters of the distribution (4). A multinomial experiment with
probabilities p = (0.03, 0.20, 0.30, 0.40, 0.07) has been chosen. The size of the samples examined
ranges from n = 5 to n = 600 increasing by 5. For each sample size n, 100 realizations of the
multinomial distribution have been drawn and then transformed into ilr-balances using the contrast
matrix V corresponding to the sign code shown in Equation (2).

According to Equation (4), the asymptotic distribution of the maximum likelihood estimators of
ilr(p), denoted here as ŷ, is a multivariate normal distribution with E[ŷ] = ilr(p) and (rounded)
covariance matrix

Σŷ =
1

n
V′D−1p V =

1

n


10.59 8.70 4.56 0.43
8.70 23.61 0.00 −0.48
4.56 0.00 8.39 0.00
0.43 −0.48 0.00 4.17

 ,

with eigenvalues (1/n)(28.19, 11.40, 4.31, 2.87). For each value of n, the 100 multinomial realiza-
tions have been transformed into ilr-coordinates (see Eq. (1)). The sample mean vector and sample
covariance matrix of these 100-samples is then computed; also the eigenvalues of the sample co-
variance matrix are computed. Figure 1 shows the difference between the estimated mean balance
and the given ilr(p). Although convergence to the true values is rather quick with n, it should
be pointed out that for n < 100 the approximation is hardly reliable. From simulations, the
sample covariances of the balance coordinates have been computed, and then, compared with the
asymptotic values using the corresponding eigenvalues. Figure 2 (left panel) shows the log-ratios
of the eigenvalues of the sample covariance matrix over the corresponding asymptotic one. A null
value indicates perfect match. Eigenvalues are ordered in decreasing magnitude and the curves are
colored as black (largest eigenvalue), blue, red and green (smallest eigenvalue). The convergence
rate seems not depend on the magnitude of the eigenvalue.

An alternative approach for estimation of the covariance matrix is provided by the asymptotic
distribution in Equation (4). In fact, the covariance matrix of the balance-coordinates can be
estimated by replacing p in Equation (4) with the back-transformed (ilr−1) mean of the simulated
balances. This gives a better convergence as shown in Figure 2 (right panel). The left panel clearly
shows a larger variability when sample ilr covariances are used to estimate Σŷ. In Figure 2 (right
panel) the largest eigenvalue converges slower than other ones; however, this was not confirmed by
repeated simulations.
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Figure 2: Comparison of the sample eigenvalues of the covariance matrix of simulated balances. Curves are the
log-ratio of each sample eigenvalue over the asymptotic one; perfect approximation correspond to a zero value.
First, second, third and fourth eigenvalues are the black, blue, red and green curves respectively. Left panel: sample
covariances are directly estimated on simulated balances; Right panel: covariances are estimated from the sample
means of balances.

5 Conclusion

The main result is the explicit form of the asymptotic distribution of the ilr-coordinates of a multi-
nomial sample. When the total number of counts of the multinomial sample is n, the distribution
converges in law to a multivariate normal distribution, whose mean values are the multinomial
probabilities and the covariance matrix is 1

nV′D−1p V. Consequently, the distribution of the pro-
portions of multinomial counts are asymptotically normally distributed on the simplex.

This result shows the normal on the simplex to be the first choice for modelling the distribution of
proportions of counts, and also shows the relationship between the centre of the distribution and
its variability.

Acknowledgements

This research has been supported by the Spanish Ministry of Education and Science under project
‘METRICS’ (Ref. MTM2012-33236); and by the Agència de Gestió d’Ajuts Universitaris i de
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Abstract

Genetic marker data contains information on the degree of relatedness of a pair of
individuals. Relatedness investigations are usually based on the extent to which alleles
of a pair of individuals match over a set of markers for which their genotype has been
determined. A distinction is usually drawn between alleles that are identical-by-state
(IBS) and alleles that are identical-by-descent (IBD). Since any pair of individuals
can only share 0, 1 or 2 alleles IBS or IBD for any marker, 3-way compositions can
be computed that consist of the fractions of markers sharing 0, 1 or 2 alleles IBS
(or IBD) for each pair. For any given standard relationship (e.g. parent-offspring,
sister-brother, etc.) the probabilities k0, k1 and k2 of sharing 0, 1 or 2 IBD alleles
are easily deduced and are usually referred to as Cotterman’s coefficients. Marker
data can be used to estimate these coefficients by maximum likelihood (Thompson,
1975; 1991). This maximization problem has the 2-simplex as its domain. If there
is no inbreeding, then the maximum must occur in a subset of the 2-simplex. The
maximization problem is then subject to an additional non-linear constraint (k21 ≥
4k0k2). Special optimization routines are needed that do respect all constraints of
the problem. A re-parametrization of the likelihood in terms of isometric log-ratio
(ilr) coordinates greatly simplifies the maximization problem. In isometric log-ratio
coordinates the domain turns out to be rectangular, and maximization can be carried
out by standard general-purpose maximization routines. We illustrate this point with
some examples using data from the HapMap project.

Key words: Genetic marker, allele, identity-by-state, identity-by-descent.



1 Introduction

Methods for investigating the degree of relatedness of a pair of individuals form an active area
of research in statistical genetics. Relatedness studies are based on the idea that genetic markers
carry information regarding the family relationships of the individuals involved. There are several
reasons for performing a relatedness study. First of all, such studies serve to verify documented
relationships between individuals. If sufficient genetic information is available, a relatedness study
may reveal that a pair of putative sibs is in fact a pair of half-sibs or a twin pair. An important
criterion in relatedness studies is the degree to which a pair of individuals shares alleles over a set
of genetic markers. If two individuals share many alleles at many loci then it becomes more likely
that they are closely related. In the most extreme case, if all alleles at all loci coincide for a pair of
individuals, then the pair is, supposing sufficiently polymorphic loci, in theory a monozygotic twin
pair. However, some caution is called for, because 100% coincidence will also arise if two registers
in the database are accidentally duplicated, or if a biological sample has been genotyped twice in
the laboratory.

Secondly, relatedness is a reason of concern in gene-disease association studies for statistical reasons.
The presence of related individuals violates the independence assumption that underlies many
statistical techniques used in these studies, such as chi-square tests on contingency tables, logistic
regression and others. It is thus of interest to investigate the possible relatedness of the individuals
in the sample prior to applying tests for association. If relatedness is detected, one individual of
each related pair may be removed in order to maintain independence.

A distinction can be drawn between relatedness studies that are based on alleles that are identical-
by-state (IBS) and alleles that are identical-by-descent (IBD). Two alleles are IBS if they are the
same irrespective of their provenance, a situation that is statistically often referred to as a “match”.
In this contribution we restrict ourselves to IBD allele-sharing. Two alleles are IBD if they are IBS
and have descended from the same parent. Because a child receives one allele from each parent,
it shares one allele IBD with its father and one allele IBD with its mother. It is not possible for
the child to receive zero or two IBD alleles from the father. The probabilities of sharing 0, 1 or 2
IBD alleles for a given relationship are called Cotterman coefficients, and denoted by k0, k1 and
k2 respectively. If X denotes the number of IBD alleles for a parent-offspring (PO) pair then its
probability distribution is k0 = P (X = 0) = 0, k1 = P (X = 1) = 1 and k2 = P (X = 2) = 0.
For other relationships it is only slightly more involved to obtain the theoretical IBD probabilities.
Let α/β represent the paternal alleles and A/B the maternal alleles of a couple sharing two alleles
IBS. This couple can have four possible types of children (α/A), (α/B), (β/A) and (β/B), and the
number of IBD alleles for each possible pair of sibs is shown in Table 1 below.

Table 1: Number of IBD alleles for all possible pairs of sibs descendant from a (α/β,A/B) couple.

α/A α/B β/A β/B
α/A 2 1 1 0
α/B 1 2 0 1
β/A 1 0 2 1
β/B 0 1 1 2

From this table it is easily inferred that the IBD sharing probabilities for a pair of full sibs are
given by k0 = 1

4 , k1 = 1
2 and k2 = 1

4 . IBD probabilities can be estimated from the genotype data
by maximum likelihood, as described in Section 2. If the estimated probabilities coincide with
or are close to a set of theoretically known IBD probabilities for a given relationship, then that
relationship is inferred.

The structure of the remainder of this paper is as follows. First we review the maximum likelihood
estimation of IBD probabilities. Then we present a re-parametrization of the likelihood in terms of
isometric log-ratios. We give some detailed examples with data from the HapMap project. Finally
we discuss our results and provide some references.



2 Maximum likelihood estimation of IBD probabilities

Good accounts of the ML estimation of IBD probabilities are given by Thompson (1991) and Weir
et al. (2006). We briefly review ML estimation here in order to provide a self-contained paper.
The Cotterman coefficients can be obtained in a similar way as outlined in the introduction for all
standard family relationships and are given in Table 2 below.

Table 2: IBD probabilities or Cotterman coefficients for some standard family relationships (MZ=Monozygotic
twins, PO=Parent-offspring, FS=Full sibs, HS=Half sibs, AV=Avuncular, GG=Grandparent-grandchild, FC=First
cousins, UN=Unrelated).

Relationship k0 k1 k2

MZ 0 0 1

PO 0 1 0

FS 1
4

1
2

1
4

HS 1
2

1
2 0

AV 1
2

1
2 0

GG 1
2

1
2 0

FC 3
4

1
4 0

UN 1 0 0

Let G1 and G2 be the pair of genotypes observed at a locus for two individuals, and let q (0, 1 or
2) represent the number of IBD alleles. By the law of total probability we have:

P (G1 ∩G2|k0, k1, k2) = P (G1 ∩G2|q = 0) k0 + P (G1 ∩G2|q = 1) k1 + P (G1 ∩G2|q = 2) k2. (1)

The probabilities P (G1 ∩G2|q = 0) depend on the genotypes of the individuals and are calculated
from the allele frequencies in the population. We denote different alleles by the letters i, j, l and m
and let pi, pj , pl and pm be their corresponding allele frequencies. We denote genotypes by i/j, the
slash separating the alleles found on the homologous chromosomes. E.g. if G1 = i/i and G2 = i/i,
then under the assumption of Hardy-Weinberg equilibrium we obtain:

P (G1 = i/i ∩G2 = i/i|q = 0) = P (G1 = i/i)P (G2 = i/i) = p2i p
2
i = p4i ,

P (G1 = i/i ∩G2 = i/i|q = 1) = P (G1 = i/i)P (G2 = i/i|G1 = i/i|q = 1) = p2i pi = p3i ,

P (G1 = i/i ∩G2 = i/i|q = 2) = P (G1 = i/i) = P (G2 = i/i) = p2i .

These probabilities are also determined for all other genotype pairs ((i/i, i/j), (i/i, j/j), etc.) and
the results are given in Table 3 below. If there are n independent genetic markers, then the
likelihood function for a pair of individuals can be written as:

L(k0, k1, k2|G1 ∩G2) =
n∏

i=1

(d0ik0 + d1ik1 + d2ik2), (2)

where the coefficients d0i, d1i and d2i depend on the nature of the pair (possibilities given in
Table 3) and on the allele frequencies of the corresponding markers. E.g. if for one marker both
individuals are homozygous (an (i/i, i/i) pair) then the contribution to the likelihood function is



Table 3: Probabilities of observing 0, 1 or 2 IBD alleles for all possible genotype pairs.

Pair Shared alleles q = 0 q = 1 q = 2
(i/i, i/i) 2 p4i p3i p2i
(i/i, j/j) 0 p2i p

2
j 0 0

(i/i, i/j) 1 2p3i pj p2i pj 0
(i/i, j/m) 0 2p2i pjpm 0 0
(i/j, i/j) 2 4p2i p

2
j pipj(pi + pj) 2pipj

(i/j, i/m) 1 4p2i pjpm pipjpm 0
(i/j,m/l) 0 4pipjpmpl 0 0

p4i k0 + p3i k1 + p2i k2, with pi the ith allele frequency of that marker. Taking logarithms, we search
to maximize the log-likelihood function:

l(k0, k1, k2|G1 ∩G2) =
n∑

i=1

ln (d0ik0 + d1ik1 + d2ik2) , (3)

where k0, k1 and k2 are the parameters to be estimated, and the coefficients d0i, d1i, d2i are obtained
by substituting the sample allele frequencies in accordance with the type of pair.

3 Re-parametrization of the likelihood in isometric log-ratios

The maximization of the likelihood in Equation (3) is not trivial, as the following constraints need

to be taken into account: 0 ≤ ki ≤ 1,
∑2

i=0 ki = 1 and k21 ≥ 4k0k2. The last inequality follows
from the assumption of absence of inbreeding (Thompson, 1991). This is a maximization problem
that has an arrow-headed subset of the simplex as its domain, as is shown by the grey region
in Figure 1A. Standard R functions like optim or nlminb from the stats package (R core team,
2014) assume the domain of the objective function to be rectangular. For these R functions the
simplex constraint k0 + k1 + k2 = 1 is a problem. The range for ki is not simply the [0,1] interval
but the limits depend on the values of the other parameters. Besides this linear constraint, at the
same time the non-linear inequality k21 ≥ 4k0k2 must also be taken into account. If the standard
functions are used for the problem at hand, then the algorithm will typically step outside the feasible
region leading to numerical errors. The function solnp from the R-package Rsolnp (Ghalanos
and Theussl, 2014) solves general nonlinear programming problems and allows for inequalities and
non-linear equalities, and can handle our maximization problem. Figure 1 also represents the
standard relationships whose compositions are given in Table 2. All these relationships are at the
edge of the feasible region.



The parabola delimiting the feasible region described by k21 = 4k0k2 can be recognized as coin-
ciding with the second dimension of the isometric log-ratio coordinates (Egozcue et al., 2003) of
composition k = (k0, k1, k2). The same parabola is also of relevance in studies of Hardy-Weinberg
equilibrium (Graffelman & Egozcue, 2011), but with a different genetic interpretation of the com-
position. This suggests that we might re-parametrize the likelihood in terms of the isometric
log-ratio coordinates in order to obtain a rectangular domain for the likelihood. This simplifies the
maximization problem, as it can now be solved using R’s general-purpose optimization routines
optim and nlminb.

We use the isometric log-ratio transformation, calculating the coordinates as follows:

z1 =
1√
2

ln

(
k0
k2

)
, z2 =

1√
6

ln

(
k0k2
k21

)
. (4)

The inverse relationships are given by:

(k0, k1, k2) = C(e
√
2z1 , e

1
2

√
2z1− 1

2

√
6z2 , 1), (5)

where C is the closure operator. This gives the re-parameterized log-likelihood:

l(z1, z2|G1 ∩G2) =

n∑
i=1

(
ln
(
d0ie

√
2z1 + d1ie

1
2

√
2z1− 1

2

√
6z2 + d2i

)
− ln

(
1 + e

√
2z1 + e

1
2

√
2z1− 1

2

√
6z2
))

. (6)

The non-linear constraint k21 ≥ 4k0k2 becomes a linear inequality for the second ilr-coordinate:

z2 ≤ −
√

2

3
ln (2) . (7)

The domain of the re-parameterized log-likelihood is shown in Figure 1B.
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Figure 1: Domain of the likelihood function (grey) in a ternary plot representation (A) and in isometric log-ratio
coordinates (B).



4 Examples

We use data from the Mexican population of phase III of the HapMap project (The International
HapMap Consortium, 2010) to illustrate the estimation of IBD probabilities in log-ratio coordi-
nates. The data consist of genotype information of 86 individuals (mostly parent-offspring trios)
from Los Angeles of Mexican ancestry. Several scholars have analyzed these data, and many un-
documented family relationships have been reported (Pemberton et al., 2010; Stevens et al., 2012).
We filtered single nucleotide polymorphisms (SNPs) from the genome-wide HapMap database as
follows. SNPs significant in a chi-square test for Hardy-Weinberg equilibrium (α = 0.05) were
excluded to avoid possible genotyping error. SNPs with a minor allele frequency below 0.4 were
also excluded in order to guarantee a set of sufficiently polymorphic markers. We sampled 5.000
SNPs at random from this subset, and consider the resulting dataset as a set of approximately
independent and highly polymorphic markers. We consider two pairs chosen from this database
as an example.

The first pair is a presumably unrelated pair of individuals with identifiers NA19662 and NA19685.
This pair was inferred to be a FS pair (Pemberton et al., 2010) using the program RELPAIR (Ep-
stein et al., 2000). Here we re-analyze the relationship of this pair using ML estimation of the
IBD probabilities, with initial point (0.575,0.400,0.025). The iteration history and log-likelihood
(l) are given in Table 4 for the maximization of Equation (3) with solnp and for the maxi-
mization in ilr-coordinates (Eq. (6)) with nlminb. Both algorithms converge to the same maxi-
mum. Back-transformation of the final ilr-coordinates (-0.1143,-0.6601) gives the same estimates

k̂0 = 0.217, k̂1 = 0.528 and k̂2 = 0.255, which confirms the hypothesis of a FS pair. The level

Table 4: ML estimation of IBD probabilities of a FS pair, using 5.000 SNPs, with initial point (0.575,0.400,0.025).
Iteration histories with the log-likelihood (l) for maximization in original and in log-ratio coordinates by solnp and
nlminb respectively.

solnp It. l k̂0 k̂1 k̂2
1 -9483.1290 0.41422 0.48104 0.10474
2 -9368.1777 0.18452 0.56753 0.24796
3 -9366.4621 0.21746 0.52776 0.25478
4 -9366.4615 0.21697 0.52798 0.25505
5 -9366.4615 0.21697 0.52798 0.25505

nlminb It. l ẑ1 ẑ2
0 -9671.5480 2.217130 -0.983749
1 -9503.2604 1.528570 -1.708930
2 -9446.4083 0.538662 -1.567190
3 -9415.8636 0.214144 -1.361630
4 -9367.0124 -0.184897 -0.705093
5 -9366.5961 -0.108992 -0.696269
6 -9366.4802 -0.127274 -0.667618
7 -9366.4659 -0.113317 -0.666588
8 -9366.4622 -0.116864 -0.661281
9 -9366.4617 -0.114033 -0.661312

10 -9366.4615 -0.114846 -0.660250
11 -9366.4615 -0.114261 -0.660282
12 -9366.4615 -0.114416 -0.660107
13 -9366.4615 -0.114323 -0.660105
14 -9366.4615 -0.114323 -0.660105

curves of the log-likelihood function are shown in Figure 2A and show the maximum as an interior
point.



We consider a second example of another undocumented relationship between NA19660 and
NA19685 that was inferred to be a parent-offspring (PO) pair (Pemberton et al., 2010). This ex-
ample differs from the previous one because now the reference relationship (PO with k0 = 0, k1 = 1
and k2 = 0) is outside the simplex. Results for the maximization in original and log-ratio coordi-
nates are shown in Table 5 below.

Table 5: ML estimation of IBD probabilities of a PO pair, using 5.000 SNPs, with initial point (0.575,0.400,0.025).
Iteration histories for maximization of the likelihood function (l) in original and in log-ratio coordinates by solnp

and nlminb respectively.

solnp It. l k̂0 k̂1 k̂2
1 -9489.1607 0.29473 0.70527 0.00000
2 -9320.4669 0.00184 0.99816 0.00000
3 -9320.4669 0.00184 0.99816 0.00000

nlminb It. l ẑ1 ẑ2
0 -9680.5924 2.21713 -0.98375
1 -9324.1179 0.24058 -3.86971
2 -9322.1662 1.56428 -4.90716
3 -9321.5402 2.13094 -5.41660
4 -9320.7389 3.37902 -6.55765
5 -9320.5206 4.20767 -7.31837
6 -9320.4712 4.73722 -7.80468
7 -9320.4672 4.91901 -7.97160
8 -9320.4671 4.94894 -7.99905
9 -9320.4671 4.95042 -8.00037

Function solnp gives estimates k̂0 = 0.0018, k̂1 = 0.9982 and k̂2 = 0.0000 which suggests a PO pair.
The maximization in log-ratio coordinates shows that z1 increases and z2 decreases until the change
in the log-likelihood drops below the tolerance used. Back-transformation of the coordinates gives
the result k̂0 = 0.0018, k̂1 = 0.9982 and k̂2 = 0.0000 which coincides with the estimates obtained by
solnp. Figure 2B shows the level curves of the log-likelihood function together with the maximum
found (marked with a red dot). As z2 decreases at some point the log-likelihood function becomes
very flat.

A: FS pair
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Figure 2: Level curves of the log-likelihood function in ilr-coordinates for a FS pair and a PO pair.

For the FS pair, different initial points were used and all converged to the same maximum. For



the PO pair, different starting points often give different solutions in ilr-coordinates. The maxima
found according to the iteration histories in Tables 4 and 5 are marked by a red point. For the
PO pair, the solutions obtained from three different additional initial points are shown by black
triangles. In ilr-coordinates these solutions differ, but all correspond to an area where the log-
likelihood function is very flat. Back-transformation of all solutions gives however, up to five
decimals, the same IBD probabilities.

5 Discussion

In this contribution we have shown that isometric log-ratio coordinates can be used to simplify
a genetic maximization problem that has the simplex or a subset of the simplex as its domain.
In statistics there are more likelihood functions that are subject to a unit sum constraint on the
parameters, and that may possibly be simpler to maximize in log-ratio coordinates, such as like-
lihoods based on the multinomial distribution. Maximization of likelihoods in coordinates may
therefore have a wider applicability then suggested by the specific genetic problem dealt with here.
The main advantage is that the irregular domains of the likelihood function in the simplex can
become rectangular when expressed in ilr-coordinates. Most standard maximization functions can
then handle the maximization problem, whereas specialized software is needed for maximizing the
likelihood function over a subset of the simplex.

We note that the theoretical IBD probabilities for the most common family relationships fall on the
edge of the simplex (See Figure 1A). Only the FS relationship is an interior point of the simplex
and all other relationships from Table 2 are outside the simplex because zeros are not admitted.
Thus, when maximizing in coordinates, these theoretical probabilities can never be attained. In
practice the log-ratio coordinates tend to extreme values for these relationships, and convergence
can be slow because the log-likelihood function flattens. Setting an adequate tolerance criterion
may help to speed up the convergence.

The ilr-coordinates of the numerical solution found for relationships on the edge of the simplex
can vary considerably (see Figure 2B). However, when back-transformed to IBD probabilities the
corresponding relationships can be inferred. In this respect, we note that large negative values
for z1 combined with z2 at its maximum of −

√
2/3 ln (2) point to a MZ pair, and large positive

values for z1 combined with z2 at its maximum of −
√

2/3 ln (2) suggest an unrelated pair (UN).
Avuncular pairs (AV, aunt-niece, etc.), grand-parent-grandchild pairs (GG) and half-sibs (HS) can
not be distinguished because they all have the same Cotterman coefficients. With the isometric
log-ratio transformation proposed here, these relationships are characterized by a positive z1 and
proportionality between the log-ratio coordinates (z1 = −

√
3z2).
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Abstract

In the statistical modeling of compositions, the latter can appear as response or explana-
tory variables, or even in both roles simultaneously. Such modeling is of multivariate
nature because compositions consists of vectors of D elements, with potentially large D.
Prior to fitting a model, the compositions are typically first transformed by a log-ratio
transformation. The transformed compositions remain, however, of multivariate na-
ture. Several techniques from the field of multivariate analysis can be used to analyze
the data of which we mention multivariate regression, canonical correlation analysis
and redundancy analysis. In multivariate regression the interpretation of the results is
complicated by the large number of regression coefficients obtained, and collected in
the matrix of regression coefficients Bp×q with p explanatory and q response variables.
Van den Boogaart and Tolosana-Delgado (2013) applied the singular value decompo-
sition of the matrix of regression coefficients in order to find rank two approximations
to B so that biplots can be constructed that summarize the relationships between the
variables. However, the regression coefficients depend on the scale of the explanatory
variables and their variances can be of very different order of magnitude. It is thus more
natural to “standardize” the regression coefficient with a Mahanalobis-like transforma-
tion prior to biplot construction. Such an approach amounts to a redundancy analysis
(also known as reduced-rank regression) of the data, and biplots for this method are
discussed in detail by Ter Braak & Looman (1994). In this contribution we develop
and apply redundancy analysis in a compositional context, discussing its biplots with
empirical geological data and its compositional geometric interpretation.

Key words: Redundancy analysis; Multivariate regression; Biplot; Conditional bi-
plot; centred log-ratio (clr) transformation.



1 Introduction

Compositional data analysis is inherently of multivariate nature, because most compositions consist
of more than 2 parts. In order to summarize the relationships between the components, principal
component analysis of the log-ratios of the compositions is often employed. In principal component
analysis, all variables have the same status and no distinction is made between explanatory and
response variables. Biplots that summarize the compositional data matrix have been described
by Aitchison and Greenacre (2002). However, in many studies compositions are involved in a
modeling framework, where compositions can take the role of explanatory variables, of response
variables, or even of both. Because compositions are multivariate data sets, such modeling requires
multivariate techniques that can summarize the relationships between two sets of variables such as
multivariate regression, canonical correlation analysis or redundancy analysis. Biplots have great
potential in this context, because they can summarize the relationships between the variables by
means of a biplot of the between-set correlation matrix or of the matrix of regression coefficients.
Biplots for redundancy analysis (Ter Braak and Looman, 1994) and canonical correlation analysis
(Graffelman, 2005) are well described in the literature, but up to date, little effort has been made to
adapt such biplots to the particularities of linear models for compositional data. The purpose of this
contribution is to explore the use of biplots for visualizing the relationships between a compositional
response variable and a set of non-compositional explanatory variables. In the remainder of this
contribution we develop some theory for constructing biplots of regression coefficients (Section 2)
and give an example with a geochemical data set (Section 3).

2 Theory

The relationships between the compositions (Y) and the explanatory variables are summarized by
the matrix of regression coefficients B. The multivariate multiple regression is given by

Y = Xβ + ε,

where Y (n×q) contains the response variables, X (n×p) is the matrix with explanatory variables,
β the p × q matrix of regression coefficients and ε the n × q matrix of errors. The ordinary least
squares estimator for β is given by:

B = (X′X)−1X′Y. (1)

In this multivariate regression we assume that X contains no leading column of ones, because we
are not interested in representing the intercept term. The X-variables are assumed to be column-
centred or eventually standardized if there are differences in scale of the X-variables, and we take
the centred log-ratio coordinates (clr) of the compositions as response variables. We assume the clr
transformed response variables in matrix Y to be column-centred as well. Working with centered
variables effectively removes the intercept term from the model. A biplot of the matrix of regression
coefficients can be constructed by using the singular value decomposition of B:

B = UDV′,

with U′U = I and V′V = I, and where D contains the singular values in non-increasing order of
magnitude. The full space of the solution will, in general, contain k = min (p, q) dimensions. How-
ever, because the clr coordinates are subject to a zero sum constraint, the regression coefficients in
Equation (1) also have row sum zero and this reduces the rank of the solution to k = min (p, q − 1).
Principal and standard coordinates for X-variables are given by

Fp = UD, Fs = U,



and principal and standard coordinates for the Y -variables in the biplot are given by

Gp = VD, Gs = V.

A biplot of the regression coefficients is obtained by jointly plotting the first two columns of Fp with
the first two columns of Gs, or conversely the first two columns of Fs with the first two columns
of Gp. These are the most common biplot scalings, though other choices are possible, depending
on how one distributes the singular values over the row and column markers. The goodness-of-fit
of a two-dimensional approximation to B is given by the ratio of the sum of the first two squared
singular values (also eigenvalues of B′B) with respect to the total sum of squares.

(d21 + d22)/
k∑

i=1

d2i

and corresponds to the total sum-of-squares of the entries in B explained by a two-dimensional
approximation. A shortcoming of this biplot is that it only shows the relationships between X
and Y -variables, but that the samples of the data matrix are not represented. We propose to
enrich the biplot with a representation of the samples. The same problem of mapping samples
into a biplot has been described before for canonical correlation analysis, where biplots of the
between-set correlation matrix can be amplified with points that represent the original samples
(Graffelman, 2005). The representation of the samples in a second step can be done in several
ways, depending on whether we want to display the original compositions, the original X-variables
or both. If we focus on explaining the compositions, it may be most natural to add the original
compositions to the biplot. This means that we construct a conditional biplot of Y = HyG

′
s, where

the column markers of that biplot are constrained to be equal to Gs (or Gp). The coordinates for
the compositions are calculated by

Hy = YGs(G
′
sGs)

−1. (2)

The compositions are represented in the biplot by plotting the first two columns of matrix Hy.
Alternatively, the samples of the X-measurements may be added to the biplot by constructing a
conditional biplot of X = HxF′p, where Hx is obtained by

Hx = XFp(F′pFp)−1. (3)

In both cases we use regression results to fit supplementary information to a given biplot (Graf-
felman & Aluja-Banet, 2003). Predictors in multiple and multivariate linear regression are often
correlated. The correlation structure of the predictors is ignored in the biplot discussed so far.
Redundancy analysis (RDA), also known as reduced-rank regression, offers an alternative way for
obtaining a graphical representation of the matrix of regression coefficients that takes correlated
predictors into account. RDA is due to Van den Wollenberg (1977), and biplots for RDA have been
proposed and described in detail by Ter Braak and Looman (1994). RDA has become a popular
method in ecology. A well-known result in multiple regression is that the covariance matrix of the
regression coefficients is given by σ2(X′X)−1. Transformation of the matrix of regression coeffi-

cients by premultiplying by (X′X)
1
2 can be used to account for correlations among the X-variables,

and this is precisely what is done in RDA. With this transformation, we perform the singular value
decomposition of the transformed regressions coefficients given by

B = (X′X)
1
2 (X′X)−1X′Y = (X′X)−

1
2 X′Y = UDV′,

and biplot coordinates for explanatory X-variables are obtained by

Fp = (X′X)−
1
2 UD, Fs = (X′X)−

1
2 U,

while biplot coordinates for the response compositions Y are given by

Gp = VD, Gs = V.



This gives a generalized least squares (GLS) fit to the matrix of regression coefficients, as

FpG
′
s = (X′X)−

1
2 UDV′ = (X′X)−1X′Y = B.

Note that, in the scaling with standard row coordinates, the full-space solution recovers the co-
variance matrix between the regression coefficients because

FsF
′
s = (X′X)−

1
2 UU′(X′X)−

1
2 = (X′X)−1.

This property can be used to detect multicollinearity.

3 Example

We use a dataset of proportions of four petrographic types of sediment grains as an example.
This dataset was collected by Grantham and Velbel (1988), and its analysis is discussed by Van
den Boogaart and Tolosana-Delgado (Chapter 5, 2013). The data concern 72 samples of 4 part
compositions consisting of polymineralic rock (Rf ), grains of a single quartz crystal (Qm), grains
containing several quartz crystals (Qp) and grains of mica (M). The explanatory variables for
these compositions concern the grain size (fine, medium or coarse), position (north or south),
discharge and relief. The samples come from low-order streams of the Coweeta Basin in North
Carolina (USA). More geological details of the study are given by Grantham and Velbel (1988) and
Tolosana-Delgado and van den Boogaart (Chapter 26, 2011). A biplot of the regression coefficients
obtained by OLS is shown in Figure 1.
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Figure 1: Biplot of the regression coefficients B for a geochemical data set.

The biplot suggests the ratio Qp : M to increase as the grain size increases from fine to medium
and coarse. The ratio Qm : M seems to increase from north to south, or alternatively decrease with
increasing discharge. Orthogonality allows to assess as well lack of dependence between logratios
and explanatory variables. In this sense, the biplot suggests that the ratio Qm : M might be
not depend on grain size, or that discharge does not change the ratio Qm : Qp. Goodness-of-fit
statistics are shown in Table 1.

Table 1 shows that a two-dimensional biplot accounts for 98% of the total sum of squares, which
is an excellent fit. Note that one zero eigenvalue appears as explained in Section 2. We proceed
to enhance the biplot in Figure 1 with the original compositions, by using the regression formula



Table 1: Goodness-of-fit statistics for B
1 2 3 4

eigenvalue 2.30 0.20 0.06 0.00
fraction 0.90 0.08 0.02 0.00
cumulative 0.90 0.98 1.00 1.00

in Equation (2). This produces the biplot in the left panel of Figure 2, where the compositions
appear coloured according to the grain size. Interpretation of the compositions should be made
with respect to the log-ratios only. This biplot reveals that there are 3 southern samples which are
outliers with respect to the Qm : M ratio. In the right panel of Figure 2 we added the samples of
the X-measurements using Equation (3). Again we coloured samples according to the grain size,
and here used different symbols for northern and southern samples. The plot in the right panels
appears to contain fewer samples, but this is actually not the case. The X-variables contain many
repeated values, and for this reason many samples map to the same point in the biplot. This biplot
confirms the horizontal axis to be a grain size gradient, and the vertical axis to be a north-south
difference plus a discharge gradient.
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Figure 2: Biplot of the regression coefficients enriched with the original compositions (left) or enriched with the
original X-measurements (right).

Finally, we present the biplot obtained by redundancy analysis in Figure 3. This plot has a
goodness-of-fit of 0.97 and closely resembles the previous biplots. This is probably due to the fact
that the X-measurements in this study have relatively little correlation. There are nevertheless
some details in the RDA that deserve attention. The South and Coarse vector are almost orthog-
onal. This means the corresponding regression coefficients are virtually uncorrelated, and that the
effect of these two variables on the compositions can be interpreted separately. Note that this
fact is in this case enhanced by the design of the data, which was constructed perfectly balanced
between the two-level factor North-South and the three-level factor Fine-Medium-Coarse. The
most notable change in comparison with the previous analysis is the orientation of the variable
vector Relief. The regression coefficients of Relief, Discharge and the North-South difference are
correlated to some extent, and this suggests that their effects on the compositions are confounded
to some degree. RDA is specially suitable to detect such features, as it also displays the correlation
matrix of the regression coefficients.
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Figure 3: Biplot of the regression coefficients obtained by redundancy analysis.

4 Conclusion

The main result of this contribution is that we have managed to summarize the relationships
between compositions and set of explanatory variables by means of a biplot of the regression
coefficients, enhancing the latter with a representation of the original compositions or X-variables
of the data matrix. We think redundancy analysis and canonical correlation analysis are promising
multivariate tools for compositional data analysis that deserve to be explored and studied in
more detail in the context of the log-ratio approach. RDA biplots have the potential of detecting
multicollinearity problems. These tools are particularly useful to study potential subcompositional
independence, i.e. to detect subcompositions that do not (linearly) depend on certain explanatory
covariables.
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Abstract 
 

Geochemical data are compositional in nature and are subject to the problems typically 
associated with data that is restricted in real positive numbers space, the simplex. 
Geochemistry is a proxy for mineralogy, and minerals are comprised of atomically 
ordered structures that define the placement and abundance of elements with a mineral 
lattice structure. The arrangement of elements within one or more minerals that 
comprise rocks, soils and aqueous solutions define a linear model in terms of their 
geochemical expression. 
When methods such as principal component analysis are applied to multi-element 
geochemical data, the dominant components generally reflects features related to 
mineralogy and describe geologic processes that are both independent and partially co-
dependent. The dominant principal components can be used as a filter to eliminate noise 
or under-sampled processes in the data. These dominant components can be used to 
create predictive geological maps, or maps displaying recognizable geochemical 
processes. 
 
Kew words: geochemistry, classification, lithologic prediction, compositional data 
analysis 

 



1   Introduction 
 
The compositional nature of geochemical data requires care when considering relationships between the 
elemental, oxide or molecular constituents that define a composition. The use of ratios are essential when 
making comparisons between elements in systems such as igneous fractionation (Pearce, 1969) and the 
use of logratios is essential when measuring moments such as variance/covariance in examination of  data 
derived from geochemical surveys (Aitchison, 1986; Egozcue et al, 2003; Buccianti et al., 2006; 
Pawlowsky and Buccianti, 2011). 
The relationships between the elements of geochemical data are governed by “natural laws” (Aitchison, 
1999) and specifically by stoichiometry and thereby imposing structure within the data. Geochemical data 
are not the only data that exhibit structure. Grunsky and Bacon-Shone (2011) have shown that 
geochemical patterns and trends are closely related to the stoichiometric constraints of minerals. 
To effectively interpret geochemical data, a two-phase approach is suggested; that of process discovery, 
followed by process validation. This tactic identifies geochemical/geological processes that exist in the 
data but are not obvious unless robust statistical methods are utilized. The process discovery phase is 
most effective when carried out using a multivariate approach. Linear combinations of elements related 
by stoichiometry are generally expressed as strong patterns, whilst random patterns and under-sampled 
processes show weak or uninterpretable patterns. This was initially demonstrated by Grunsky et al. 
(2012a) using multi-element lake sediment geochemical data from the Melville Peninsula, Nunavut, 
Canada. 
Two examples are presented. The first demonstrates the usefulness of compositional data analysis 
combined with multivariate statistical analysis for process discovery and validation from drill core 
geochemistry from the Star kimberlite in Saskatchewan, Canada (Grunsky & Kjarsgaard, 2008). Distinct 
geochemical kimberlite phases can be statistically identified using this approach and lead to efficiencies 
in the economic evaluation of kimberlite for diamonds. 
The second example is the evaluation of lake sediment geochemistry obtained from a regional 
geochemical survey (McCurdy et al, 2013). The results presented here are from a campaign to re-analyze 
sample pulps using modern analytical methods including Inductively Coupled Plasma Mass Spectrometry 
(ICP-MS). In cases where elements have been analyzed using two or more methods, the elements were 
evaluated in terms of detection limit suitability and visual examination of the correlation of the element 
with each method. The elements B, Ge, In, Pd, Re, Ta and Te were dropped due to large numbers of 
observations that were reported at less than the lower detection limit (lld). 
One of the primary purposes of geochemical data analysis is the recognition of geochemical/geological 
processes. Processes are recognized by a continuum of variable responses and the relative 
increase/decrease of these variables. The presence of censored data (values < lld) can, in some cases, 
affect the results of a process recognition investigation. In the compositional data analysis framework, 
early on Aitchison (1986) recognized the problem of censored data. Martin-Fernandez et al. (2003) 
discusses various replacement options based on the nature of the censored data. Recognizing the 
difference between missing (i.e. no data) values and censored (< lld) data is crucial in deciding how a 
replacement value, if any, should be estimated. Details on the methods used are described below. 
 
 
2   Methods 
 
2.1   Process Discovery 
 
Process discovery involves the use of unsupervised multivariate methods such as principal component 
analysis (PCA), multi-dimensional scaling and Random Forests, to name a few. Process discovery with 
geochemical data reflects the recognition of linear models that reflect the stoichiometry of rock forming 
minerals and subsequent processes that modify mineral structures (hydrothermal fluids, weathering, 
groundwater). Additional processes such as gravitational effects such as sorting arrange minerals 
according to the energy of the environment and mineral density. The chemistry of minerals are governed 
by stoichiometry and the relationships are easily described within the simplex. Geoscientists have long 
recognized that many geochemical processes can be clearly described using cation ratios that reflect the 
stoichiometric balances of minerals during formation (e.g. Pearce, 1968). 
Many geochemical datasets contain values that are reported at less than the lower limit of detection and 
these values are generally termed “censored”. The estimation of statistical parameters can be severely 
affected by censored data and it is useful to find a replacement value that does not bias the estimate of the 
statistical moments. The R package “zCompositions” with the function (lrEM) (Palarea-Albaladejo et al., 
2008) was used to determine suitable replacement values for several of the elements. Missing values can 



be the result of transcription omissions, or result from studies that use multiple analytical methods in 
which the suite of analyzed elements are not identical, require different treatment (Grunsky, 2010) and is 
not discussed further in this study. 
When mixtures of minerals (rocks, soils, glacial till, stream sediments) are analyzed for their 
geochemistry there may be multiple linear processes embedded in the resulting geochemical analyses. 
Techniques such as principal component analysis can be effectively used to identify these processes. A 
method of PCA used in this study is a combined R-mode/Q-mode PCA as documented in Grunsky 
(2001). 
An essential part of the process discovery phase is a suitable choice of coordinates to overcome the 
problem of closure. The logcentred transform (Aitchison, 1986) is a suitable transform for the evaluation 
of geochemical data. The resulting principal components are orthonormal and reflect linear processes 
related to stoichiometry. The components are ideal for subsequent process validation. The methods used 
in this study were applied in the R programming environment (R Core Team, 2014) and are documented 
below. Enhancements to the visualization of groups of data on scatterplots were made using the R library 
“cluster” and the function “ellipsoidhull”, which creates a convex hull around specified groups of data. 
. 
 
2.2   Process Validation 
 
Process validation is the methodology employed to verify that a geochemical composition (response) is 
associated with identified processes. The processes can be in the form of e.g., lithology, soil character, 
ecosystem properties, climate, or deeply buried tectonic assemblages. Validation can be in the form of an 
estimate of likelihood that a composition can be assigned membership to one of the identified processes. 
This is typically done through the assignment of class identifier or a measure of probability. Assignment 
of class membership can be done through the application of techniques such discriminant analysis, 
logistic regression, neural networks or, Random Forests. There are many other methods available. 
An essential part of process validation is the selection of variables that enable efficient classification. 
Efficient classification involves the selection of variables that maximize the differences between the 
different classes and minimizes the amount of overlap due to noise or unresolved processes in the data. 
Within the context of compositional data, variables that are selected for classification require 
transformation to logratio coordinates. The additive logratio (alr) or the isometric logratio (ilr) are equally 
effective for the implementation of classification procedures. The logcentred (clr) transform is not 
suitable because the covariance matrix of these coordinates is singular. However, analysis of variance 
applied to logcentred data enables recognition of the compositional variables (elements) that are most 
effective for distinguishing between the classes. Choosing an effective alr transform (choice of suitable 
divisor) or balances for the ilr transform is not a trivial task. However, analysis of variance applied to the 
principal components derived from the logcentred transform can be highly effective at discriminating 
between the different classes. Subsequent classification can be carried out with far fewer variables based 
on principal components derived from the logcentred transform. 
Initially, an analysis of variance (R function “aov”) is applied to the logcentred elements or the principal 
components derived from the logcentred data. In this study, as explained below, the principal components 
were used to in the analysis of variance. 
Classification results can be conveniently expressed as direct class assignment or posterior probabilities in 
the form of forced class allocation, or as class typicality. Forced class allocation assigns a posterior 
probability based on the shortest Mahalanobis distance of a compositional observation from the 
compositional centroid of each class. Class typicality measures the Mahalanobis distance from each class 
and assigns a posterior probability based on the F-distribution. This approach can result with an 
observation having a zero posterior probability for all classes, indicating that the composition is not close 
to the compositions defined by the class compositional centroids. The results shown for this study used 
the R function, “lda”, from which the posterior probabilities were estimated. 
Classification accuracies can be assessed through the generation of tables that show the accuracy and 
errors measured from the estimated classes against the initial classes in the training sets used for the 
classification.  
 
2.2   Geospatial Coherence 
 
The results from the classification of materials gathered from a geochemical survey should bear a 
geospatial resemblance to the area sampled. The creation of maps are part of the process validation 
procedure. If a geospatial rendering of a posterior probability shows no spatial coherence, then it is 
unlikely that the classification is meaningful. The most effective way to test this is through the generation 



and modelling of semi-variograms that describe the spatial continuity of a specific class based on the 
posterior probabilities. If meaningful semi-variograms can be created, then geospatial maps of the 
posterior probabilities can be generated through interpolation using the kriging process. Maps of posterior 
probabilities may show low overall values but still be spatially coherent. This is also reflected in the 
classification accuracy matrix that indicates the extent of classification overlap between classes. 
Geospatial analysis methodology described by Bivand et al. (2013) and the gstat package (Pebesma, 
2004) were used to generate the geostatistical parameters and images of the principal components and 
posterior probabilities from kriging. 
 
3   Examples 
 
3.1   Process Discovery and Validation of Diamondiferous Kimberlites 
 
Grunsky and Kjarsgaard (2008) evaluated diamond drill core lithogeochemistry from the Star kimberlite 
located in Saskatchewan, Canada. The Star kimberlite is a series of kimberlite eruptions with five 
recognized phases (early Joli Fou, mid-Joli Fou, late-Joli Fou, Pense, Cantuar). The early Joli Fou phase 
contains more macro-diamonds than the other phases, thus making it highly desirable to recognize this 
phase in the diamond exploration and evaluation process. Figure 1 shows a scatter plot matrix of elements 
that are typically associated with the kimberlite magma and fractionation processes. The data are 
presented in cation percent and are untransformed. The scatter plots reveal two distinct patterns. There is 
a linear pattern of relative enrichment/depletion for all five phases. Additionally, there is a distinct pattern 
of relative enrichment/depletion associated with the early-, mid- and late-Joli Fou kimberlites. A separate 
trend is noted for the Pense and Cantuar phases. The late Joli Fou and the Cantuar kimberlites show the 
greatest relative enrichment of the 5 element shown in this figure. These linear patterns reveal the control 
that stoichiometry has over the formation of minerals and the associated changes in mineralogy during 
magma fractionation. Such patterns are well document by Pearce (1968). 

 
Figure 1.Scatter plot matrix of elements that are typically associated with kimberlite magma fractionation 
from the Star kimberlite geochemistry. Note the linear relationships between these elements. There is one 
linear trend associated with the evolution of the eJF-mJF-lJF eruption and a second linear trend associated 

with the Pense and Cantuar eruptions. 
 
 
The lithogeochemical data were also evaluated in a multivariate process discovery context by the 
application of a principal component analysis (PCA) on logcentred data. The eigenvalues of the PCA 
indicated that the first three components accounted for 77% of the overall data variation, with the first 



two accounting for 66%. Figure 2 shows the PCA biplot for the data in which there are three notable 
compositional trends. The first is a trend toward the positive PC1 and negative PC2 axis in which there is 
a relative enrichment of P, Nb, La, Th and Zr that represents kimberlite magma and fractionation 
processes. Mineral phases associated with this trend include apatite and perovskite. The Pense and 
Cantuar phases appear to have the highest kimberlite magmatic component, and exhibit more extensive 
fractionation than the mid- and late-Joli Fou phases. The trend of the mid- and late-Joli Fou phases 
toward the positive PC1 and PC2 axes represents relative enrichment in K, Rb and Na. This represents 
crustal contamination through the assimilation of feldspar minerals that exist in the upper crust through 
which the kimberlite magma ascended; alkali feldspars do not crystallize from kimberlite magma. The 
third trend along the negative PC1 axis shows relative enrichment in Si, Ni, Mg, Cr, and Co and 
represents contamination of the kimberlite magma by the earth’s lithospheric mantle. These elements are 
typically associated with the minerals olivine, pyroxene, Cr-spinel and Cr-pyrope garnet. The principal 
component biplot of the first two elements reveals distinctive information about the processes that have 
affected the kimberlite geochemical compositions. 
 

 
Figure 2. PCA biplot of PC1-PC2 for the logcentred Star Kimberlite geochemical data. Three distinct 
trends are displayed: kimberlite fractionation, crustal contamination and mantle contamination. The 

screeplot shows that most of the data variation is contained in the first two components. 
 
 
A linear discriminant analysis was carried out using an additive log ratio based on Ga as the divisor. 
Logratio theory demonstrates that the choice of any divisor will yield the same results when using 
classification methods. In this study, Ga was chosen because it appears to be neutral with respect to the 
processes observed in the PC1-PC2 biplot, i.e. it plots near the origin on the PC1 – PC2 plot. Table 1 
shows the results of the classification using the first three principal components derived from the alr 
transformed data using Ga as the divisor. The overall accuracy is over 91% with minimal overlap. This is 
shown graphically in Figure 3 where the linear discriminant scores are plotted on the first two 
discriminant axes. 
 
 
 



 
Figure 3. Plot of linear discriminant function scores 1 and 2 for the Star kimberlite geochemical data. The 

five phases are each enclosed by a convex hull to indicate distinctiveness and overlap. This is shown 
numerically in Table 1 

 
Table 1. Classification accuracy of the Star kimberlite phases based on linear discriminant analysis of the 

first seven principal components. 
 

Count Accuracy 
 Cantuar eJF lJF mJF Pense 

Cantuar 20 0 0 0 2 
eJF 0 146 0 4 4 
lJF 0 0 24 4 0 
mJF 0 2 1 37 0 
Pense 1 4 0 0 22 

% Accuracy 
 Cantuar eJF lJF mJF Pense 

Cantuar 90.91 0.00 0.00 0.00 9.09 
eJF 0.00 94.81 0.00 2.60 2.60 
lJF 0.00 0.00 85.71 14.29 0.00 
mJF 0.00 5.00 2.50 92.50 0.00 
Pense 3.70 14.81 0.00 0.00 81.48 

Overall 
Accuracy [%] 91.88 

  
The effectiveness of process recognition using principal component analysis enables the identification of 
distinct groups of observations associated with different processes. In this example, the relative 
proportion of kimberlite magma and crustal and mantle contamination components are identified, in 
addition to magma fractionation processes. Furthermore, these processes are clearly identified with 



specific element associations, which in turn are characteristic of the mineral(s) that are associated with a 
specific process. 
 
3.2   Predictive Mapping Regional Geology Using Lake Sediment Geochemistry 
 
 
3.2.1   Process Discovery 
 
Re-analysis of lake sediments was carried out over three 1:250,000 scale map areas (NTS 65A, 65B, 65C) 
in southern Nunavut Territory, Canada (McCurdy et al., 2012). The geology of two of the NTS sheets 
(65A, 65B) had been mapped at 1:250K by Eade (1973a, b) and is shown in Figure 4 along with the lake 
sediment sampling sites. NTS sheet 65C was compiled at a regional 1:500K scale (Tella et al. 2007) form 
one million scale maps. No distinction was made by Tella (2007) between two important granitic 
intrusion types; the Hudson granite (1.83 Ga) and the Nueltin granite (1.75 Ga) (Peterson et al., 2012; 
2014). 
The three map sheets are located within the southern Hearne Province, a poorly understood terrane 
located between the central Hearne supracrustal terrane (to the north), which is dominated by ca. 2.7-2.65 
Ga mafic-to-felsic, oceanic volcanic rocks and younger tonalite to granite plutons, and the Trans-Hudson 
orogen (to the south), which forms the northern boundary of the Superior Province. The southern Hearne 
domain is dominantly comprised of Archean tonalitic and charnokitic gneisses, approximately 2.8 Ga in 
age. However, strong evidence for fragments of much older crust, up to 3.3 Ga, has been found in the 
form of inherited Archean zircons and Sm-Nd model ages obtained from Proterozoic post-orogenic 
plutons of the Hudson granite, intruded at about 1.83 Ga. Nueltin rapakivi granite (ca. 1.75 Ga) is also 
present in the area. Previously, Proterozoic plutons in this area were distinguished by van Breemen et al. 
(2005) on the basis of archived hand samples, field descriptions, and partial geochronological data. East 
of Nueltin Lake, however, identification of individual plutons was hampered by poor exposure and a 
lower frequency of archival material.  
 
 

 
Figure 4. Geology and lake sediment sample sites for NTS 65A/B/C. The geology of NTS65C has not 

been mapped to include recognition of the Nueltin granite (Pp-Ng). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Table 2. Dominant map units used for study in NTS 65A/B. 
 

Legend #Sites 
 

Description 

Ar_mu 50 
 

Archean mafic rocks 
(undifferentiated) 

Ar_c 131 Archean carbonate rocks 
Ar_dt 266 

 
Archean diorite 

Ar_t 221 
 

Archean tonalite 
Ar_s 111 

 
Archean sediments 

Pp_Hgr 266 Paleoproterozoic Hudson granite 
Pp_Hu 49 

 
Paleoproterozoic Hurwitz sediments 

Pp_Nq 178 
 

Paleoproterozoic Nueltin Granite 
Qt 189 

 
Quaternary sediments 

Pp-Wps 27 Paleoproterozoic psammitic gneiss 
Unknown 833 

 
Sample sites from NTS 65C 

 
 
In this study, the lake sediment geochemistry from two of the map sheets (NTS 65A, 65B) were tagged 
based on the known bedrock lithology (derived from the detailed geology Eade 1973a, b; Table 2) of the 
sample site for the purpose of predicting the geology of NTS65C. The lake sediment sample sites from 
NTS 65C were tagged as “unknown”. A suite of 45 elements (Ag, Al, As, Au, Ba, Be, Bi, Ca, Cd, Ce, Co, 
Cr, Cs, Cu, Fe, Ga, Hf, Hg, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, S, Sb, Sc, Se, Sn, Sr, Th, Ti, 
Tl, U, V, W, Y, Zn, Zr) were determined by inductively coupled plasma emission spectroscopy/mass 
spectrometry (ICP-ES/MS) after Aqua regia digestion (McCurdy et al., 2012). 
Initially, the data were transformed using the logcentred ratio (Atichison, 1986) from which a principal 
component analysis was carried out as part of the “discovery process” approach. A tabular summary of 
those results are shown in Appendix A where the first seven components account for 72.8% of the overall 
variation in the data. This is also illustrated in Figure 5, where a “screeplot” of the ordered eigenvalues 
are shown. The first seven components display a steep decay indicating that these components account for 
most of the variability of the data. Appendix A also shows R-score values for each element over each 
principal component. The magnitude and sign of the R-scores indicate the relative significance of a given 
element with respect to each other for a given component. The significance of the R-scores are directly 
associated with the magnitude of each eigenvalue. The relative contributions shown in Appendix A 
indicate the relative significance of an element over the principal components and the absolute 
contributions indicate the relative significance of an element within a given principal component. 
Appendix A shows that many of the elements high loadings within the first 5 components. However, 
some elements such as Au, Bi, Sb, and S have a significant amount of variability accounted for in lesser 
components (PC5, 7, 9, 10) which likely represent significant, but under-sampled processes. These 
components may be useful vectors for Au mineral exploration follow-up. The content of Appendix A, for 
the first three principal components is graphically expressed in Figures 6a and 6b. 
 



 
Figure 5. Ordered eigenvalue plot (“screeplot”) of from the principal component analysis of the lake 

sediment geochemistry. 
 

 
Figure 6a. Principal component biplot of PC1-PC2 for the lake sediment geochemical data. Convex hulls 

are shown for the Nueltin granite (Pp-Ng) and the Hudson granite (Pp-Hgr). 



 
Figure 6b. Principal component biplot of PC1-PC2 for the lake sediment geochemical data. Only the 

Nueltin granite (Pp-Ng) scores are shown in this biplot. 

 
Figure 6c. Principal component biplot of PC1-PC2 for the lake sediment geochemical data. Only the 

Hudson granite (Pp-Hgr) scores are shown in this biplot. 



 
Figure 6d. Principal component biplot of PC2-PC3 for the lake sediment geochemical data. Convex hulls 

for the Nueltin granite (Pp-Ng) and the Hudson granite (Pp-Hgr) are shown in this biplot. 
 
 
Figure 6a shows a principal component biplot of PC1-PC2. The R-scores for each element are located 
throughout the plot and correspond to the scores shown in Appendix A. The scores of the individual 
observations (sample sites) are plotted with a symbol and colour that indicates the lithology at the sample 
site. The legend displays the coding for the sample scores. The two lithologies of interest in this study, the 
Hudson granite (Pp-Hgr) and Nueltin granite (Pp-Ng), are demarcated by ellipses that describe convex 
hulls for these bedrock geology units. The sample sites from NTS 65c are shown as grey dots throughout 
the figure. Importantly, many sample sites tagged as Nueltin granite (Pp-Ng) occur in the negative PC1 – 
negative PC2 quadrant and show relative enrichment in Ag-Zn-Mo-Y-La-Ce-Be-P-U. Figures 6a and 6b 
show biplots of the PC scores for the lake sediment sites coded as Hudson and Nueltin granites. The 
relative positions of these scores with respect to the principal component loadings of the elements shows 
that the sample sites associated with the Hudson granite (Figure 6b) show a contrast in relative 
enrichment of K-Ga-Rb-Li-Cs-Sn-Th and Ca-Sr-Sb-Hg-S-Ba-Cu. The latter group of elements likely 
reflects the influence of supracrustal rocks in the lake sediment composition. Figure 6c shows the PC 
scores of the lake sediment sample sites coded with the Nueltin granite. The trend of the group of 
observations in Figure 6c are almost orthogonal to the trend seen in Figure 6b. The relative enrichment 
trend and contrast for the Nueltin granite sites are –Ag-Zn-Mo-Y-La-Ce-Be in contrast with Mg-Cr-Sc-
Ti-As-Nb-Th-Co-Au. The biplot of PC2-PC3 displayed in Figure 6b shows a distinct trend of relative 
enrichment of U,-La-Ce-Sn-Th-Rb, which is associated with the Nueltin granite. This distinction is more 
clearly illustrated in biplots of Figures 6a, b. Figure 6b shows the biplot with only the pca scores for the 
Hudson granite and Figure 6c shows the biplot with only the scores of the Nueltin granite. A visual 
comparison of the two trends suggests that they are nearly orthogonal. In summary, the lake sediment 
data shows a strong, 1 to 1 correspondence between Nueltin granite and positive lake sediment anomalies 
in specific incompatible elements, notably REE and Y, in the well-characterized area around Nueltin 
Lake 
Sample sites tagged with the Hudson granite lithology (Pp-Hgr) occur near the centre of the biplot. The 
ellipsoid hull that surrounds these points displays a trend from the negative PC1 – positive PC2 quadrant 
(Ba-Cu-Ca signature) to the positive PC1 – negative PC2 quadrant (Nb-Th-K-Ga-Sn-Cs-Li-Rb signature). 
The association of Archean sediments (Ar-s) in the negative PC1- positive PC2 quadrant of the biplot 
may be indicative of some mixing of the lithologies in the lake sediments, although this association may 
also be the result of contamination or partial melting of Archean sediment,. The biplots also show that 
there is significant overlap of principal component scores for most of the sample sites over a wide range 



of lithologies. Thus, it is difficult to define distinct element associations and trends for many of these 
lithologies. 
Following procedures outlined by Grunsky et al. (2014), a thorough geostatistical analysis of the principal 
component scores was carried out. Modelled semi-variograms and variogram maps (semi-variograms 
created with an azimuthal range of 0-359° at 1° increments) were examined from which kriged images of 
the principal components were created. Figure 7a shows a variogram map for the first principal 
component. The image shows a moderate anisotropy with a minimum sill at 75° east of north and a 
maximum sill at 145° east of north. A semi-variogram was modelled at 75° east of north and shown in 
Figure 7b. This model was used to generate the kriged image shown in Figure 7c. High values of PC1 
represent relative enrichment of K, Ti, Ga, Rb, Cs, Li, Sn, Sc, Mg and Th. This relative enrichment 
overlies Quaternary sediments (Qt), Archean tonalite (Ar-t) and Archean carbonate (Ar-c) rocks. 
Negative PC1 scores represent relative enrichment of Cd, Se, S, Hg, Ag and overlie a range of Archean 
lithologies including tonalite and diorite (Ar-t, Ar-dt) and Quaternary sediments (Qt). The lack of direct 
correspondence of the first principal component with any specific lithology is not unexpected as it 
represents the dominant geochemical variability that is typical of the major lithologies throughout the 
area.  

 
Figure 7a. Variogram map of the first principal component derived from the lake sediment geochemical 

data. The map demonstrates anisotropy trending in a south-easterly direction. 
 
 

 



Figure 7b. Modelled semi-variogram of the first principal component derived from the lake sediment 
geochemical data. The sermi-variogram is derived from an anisotropic search direction with a combined 

short-range and long-range model. 
 
 

 
Figure 7c. Interpolated image of the first principal component using the modelled semi-variogram in 

Figure 7b. Grid is meters. The range of scores cover most of the dominant rock types and the variability 
appears to be independent of underlying lithologies. 

 
 
The variogram map of the second principal component (Figure 8a) shows anisotropy with a low trending 
at 170° and a high trending at 45°. A modelled semi-variogram (Figure 8b) modelled at 45o east of north 
was used to create the kriged image of Figure 8c. The positive values of PC2 are associated with Archean 
sediments and carbonate (Ar-s, Ar-c) and the negative values are associated with the Nueltin granite (Pp-
Ng) as is shown in Figure 6a.  
Although not shown, the third principal component has positive scores associated with Archean diorite 
(Ar-dt) and Nueltin granite (Pp-Ng), and the negative scores have a distinct association with the Hurwitz 
Group sediments (Pp-Hu). Positive values of principal component four is distinctly associated with the 
Nueltin granite and there is no clear association of negative PC4 scores with any specific lithology. The 
linear combinations of elements that represent variability and association within the metric space defined 
by PCA is governed solely by the stoichiometry of mineralogy, which is only partly dependent on the 
underlying lithology. In some cases (PC2, PC3, PC4) there is a clear association with principal 
component scores and specific lithologies. In other cases (PC1, PC5, PC6) there are no obvious 
associations between lithology and PC scores. Principal component analysis is an effective method for 
discovering processes that influence the relationships of the variable within geochemical survey data. 
Dominant eigenvalues followed by a low rate of decay as exhibited in Figure 5 demonstrate that fact that 
there is structure in the data. Given this structure the application of classification methods can be applied 
to validate the structure. 



 
Figure 8a. Variogram map of the second principal component derived from the lake sediment 

geochemical data. 

 
Figure 8b. Modelled semi-variogram of the second principal component derived from the lake sediment 
geochemical data. The semi-variogram model is derived from a short range spherical model and a longer 

range linear model. 
 
 

 



Figure 8c. Interpolated image of the second principal component using the modelled semi-variogram in 
Figure 8b. Grid is in meters Sites associated with the Nueltin granite show as negative areas. 

 
 
3.2.2   Process Validation 
 
The ability to use lake sediment geochemical data for predictive mapping of underlying lithology requires 
evaluation in the effectiveness of discriminating between the lithologies. Testing this can be done by 
applying an Analysis of Variance (AOV) using the logcentred elements or the principal components 
derived from the logcentred elements. An AOV was carried out on the logcentred data using 10 classes 
(Ar-c, Ar-dt, Ar-mu, Ar-s, Ar-t, Pp-Hgr, Pp-Hu, Pp-Ng, Pp-Wps, and Pp-Qt) with the elements and 
another AOV was carried out using the principal components. Figure 9a shows an ordered plot of 
elements and the associated F-value that provides a measure of class separation. Figure 9a shows that Be-
Y-Ni-Ce-La-As-Cr have high F-values and account for much of the lithologic separation. An analysis of 
variance was also applied to the principal components derived from the logcentred data and Figure 9b 
shows a plot of F-value for each principal component. Figure 9b shows that the second principal 
component accounts for the majority of lithologic separation followed by PC10, PC14, PC3, PC9, PC18, 
PC8, PC13, PC7 and PC16. The steep decay of F-values in Figure 9b suggests that the principal 
component scores are more effective in the application of classification procedures. The advantage of PC 
scores derived from logcentred data is that they are orthogonal and represent a linear combination of 
elements that reflect stoichiometry, thereby making them more realistic in the application of classification 
methods. 
 

 
Figure 9a. Ordered plot of F-value and elements as a measure for class separation from the logcentred 

lake sediment geochemical data. Figure 9b. Ordered plot of F-value and principal components as a 
measure of class separation derived from the logcentred lake sediment geochemical data. The dominance 

of PC2 over PC1 is reflected in the maps of the principal components. PC2 clearly outlines the two 
distinct granitic phases (Nueltin and Hudson) whereas these are not recognizable in the map of PC1. 

 
 



Linear discriminant analysis (LDA) was carried out on ten principal components (PC2, PC10, PC14, PC3, 
PC9, PC18, PC8, PC13, PC7, and PC16). Cross-validation was used to determine an average accuracy of 
the classification and the results are shown in Table 3. The first table shows the classification counts for 
each of the 10 lithologies in a matrix form. The matrix diagonal provides the actual counts that were 
correctly assigned. The off-diagonal matrix element counts indicate where there is overlap in the 
classification of the lithologies. These counts are expressed as percentages in the second table. In the 
second table the classification accuracy for each lithology can be seen along the diagonal and the 
accuracies range from 28% (Ar-mu) to 82% (Ar-c). Both the Hudson granite (Pp-Hgr) and the Nueltin 
granite (Pp-Ng) show high prediction accuracy (70% and 77%, respectively). The overall accuracy of the 
classification is 59%. The off-diagonal matrix elements of the table indicate the percentage overlap or 
“confusion” in the classification. It is significant to note that there is little overlap between the Hudson 
and the Nueltin granites, for example 1.1% Nu are classified as Hudson, and 0% Hudson are classified as 
Nueltin. Both of these granitic rocks show overlap with the Archean tonalite and diorite classes (Ar-t, Ar-
dt). These relationships are expressed graphically in Figure 10 which is a plot of the linear discriminant 
scores of the sample site observations that are coded according to the initially assigned lithology (symbol) 
and the lithology assigned from the classification (colour). It is clear that many of the sites from NTS65C 
(“unknown”) are classified as Nueltin granite (Pp-Ng), Archean tonalite (Ar-t) and sediment (Ar-s). 
Convex hull ellipses are drawn for each of the 6 of the classes (Pp-Ng, Pp-Hgr, Ar-t, Ar-c, Ar-mu, Ar-s). 
Posterior probabilities for each of the lithologies were estimated in the application of the linear 
discriminant analysis. The probability estimates are based on allocation of assignment for each sample 
site to at least one of the classes based on the Mahalanobis distance to each class multivariate 
compositional mean based on the 10 principal components used for the analysis. 
 

Ar-c 
Ar-
dt 

Ar-
mu Ar-s Ar-t 

Pp-
Hgr 

Pp-
Hu 

Pp-
Ng Qt 

Ar-c 107 11 0 1 0 11 0 0 1 
Ar-dt 23 127 6 9 39 23 3 5 31 
Ar-mu 3 10 14 10 5 3 1 0 4 
Ar-s 10 5 4 50 14 13 3 0 12 
Ar-t 7 34 2 4 133 9 5 14 13 
Pp-Hgr 12 24 0 5 8 187 2 0 28 
Pp-Hu 0 6 1 5 6 4 22 0 5 
Pp-Ng 0 8 0 0 21 2 1 137 9 
Qt 1 28 4 10 18 32 5 11 80 

 % Accuracy 

Ar-c 
Ar-
dt 

Ar-
mu Ar-s Ar-t 

Pp-
Hgr 

Pp-
Hu 

Pp-
Ng Qt 

Ar-c 81.7 8.4 0.0 0.8 0.0 8.4 0.0 0.0 0.8 
Ar-dt 8.7 47.7 2.3 3.4 14.7 8.7 1.1 1.9 11.7 
Ar-mu 6.0 20.0 28.0 20.0 10.0 6.0 2.0 0.0 8.0 
Ar-s 9.0 4.5 3.6 45.1 12.6 11.7 2.7 0.0 10.8 
Ar-t 3.2 15.4 0.9 1.8 60.2 4.1 2.3 6.3 5.9 
Pp-Hgr 4.5 9.0 0.0 1.9 3.0 70.3 0.8 0.0 10.5 
Pp-Hu 0.0 12.2 2.0 10.2 12.2 8.2 44.9 0.0 10.2 
Pp-Ng 0.0 4.5 0.0 0.0 11.8 1.1 0.6 77.0 5.1 
Qt 0.5 14.8 2.1 5.3 9.5 16.9 2.7 5.8 42.3 

 Overall 
Accuracy 

(%) 
 

58.7 
  



Table 3. Classification accuracy of the lithologies from NTS sheets 65A/B based on linear discriminant 
analysis of the first seven principal components. 
 

 
Figure 10. Plot of linear discriminant function scores 1 and 2 for the lake sediment geochemical data 

based on selected principal components shown in Figure 9b. Convex hulls are enclose the Nueltin and 
Hudson granite values as defined by their initial assignment. 

 
 
Variogram maps and modelled semi-variograms (not shown) were created for each of the predicted 
lithologies. Four of the predicted lithologies are shown in Figure 11a-d. Figure 11a displays a predictive 
map for Archean carbonate rocks in the form of posterior probabilities. The outline of the Archean 
carbonate lithologies are shown by the black line surrounding posterior probabilities in the southeast 
portion of the map. Posterior probabilities greater than 0.5 are shown on the west side of the map in NTS 
sheet 65C, where the lithologies are unknown. Figure 11b shows a posterior probability map for Archean 
tonalite (Ar-t) that has a strong resemblance to the distribution of tonalite in NTS sheets 65A and 65B. An 
area of increased posterior probability greater than 0.5 also occurs in NTS sheet 65C. Figure 11c show a 
map of posterior probabilities for the Hudson granite (Pp-Hgr) that closely follows the distribution of the 
Hudson granite in the east part of the area. The west portion of the map, indicates some indication that the 
Hudson granite may be present in NTS 65C. Figure 11d shows a map of posterior probability for the 
Nueltin granite (Pp-Ng), with high probabilities (greater than 0.8) in NTS 65B, where it closely follows 
the mapped boundaries, as well as a high probability in the southwest part of NTS 65C. Grunsky et al. 
(2012b) and Peterson et al. (2014) have verified the predicted presence of this lithology in NTS 65C 



 
Figure 11a. Predictive map of Archean carbonate rocks based on the calculation of posterior probabilities 

and derived from the linear discriminant analysis shown in Figure 10. 
Figure 11b. Predictive map of Archean tonalite rocks based on the calculation of posterior probabilities 

and derived from the linear discriminant analysis shown in Figure 10. 
Figure 11c. Predictive map of Paleoproterozoic Hudson granite based on the calculation of posterior 

probabilities and derived from the linear discriminant analysis shown in Figure 10. 
Figure 11d. Predictive map of Paleoproterozoic Nueltin granite based on the calculation of posterior 

probabilities and derived from the linear discriminant analysis shown in Figure 10. 



 
 
4   Discussion 
 
The examples presented in this manuscript demonstrate the significance and value of compositional data 
analysis when applied in conjunction with multivariate statistical procedures and geospatial analysis and 
presentation. In the case of the Star kimberlite lithogeochemical analyses, the identification of three 
distinct geochemical trends in the data are illustrated through the combined use of principal component 
analysis and linear discriminant analysis. Principal components generated from geochemical the data also 
reflect linear combinations of the elements that are controlled by mineral stoichiometry. This is an 
important concept in the use of multi-element geochemical data for process discovery and validation. The 
application of this approach for diamond exploration and mining will result in increased efficiencies in 
both the exploration of, and beneficiation for diamonds. 
The lake sediment geochemical survey data from NTS sheets 65A/B/C demonstrate that the use of 
principal component analysis identifies distinct lithologic differences between the two major granitoid 
suites (Hudson and Nueltin). The use of principal components derived from the logcentred data for use in 
classification results in more effective discrimination between the classes. 
For the lake sediment data, low posterior probabilities can be influenced by significant compositional 
overlap of the classes, or low initial prior probabilities. Low initial prior probabilities can also indicate a 
limited geospatial presence in the sampled area. The use of geostatistical procedure describe, model and 
display the geospatial features of the predicted lithologies is an important part of the process validation 
approach. As demonstrated in Figures 7 and 8, the use of variogram maps and modelled semi-variograms 
can be used to define spatially coherent patterns as shown in the kriged images of the first two principal 
components. Although not shown, the same methodology was applied to generate the kriged images of 
Figures 11a-d. The prediction of the Nueltin granite with a very high posterior probability, in the 
southwest part of NTS65C, is sufficient evidence that the geochemical uniqueness and spatial coherence 
of such patterns are valid. 
Other variables aside from principal components might also be used including selected isometric logratio 
balances or distinct elemental subcompositions. In the use of subcompositions, coherence of the 
composition should be demonstrated a priori. 
 
4   Conclusions 
 
The two examples provided in this study provide evidence that the structure of geochemical data is 
controlled by mineral stoichiometry and when multi-element geochemical data are used, the structure of 
the data is revealed. Multivariate statistical methods, such as principal component analysis that was used 
in this study shows that distinct lithologies can be identified as part of the discover process in evaluating 
geochemical data in a compositional paradigm. Classification procedures can take advantage of structure 
in data to yield classifications that are geochemically distinct and geospatially coherent. 
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Appendix A: Summary of the first seven principal components derived from the logcentred lake sediment 
geochemistry 

 

Eigenvalues PC1 PC2 PC3 PC4 PC5 PC6 PC7 

 10.63 8.21 4.21 3.17 2.87 2.07 1.58 

 23.63 18.25 9.36 7.05 6.38 4.60 3.51 

 23.63 41.89 51.25 58.29 64.67 69.28 72.79 
 

R-Scores PC1 PC2 PC3 PC4 PC5 PC6 PC7 

Ag -0.6896 -0.3600 -0.0652 -0.4082 -0.0948 -0.0645 0.0484 

Al 0.0052 -0.6932 -0.2858 -0.3682 0.2255 -0.0028 0.1103 

As 0.0964 0.5020 -0.3098 0.4631 -0.0386 0.1031 0.1433 

Au 0.0156 0.2721 0.0718 0.1991 -0.4514 -0.2032 0.5678 

Ba -0.3232 0.3548 -0.2361 -0.0453 0.1789 0.3024 -0.0069 

Be -0.2746 -0.7159 -0.0015 0.1360 0.2290 0.0835 0.0305 

Bi 0.2276 -0.3891 0.0465 -0.0911 -0.0228 0.0542 0.3678 

Ca -0.4743 0.6147 0.1971 -0.0488 0.0305 0.3787 -0.1139 

Cd -0.8030 -0.0510 -0.1399 -0.1633 0.0176 0.0774 -0.1275 

Ce -0.3449 -0.6510 0.2431 -0.1650 0.4263 -0.1341 0.1134 

Co 0.0241 0.2584 -0.6991 -0.1210 0.1971 -0.2916 -0.1694 

Cr 0.4005 0.3444 -0.5225 -0.4324 0.1579 -0.0254 0.1304 

Cs 0.6925 -0.4570 0.0460 -0.2453 -0.2714 0.0779 -0.0128 

Cu -0.4470 0.1815 -0.0648 -0.5171 -0.2777 -0.4290 0.0366 

Fe 0.0820 -0.1493 -0.5839 0.3819 0.4700 -0.1869 -0.1537 

Ga 0.7319 -0.2796 -0.1433 -0.4141 0.1087 0.1728 0.0884 

Hf 0.3365 0.6999 0.3523 0.0863 0.2250 -0.1225 -0.1581 

Hg -0.5653 0.4059 0.0649 -0.2984 0.0992 0.0415 -0.0768 

K 0.8470 -0.1086 -0.0075 -0.2016 -0.2658 0.1034 -0.1063 

La -0.3857 -0.6293 0.3271 -0.1658 0.3479 -0.1474 0.1056 

Li 0.7502 -0.4464 0.0044 -0.2162 -0.2853 0.0690 -0.0848 

Mg 0.6934 0.4307 -0.1744 -0.1494 -0.1714 0.2361 -0.0460 

Mn -0.0738 -0.0796 -0.5872 0.5283 0.0159 0.1597 -0.0231 

Mo -0.4525 -0.5731 0.0191 0.2718 -0.1175 -0.0892 -0.3368 

Na 0.0236 0.0595 0.1551 -0.2829 -0.2194 0.4713 -0.4132 

Nb 0.4089 -0.0611 0.4859 -0.3059 0.3879 0.0059 -0.1595 

Ni -0.0469 0.4945 -0.4123 -0.4900 -0.0553 -0.3776 0.0277 

P -0.2586 -0.4128 -0.5709 0.0324 0.0914 0.4426 0.1062 

Pb 0.0266 -0.0242 0.2412 -0.1052 0.5382 0.2861 0.2982 

Rb 0.8060 -0.3750 0.1331 -0.2019 -0.2013 0.0807 -0.0855 

S -0.6413 0.3283 0.2189 -0.2093 -0.1775 -0.0567 -0.3736 

Sb -0.3693 0.5554 0.0347 -0.0039 -0.1051 0.2420 0.0315 

Sc 0.6690 0.1889 -0.0053 0.1187 0.3886 -0.2306 -0.2066 

Se -0.7685 0.0353 0.0363 -0.1865 -0.0536 0.0686 -0.1227 

Sn 0.6104 -0.4045 0.2635 -0.0518 0.1928 0.3464 -0.0125 

Sr -0.3994 0.5417 0.1022 -0.2750 0.4482 0.2338 0.0405 

Th 0.5716 -0.0714 0.3269 0.4279 0.3280 -0.3448 -0.1567 



Ti 0.9094 0.1670 0.0073 -0.1135 0.1189 0.0252 -0.1138 

Tl 0.3195 -0.5839 -0.1892 -0.0986 -0.2403 -0.2824 -0.2146 

U -0.2758 -0.4211 0.4373 0.2342 -0.3026 -0.0621 -0.0397 

V 0.3048 -0.0219 -0.6501 -0.1289 0.3147 0.0346 -0.0835 

W -0.1031 -0.4562 -0.1866 0.3853 -0.1297 0.2744 -0.2798 

Y -0.4994 -0.6529 0.2535 -0.0544 0.2755 -0.0378 0.0049 

Zn -0.4385 -0.4681 -0.3566 -0.1699 -0.0125 -0.0915 -0.2943 

Zr 0.3283 0.7017 0.4047 0.0199 0.2670 -0.1594 -0.1600 
 

Relative Contributions 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 

Ag 47.5809 12.9652 0.4254 16.6696 0.8983 0.4168 0.2346 

Al 0.0027 48.0709 8.1692 13.5636 5.0854 0.0008 1.2181 

As 0.9304 25.2093 9.6036 21.4559 0.1488 1.0626 2.0554 

Au 0.0243 7.4055 0.5161 3.9643 20.3829 4.1312 32.2588 

Ba 10.4501 12.5913 5.5757 0.2049 3.2023 9.1515 0.0047 

Be 7.5460 51.2669 0.0002 1.8513 5.2475 0.6982 0.0930 

Bi 5.1816 15.1480 0.2164 0.8298 0.0520 0.2944 13.5354 

Ca 22.5056 37.8040 3.8882 0.2382 0.0930 14.3466 1.2989 

Cd 64.5047 0.2603 1.9584 2.6671 0.0309 0.5992 1.6258 

Ce 11.8979 42.4009 5.9103 2.7225 18.1834 1.7998 1.2867 

Co 0.0582 6.6789 48.8894 1.4643 3.8847 8.5044 2.8721 

Cr 16.0471 11.8655 27.3116 18.7029 2.4933 0.0643 1.7021 

Cs 47.9793 20.8972 0.2121 6.0197 7.3714 0.6069 0.0165 

Cu 19.9867 3.2940 0.4201 26.7503 7.7156 18.4129 0.1338 

Fe 0.6720 2.2290 34.1040 14.5916 22.0995 3.4942 2.3621 

Ga 53.5866 7.8207 2.0547 17.1519 1.1811 2.9856 0.7809 

Hf 11.3276 49.0005 12.4140 0.7444 5.0637 1.5008 2.5013 

Hg 31.9687 16.4852 0.4211 8.9087 0.9847 0.1727 0.5906 

K 71.7801 1.1798 0.0056 4.0661 7.0695 1.0704 1.1295 

La 14.8804 39.6189 10.7020 2.7486 12.1102 2.1722 1.1165 

Li 56.3047 19.9365 0.0019 4.6778 8.1438 0.4759 0.7200 

Mg 48.1002 18.5566 3.0432 2.2334 2.9397 5.5783 0.2119 

Mn 0.5443 0.6341 34.5010 27.9216 0.0254 2.5506 0.0534 

Mo 20.4828 32.8594 0.0366 7.3922 1.3819 0.7954 11.3483 

Na 0.0558 0.3543 2.4078 8.0043 4.8150 22.2186 17.0774 

Nb 16.7311 0.3733 23.6240 9.3641 15.0570 0.0035 2.5462 

Ni 0.2201 24.4641 17.0040 24.0195 0.3059 14.2657 0.0767 

P 6.6900 17.0471 32.6053 0.1050 0.8358 19.5941 1.1274 

Pb 0.0710 0.0588 5.8193 1.1079 28.9736 8.1893 8.8933 

Rb 64.9861 14.0714 1.7719 4.0761 4.0526 0.6510 0.7311 

S 41.1495 10.7839 4.7924 4.3827 3.1523 0.3215 13.9660 

Sb 13.6422 30.8653 0.1203 0.0016 1.1053 5.8572 0.0996 

Sc 44.7749 3.5709 0.0028 1.4102 15.1108 5.3222 4.2716 

Se 59.0890 0.1249 0.1319 3.4799 0.2870 0.4708 1.5067 

Sn 37.2800 16.3731 6.9460 0.2681 3.7187 12.0059 0.0157 



Sr 15.9626 29.3557 1.0451 7.5633 20.0953 5.4695 0.1639 

Th 32.6887 0.5099 10.6924 18.3150 10.7648 11.8954 2.4556 

Ti 82.7357 2.7906 0.0053 1.2893 1.4152 0.0637 1.2961 

Tl 10.2129 34.1041 3.5828 0.9716 5.7767 7.9797 4.6067 

U 7.6113 17.7408 19.1341 5.4896 9.1582 0.3852 0.1575 

V 9.2929 0.0481 42.2819 1.6611 9.9078 0.1199 0.6981 

W 1.0627 20.8222 3.4840 14.8545 1.6826 7.5351 7.8332 

Y 24.9539 42.6497 6.4278 0.2956 7.5932 0.1426 0.0024 

Zn 19.2395 21.9176 12.7235 2.8888 0.0156 0.8381 8.6661 

Zr 10.7850 49.2607 16.3838 0.0398 7.1294 2.5410 2.5620 
 

Absolute Contributions 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 

Ag 4.4737 1.5783 0.1010 5.2564 0.3133 0.2016 0.1486 

Al 0.0003 5.8518 1.9387 4.2770 1.7735 0.0004 0.7714 

As 0.0875 3.0688 2.2791 6.7657 0.0519 0.5139 1.3017 

Au 0.0023 0.9015 0.1225 1.2500 7.1085 1.9981 20.4294 

Ba 0.9825 1.5328 1.3232 0.0646 1.1168 4.4262 0.0030 

Be 0.7095 6.2409 0.0001 0.5838 1.8300 0.3377 0.0589 

Bi 0.4872 1.8440 0.0514 0.2617 0.0181 0.1424 8.5719 

Ca 2.1160 4.6020 0.9228 0.0751 0.0324 6.9389 0.8226 

Cd 6.0649 0.0317 0.4648 0.8410 0.0108 0.2898 1.0296 

Ce 1.1187 5.1616 1.4027 0.8585 6.3414 0.8705 0.8149 

Co 0.0055 0.8130 11.6026 0.4617 1.3548 4.1133 1.8189 

Cr 1.5088 1.4444 6.4817 5.8976 0.8695 0.0311 1.0779 

Cs 4.5111 2.5439 0.0503 1.8982 2.5707 0.2935 0.0105 

Cu 1.8792 0.4010 0.0997 8.4352 2.6908 8.9056 0.0847 

Fe 0.0632 0.2713 8.0937 4.6012 7.7071 1.6900 1.4959 

Ga 5.0383 0.9520 0.4876 5.4085 0.4119 1.4440 0.4946 

Hf 1.0650 5.9650 2.9461 0.2347 1.7660 0.7259 1.5841 

Hg 3.0058 2.0068 0.0999 2.8092 0.3434 0.0835 0.3740 

K 6.7489 0.1436 0.0013 1.2822 2.4654 0.5177 0.7153 

La 1.3991 4.8230 2.5398 0.8667 4.2234 1.0506 0.7071 

Li 5.2939 2.4269 0.0005 1.4750 2.8401 0.2302 0.4560 

Mg 4.5225 2.2590 0.7222 0.7042 1.0252 2.6980 0.1342 

Mn 0.0512 0.0772 8.1879 8.8045 0.0089 1.2336 0.0338 

Mo 1.9258 4.0001 0.0087 2.3310 0.4819 0.3847 7.1868 

Na 0.0053 0.0431 0.5714 2.5240 1.6792 10.7463 10.8151 

Nb 1.5731 0.0454 5.6065 2.9528 5.2511 0.0017 1.6125 

Ni 0.0207 2.9781 4.0354 7.5740 0.1067 6.8998 0.0486 

P 0.6290 2.0752 7.7380 0.0331 0.2915 9.4769 0.7140 

Pb 0.0067 0.0072 1.3811 0.3493 10.1044 3.9609 5.6321 

Rb 6.1101 1.7130 0.4205 1.2853 1.4133 0.3149 0.4630 

S 3.8690 1.3128 1.1374 1.3820 1.0994 0.1555 8.8446 

Sb 1.2827 3.7573 0.0285 0.0005 0.3855 2.8329 0.0631 

Sc 4.2098 0.4347 0.0007 0.4447 5.2698 2.5741 2.7052 



Se 5.5557 0.0152 0.0313 1.0973 0.1001 0.2277 0.9542 

Sn 3.5052 1.9932 1.6484 0.0845 1.2969 5.8068 0.0100 

Sr 1.5008 3.5736 0.2480 2.3849 7.0082 2.6454 0.1038 

Th 3.0735 0.0621 2.5375 5.7753 3.7542 5.7533 1.5551 

Ti 7.7790 0.3397 0.0012 0.4066 0.4935 0.0308 0.8208 

Tl 0.9602 4.1516 0.8503 0.3064 2.0146 3.8595 2.9174 

U 0.7156 2.1597 4.5410 1.7310 3.1939 0.1863 0.0998 

V 0.8737 0.0059 10.0345 0.5238 3.4553 0.0580 0.4421 

W 0.0999 2.5348 0.8268 4.6841 0.5868 3.6444 4.9607 

Y 2.3462 5.1919 1.5255 0.0932 2.6481 0.0690 0.0015 

Zn 1.8089 2.6681 3.0196 0.9109 0.0054 0.4053 5.4882 

Zr 1.0140 5.9967 3.8882 0.0125 2.4864 1.2290 1.6225 
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Abstract

To identify mineral promising targets in khusf area located in the east of Iran, a geo-
chemical stream sediment study was done and 652 samples were analyzed for 23 ele-
ments. Although there are some different known classical convenient methods to de-
lineate the univariate anomalies, the most reliable one is to deal with the geochemical
anomalies through compositional global multivariate outliers that on this case study
has been addressed. After preparation of the raw data (missing and censored values
imputation on compositional data using zCompositions package in R), the global out-
liers of the data were detected and marked in the coordinated map of the samples using
mvoutlier package in R. Robust principal components of the compositional data were
biplotted as well. The biplots showed the elements affecting the global outliers. Com-
positional univariate outlier plot is another useful tool in the package that was used to
visualize each outlying observation position element-wise.

Comparing the resulted global outliers with the officially reported mineralization in-
dexes and field observations confirmed that mvoutlier package is the fastest and most
reliable tool amongst the other convenient ways of locating geochemical anomalies pro-
vided that the sampling and data preparation stages are done properly.

Key words: Geochemical data, stream sediments, logratio transformation, global
outlier, PCA, Khusf.



1 Introduction

The processing of geochemical data for detecting multivariate geochemical patterns or signals
associated with mineralization in support of mineral resource exploration is challenging (Zuo, 2014).
Identifying and detection of anomaly area is an important issue in stream sediment geochemical
exploration studies (Stanley and Sinclair, 1989; Stanley and Sinclair, 1991; Ghavami-Riabi and
others, 2010). Different methods for calculation of threshold values in either uni- or multi-element
approaches have been developed in many investigations (Matchullat and others, 2000; Reimann and
others, 2005). As an important source of geo-information, geochemical datasets of multiple element
concentrations have been successfully processed by advanced multivariate analytical methods (e.g.,
factor analysis, principal component analysis, cluster analysis, etc.) to identify mineralization-
associated geological bodies and delineate mineralization-favored spaces (Bogoch and others, 1993;
Brantley and White, 2009; Cheng, 2007; Cheng and others, 2011; Hao and others, 2007; Yousefi
and others, 2012, Yousefi and others, 2014, Wang and others, 2011, 2012, 2013; Zhao and others,
2012, 2013, 2014). Outlier detection as one of the main tasks in multivariate data analysis is
challenging and if preparing a dataset (especially in extreme values, which may not be extreme
in any of the individual attribute space directions) is correctly done and there is no pollution in
study area, most likely it can represent the geochemical anomaly areas (Filzmoser and others,
2005, 2012).

In the convenient geoscience researches, exploratory datasets are often compositional data which
have long been of concern in the geochemical field (Aitchison, 1982, 1984; Buccianti, 2011; Buc-
cianti and others, 2006; Carranza, 2011; Chayes and Trochimczyk, 1978; Rollinson, 1992). A
stream sediment geochemical dataset is an example of a closed number system because it contains
compositional variables that are parts of a whole (Carranza, 2011). Classical approaches in geo-
chemical data analysis are mainly univariate and applying normal or lognormal transformations
after outlier detection in that space that most of the times proposes the removal of the outliers.
In the last five decades, several researchers have discussed the problems in statistical analysis of
closed number systems such as compositional datasets (Aitchison, 1981, 1983, 1984, 1986, 1999;
Aitchison and others, 2000; Buccianti and others, 2005; Chayes, 1960; Egozcue and others, 2003,
2005; Filzmoser and others, 2009; Miesch, 1969; Thió-Henestrosa and others, 2005). The statistical
analysis of compositional multivariate data is a much discussed topic in the field of multivariate
statistics (Filzmoser and others, 2009). In practice, log-ratio transformations are commonly em-
ployed in geochemical data processing to open closed systems for better understanding of realistic
relationships among compositions (Filzmoser and others, 2012; Gallo and others, 2013; Verma and
others, 2006; ).

In present case study to identify exploratory target areas in khusf district located in east of Iran, we
used compositional robust PCA together with adaptive multivariate outlier detection method to
delineate and map the compositional global outliers. A recent method and tool developed by Peter
Filzmoser and other scientists (Filzmoser and Hron, 2007; Filzmoser and others, 2011; Filzmoser
and others, 2005; Filzmoser and Geschwandtner, 2011)

2 Compositional or closed data

The geochemical data especially stream sediments analysis has an intrinsic compositional prop-
erties. They are multivariate observations that describe quantitatively the parts of some whole.
Thus, their components carry exclusively relative information about the parts (Aitchison, 1986).
Typically these observations are expressed as data with a constant sum constraint such as propor-
tions, percentages, or mg/kg (Filzmoser and Hron, 2007), i.e:

X = (x1, . . . , xD)
′
, xi > 0,

D∑
i=1

xi = constant (1)



The D-dimensional space defined in Equation (1) is called a Simplex. Due to the fact that geo-
chemical data follow the simplex geometry, classical statistical methods that rely mostly on the
euclidean geometry produce spurious results when they are applied to raw compositional data
(Filzmoser and Hron, 2008; Filzmoser and others, 2009; Hron and others, 2010). Whether or not
the data follow a normal distribution is of no importance at all (Filzmoser and others, 2012). In
order to deal with such data that arose challenges in scientific literatures ,Aitchison (1986) and
Egozcue (2003) introduced three transformations to open and bring the data to real euclidean
space and classical statistics could analyze them. They are called additive logratio (alr), centered
logratio (clr) and isometric logratio transformation (ilr). Of all these transformations the two lat-
ter are considerable because they show an isometric relationship between real and simplex spaces.
Compositions X ∈ SD are transformed via clr to data Y ∈ RD, with

Y = clr(X) = (y1, . . . , yD)
′

=

ln x1

D

√∏D
i=1 xi

, . . . , ln
xD

D

√∏D
i=1 xi

′ (2)

But this transformation results in collinear data because
∑D

i=1 yi = 0.
The other transformation is ilr that solves the problem of data collinearity resulting from the
clr transformation, while preserving all its advantageous properties (Egozcue and others, 2003).
Compositions X ∈ SD are transformed based on the choice of an orthonormal basis to data
Z ∈ RD−1, with

Z = ilr(X) = (z1, . . . , zD−1)
′
, zi =

√
i

i+ 1
ln

i

√∏i
j=1 xj

xi+1
(3)

One of the biggest problems in applying this transformation is that it would be complicated to
interpret the results because of the reduction in dimension, especially in geochemistry that the
dimensions are the analyzed elements. One way is to apply ilr in multivariate analysis and then
backtransform the results in clr so that the results could be meaningful.

Due to the definition of compositional data, all the relevant information about x1 is contained in
the ratios to each of the remaining parts x2, . . . , xD. Accordingly, this relative information for all
remaining parts needs to be considered also for univariate data analysis (Filzmoser and others,
2009). The ilr transformation from Equation (3) can be used for this purpose. The ilr variable:

z1 =

√
D − 1

D
ln

x1

D−1

√∏D
j=2 xj

(4)

contains all the relative information between x1 and x2, . . . , xD, because none of z2, . . . , zD−1
includes x1. In this way, each compositional part can be expressed by a single ilr variable as
defined in Equation (4) which here is used for univariate analysis of global outliers (Filzmoser and
others, 2009).

For all logratio transformations, the problem of missing or zero values should be solved prior to
any analysis. Fortunately there have been proposed many solutions and tools to impute them in
the best way. One of them is zCompositions package written and developed by Javier Palarea-
Albaladejo and Josep Antoni Mart́ın-Fernández that provides principled methods to deal with zeros
and nondetects in compositional data sets (Palarea-Albaladejo and Mart́ın-Fernández, 2015).

2.1 Global outliers detection

In contrast to univariate outliers, multivariate outliers are not necessarily extreme along single co-
ordinates. Rather, they could deviate from the multivariate data structure formed by the majority
of observations (Filzmoser and others, 2005). The estimated covariance structure is used to assign
a distance to each observation indicating how far the observation is from the center of the data
cloud with respect to the covariance structure (Hron and others, 2010; Filzmoser and Hron, 2011).



This distance measure is the well-known Mahalanobis distance, defined for a sample x1, . . . , xn of
n observations in the d-dimensional real space RD as

MD(xi) =
[
(xi − T )

′
C−1(xi − T )

]1/2
for i=1,. . . ,n (5)

T and C in Equation (5) are location and spread estimators, respectively. In the case of multivariate
normally distributed data, the arithmetic mean and the sample covariance matrix are the best
choices, leading to the best statistical efficiency (Filzmoser and others, 2012). In this case, the
squared Mahalanobis distances approximate a chi-square distribution χ2

d with d degrees of freedom.
A certain cut-off value like the 97.5% quantile of χ2

d can be taken as an indication of extremeness:
data points with higher (squared) Mahalanobis distance than the cut-off value are considered as
potential outliers (Rousseeuw and Van Zomeren, 1990).

Both the arithmetic mean and the sample covariance matrix are highly sensitive to outlying ob-
servations (Maronna and others, 2006). A number of robust estimators of covariance have been
proposed in the literature, like the MCD1 estimator (Maronna and others, 2006). It looks for a
subset h out of n observations with the smallest determinant of their sample covariance matrix.
The subset size h can vary between half the sample size and n, and it will determine not only the
robustness of the estimates, but also their efficiency. It is common to use the same cut-off value
from the χ2

d distribution (Rousseeuw and Van Zomeren, 1990). Filzmoser (2005) introduced a
more advanced approach to the cut-off value that could lead to more accurate values. This method
called “adaptive outlier detection”, accounts for the actual numbers of observations and variables
in the data set, and it tries to distinguish among extremes of the data distribution and outliers
coming from a different distribution (Filzmoser and others, 2005).

As with the other multivariate methods applied to compositional data, it is important to use an
appropriate data transformation first. Either the clr transformation or a proper choice of the ilr
transformation can be used for this purpose (Filzmoser and Hron, 2008; Filzmoser and others,
2012).

Several methods have been proposed for the identification of multivariate outliers, making use of
robust statistics (Maronna and others, 2006). Such tools have also been developed in the context
of compositional data (Filzmoser and Hron, 2008). The package mvoutlier in R software presented
by Filzmoser and Gschwandtner (2011) is a free and precious tool to deal with outliers especially in
compositional data. It is designed on a comprehensive mathematical basis that detects, maps and
plots the global outliers in a multivariate dataset. This is done by computing for each observation
the distances to the medians along the single ilr variables. The median of all distances determines
the color (or gray scale): a high value, resulting in a red (or dark) symbol, means that most
univariate parts have higher values than the average, and a low value, resulting in a blue (or light)
symbol, refers to an observation with mainly low values. This characterization helps to interpret
multivariate outliers (Filzmoser and others, 2012). The robust squared Mahalanobis distances
are computed and split by four values: the quantiles 0.25, 0.5, and 0.75 and the aforementioned
adaptive outlier cutoff. By default, the symbols for the resulting five groups (in the above order)
are large open circle, small open circle, point, small “+” and large “+” (Filzmoser and others,
2012). The user can replace the symbols with observations (samples) numbers to see the outlying
samples. In case of mapping the outliers it requires the coordinates of taken samples to locate
them on the sampling area.

2.2 Geochemical anomalies

In the last step of exploratory geochemical data, it is convenient to identify promising targets
known as anomalies on a map. There has been proposed many methods to delineate the univariate
anomalies i.e. defining thresholds with mean+2SD or median+2MAD that both require normal
distribution assumption (Carranza, 2008). Although these methods have been used a lot in lit-
eratures, they produce unreliable results because of the compositional nature of the geochemical
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data. The best way is robust multivariate analysis of this kind of data to investigate not only the
relations but also the enriched elemental associations.

Multivariate outliers often show atypical phenomena and mostly come from different populations.
In geochemical stream sediments that are taken for mineralization prospecting, they show interest-
ing anomalies indicating mineralized zones up or down a catchment basin. Using mvoutlier package
a geochemist can detect the samples that are potential multivariate outliers (global or local) and if
it is superimposed on a geological map, it can mark the anomalies because of which these samples
are identified as being outliers.

On the other hand, to check the anomalies of global outliers, we used the mineralized indexes
marked in the local geological map produced by geological survey of Iran2 and its related official
reports and also direct field check.

Figure 1: (a) Structural zones of Iran, and (b) simplified geological map of the study area.

3 Study area and geochemical data

The study area measures 2500 km2 and is covered by the 1:100,000 scale quadrangle map of khusf
prepared by GSI (Vahdati, 1989). The study area is a small region in the northern part of the
central lut block in east of Iran and lies between longitudes E58◦30′ and E59◦ and N32◦30′ and
N33◦ latitudes. Due to its location in the northern part of the central lut block, this area has
inherited arid conditions (Arjmandzadeh and others, 2011). The lut block extends over 900 km
in a north-south direction and is only 200 km wide in an east-west direction (Stocklin and others,
1973). It is confined by the nayband fault and shotori range on the west (Berberian and others,
1982). The magmatic activity in the lut block began in the middle jurassic 165-162 Ma and reached
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its peak in the tertiary (Karimpour, 2011). Volcanic and subvolcanic rocks of tertiary age cover
over half of lut block with up to 2000 m thickness and were formed due to subduction prior to
the collision of the arabian and asian plates (Camp and others, 1982; Tirrul and others, 1983;
Berberian, 2000).

There are widespread exposures of late cretaceous-early tertiary sedimentary rocks and cenozoic
volcanism. Elevated areas and mountain ranges are arranged in the north and north-eastern part,
while in the other parts, the topography is dominated by abundant irregular hills and intervening
alluvial plains within which scattered, higher and isolated volcanic bodies may be seen (Vahdati,
1989).

The oldest rocks in the area are upper paleozoic which are restricted to small fractured and faulted
fragments of central iranian paleozoic platform which are exposed as an antiform in the northwest
of the map. The lithology units of the study area are flysch type sediments, marl, limestone and
mid-eocene, non-volcanic deposits have been found in the northwest and southwest corner of the
sheet including agglomerate, ignimbrite, marl, tuff and eocene-oligocene volcanic rocks including
andesite, tuff, dacitic andesite and finally include eocene-oligocene dacite, silicified volcanic rocks,
oligo-miocene rhyolites and dacites. The simplified lithological map of the study area is shown in

Figure 2: The stream sediment samples location and Fe, Pb, Cu indexes in the study area.

Figure 1. To identify promising exploratory areas in khusf 1:100,000 sheet, a drainage geochemical
survey was carried out by GSI and 652 geochemical samples were taken. Figure 2 shows the stream
sediment samples location in the study area. It also shows the major mineralization indexes
extracted from GSI reports in the area. Some in the form of veinlets or outcrops and typical
minerals. They are important in validating the accuracy of analysis. The minus 80-mesh fraction
of the stream sediments was analyzed for 20 elements including Au, W, Mo, Zn, Pb, Ag, Cr, Ni,
Bi, Sc, Cu, As, Sb, Cd, Co, Sn, Ba, V, Sr and Hg, and three oxides: MnO, TiO2 and Fe2O3.



Figure 3: The global outliers location marked with (a)only outliers and (b)all observations in the
study area. (Red colored symbols show the considerable outliers that represent probable

geochemical anomalies).

4 Discussion

First of all Au, W, Mo and three oxides were removed from the dataset prior to analysis. The first
three because of their problems and the oxides for homogenizing the data. The final dataset is a
matrix of 652 samples (or observations) by 17 elements (or variables). Then the most important
thing that should be done before any data analysis is preparing the dataset by imputation of
missing and zero values provided that they are a small fraction of the variable (in this study they
did not exceed 10%). This was done with the valuable R software packages “compositions” and
“zCompositions” that using detection limits vector replace the ’bad’ values with the proper ones
within delicate algorithms considering compositional properties of the data.

Finally the data was compositionally scaled and global outliers were detected and mapped (Fig. 3).
The PCA biplots (Fig. 4) and univariate outliers plot (Fig. 5) also were drawn.

It can be seen in PCA biplot that PC1 & PC2 explain about 83% variability and almost all the
outliers are from Cr, Co, Ni, Cu, Pb, Zn elements. These are the major lithological constituents that
are the host rocks and sources of mineralizations in the area. Comparing the results of univariate
ilr-elements with the map shows that samples 177, 178, 147, 149 located in the northeastern part
of the area are outliers for Pb, As, Ag, Cd, Bi & Sr. The samples comply with Pb mineralization
indexes upstream that basin. Samples 22, 25, 26, 27, 28, 30, 31, 34, 36, 37, 39, 40 located in the
eastern part of the map are mostly enriched in Cu and together with samples 53, 55, 54, 61 in
the southeastern part that are high in Ni, Zn & Bi form a principal component of the data. The
indexes of Cu mineralization in the form of cuprite and malachite which were observed upstream
that basin, confirmed the anomalous outliers. Samples 39 & 40 in the center show high Cr and Co,
highlighted as another principal component. Samples 82, 127, 181 in the northern central part are
high in Sc & V, the two elements that match with the Fe-index and explain rich Fe-oxides blanket
covering parts of the area. Individual samples 15 & 16 also show high Co and Cr and low Cu.



Figure 4: The PCA biplots marked with (a)all observations and (b)only outliers. (Red colored
symbols just like (Fig. 3) show the considerable outliers).

Figure 5: The univariate outlier plot without the regular observations.

5 Conclusion

In this study we applied a robust multivariate outlier detection method on a brownfields exploration
area in east of Iran. High conformity between obtained results by this method and known deposit
indexes in the study area is the main advantage of using this method.

If the sampling of stream sediments is carried out in order to find the promising areas (and not for
the environmental purposes) and samples are taken far from other pollution sources, the outliers
can be representatives of just the mineralization anomalies because they are abnormal populations
emerging out of the normal background of the study area. Otherwise it will be every extreme
reason such as pollution, error or a combination of them and in that case it needs an extra field



check to distinguish the mineralization from other processes. Therefore the interpretation would
become complicated.

Although this study was done on a geochemically known area and many researches have been done
by far on this area, this was just to evaluate and confirm the mentioned method. The authors have
tested and applied this approach on many other similar projects in Iran and outstanding target
anomalies were detected.
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1Dept. Matemàtica Aplicada III - ETS Enginyers de Camins, Canals i Ports de Barcelona
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Abstract

A function assigning a composition to space-time points is called a compositional or simplicial
field. These fields can be analysed using the compositional analysis tools. A study of linear models
for evolutionary compositions depending on one variable, usually time, was formulated by Egozcue
and Jarauta-Bragulat (2014) in terms of the so-called simplicial linear differential equations. The
foundations of differential and integral calculus for simplex-valued functions of one real variable,
was presented by Egozcue, Jarauta-Bragulat and Dı́az-Barrero (2011).

In order to study compositions depending on space and/or time, reformulation and interpretation
of traditional partial differential operators is required. These operators such as: partial deriva-
tives, compositional gradient, directional derivative and divergence are of primary importance to
state alternative models of processes as diffusion, advection and waves, from the compositional
perspective. This kind of models, usually based on continuity of mass, circulation of a vector field
along a curve and flux through surfaces, should be analyzed when compositional operators are used
instead of the traditional gradient or divergence. This study is aimed at setting up the definitions,
mathematical basis and interpretation of such operators.

1 Introduction

In a large number of processes studied in Sciences and in Engineering, magnitudes or variables
involved can be modelled by a vector. This vector may be a function of one or several variables.
Furthermore, in many cases the studied vector is a composition. Study of the evolutionary compo-
sitions depending on one variable was introduced by Egozcue and Jarauta-Bragulat (2014). The
present work focuses on compositions whose evolution depends on several variables; in many cases,
these variables are spatial coordinates and time. For example, the study of the evolution of a
pollutant carried by a fluid stream.

For spatial coordinates, a subset S ∈ Rd of a d-dimensional real space is considered and identified
with a physical domain; consequently d = 1, d = 2 and d = 3 are the common choices of that
dimension. A location in this space is denoted s ∈ S and represented in a Cartesian coordinate
system; for d = 1 the spatial coordinate is usually denoted s = x; for d = 2, s = (x, y) and so
on. For time, a subset T ⊆ R is considered and a point is denoted t ∈ T . For spatial and time
evolutionary processes, a domain S × T ⊆ Rd × R (d = 1, 2, 3) is considered.

A space-time vector-valued field with positive components Z is a function Z : S×T ⊆ Rd×R→ Rn
+

that assigns a positive component vector Z(s, t) ∈ Rn
+ to a space-time point (s, t) ∈ S×T . If closure

operation is then applied: CZ(s, t) = z(s, t) a space-time simplicial field z (STSF) is obtained.
Consequently, a STSF is a function z : S×T ⊆ Rd×R→ Sn, that assigns a composition z(s, t) in
the n-part simplex Sn to any space-time point (s, t) ∈ S×T . In general, differentiability of z(s, t)
up to the second order is assumed, thus guaranteeing the existence of continuous derivatives up to
second order.



2 Derivatives and Integrals of a Space-Time Simplicial Field

In the following, definitions and properties are developed for d = 2 and extension to other values
of d are natural. Based on the definition of (ordinary) simplicial derivative (Egozcue et al., 2011)
and the real calculus, natural definitions for partial simplicial derivatives of a STSF follow.

Definition 2.1 (spatial and time simplicial derivatives) Let z : S × T ⊆ R2 × R→ Sn be
a STSF and (x, y) ∈ S. The spatial-partial simplicial derivatives of z are

∂⊕x z(x, y, t) = lim
h→0

(
1

h
� (z(x+ h, y, t)	 z(x, y, t))

)
,

∂⊕y z(x, y, t) = lim
h→0

(
1

h
� (z(x, y + h, t)	 z(x, y, t))

)
.

The time-partial simplicial derivative is

∂⊕t z(x, y, t) = lim
h→0

(
1

h
� (z(x, y, t+ h)	 z(x, y, t))

)
.

Definition 2.2 (directional simplicial derivatives) Let z : S × T ⊆ R2 × R → Sn be a
STSF. Let (x, y) ∈ S and ~u = (ux, uy) be a vector in R2. The simplicial derivative of z with
respect to ~u is

∂⊕~u z(x, y, t) = lim
h→0

(
1

h
� (z(x+ hux, y + huy, t)	 z(x, y, t))

)
.

If ~u is a unit vector, the derivative is called the directional simplicial derivative of z.

Spatial-partial and time-partial simplicial derivatives are computed as they were ordinary simpli-
cial derivatives of a single variable simplex-valued function as developed in Egozcue et al. (2011).
Consequently, they can be computed as ordinary derivatives of the log-transformation of the STSF,
and then transformed back into compositions. The same scheme works for clr and ilr transforma-
tions of z (Aitchison, 1986; Egozcue et al., 2003). The following proposition summarizes this kind
of computation.

Proposition 2.1 Partial simplicial derivatives of z(x, y, t) can be computed as

∂⊕x z(x, y, t) = C exp (∂x log(z(x, y, t))) = C exp


∂xz1(x,y,t)
z1(x,y,t)

...
∂xzn(x,y,t)
zn(x,y,t)

 .

Additionaly

clr
(
∂⊕x z(x, y, t)

)
= ∂xclr(z(x, y, t)); ilr

(
∂⊕x z(x, y, t)

)
= ∂xilr(z(x, y, t)) .

Similar expressions hold for ∂⊕y z(x, y, t) and ∂⊕t z(x, y, t).

Definitions and properties related to integral of simplex-valued functions of one variable have been
stated in (Egozcue et al., 2011). They are summarized in the next Proposition.

Proposition 2.2 Let f : I ⊆ R→ Sn be a continuous simplex-valued function of real variable.



• A differentiable function F : I ⊆ R → Sn is an antiderivative of f on I if, and only if,
∂⊕F(ξ) = f(ξ), ξ ∈ I.

•
∫ ⊕

dξ � f(ξ) = C exp
(∫

log(f(ξ))dξ
)
.

•
∫ ⊕

[a,b]
dξ � f(ξ) = C exp

(∫ b

a
log(f(ξ))dξ

)
.

• clr
(∫ ⊕

[a,b]
dξ � f(ξ)

)
=
∫ b

a
clr(f(ξ))dξ.

• ilr
(∫ ⊕

[a,b]
dξ � f(ξ)

)
=
∫ b

a
ilr(f(ξ))dξ.

Some natural extended definitions and properties can be stated for double and line integrals.

Definition 2.3 (double integrals) Let z : S × T ⊆ R2 × R → Sn be a STSF. The double
integral of z in S is a composition in Sn given by∫∫ ⊕

S

(dξdη)� z(ξ, η, t) = C exp

(∫∫
S

log(z(ξ, η, t)) dξdη

)
.

Proposition 2.3 Properties of double integrals are:

clr

(∫∫ ⊕
S

(dξdη)� z(ξ, η, t)

)
=

∫∫
S

clr(z(ξ, η, t))dξdη ,

ilr

(∫∫ ⊕
S

(dξdη)� z(ξ, η, t)

)
=

∫∫
S

ilr(z(ξ, η, t))dξdη .

Definition 2.4 (line integrals) Let z : S × T ⊆ R2 ×R→ Sn be a STSF. The line integral of
z along a regular curve Γ ⊂ S of finite length, is∫ ⊕

Γ

ds� z(x(u), y(u), t) = C exp

(∫ b

a

log(z(x(u), y(u), t)) s′(u) du

)
,

where γ1 = (x(a), y(a)), γ2 = (x(b), y(b)) are the end points of the curve Γ and s′(u) denotes the
ordinary derivative of s with respect to the parameter u.

Proposition 2.4 Properties of line integrals are:

clr

(∫ ⊕
Γ

(ds� z(x(u), y(u), t))

)
=

∫ b

a

clr(z(x(u), y(u), t)) s′(u) du ,

ilr

(∫ ⊕
Γ

(ds� z(x(u), y(u), t))

)
=

∫ b

a

ilr(z(x(u), y(u), t)) s′(u) du .

3 Simplicial Mass Continuity Equation and
Differential Operators

When n species are mixed in a continuum, a common assumption is that the mass of each species
changes according the input-output of it through the border of a fixed control volume V . When
working in a space of dimension d = 2, volume means area, or alternatively, for d = 1 is just a
length. Notation V is used both for referring to the volume itself and for indicating its magnitude in



some volume unit. The continuity of mass for each species is normally described by the continuity
equation (Landau and Lifshitz, 1987; White, 1991). It can be written as

∂tρk + div(ρk~vk) = 0 , k = 1, 2, . . . n , (1)

where ρk is the mass density of the k-species, and ~vk = (vkx, vky) is its velocity in a planar
movement. Attention should be paid to the definition of ρk. It is the ratio of the mass mk to the
volume Vk occupied by the mass of the k-species. Accordingly, ρk = mk/Vk and the units can
be, for instance, g/cm3. Interest is centered in the behaviour of (mass) concentration ck = mk/M
of each species, which is given as the ratio of the mass of the k-species to the total mass M
within some given control volume V . The overall density is ρ = M/V which leads to a convenient
expression of ρk in terms of concentrations

ρk =
mk

Vk
=
mk/M

Vk/ρV
= ρ

mk/M

Vk/V
= ρ

ck
ak

= ρdk , k = 1, 2, . . . , n , (2)

where ak = Vk/V is the volume fraction or volume concentration of the k-species. The ratio of
mass to volume concentration is denoted dk = ck/ak. Note that the continuity equations hold for
each species but not for the total, as the change of concentrations modifies the mass content of
V and the diffusion or selective transport of some species may change the overall density ρ. As a
conclusion continuity equation (1) does not hold for the overall density ρ and different velocities
~vk. For a planar flow the fields of densities are considered functions of space location s ∈ S ⊆ R2

and time t ∈ T ⊆ R. The explicit dependence is suppressed unless it is necessary, for instance,
ρ(s, t) is denoted ρ.

Substituting in Eq. (1) the expression of ρk in Eq. (2) and developing the divergence

∂t(ρdk) + div(ρdk~vk) = ∂t(ρdk) + ∂x(ρdkvkx) + ∂y(ρdkvky) = 0 , k = 1, 2, . . . n . (3)

In order to introduce logarithmic derivatives, the equation is divided by ρdk

∂t(ρdk)

ρdk
+
∂x(ρdkvkx)

ρdk
+
∂y(ρdkvky)

ρdk
= 0 , k = 1, 2, . . . n . (4)

This equation is transformed into

∂t log(ρdk) = − (vkx∂x log(ρdk) + vky∂y log(ρdk))− (∂xvkx + ∂yvky)

= −〈~vk, grad log(ρdk)〉 − div(~vk)

= −∂~vk log(ρdk)− div(~vk) , k = 1, 2, . . . , n , (5)

where 〈·, ·〉 is the standard Euclidean inner product in R2 and known properties of derivatives of
functions of several variables have been applied. Equations (5) for k = 1, 2, . . . , n can be placed in
an array as 

∂t log(ρd1)
∂t log(ρd2)

...
∂t log(ρdn)

 =


−∂~v1 log(ρd1)
−∂~v1 log(ρd2)

...
−∂~v1 log(ρdn)

+


−div(~v1)
−div(~v2)

...
−div(~vn)

 . (6)

Logarithmic derivatives in left-hand side of Equation (6) are transformed into a simplicial derivative
by taking clr−1

C exp


∂t log(ρd1)
∂t log(ρd2)

...
∂t log(ρdn)

 = C exp


∂t log ρ
∂t log ρ

...
∂t log ρ

⊕ C exp


∂t log d1

∂t log d2

...
∂t log dn

 = ∂⊕t d , (7)



where d is a n-part composition obtained by the closure of the Rn-vector which positive components
are the dk’s. Note that a composition with equal components is the neutral element in Sn and this
is the reason for cancelling the array containing the terms ∂tρ in Eq. (7). Vectors in the right-hand
side of Eq. (6) need additional definitions and properties. In the standard vector field analysis,
the (spatial) gradient and divergence are useful differential linear operators. Previous Eq. (5-6)
suggest that similar concepts can be defined for space-time simplicial fields. Definitions and some
properties of such operators for d = 2 follow.

Definition 3.1 (Simplicial (spatial) gradient) Let z : S × T ⊆ R2 × R → Sn be a STSF.
The simplicial (spatial) gradient is defined as a bivariate STSF, taking values in Sn× Sn, given by

grad⊕z(s, t) =
(
∂⊕x z(s, t) , ∂⊕y z(s, t)

)
.

Directional derivatives can be expressed as a kind of Rd-inner product of the simplicial gradient
and the direction in which the directional derivative is taken. However, the fact that simplicial
derivatives are in Sn and spatial directions are in Rd, introduces notational intricacies.

Proposition 3.1 (Simplicial gradient and directional derivatives) Let z : S×T ⊆ R2×
R→ Sn be a STSF and ~u = (ux, uy) be a vector. Directional derivative and gradient satisfies

∂⊕~u z(s, t) = ~u � grad⊕z(s, t) ,

where � is interpreted as a perturbation-linear combination (Egozcue et al. (2011))

~u � grad⊕z(s, t) = ux � ∂⊕x z(s, t) ⊕ uy � ∂⊕y z(s, t) ,

and grad⊕z has been decomposed in their two components ∂⊕x z and ∂⊕y z.

Definition 3.2 (Simplicial derivative along a multiple vector field) Let z : S × T ⊆
R2 × R→ Sn be a STSF with positive components zk (k = 1, 2, . . . , n). Let v = (~v1, ~v2, . . . , ~vn) be
a multiple vector field, being ~vk = (vkx, vky), k = 1, 2, . . . , n. The simplicial derivative of z along
the multiple vector field v is

∂⊕v z(s, t) = C exp


∂~v1 log(z1(s, t))
∂~v2 log(z2(s, t))

...
∂~vn log(zn(s, t))

 ,

where ∂~vk log(zk(s, t)) = vkx∂x log zk + vky∂y log zk is an inner product of ~vk and grad(log zk) in
R2.

The simplicial derivative along a multiple vector field is not linear in the simplex. A linear combi-
nation of compositions like (α1�z1)⊕(α2�z2) is not equal to the perturbation-linear combination
of the two derivatives. However, it is linear in the simplex for linear combinations of multiple vector
fields.

Definition 3.3 (simplicial divergence) Let z1, z2 : S×T ⊆ R2×R→ Sn be two STSFs. The
simplicial divergence of the pair (z1, z2) is a composition in Sn given by

div⊕(z1, z2) = ∂⊕x z1 ⊕ ∂⊕y z2

= clr−1 [∂xclr(z1) + ∂yclr(z2)] .



Taking into account previous definitions, and computing clr−1 of the vectors in the right-hand side
of Eq. (6)

C exp


−∂~v1 log(ρd1)
−∂~v2 log(ρd2)

...
−∂~vn log(ρdn)

⊕ C exp


−div(~v1)
−div(~v2)

...
−div(~vn)

 = ∂⊕v d⊕ div⊕(wx,wy) , (8)

where wx = clr−1(vx), wy = clr−1(vy); moreover, vx, vy are Rn-vectors grouping the first and
second components of ~vk for k = 1, 2, . . . , n respectively. Note that clr(wx) = vx − vx0, where vx0

is a constant-component vector which components are the aritmetic mean of the components of
vx; and similarly for clr(wy).

Hence, considering Eqs. (7) and (8), the simplicial mass continuity equation can be written as

∂⊕t d = ∂⊕v d⊕ div⊕(wx,wy) . (9)

An important feature is that the overall density ρ does not appear in Eq.(9), therefore, this equation
is purely compositional. Note that, in general, this is not a linear equation in the simplex due to
the non-linearity of ∂⊕v d with respect to d.

Furthermore, if each fluid species is incompressible, that is ρk is constant, then Eq. (9) reduces to

div⊕(wx,wy) = n , n = C(1, 1, . . . , 1) ,

quite similar to standard continuity equation for an incompresible fluid flow (White, 1991).

In some cases the simplicial fields z1 and z2 can be the two components of a simplicial gradient,
that is, there is a simplicial field w such that (z1, z2) = grad⊕w = (∂⊕x w, ∂⊕y w). In these cases, the
bivariate simplicial field (z1, z2) is said to derive from the potential composition w, again following
the ideas of the standard vector analysis. An important differential operator in this situation is
the Laplacian ∆ = ∂2

x + ∂2
y . The compositional counterpart of the Laplacian can be defined as

follows.

Definition 3.4 (simplicial Laplacian) Let ~x be a location in R and w be a STSF defined in
a neighbourhood of (~x, t) = (x, y, t). The simplicial Laplacian of w is a composition in Sn given by

∆⊕w = div⊕(grad⊕w) = ∂⊕2
x w ⊕ ∂⊕2

y w ,

where the symbol ∂⊕2 is the second order simplicial derivative (Egozcue et al., 2011).

To show the relevance of previous definitions, it is worth to state a compositional extension of the
Gauss divergence theorem, here stated in R2.

Theorem 3.1 Let z1, z2 : S×T ⊆ R2×R→ Sn be two STSF’s, differentiable up to second order.
Let R be a bounded and connected domain in the plain with piecewise regular and closed boundary Γ.
Consider x, y as the Cartesian plain coordinates, and a piecewise regular parametrization x = x(u),
y = y(u) of the boundary Γ. Then,∫∫ ⊕

R

(dxdy)� div⊕(z1(x, y, t), z2(x, y, t)) =

∫ ⊕
Γ

ds�
(
∂~nx

z1(x(u), y(u), t)⊕ ∂~ny
z2(x(u), y(u), t)

)
where ~nx = −y′(u)/

√
x′(u)2 + y′(u)2 , ~ny = x′(u)/

√
x′(u)2 + y′(u)2 are, respectively, the vector

fields of the first and second components of the normal direction to the boundary Γ; and ds =√
x′(u)2 + y′(u)2 du.



4 Conclusions

The study of space-time simplicial fields reveals some interesting aspects and properties for appli-
cations in problems related with space-time evolutionary compositions. The present contribution
is not complete and needs to be developed further.

It is possible to define, in a natural way, simplicial differential operators, similar to standard
equations appearing in fluid mechanics and vector fields in general. The continuity equation
of mass in fluid mechanics has been studied in some detail as a motivation to introduce some
definitions. However, one of the needed simplicial differential operators, is not linear in the simplex,
thus introducing features which are not dealt with in the standard formulation. It seems possible
and useful to study the simplicial version of some important equations in Fluid Mechanics and
other parts of Physics, such as advection-diffusion, Navier-Stokes and others in their compositional
formulation.
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Abstract

In Monti et al. (2014) a compositional model based on Scaled–Dirichlet regression was studied,
following the approach suggested by Campbell and Mosimann (1987), and also studied by Hijazi
and Jernigan (2009). The Scaled–Dirichlet distribution (Monti et al., 2011) is one of the gener-
alizations of the Dirichlet distribution. Using an approach based on the Aitchison geometry and
a suitable measure on the unit simplex SD, Monti et al. (2011) show that the Scaled–Dirichlet
distribution can be viewed as the distribution of a perturbed random composition with Dirichlet
density. The Scaled–Dirichlet regression model is obtained by allowing its parameters to change
linearly with covariates, in order to assess the effects of covariates on the relative contributions of
different components in a composition.

1 Introduction

Compositional data are vectors of parts of some whole which carry relative information. They
are frequently represented as proportions or percentages, which are subject to a constant sum
constraint, i.e. 1 or 100, respectively. Their sample space is the unit simplex, denoted by

SD = {x = (x1, . . . , xD), xi > 0,
D∑
i=1

xi = k} ,

The simplex (SD,⊕,�, 〈·, ·〉a) has a (D − 1)-dimensional real Euclidean vector space structure,
where ⊕ and � are the pertubation and the powering operations and 〈·, ·〉a represents the inner
product. The geometry of the simplex is called simplicial or Aitchison geometry (Pawlowsky-Glahn
and Egozcue, 2001).

There are many applied fields in which these kind of data are involved: from geology to election
forecast, from medicine to economic studies.

Historically, there were different approaches to regression models which relate a compositional
response variable with a system of covariates. The Dirichlet covariate model is one of them. It
assumes that the response variable follows a Dirichlet distribution whose parameters are a log-
linear function of some covariates (Campbell and Mosimann, 1987; Hijazi and Jernigan, 2009;
Gueorguieva et al., 2008; Melo et al., 2009). As particular case, when the variable of interest
is continuous and restricted to the unit interval (0, 1), i.e. when D = 2, the Dirichlet regres-
sion is called Beta regression (Ferrari and Cribari-Neto, 2004). Other solutions involve log-ratio
transformations of the response variable using normality assumptions (Aitchison and Shen, 1980;
Aitchison, 1986; Egozcue et al., 2012), or models based on the generalized Liouville distribution
(Rayens and Srinivasan, 1994) .

The Scaled–Dirichlet covariate model is an extension of the Dirichlet one, based on the algebraic
geometric structure of the simplex. The assumption is that x = (x1, . . . , xD) is a compositional
response vector, with D components having Scaled–Dirichlet distribution SDD(α,β), in which the
parameters are allowed to change with a set of covariates.

The paper is structured as follows: section 2 gives a brief overview of the Scaled-Dirichlet distri-
bution called in this paper Shifted-Dirichlet distribution. Section 3 defines the Shifted-Dirichlet



covariate model and deals with the issue of parameter estimation. An introduction to the alter-
native way based on simplicial regression is given in Section 4. Section 5 presents an example of
application of the two techniques to real data.

2 Shifted-Dirichlet distribution

The Dirichlet distribution is one of the well known probability models suitable for random com-
positions. A random vector X = (X1, . . . , XD) ∈ SD has a Dirichlet distribution, indicated by
X ∼ Dir(α), when its density function (with respect to the Aitchison measure) is:

f(x;α) =

√
DΓ(α+)∏D
i=1 Γ(αi)

D∏
i=1

xαi
i , (1)

where α+ =
∑D
i=1 αi, and Γ denotes the gamma function. The Dirichlet distribution has D

parameters αi, which are assumed to be positive. One of its generalizations is the Scaled-Dirichlet
distribution. A random vector X ∈ SD has a Scaled-Dirichlet distribution with parameters α =
(α1, . . . , αD) ∈ RD+ and β = (β1, . . . , βD) ∈ SD if its density function is

f(x, ;α, ;β) =
Γ(α+)

√
D∏D

i=1 Γ(αi)

∏D
i=1(xi

βi
)αi

(
∑D
i=1

xi

βi
)α+

, (2)

The density (2) is expressed with respect to the Aitchison probability measure (Pawlowsky-Glahn,
2003). See Monti et al. (2011) for a large discussion about the reasons and implications to use the
Aitchison measure. This distribution will be denoted by X ∼ SDD(α,β).

The number of parameters of this model is 2D−1. The Scaled-Dirichlet distribution can be obtained
by normalising a vector of D independent, scaled, gamma r.v.s Wi ∼ Ga(αi, βi) , i = 1, 2, . . . , D ;
i.e. if X = C(W), with W ∈ RD+ , then X ∼ SDD(α,β) (Monti et al., 2011). This distribution can

also be obtained as a perturbed random composition with a Dirichlet density. Let X̃ ∼ DD(α) be
a random composition defined in SD, and let β ∈ SD be a composition. The random composition
X = 	β ⊕ X̃ has a SDD(α,β) distribution (note that 	 is the inverse operation of ⊕). Thus,
taking into account the algebraic-geometric structure of the simplex, the Scaled-Dirichlet density
is just a translation or shift of a Dirichlet density in the simplex. For this reason, it will be called
hereafter Shifted-Dirichlet distribution. The expected value of X ∼ SDD(α,β) with respect to the
Aitchison measure is

Ea(X) = 	β ⊕ Ea(X̃) , (3)

where Ea(X̃) is the expected value of a Dirichlet composition:

Ea(X̃) = C(eψ(α1), . . . , eψ(αD)) , (4)

where ψ is the digamma function. The metric variance of X coincides with the metric variance of
a Dirichlet composition, because this measure of dispersion is invariant under perturbation:

Mvar(X) =
D − 1

D
(ψ′(α1), . . . , ψ′(αD)) , (5)

where ψ′ is the trigamma function.

3 Shifted-Dirichlet Regression

Linear regression with compositional response can be stated as follows. A compositional sample
in SD, denoted by x1, . . . ,xn, is available. The sample size is n. Each data-point, xj , (j =



1, . . . , n) is associated with one or more external variables or covariates grouped in the vector
sj = (sj0, sj1, . . . , sjm, . . . , sjp), where sj0 = 1 by convention. In this approach we hypothesize
that each compositional observation xj follows a conditional Shifted-Dirichlet distribution, given
the set of covariates. Polynomial regression on a covariate s is included as a particular case taking
sjm = smj .

Following the approach of Campbell and Mosimann (1987) and Hijazi and Jernigan (2009), in
order to incorporate in the model the covariate effects, we re-parametrise each parameter αi of the
density written in Equation (2) in terms of covariates and regression coefficients via the following
log-linear model:

αij = αij(sj) = exp

{
p∑

m=0

δimsjm

}
, (6)

where sj is the covariate vector recorded on the j-th observed composition (j = 1, . . . , n), and
δim are the coefficients for the m-th covariate. The parameter δim theoretically can vary by
component, and the covariates may or may not be the same set of explanatory variables for each.
We augment each vector sj with 1 as first position for notation simplicity. Thus, given a sample of
size n, x1, . . . ,xj , . . . ,xn , of identically and independently distributed compositional observations,
the log-likelihood function for the re-parametrised Shifted-Dirichlet, given the covariates s and
ignoring the part that does not involve the parameters, is proportional to ()

l(β, δ|x, s) ∝
n∑
j=1

log Γ

(
D∑
i=1

exp

{
p∑

m=0

δimsjm

})
−

D∑
i=1

log Γ

(
exp

{
p∑

m=0

δimsjm

})

−
D∑
i=1

exp

{
p∑

m=0

δimsjm

}
log βi +

D∑
i=1

exp

{
p∑

m=0

δimsjm

}
log xij

−

(
D∑
i=1

exp

{
p∑

m=0

δimsjm

})
log

(
D∑
i=1

xi
βi

)
.

(7)

Equation (7) can be estimated using the maximum likelihood method via some optimisation algo-
rithm, e.g. the Newton-Raphson algorithm. The choice of the starting value for the algorithm is
of fundamental importance to get fast convergence. For the Dirichlet regression Hijazi and Jerni-
gan (2009) proposed a method based on re-sampling from the original data; for each re-sample a
Dirichlet model with constant parameters is fitted and the mean of the corresponding covariates is
computed. After that, D models of the form

∑p
m=0 δimsjm are fitted by least squares. The fitted

coefficients δ̂im are used as starting values.

Model selection can be performed by testing

H0 : δim = 0 (8)

for some pair (i,m), i = 1, . . . , D and m = 1, . . . , p. For it, the traditional likelihood ratio test
needs to be implemented.

4 Simplicial regression

In order to explain the rationale of simplicial regression (Egozcue et al., 2012), it is necessary to
recall the essential elements of the algebra for the simplex. For any vector of D strictly positive
real components,

z = (z1, . . . , zD) ∈ RD+ zi > 0, for all i = 1, . . . , D ,

the closure operation of z is defined as

C(z) =

(
kz1∑D
i=1 zi

, . . . ,
kzD∑D
i=1 zi

)
∈ SD . (9)



The two basic operations required for a vector space structure of the simplex are perturbation:
given two compositions x and y ∈ SD,

x⊕ y = C (x1y1, . . . , xDyD) , (10)

and powering : given a composition x ∈ SD and a scalar α ∈ R ,

α� x = C (xα1 , . . . , x
α
D) . (11)

Furthermore, an inner product 〈·, ·〉a is defined as

〈x,y〉a =
D∑
i=1

ln
xi

gm(x)
ln

yi
gm(y)

, (12)

where gm(x) denotes the geometric mean of the components of x (Billheimer et al., 2001; Pawlowsky-
Glahn and Egozcue, 2001). This inner product induces a norm and a distance and a Euclidean
vector space structure on the simplex.

Let (e1, . . . , eD−1) be an orthonormal basis of the simplex and consider the (D − 1) ×D matrix
Ψ which rows are Ψi = clr(ei), i = 1, . . . , D − 1. This matrix is called contrast matrix associated
with the orthonormal basis (e1, . . . , eD−1). Each row is called a (log)contrast.

The isometric logratio transformation, ilr for short, of x is the function ilr : SD → RD−1 , which
assigns the coordinates x?, with respect to the given basis, to the composition x. The vector
x? contains the D − 1 ilr-coordinates of x in a Cartesian coordinate system. The inverse of the
ilr-transformation is denoted ilr−1. The function ilr is an isometry of vector spaces. The ilr
transformation is computed as a simple matrix product: defining V = Ψ′ ,

x? = ilr(x) = ln(x)V .

Inversion of ilr, i.e. recovering the composition from its coordinates is given by:

x = ilr−1(x?) = C (exp(Ψx?)) .

Given an orthonormal basis of the simplex, any composition x ∈ SD can be expressed as a linear-
combination,

x = (x?1 � e1)⊕ (x?2 � e2)⊕ . . .⊕ (x?D−1 � eD−1)

=

D−1⊕
i=1

(x?i � ei) ,

where the symbol
⊕

represents repeated perturbation. The coefficients of the linear combination,
for a fixed basis, are uniquely determined, given that in a Euclidean space any point can always
be represented in a unique way by its coordinates with respect to an orthonormal basis. Once an
orthonormal basis has been chosen, all standard statistical methods can be applied to coordinates
and transferred to the simplex preserving their properties (Mateu-Figueras et al., 2011). This is
the key point that is at the base of simplicial regression. The general model can be expressed as

x̂(s) = (s0 � δ0)⊕ (s1 � δ1)⊕ . . .⊕ (sp � δp) =

p⊕
m=1

sm � δm (13)

The goal of estimating the coefficients δ of a curve or surface in SD is solved by translating it into
a D − 1 least squares problem, i.e. for each coordinate

x̂?i (s) = δ?0is0 + δ?1is1 + . . .+ δ?pisp i = 1, . . . , D − 1 , (14)

where δ?m =
(
δ?m1, . . . , δ

?
m,D−1

)
is the coordinate vector associated with δm. In the case of simple

regression m = 1 and s = s, which is a straight-line in the simplex.



5 Example

In this section we compare the two different approaches to regression with a composition as de-
pendent variable: the Shifted-Dirichlet covariate model and the simplicial regression. The example
used is sediment data, i.e. (sand, silt, clay) compositions at different water depths at 39 locations
within an Arctic lake. The goal is to model the effect of the depth covariate on the sediment
composition. The data originally appeared in Coakley and Rust (1968), and were reproduced in
Aitchison (1986).

To solve the maximisation problem defined in Equation (7) we used the BFGS algorithm imple-
mented in R in the optim routine (R Core Team, 2014). To compute the parameters standard errors,
the Hessian resulting from the optimisation process was used. As starting point, β = C(1, 1, 1)
was fixed, and for δ the estimates were obtained fitting a simple Dirichlet regression:

ln(αi(s)) = δi0 + δi1s i = 1, 2, 3 .

The estimated parameters and their standard error are given in Table 1 and the fitted models
(see Equation 3) are shown in Figure 1. Figures (1) and (2) shows the relationships between the

Table 1: Maximum likelihood estimates of Shifted-Dirichlet covariate model

Parameter Estimate S.E.

δ10 -0.601 0.369
δ11 -0.009 0.007

δ20 -1.005 0.365
δ21 0.004 0.006

δ30 -1.474 0.341
δ31 0.011 0.006

β1 0.257 0.232
β2 0.428 0.357
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Figure 1: Estimated conditional means for the Shifted-Dirichlet covariate model of the three components for the
Arctic Lake example.

compositions and the water depth estimated by Shifted-Dirichlet covariate model.
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Figure 2: Evolution diagrams of the three proportions for the Arctic Lake example.

In order to apply the simplicial regression, ilr coordinates of the Arctic dataset were computed
using a sequential binary partition (Egozcue and Pawlowsky-Glahn, 2005). Note that all chosen
balances increase with depth (see Table (2)).

Table 2: Estimation coefficients for the ilr coordinates in simplicial regression for Arctic data

sand-silt/clay sand/silt

Intercept Estimate 1.87 0.459
Std. Error 0.263 0.167

Slope Estimate -0.036 -0.027
Std. Error 0.005 0.003

Predictions of the three coordinates can be back-transformed with the inverse ilr, to obtain a
prediction of the proportions themselves (see Figure 2).

5.1 Model comparison

In order to assess the adequacy of the two regression approaches we examine the residuals behavior
and some goodness-of-fit measures.

One suitable R2 measure to evaluate the proportion of explained variation in the compositions by
the covariate is based on total variability (Aitchison, 1986; Hijazi, 2006), based on the variation
matrix of the transformed logratio data

T(x) = [tir] =

[
var

(
ln
xi
xr

)]
i, r = 1, . . . , D. (15)

Each element tir is the usual variance of the logratio of parts i and r. Aitchison’s total variability
measure totvar(x), i.e. a measure of global dispersion of a compositional sample, is defined as

totvar(x) =
1

2D

∑
i,r

var

(
ln
xi
xr

)
=

1

2D

∑
i,r

tir , (16)



and R2
T as

R2
T =

totvar(x̂)

totvar(x)
, (17)

which compares the total variability of the observed data and the fitted data.

Moreover, the Aitchison distance of any two compositions x and y ∈ SD is defined as

da(x,y) =

√√√√ 1

2D

D∑
i=1

D∑
r=1

(
ln
xi
xr
− ln

yi
yr

)2

. (18)

If one considers the center of a compositional matrix given by

g(x) = C


 n∏
j=1

x1j

1/n

, . . . ,

 n∏
j=1

xDj

1/n
 , (19)

i.e. the closure of the geometric mean of each sampled component, the compositional total sum of
squares (CSST) and the compositional sum of squared residuals (CSSE) are then given by

CSST =

n∑
j=1

d2a(xj ,g) ,

CSSE =
n∑
j=1

d2a(xj , x̂j) .

(20)

In this way another R2-measure based on the compositional sum of squares (Hijazi, 2006), as in
ordinary least-squares regression, is:

R2
A = 1− CSSE

CSST
(21)

Table 3: Goodness of fit measures for the two different regression models.

R2
T R2

A

Shifted Dirichlet regression 0.644 0.936
Simplicial regression 0.626 0.948

The two measures of goodness of fit reported in Table (3) show good percentages of explained
variation by the Shifted-Dirichlet model as well as by Simplicial Regression.

Diagnostic plots are given in Figures (3) and (4).

Further research is needed to investigate how the regression model developed in this paper can be
useful in practice.
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Figure 3: Residual plots for the Arctic Lake example (Shifted-Dirichlet covariate model).
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Figure 4: Residual plots for the Arctic Lake example (Simplicial regression).

REFERENCES

Aitchison, J. (1986). The Statistical Analysis of Compositional Data. Monographs on Statistics and
Applied Probability. London, Chapman & Hall Ltd. (Reprinted in 2003 with additional material
by The Blackburn Press). 416 p.

Aitchison, J. and S. M. Shen (1980). Logistic-normal distributions. Some properties and uses.
Biometrika 67 (2), 261–272.

Billheimer, D., P. Guttorp, and W. Fagan (2001). Statistical interpretation of species composition.
Journal of the American Statistical Association 96, 1205–1214.

Campbell, G. and J. Mosimann (1987). Multivariate methods for proportional shape. pp. 10–17.
ASA Proceedings of the Section on Statistical Graphics.

Coakley, J. P. and B. R. Rust (1968). Sedimentation in an Arctic lake. Journal of Sedimentary
Petrology 38, 1290–1300.

Egozcue, J. J., J. Daunis-i-Estadella, V. Pawlowsky-Glahn, K. Hron, and P. Filzmoser (2012).
Simplicial regression. The normal model. J App Prob Stat 6 (1–2), 87–108.



Egozcue, J. J. and V. Pawlowsky-Glahn (2005). Groups of parts and their balances in compositional
data analysis. Mathematical Geology 37 (7), 795–828.

Ferrari, S. and F. Cribari-Neto (2004). Beta regression for modelling rates and proportions. J App
Stat 31 (7), 799–815.

Gueorguieva, R., R. Rosenheck, and D. Zelterman (2008). Dirichlet component regression and its
applications to psychiatric data. Comput Stat Data Anal 52 (12), 5344 – 5355.

Hijazi, R. H. (2006). Residuals and diagnostics in dirichlet regression. Technical report, Department
of Statistics. United Arab Emirates University.

Hijazi, R. H. and R. Jernigan (2009). Modelling Compositional Data Using Dirichlet Regression
Models. J App Prob Stat 4, 77–91.

Mateu-Figueras, G., V. Pawlowsky-Glahn, and J. J. Egozcue (2011). The principle of working
on coordinates. In V. Pawlowsky-Glahn and A. Buccianti (Eds.), Compositional Data Analysis:
Theory and Applications. John Wiley & Sons, Ltd.

Melo, T. F., K. L. Vasconcellos, and A. J. Lemonte (2009). Some restriction tests in a new class
of regression models for proportions. Comput Stat Data Anal 53 (12), 3972 – 3979.

Monti, G., G. Mateu-Figueras, V. Pawlowsky-Glahn, and J. Egozcue (2014). Scaled-Dirichlet
covariate models for compositional data. Proceedings of 47th Scientific Meeting of the Italian
Statistical Society .

Monti, G. S., G. Mateu-Figueras, and V. Pawlowsky-Glahn (2011). Notes on the Scaled Dirichlet
Distribution, pp. 128–138. John Wiley & Sons, Ltd.

Pawlowsky-Glahn, V. (2003). Statistical modelling on coordinates. In S. Thió-Henestrosa
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Bayesian estimation of the orthogonal decomposition
of a contingency table
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Abstract

Contingency tables can be parametrized by probabilities of each cell in a multinomial
sampling. These probabilities constitute the joint probability function of the two or
more discrete random categorical variables. These probability tables have been pre-
viously studied from a compositional point of view. The compositional approach to
the problem ensures coherence when analysing contingency sub-tables. The main re-
sults are: (1) given a probability table, the closest independent probability table is
the product of their geometric marginals; (2) the probability table can be orthogonally
decomposed into an independent table and an interaction table; (3) the departure of
independence can be measured using simplicial deviance, which is the Aitchison square
norm of the interaction table.

In previous works, the analysis has been performed from a frequentist point of view.
This contribution is aimed at providing a Bayesian assessment of the decomposition.
The resulting model is log-linear one, which parameters are the centered log-ratio trans-
formations of the geometric marginals and the interaction table. Using a Dirichlet prior
distribution of multinomial probabilities, the posterior distribution of multinomial prob-
abilities is again a Dirichlet distribution. Simulation of this posterior allows to study
the distribution of marginal and interaction parameters, checking the independence of
the observed contingency table and cell interactions.

The results corresponding to a two-way contingency table example are presented.

Key words: Interaction; Independence; Simplicial deviance; Multinomial sampling;
Aitchison geometry of the simplex; Orthogonal decomposition



1 Introduction

Contingency tables have been studied for a long time. There are many examples, dating from
the beginning of the XX-th century which afforded elementary, but relevant, questions about
such kind of data (e.g. Yule, 1912). Along the XX-th century many advances have been achieved.
The introduction of log-linear models (Nelder, 1974) and generalized linear models (McCullagh and
Nelder, 1983; Nelder and Wedderburn, 1972) were important milestones in the study of contingency
tables. From the seventies up to now many extensions, improvement of methods and generalisations
have been presented, for instance, see Everitt (1977), Darroch et al. (1980), Chambers and Welsh
(1993), or Goodman (1996). However, challenges are still pendent for a straightforward solution,
specially for the study of n-way contingency tables.

From the compositional point of view, the contingency tables have been studied only recently,
with the early precedent of Kenett (1983). In workshop CoDaWork 2008 (Girona, Spain) Egozcue
et al. (2008) introduced a perturbation-decomposition model for tables of multinomial parameters,
thus opening new possibilities of analysis. This contribution was followed by other compositional
attempts and applications (Gallo, 2011; Fačevicová and Hron, 2013). The approach proposed in
Egozcue et al. (ToAp) is a kind of log-linear model but it has some differences with the stan-
dard ones. The main differences are the way in which marginals are found and the definition of
interactions.

Here, the model based on the orthogonal decomposition of multinomial contingency tables is used
to carry out a Bayesian estimation of both close independent multinomial parameters and the
subsequent interactions. As the Bayesian approach is a likelihood based methodology, zeroes in
the tables are handled without further problems.

In Section 2 the main features of the model based on orthogonal decomposition of contingency
tables are recalled. Some definitions of the Bayesian framework are introduced in Section 3.
Examples are presented in Section 4.

2 Orthogonal decomposition model

Two-way contingency tables coming from a multinomial sampling are considered. They are gener-
ated by a row-classification into I classes, and a column-classification made of J classes. The total
number, N , of classified individuals is then distributed on the I × J cells of the contingency table
(CT) according to the classification. The number of individuals pertaining to the ij-cell is denoted
nij for i = 1, 2, . . . , I, and j = 1, 2, . . . , J . The whole contingency table containing these counts
is denoted N. The table N, as an array of counting random variables, is assumed to be multi-
nomial distributed and its corresponding probability parameters denoted by pij i = 1, 2, . . . , I,
and j = 1, 2, . . . , J . When arranged in a probability table (PT), these probability parameters are
called probability table (PT). The sample space of a CT, like N, is I×J the non-negative integers
restricted to add to N and they are not conceived as compositional data, even when the frequencies
N/N are computed. In fact, they can contain zero-counts and only can correspond to fractions
with N as denominator. Alternatively, the probability parameters P are considered compositional.
This can be summarized as (a) P is in SD, D = I · J ; (b) perturbation and powering, denoted
⊕, �, are vector space operations, and the dimension of SD is D − 1; (c) the centered log-ratio
(clr) transformation is defined and inner product, norm and distances in SD are the ordinary
Euclidean inner product, norm and distance of the clr transformed PT’s. As well-known for SD
(Pawlowsky-Glahn and Egozcue, 2001), the simplex endowed with ⊕, �, and the Aitchison inner
product is a D− 1-dimensional Euclidean space. More explicitly, consider two PT’s, P and Q and
a real number α. The perturbation W = P⊕Q is a PT with entries wij = pijqij/

∑
km pkmqkm.

The α-powering W = α � P is a PT with entries wij = pαij/
∑
km p

α
km. The clr of a PT is an



(I × J)-array, V = clr(P) which entries are

vij = log(pij)−
1

D

I∑
k=1

J∑
m=1

log pkm .

The inverse clr-transformation is P = C exp(V), where exp operates componentwise. Denoting
clr(P) = V and clr(Q) = W, the Aitchison inner product, 〈·, ·〉a, and distance, da(·, ·), of PT’s is

〈P,Q〉a = 〈V,W〉 =
I∑
i=1

J∑
j=1

vijwij , d2
a(P,Q) =

I∑
i=1

J∑
j=1

(vij − wij)2 ,

where 〈·, ·〉 denotes the ordinary Euclidean inner product of arrays.

In these definitions, commonly used in compositional data analysis, there are, at least, two key
points. The first one is the interpretability of the perturbation. Perturbation of PT’s correspond to
apply the Bayes formula to a PT, containing prior probabilities, using a likelihood arranged as a PT,
up to the closure operation. The second point, is that the subcompositional coherence (Pawlowsky-
Glahn et al., 2015; Egozcue, 2009), is guaranteed. In the case of PT’s, subcompositional coherence
assures that distance between two sub-tables have Aitchison distance smaller than or equal to the
distance between the parent PT’s.

The main result in Egozcue et al. (2008, ToAp) is that, independent PTs constitute a (I−1)(J−1)-
dimensional linear subspace of SD. This means that any PT P can be projected orthogonally on
it. The consequence is that P is decomposed in a unique way as

P = Pind ⊕Pint , Pind ⊥ Pint , (1)

where Pind is the projection of P on the independent subspace, and Pint is in the orthogonal
complement. The PT Pint is called interaction PT. The independent PT is on its turn decomposed
into two new PT’s, called marginal PT’s, which have equal rows and equal columns respectively.
The independent PT is then decomposed as

Pind = (1Ir
>)⊕ (c1>J ) , (2)

where r, c are compositions in SJ and SI respectively, and they are treated as column vectors for
matrix notation. The symbols 1I and 1J are column-vectors, with I and J components respectively,
all of them equal to 1.

Equations (1), (2) can be transformed by taking clr and these equations take the form

clr(P) = clr(Pind) + clr(Pint) = 1I(clr(r))> + clr(c)1>J + clr(Pint) . (3)

It should be remarked that clr(r) and clr(c) are clr transformations of compositions in SJ and SI
respectively and they are not PT’s.

The marginal row and column, r and c respectively, are obtained from P as the closed geometric
means by columns and rows of P respectively. This feature indicates that the nearest independent
PT, in the sense of Aitchison geometry in SD, is not obtained from the traditional (arithmetic)
marginals. This is an important difference from common analysis of contingency tables. As a
consequence, clr(Pind) has the property that its arithmetic and geometric marginals are equal up
to a closure; and the geometric marginals of Pint are neutral in the simplex (i.e. all their elements
are equal).

The decomposition in (3) implicitly defines a log-linear model which is revealed after taking clr−1

in (3). The log-linear model is then

P = C exp[clr(Pind) + clr(Pint)] = C exp[1I(clr(r))> + clr(c)1>J + clr(Pint)] , (4)



where the parameters are the J-coefficients in clr(r), the I coefficients in clr(c) and the D = I · J
coefficients in clr(Pint). However, coefficients of any clr add to zero, and the number of free
parameters is (J − 1) + (I − 1) + (IJ − 1) = IJ + I + J − 3. The number of clr-parameters in (4)
can be reduced to IJ + I + J − 3 using ilr-coordinates, but this strategy is not used here as the
clr-parameters can be interpreted directly.

In order to interpret the results when the log-linear model is fitted to a CT, some derived parameters
may be useful. When the norm ‖Pint‖a is null, Pint is the neutral element in SD and P is
an independent PT. Therefore, ‖Pint‖2a is an overall measure of dependence which was named
simplicial deviance. When considered relative to the Aitchison square norm of P, it can be called
relative simplicial deviance. The corresponding definitions are

∆2(P) = ‖Pint‖2a , R2
∆(P) =

‖Pint‖2a
‖Pind‖2a + ‖Pint‖2a

, (5)

where ‖Pind‖2a + ‖Pint‖2a = ‖P‖2a due to the orthogonal decomposition (1). Remarkably, ∆2(P)
does not depend on the marginals of P; such a property is not shared by R2

∆(P). However R2
∆(P)

has clear interpretation based on the facts of 0 ≤ R2
∆(P) ≤ 1, R2

∆(P) = 0 implies independence of
P, whereas R2

∆(P) = 1 indicates that the nearest independent PT to P is the neutral (uniform)
PT, and it can be considered as a pure interaction PT.

In order to interpret the coefficients of V = clr(Pint) it should be taken into account that the
simplicial deviance is decomposed

∆2(P) = ‖Pint‖2a =
I∑
i=1

J∑
j=1

v2
ij , (6)

so that each cell contributes to the simplicial deviance with v2
ij thus deserving the name of cell

interaction. A way of presenting these cell interactions is computing their relative value to the
simplicial deviance or expressing them as percent of contribution. However, the signs of vij are
important as they indicate whether the probability in the cell pij is smaller than the probabil-
ity predicted probability using Pind (negative vij) or it is larger than this predicted probability
(positive vij). It has been proposed to use an interaction array reporting in each cell the value
sign(vij)(v

2
ij/∆

2(P). Unfortunately, the values of vij cannot be interpreted separately as they add
to zero. The analyst should look for large absolute values in the interaction array coupled by
positive-negative interactions. Cells interactions are then interpreted jointly as the origins of the
interactions are frequently coupled.

3 Bayesian analysis

Assume that an I × J contingency table N has been observed as the result of a multinomial
sampling. After adopting the log-linear model (4), the multinomial probabilities pij can be ex-

pressed as functions of the clr’s of the geometric marginals clr(r) = z(r) = (z
(r)
1 , z

(r)
2 , . . . , z

(r)
J ),

clr(c) = z(c) = (z
(c)
1 , z

(c)
2 , . . . , z

(c)
I ), and the entries of V = clr(Pint) denoted vij . Hence, the

likelihood of these parameters, given the observation has the form

L(z(r), z(c),V |N) = K ·
I∏
i=1

J∏
j=1

p
nij

ij ,

where all pij are functions of z(r), z(c),V. In order to simplify the estimation procedure, a Dirichlet
distribution (e.g. Aitchison, 1986) can be chosen as initial joint distribution of the pij . If the
chosen parameters of the Dirichlet distribution are aij > 0, the final or posterior distribution



of the parameters is again a Dirichlet distribution with parameters pij + aij and, therefore, the
posterior distribution is

f(z(r), z(c),V |N) =
Γ (
∑
k

∑
m akm)∏

k

∏
m Γ(akm)

I∏
i=1

J∏
j=1

p
nij+aij
ij ,

∑
k

∑
m

pij = 1 , (7)

The goals of the Bayesian procedure are, at least, three: (a) estimation of posterior distribution
of parameters z(r), z(c), V and their marginal distributions; (b) checking the hypothesis of inde-
pendence of the observed CT; (c) study the distribution of the cell interactions vij and checking
whether they can be considered null or not. These three tasks are hardly carried out using the
explicit distribution (7). A way out consists of drawing independent realisations from (7), and
then, studying the simulated sample of parameters thus accomplishing goal (a).

Checking independence of the observed CT is performed through a predictive p-value (Bayarri and
Berger, 2000; Meng, 1994) as proposed in goal (a). Assume that for each possible set of posterior

parameters, z
(r)
0 , z

(c)
0 , V0, a likelihood ratio test is carried out on the hypothesis

H0 : z(r) = z
(r)
0 , z(c) = z

(c)
0 , V = 0 , (8)

using the statistics

Λ = −2 log

(
L(z

(r)
0 , z

(c)
0 ,V = 0 |N)

L(ẑ(r), ẑ(c), V̂ |N)

)
, (9)

where ẑ(r), ẑ(c), V̂ denote the maximum likelihood estimators based on the sample CT. Asymp-
totically with N , the statistics Λ has distribution χ2 with degrees of freedom IJ + I + J − 3.
This corresponds to the number of estimated parameters, compared with no free parameter in

H0. For each set of values z
(r)
0 , z

(c)
0 , V0, one p-value αp0 is obtained. The αp0, as a function of

the observed CT, has uniform distribution under asymptotic conditions (Robins et al., 2000). A
predictive p-value, α, with asymptotic uniform distribution, is obtained using

α = Φ

(
1

m

m∑
i=1

Φ−1(αp0)

)
, (10)

where the sum goes through the m-simulated sample of parameters z
(r)
0 , z

(c)
0 ; and Φ denotes the

standard normal distribution function (Ortego, 2015). Small values of α suggest rejection of the
independence H0.

The assessment of the hypothesis that a single cell interaction vij is null is performed using Bayesian
discrepancy p-values (Gelman et al., 1996), that is, computing the posterior probability of vij ≤ 0
across the simulated sample. When this p-value is small (near to zero), or large (near to 1),
rejection of vij is suggested. This accomplishes goal (c).

4 Example of a Bayesian estimation of the orthogonal de-
composition of a contingency table

4.1 Marks in a subject

The marks obtained by N = 84 students in a exam of a college-level statistics subject are consid-
ered. Theoretical and practical (mostly problems) questions in the exams are marked separatedly.
In this context, we want to know if the performance in theoretical questions can be considered
independent from the performance in practical questions.



Table 1: Two-way contingency table containing the marks of the may examination of 84 students. Mark of the
theoretical part of the exam (rows) vs. mark of the practical part (columns).

mark (theory)/ mark (prob) A [8.5,10] B [7,8.5) C [5,7) D [0,5)
A [8.5,10] 1 0 4 4
B [7,8.5) 2 4 6 13
C [5,7) 0 3 11 25
D [0,5) 1 1 5 24

The results of the exam may be classified into four groups: A,B,C,D, corresponding to the numeric
interval of Spanish marks over 10 points. The results corresponding to this group of students have
been organized in a two-way table (Table 1). We assume that these marks have been observed
as a result of a multinomial sampling with probabilities pij . A Bayesian framewok is chosen for
the estimation of the table parameters pij . For simplicity, a joint Dirichlet distribution has been
assumed for these probabilities.

A Dirichlet priori has been set for the multinomial probabilities. Then, the posterior distribution
of these parameters corresponds again to a Dirichlet distribution (Eq. 7). A (large) sample of the
posterior distribution has been obtained. This sample is used to describe the uncertainty of the
parameter estimates and other quantities of interest derived from them. For this dataset, a sample
of the posterior of length 10000 has been obtained (e.g. Table 2).

Table 2: Example of table of the posterior sample

1 2 3 4
1 0.01 0.00 0.06 0.08
2 0.01 0.03 0.04 0.17
3 0.00 0.04 0.10 0.24
4 0.02 0.02 0.02 0.16

The tables of the sample of the posterior distribution of probabilities should be properly treated,
due to their compositional character. The clr coordinates of the cells for each table have been
computed (e.g. Table 3). The row and column geometric marginals of the clr coordinates have
also been obtained for each of the tables of the posteriori sample. Also, each of these tables has
been decomposed in its independent (e.g. Table 4) and interaction table (e.g. Table 5) following
Eq. 1. That is, a sample of independent and interaction tables has been obtained from the sample
of posterior tables. This allows to describe the uncertainty of quantities of interest derived from
them, such as deviance, ∆2(P), relative deviance, R2

∆(P), among others.

Table 3: Clr-coordinates of an element of the posterior sample. Row and column geometric marginals.

1 2 3 4 rmarg
1 -1.36 -5.39 1.02 1.30 -1.105
2 -0.57 0.35 0.68 2.06 0.631
3 -4.19 0.52 1.48 2.38 0.048
4 -0.26 0.05 -0.08 2.00 0.426

cmarg -1.594 -1.117 0.776 1.936

The departure from independence for the two sets of marks of interest may be measured observing
the simplicial deviance (square of the norm) of the interaction components of the clr-coordinates
of the posterior tables (Eq. 5). Fig. 1 shows the histogram of this deviance corresponding to
the obtained sample of interaction tables. As the deviance is a measure of dependence, 0 ≤M2

(P) < +∞, a visual comparison with the zero value (red line) is included. For the example marks,



Table 4: Independent component of the decomposition of clr-coordinates of an element of the posterior sample

1 2 3 4
1 -2.70 -2.22 -0.33 0.83
2 -0.96 -0.49 1.41 2.57
3 -1.55 -1.07 0.82 1.98
4 -1.17 -0.69 1.20 2.36

Table 5: Interaction component of the decomposition of clr-coordinates of an element of the posterior sample

1 2 3 4
1 1.34 -3.17 1.35 0.47
2 0.39 0.83 -0.72 -0.50
3 -2.64 1.59 0.65 0.40
4 0.90 0.74 -1.28 -0.36

although the median value is low, the amount of variability in the deviance values points to lack
of independence between the theoretical and practical marks.

Square norm (deviance) of the clr−interaction decomposition
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Figure 1: Simplicial deviance of the clr-interaction decomposition . Red line: null value. Blue line: median.

The relative simplicial deviance R2
M(P) may seem easier to interpret than the deviance, as 0 ≤

R2
M(P) ≤ 1, but this interpretation should be taken with care, as this coefficient is not marginal

invariant. Fig. 2 shows the histogram corresponding to the simplicial relative deviance of the
interaction component of the clr-coordinates of the posterior sample with respect to the norm of
the whole table. A zero-line is also included for a visual comparison. In this case, the majority
of the relative deviance values are around 0.3, being near to its median value, reassuring the
interpretation of lack of independence.

The simplicial deviance is an overall measure of dependence, but often more detail is needed. The
cell values of the interaction table (e.g. Table 6) provide this detail, but the direct interpretation
may be incorrect, due to its compositional character. In order to obtain a detailed description of
interaction using the apropiate scale, the cell interactions for the clr-coordinates of each table of
the posterior sample have been computed. Fig. 3 shows the histogram of the cell interactions as
a summary of the obtained results. For visual comparison, a zero line has been added to each
histogram. Visually, a zero line near the middle of the histogram indicates no interaction added
by that cell (e.g. histogram corresponding to cell 4). If the zero line is far from the center of
the histogram (e.g. histogram corresponding to cell 1), that cell may be adding interaction to the
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Figure 2: Simplicial Relative Deviance of the clr-interaction decomposition. Red line: null value. Blue line: median.

deviance (Eq. 6), and should be studied.
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Figure 3: clr-cell interactions. Red lines: null interaction

However, for an easier understanding of the importance of each cell, the interaction array of the
cells has been also computed (e.g. Table 6), measuring the percentage of interaction added to
the deviance by each cell, and including the sign of this interaction. The histogram of the signed
interaction array for the clr-coordinates of the posterior sample of tables is shown in Fig. 4.
Visually, cells with interaction arrays clearly different from zero should be studied, as they are the
influential ones. It seems that the most influential cells for the departure of independence are cells
1 and 3, namely ’A in theory’ vs ’A in practical’ marks and ’A in theory’ vs ’C in practical’ marks,
with more or less the same weight and opposite signs (see Fig. 4, first row). The positive sign
of the interaction array for cell 1 means that the predicted probability for the cell is larger than
the predicted by the independent table, while the predicted probabilities for cell 3 (negative sign)
are lower than the probabilities predicted by the independent table. Other cells, as cell 5, are also
influential, but with a lower weight. The hypothesis of null interaction has been also assessed by
means of a Bayesian p-value based on a discrepancy (posterior probability of vij ≤ 0 across the



sample) (Table 7). If the zero value is central in the sample, i.e. the proportion of vij ≤ 0 is near
0.5, the hypothesis is not rejected. Otherwise, small or large proportions, lead to the rejection of
the null interaction hypothesis. For instance, for cell 3 the Bayesian p-value is 0.956, and therefore
the null hypothesis is clearly rejected. For cell 1, the p-value is 0.101 and, although the value is
low, the decision of rejection is not so straightforward.

Table 6: Example of interaction array

1 2 3 4
1 6.27 0.54 -24.25 2.84
2 -34.89 2.42 8.79 1.92
3 6.37 -1.82 1.49 -5.74
4 0.77 -0.89 0.55 -0.46
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Figure 4: interaction array. Red line: null value. Blue line: median

Table 7: Bayesian p-value based on discrepancy (posterior probability of vij ≤ 0 across the sample)

1 2 3 4
1 0.101 0.297 0.956 0.455
2 0.773 0.131 0.223 0.697
3 0.261 0.873 0.175 0.746
4 0.880 0.914 0.115 0.052

4.2 An independence test

Simplicial deviance, relative deviance and the interaction array are useful quantities to study
dependence in a contingency table. However, it is usual to discuss independence in contingency
tables by means of a test (e.g. Eq. 8). In our example, are the marks for theory and practice in
the exam independent? In the established theoretical context, that can be rephrased as, does the
contingency table of marks belong to the subspace of independent tables?

H0 : T = Pind ∈ SDind ; H1 : P ∈ SDind



The selected likelihood ratio test statistic (Eq. 9), is based on the sample of estimates of the

independent component Pind, P̂ind. For each table of the sample of the posterior distribution,
its decomposition into independent and interaction component has been obtained in section 4.1.
The proposed test statistic and its corresponding predictive p-value have been computed for each
of these decompositions. This sample of p-values can be used to measure the uncertainty of the
decision of the independence test. Fig. 5 shows the histogram of these predictive p-values for the
posterior sample of tables. It can be observed that there is variability in the sample of p-values, with
a majority of small values, leading to the rejection of the independence hypothesis. However, the
lack of uniformity of p-values and their relative scale are problematic for their interpretation (Robins
et al. (2000)). Therefore, the predictive p-values of the sample have been suitably transformed and
combined, in order to obtain a summary p-value, α, with asymptotic uniform distribution. In this
case, α is nearly 0, and the independence hypothesis has been rejected, as already pointed out by
the deviance values. That is, it cannot be considered that the theory and practical marks of this
exam are independent.
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Figure 5: p-value of the multinomial likelihood ratio independence test

5 Conclusions

Contingency tables have been broadly studied, although only recently have been studied from the
compositional point of view. The orthogonal decomposition of multinomial contingency tables has
been presented. Also, a Bayesian framework for the estimation of the parameters of the tables has
been presented, as a novelty in the compositional treatment of these tables.

A two-way contingency table containing marks from an exam of a college-level statistics course
has been studied as an example. Results show that theory and practical exam marks cannot be
considered as independent, as different characters of the table decomposition suggest. The Bayesian
point of view allows to consider the uncertainty of the estimations of the different coefficients, very
useful when counts in the original table are small. The fact that small and even zero counts are
not problematic from this point of view, makes Bayesian estimation very useful in this context.
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Abstract

The purpose of this contribution is to evaluate whether there is enough statistical basis
to establish a relationship between the popularity of certain terms in the Google, Inc.
browser and the evolution of several worldwide economic indexes the subsequent week.
A linear model trying to predict the evolution of 19 financial indexes from all over the
world with the information of how many times a selected group of 200 key words are
looked up online the previous week is proposed.

The linear model that is proposed takes a compositional approach due to two reasons.
First, because the information contained in the values of the financial indexes has a
compositional nature. The strongest proof supporting this idea is that in case all values
for the indexes on a certain week were multiplied by a factor, the information would
remain unchanged. In fact, the value for a certain index is irrelevant by itself, since it is
its evolution with respect to the rest of indexes that indicates whether it is performing
well. Therefore, this idea suggests that the numerical values of the 19 indexes for a
certain week can be understood as a vector of the simplex and be analyzed accordingly.

Second, the explicative variable has to be understood as a vector of the simplex as well,
for a similar reason as before. For instance, let us imagine that the number of times
the words are looked up online in a certain week was multiplied by a factor. Indeed,
the information contained in this vector would be exactly the same. Moreover, it seems
intuitive as well how the absolute value for the number of searches is irrelevant by itself,
since we will be interested in the relationships amongst variables.

For the reasons we have just set, a compositional approach seems necessary in order to
address the problem successfully, since both the explicative and the predicted variable
present a compositional nature. In other words, despite not adding up to a constant,
the components of the vectors of both the explicative and predicted variable seem to
be closely related in terms of giving information of a part of a whole, so tackling the
problem through a compositional perspective seems appropriate.

The analysis consists of an exploratory analysis of both response (indexes) and explana-
tory (searches) variables and a compositional linear multiple regression between both
sets of variables.



1 Introduction

The scope of the project is to analyze whether the weekly evolution of the popularity of a group of
words in the Google browser is explicative of the behaviour of the financial markets on the following
week. By the term financial markets, we understand a selection of economic indicators from all
over the world, including the main stock market indexes, sovereign bond yields and commodity
prices. This selection of indicators has been made assuming that the characterization of what we
understand as global markets can be done through the most relevant financial centres of the world.

The potential usefulness of the searches in the Google browser (provided by Google, Inc. through
the subsidiary Google Trends (Google Inc., 2014)) has been widely studied in the past. For example,
Preis et al. (2013) tried to approach the correlation between the popularity of a group of selected
words and the Dow Jones Industrial Average Index performance. Other economic-related lines
of investigation have tried to address the correlation between the popularity of certain words in
an Internet browser and other variables such as the stock market volume (Bordino et al., 2012;
Choi and Varian, 2012). However, the information of the popularity of certain words on Google
has also been used in multiple other fields apart from the economic world; for instance, Ginsberg
et al. (2009) focused on the potential correlation of such popularity and the spreading of epidemics.
According to the state of the art, the key message is that the information on the patterns of searches
in the Google browser can be explicative of the behaviour of multiple indicators, as well as it can
anticipate future trends. Indeed, according to the current lifestyle in most developed countries,
the use of Internet seems to be extremely useful to understand not only how society behaves at
present time but also to anticipate how it will behave in the future.

With reference to what the present document intends to add to the state of the art, we have tried
to address a similar problem to the one considered in Preis et al. (2013) taking into account a
compositional approach, both for the information of the popularity of the words as well as the
economic indexes. First, a justification on why such an approach is appropriate has been made.
After that, a regression model has been proposed. Finally, the results have been analyzed critically,
in order to evaluate whether the compositional perspective has worked as expected.

2 Explicative and predicted variables

2.1 Selection and treatment of the 200 terms in the Google browser

The database containing the words that have been selected does not only include economic terms.
Previous research such as Preis et al. (2013) has considered exclusively words from the economic
world, but since a principal component analysis has been used, we have decided to include addi-
tional words to evaluate whether they can be explicative as well. These 200 words are presented in
Table 1, and include the words that were used in Preis et al. (2013) plus an additional group that
has been considered by the authors. It is important to point out that we have deliberately chosen
universal terms. For example, we have avoided using words like subprime or Lehman Brothers
because even though their popularity would have certainly been explicative of the behaviour of the
markets during the period 2004-2014, they would have biased the results of our project.

Regarding the information provided by Google, Inc. (Google Inc., 2014), a few comments have
to be made. First, the information on the number of searches on the browser is not the absolute
number of searches of each word. For every word, the database associated to it has been normalized
in such a way that the historical maximum appears as 100, so there is no way to know the true
absolute popularity of the words. Therefore, the information of the number of searches every week
is expressed as a fraction of the historical maximum. Second, the information on the number of
searches has been rounded to the nearest integer value. For example, in case after the normalization
the value associated to one week is 62.3, Google returns the rounded value 62. Provided that no



Table 1: List of the 200 words that have been used in the study. Note that no capital letters have been used in the
words except those representing acronyms formed with the first letter of each word. For example, the term ”fed”,
commonly used to refer to the Federal Reserve, has been considered without capital letters, while the term ”ECB”
(which stands for European Central Bank) has been used in capital letters.

debt society water trader interest rates savings shortage free
color leverage rich rare earths business speculation capitalization year
stocks loss risk tourism shares credit default swap utilities university

restaurant cash gold politics mortgage sovereign transportation pencil
portfolio office success energy S&P500 treasury trading book
inflation fine oil consume central bank volatility currency travel
housing stock market war consumption futures wage high yield dog

dow jones banking economy freedom commodities salary assets disco
revenue crisis chance dividend brent wealth ECB cinema

economics happy short sell world west texas bank yen bus
credit car lifestyle conflict equity exports yuan animal

markets nasdaq greed kitchen tax imports securities safari
return gains food forex deflation income warrants name

unemployment finance financial markets home GDP capital ETF think
money sell movie crash IPO hedge fund CFD boy
religion investment nyse transaction rating loan insolvency old
cancer fed ore garden bund eurozone disaster word
growth house opportunity fond bankruptcy euro fund number

investment metals health train bullish dollar happiness press
hedge travel short selling labor bearish BRIC sex mother

marriage returns earnings fun productivity terrorism church sun
bonds gains arts environment deficit attack shopping eye

derivatives default culture ring devaluation collapse computer life
headlines present bubble recession federal reserve G20 science time

profit holiday buy yield liquidity danger film person

further information is provided by the browser, there is uncertainty on how the raw big data has
been previously treated by Google, Inc.

The database containing the weekly amount of searches for the 200 words has been treated in
order to, first, address the compositional nature of the data, and, second, to reduce the dimension
according to a principal component analysis. First of all, the zeros on the database have been
identified and addressed in the way that was proposed by Mart́ın-Fernández et al. (2012) and
Mart́ın-Fernández et al. (2003). The decision of approaching the presence of zeros in this way
comes from the strong belief that such zeros are rounding zeros (very small amount of searches
compared to the historical maximum that appear as zeros even though they are not). After
dealing with the zeros on the database, a compositional approach is considered. There are many
explanations supporting the compositional nature of the database. First, in case the number of
searches were all multiplied by a factor k, the information would remain unchanged. Second, the
information for a certain word is irrelevant by itself since it is only explicative when compared to
the rest. For instance, in case the word bankruptcy increases in popularity for a certain week and
the other words present a similar increase, it seems that not much has happened. However, in case
the searches increase for such word and remain quite the same for the rest, this may be relevant.
For this reason, it seems appropriate to understand the number of searches for a certain word as
a part of a whole and apply a compositional treatment accordingly. However, we should be aware
that the sum of the searches for a certain week is not constant, and is unknown. Indeed, the total
number of times that the 200 words are looked up is different every week, but this is irrelevant
because we are not interested in working with the raw data. It is important to highlight that this
detail makes the present study slightly different from the traditional compositional analysis, since
even though it seems intuitive to understand the information as parts of a whole the actual whole
is not only variable for each week but also unknown.

Once the compositional treatment has been justified, we have addressed the fact that the informa-
tion on the number of searches has been normalized in such a way that the historical maximum
has become 100. For a certain week i, we have a 200 component vector containing the information
of the popularity of each word:

Xi = [x1, ..., x200].



Table 2: Cumulated explained variance by the first 20 principal components of the data set.

Component Cumulated variance Component Cumulated variance
Comp. 1 53.3% Comp. 11 89.5%
Comp. 2 65.2% Comp. 12 90.4%
Comp. 3 72.3% Comp. 13 91.3%
Comp. 4 76.7% Comp. 14 92.0%
Comp. 5 79.6% Comp. 15 92.6%
Comp. 6 82.2% Comp. 16 93.1%
Comp. 7 84.2% Comp. 17 93.5%
Comp. 8 85.8% Comp. 18 93.9%
Comp. 9 87.2% Comp. 19 94.3%
Comp. 10 88.4% Comp. 20 94.6%

We have already proved how this vector belongs to the simplex space Aitchison et al. (2002) due
to its compositional nature. However, we can see how each component of the vector represents the
absolute number of searches multiplied by an unknown normalizing factor such that the historical
maximum becomes 100. This operation is equivalent to a perturbation in the simplex for each one
of the 200 components, so the relative information contained in the vector remains undamaged (for
further information on how perturbation does not alter the information of the vector see Aitchison
(1986), Aitchison (1982) and Aitchison et al. (2002)). It is important to point out that the value for
this normalizing factor is irrelevant, since we are not interested in obtaining the absolute number
of searches.

The compositional treatment has consisted in computing the CLR coordinates of the dataset,
according to Aitchison et al. (2002). For a certain week i, the CLR coordinates have one dimension
less than the vector of searches, according to the principles of the compositional analysis. Therefore,
after the CLR transformation the vector for each week becomes a vector of 199 components. After
that, we have applied a singular value decomposition and obtained the principal components of the
space. The ultimate scope of performing such operation is to reduce the dimension of the vector
so we can decrease the number of explicative variables in the regression. Regarding the regression,
we will only consider the first 15 components of the vectors resulting from the principal component
analysis. The percentage of the cumulated explained variance up to the 20th component is detailed
in Table 2.

To sum up, the database containing the information on the searches of the words has been treated
as compositional (through a CLR transformation), and has been simplified according to a singular
value decomposition criterion. The final result has been a new database, where each week is
characterized through a vector of 15 components (since we have limited the number of explicative
variables to the 15 first components of the vectors), which will be our explicative variables in
the regression model we will propose. All computations have been made with R software (R
Development Core Team, 2008).

2.2 Selection and treatment of the indexes

The evolution of the financial markets has been modelled through studying 19 key indexes, which
are representative of stock market indexes and sovereign bonds yields from all over the world, as
well as the most important commodity markets. The information on the values of the indexes has
obtained from Yahoo Finance and Investing.com (Yahoo (2013) and Fusion Media Limited (2014),
respectively). In fact, in order to make a thorough analysis of the worldwide financial markets we
could have taken into consideration every stock market, fixed income index and commodity that is
currently traded in the planet. By doing this, we would certainly be able to see how the worldwide
resources move along what we understand as global markets. However, the difficulty of doing so
would be prohibitively expensive in computational cost, so a simplification has had to be made.

The approach we have taken consists in considering the major financial centres of the world. This



Figure 1: World map with the main areas that have been studied through the selected market indexes.

simplification is equivalent to assume that the evolution of the worldwide financial markets can
be modeled through the stock exchanges with higher trading volume on the planet. Even though
such assumption may not be strictly true, it seems a good simplification of the reality, since any
major change in the evolution of any market in the world will certainly affect these major financial
hubs, so it will be perceived somehow in our model. In Figure 1 we present the countries that are
directly studied through the selected financial indexes. A list containing the 19 indexes is presented
in Table 3.

The information of the indexes has been converted into one single currency, USD, in order to have a
trustworthy representation of the price of the indexes. Such transformation has been done through
the spot currency exchange (value for the currency exchange in the foreign exchange market at
the end of the week). In case we did not do it, the information provided by the indexes would be
partial, since the actual value of the index would depend on the exchange currency rate (which
varies every day). Once this dollarization has been carried out, we can discuss the compositional
nature of the indexes. The key argument supporting the fact that the information of the indexes
is compositional is that in case these indexes were multiplied by a factor k, the information would
remain unchanged. In other words, the actual numeric value of an index is irrelevant by itself,
the important information is how it performs with respect to the rest of indexes. However, even
though the set of values for the 19 indexes can be understood as a vector of the simplex, the sum
is not constant, so our compositional approach will slightly differ from the classical compositional
analysis, thoroughly explained in Aitchison (1986) and Aitchison et al. (2002); provided that the
actual sum of the components is unknown and variable we will not be able to define the closure
operation. Anyway, the fact of not being able to perform the closure operation, which requires to
know the actual value for the sum, will not be necessary, since we will be exclusively interested in
the evolution of the indexes with respect to the rest.

It is especially relevant to highlight that since the sum of the indexes is variable and unknown
we will not be able to predict actual numeric values for the indexes. From a traditional point of
view where the most relevant information of the model is the predicted value for every index, this
may seem disappointing; it is certainly not, because in case such algorithm was used for trading
purposes, with the information on the relative expected behaviour of the indexes we would be able
to get a position in the markets.

The compositional approach has consisted in defining a sequential binary partition and computing
the corresponding ILR coordinates, as it was developed in Egozcue et al. (2003) and Egozcue and
Pawlowsky-Glahn (2005). The definition of such partition is not random; in fact, according to
the information that we had a priori, we have created a partition with several ratios that are of



Table 3: List of the 19 indexes that have been considered for the study.
* In fact, the index we have used is not explicitly the 10 year Hong Kong bond, we have used an index containing a
group of Asian bonds issued in US dollars. However, the evolution of such index can be understood as the evolution
of the fixed income in that region, though not being strictly Chinese.

Name of the index Location of the market Currency of issue
Dow Jones Industrial Average (DJIA) New York, USA US Dollar (USD)

Eurostoxx50 (EUSTX) Frankfurt, Germany Euro (EUR)
Milano Italia Borsa (MIB) Milano, Italy Euro (EUR)

Footsei100 (FTSE) London, UK Great Britain Pound (GBP)
Nikkei225 (NIKKEI) Tokyo, Japan Japanese Yen (JPY)

Hang Seng Index (HSI) Hong Kong, Hong Kong Hong Kong Dollar (HKD)
Bovespa Sao Paulo, Brazil Brazilian Real (BRL)

Australian Stock Exchange (ASX) Sydney, Australia Australian Dollar (AUD)
10 year bond USA USA US dollar (USD)

10 year bond Japan Japan Japanese Yen (JPY)
10 year bond Germany (BUND) Germany Euro (EUR)

10 year bond Spain Spain Euro (EUR)
10 year bond Hong Kong * Hong Kong US Dollar (USD)

10 year bond UK UK Great Britain Pound (GBP)
10 year bond Australia Australia Australian Dollar (AUD)

Gold (futures due earliest date) New York (NYMEX) US Dollar (USD)
Brent (futures due earliest date) London (ICE) US Dollar (USD)
Cocoa (futures due earliest date) London (ICE) US Dollar (USD)
Corn (futures due earliest date) London (ICE) US Dollar (USD)

interest. This partition is presented schematically in Figure 2. Before moving onto the definition of
the coordinates, a few remarks have to be done regarding why we have considered such divisions.
First, we have distinguished between two types of indexes: in one group we have the traditional,
highly liquid indexes, which are present nearly in every portfolio of any investment firm of the
world. These indexes include the high quality sovereign bonds (bonds issued by the US, Germany,
the UK or Japan) as well as the most liquid stock market indexes (New York, London, Frankfurt,
Japan and Hong Kong). We have also included in this group the Brent and Gold futures because
they represent highly liquid assets that are very common as well in any investment portfolio. In
the other group we have included the rest of indexes, including Southern Europe assets, as well as
Emerging Markets indicators, such as the Sao Paulo Stock Exchange. It is especially relevant to
point out that even though alternative divisions based on, for example, the location of the indexes,
would have been correct as well, they would not have represented this clear binomial between high
quality assets versus riskier assets, which is the one assumed to be closely related to the Google
searching pattern. The underlying hypothesis under this procedure is that investors are risk averse:
in other words, risky assets will decrease in value when uncertainty arises because their expected
returns will not compensate any more the associated risk that must be taken when investing in
them (for further information on risk aversion Arrow (1965) and Pratt (1964)).

Once this first division has been made, we have proceeded similarly for each group. For instance,
we have divided the high quality assets group into two subgroups, safer assets versus stock market
indexes. After that, we have made subsequent divisions according to the same criterion. In the
same way, we have divided the indexes contained in the riskier assets group. Overall, the key
message is that we have tried to separate the indexes in such a way that makes sense in terms of
the decision that any investor would have to make. For example, in case the perspectives for the
future worsen, any rational investor would decide to invest in highly liquid, conventional assets,
and liquidate any position in the riskier, more volatile indexes. Therefore, the partition that we
have to create has to represent such decision in order to be meaningful.

To sum up, the treatment of the financial indexes through a ILR coordinate transformation has
been performed because the nature of such data expresses relative information. In order to do so, a
strategic sequential binary partition has been defined and the standard procedure to compute the
ILR coordinates that was proposed in Aitchison et al. (2002) has been applied. The information
containing the sequential binary partition is presented in Table 4. These computations have been
made through Codapack and R software (Comas-Cuf́ı and Thió-Henestrosa, 2011; R Development



Figure 2: Scheme of how the 19 indexes have been separated in order to create the binary partition needed to
compute the ILR coordinates. The divisions have been numbered in red so the corresponding ILR coordinate is
easy to identify.

Core Team, 2008).

After having defined the corresponding treatments on both data sets, an exploratory analysis has
been performed. We present the compositional biplots that have been built in Figure 3. It is
especially relevant to point out how both biplots appear to follow a helicoidal pattern: it seems
that both the explanatory and response variables evolve in a way where there is a somewhat
cyclical pattern. However, there is something that makes the situations over time different from
the past. Indeed, the fact of observing a cyclical pattern in economic data is something we might
have expected, yet the helicoidal shape of the biplots remains unexplained.

3 Regression model

The model that has been built consists in a multiple linear regression, where both the explica-
tive and predicted variable have had a previous compositional treatment. This model has been
built with R software. In total, we have predicted 18 ILR coordinates with a linear combination
of 15 variables (which are the first 15 principal components of the vector containing the CLR
transformation of the searches):

ILRj = β0j +
i=15∑
i=1

βijxi,∀j ∈ [1, 18].

The normality on the residuals has been analyzed on the 18 regressions, through carrying out
the Kolmogorov-Smirnov test (Massey, 1951), the Anderson-Darling test (Anderson and Darling,
1952) and the Shapiro-Wilk test (Royston, 1982). Since we are dealing with a big database, the KS



Table 4: Sequential binary partition that has been used to create the ILR coordinates for the indexes.

DJIA NIK MIB EUSTX ASX BOV HSI FTSE 10US 10JAP 10SPA 10GER 10AUS 10HK 10UK Brent Gold Corn Cocoa
ILR1 1 1 -1 1 -1 -1 1 1 1 1 -1 1 -1 -1 1 1 1 -1 -1
ILR2 -1 -1 0 -1 0 0 -1 -1 1 1 0 1 0 0 1 -1 1 0 0
ILR3 0 0 0 0 0 0 0 0 1 -1 0 1 0 0 -1 0 1 0 0
ILR4 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 -1 0 0
ILR5 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0
ILR6 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0
ILR7 1 -1 0 1 0 0 -1 1 0 0 0 0 0 0 0 1 0 0 0
ILR8 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0
ILR9 1 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
ILR10 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0
ILR11 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0
ILR12 0 0 1 0 -1 -1 0 0 0 0 1 0 -1 -1 0 0 0 1 1
ILR13 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -1 -1
ILR14 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0
ILR15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1
ILR16 0 0 0 0 1 -1 0 0 0 0 0 0 1 1 0 0 0 0 0
ILR17 0 0 0 0 -1 0 0 0 0 0 0 0 1 1 0 0 0 0 0
ILR18 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0

Figure 3: Compositional biplots of the data containing indexes (left) and the data containing the popularity of the
200 words (right), built through Codapack software.



Table 5: Results of the tests checking the normality of the residuals. The criterion to reject the hypothesis on
the normality of the residuals is that either the Anderson-Darling (AD) or the Shapiro-Wilk (SW) test provides a
p-value below the significance level of 0.05 and 0.10, respectively. The Kolmogorov-Smirnov (KS) test has proved
to be too strict when dealing with large databases, so its result has not been considered. Hypothesis of normal
distribution on the residuals rejected for all regressions except ILR7, ILR8 and ILR11.

coordinate p-value KS p-value AD p-value SW normality
ILR1 2.20E-16 0.000 0.000 NO
ILR2 2.20E-16 0.009 0.003 NO
ILR3 2.20E-16 0.052 0.057 NO
ILR4 2.20E-16 0.069 0.058 NO
ILR5 2.20E-16 0.000 0.003 NO
ILR6 2.20E-16 0.000 0.000 NO
ILR7 2.20E-16 0.528 0.203 YES
ILR8 2.20E-16 0.338 0.354 YES
ILR9 2.20E-16 0.003 0.000 NO
ILR10 2.20E-16 0.002 0.000 NO
ILR11 2.20E-16 0.141 0.108 YES
ILR12 2.20E-16 0.032 0.121 NO
ILR13 2.20E-16 0.076 0.023 NO
ILR14 2.20E-16 0.000 0.003 NO
ILR15 2.20E-16 0.122 0.073 NO
ILR16 2.20E-16 0.000 0.000 NO
ILR17 2.20E-16 0.000 0.000 NO
ILR18 2.20E-16 0.098 0.002 NO

Table 6: Fitting indicators for the regression on the 18 coordinates.

coordinate R2 coordinate R2

ILR1 0.801 ILR10 0.889
ILR2 0.791 ILR11 0.609
ILR3 0.950 ILR12 0.933
ILR4 0.949 ILR13 0.838
ILR5 0.724 ILR14 0.385
ILR6 0.844 ILR15 0.872
ILR7 0.507 ILR16 0.773
ILR8 0.818 ILR17 0.740
ILR9 0.845 ILR18 0.660

test is not appropriate because it rejects the normality hypothesis easily (for further information
on the suitability of the KS test for big databases see Babu and Rao (2004)). The results of
the corresponding p-values have been presented in Table 5. We have rejected the hypothesis of
normality on the residuals unless both the AD and SW test have provided p-values above 0.05 and
0.10, respectively (limits imposed according to Anderson and Darling (1952) and Royston (1982)).
We have concluded that normality on the residuals can be rejected for all the regressions except
ilr7, ilr8 and ilr11.

It is relevant to point out a few relevant details with regard to the results of the regression. First,
recall that no collinearity may be expected, since the variables come from a principal component
decomposition so they are orthogonal by definition. Secondly, no leverage problems have been
observed due to the data, by evaluating all the points of the model with the Cook distance,
according to Cook (1977) and Kim and Storer (1996). Finally, potential autocorrelation patterns
on the residuals have been evaluated through the Durbin-Watson test Durbin and Watson (1950,
1951), and the conclusion has been that no autocorrelation may be expected from the present
model.

The fitness of the model has been evaluated through the R2 indicator. The values for the R2

are presented in Table 6. Provided that we are fitting 554 points with a 15 variable model the
results seem highly positive. It would be arguable whether 15 variables are too many, and whether
a simplified model would be more appropriate. Indeed, since we are performing 18 regressions
and each one requires fitting 16 coefficients, our model, which was aimed to be simple, demands
nothing less than 288 coefficients. However, since the database we count on is considerably large
the present solution seems adequate.

A relevant conclusion of the results is that the F test we have performed in the 18 regressions



has proven the linear model we have defined makes sense; provided that the p-value for the F
test in all 18 cases is 2.2 · 10−16 we can infer that the modeling of the evolution of the financial
indexes through an isometric log-ratio transformation (ILR) is undoubtedly meaningful. Several
ideas can be confirmed from such strong results. First, modeling the indexes through a binary
partition approach is appropriate. Even though we had thoroughly justified why the relevant
information on the indexes is on the relative performance with respect to the rest rather than on
their absolute evolution, we confirm that this intuitive idea is correct. Second, we can also confirm
that the compositional approach we have taken for the information on the popularity of the words
is appropriate as well. Indeed, even though the compositional treatment looked adequate according
to the nature of the data, we can confirm that by proceeding this way the model is meaningful.
Last, we have also confirmed that a linear model is a correct approximation. In fact, even though
both compositional treatments on the variables seemed reasonable, we did not have any information
on whether a linear model would be enough, which has been the case.

4 Discussion of the results

Even though the 18 regressions we have proposed have turned out to be meaningful, the fitting
coefficients R2 differ, with values that oscillate between 0.385 and 0.95. It is especially relevant
to address such differences and whether this is a situation we could have expected. There are 3
regressions with a fitting coefficient above 0.93, and provided that we are adjusting 554 points
this is an extremely powerful result. The balances associated to these regressions are the following
comparisons: triple A assets versus double A assets, triple A bonds versus Gold and European
risky assets versus Emerging Markets assets.

If we take a closer look we can see that it is extremely intuitive that these particular ratios are
fitted better than the rest with the data from the Google searches, since they represent relationships
between assets that behave systematically in the same way regardless of the time period we consider.
Let us consider the example where there is a sharp increase in uncertainty and turmoil arises in the
markets. In that case, the AAA assets will recurrently perform better than AA assets, so the ratio
between them will increase (unless AAA assets stop being more secure than AA). However, in case
we think of another ratio different from the previous ones, the behaviour is not that predictable; for
instance, in case turmoil arises it is not clear whether the Nikkei (Tokyo Stock Market) will perform
better than the Hang Seng (Hong Kong Stock Market), so it seems reasonable that the R2 drops
to 0.609. Therefore, from the results we obtain from the R2 we can infer that there are several
combinations of assets that recurrently behave in a similar way when similar situations happen,
whereas there are other combinations of assets where the behaviour is not easily predictable.

On the other extreme of the fitting, we have the ratio between the Milano Stock Exchange and the
10 year Spanish bond, where the R2 is 0.385. This seems to prove that the popularity of the terms
in Google cannot explain the relationship between these two types of assets, or in case it does the
fitness is not accurate. This is a result that might seem shocking in the beginning, but it is not. It
is widely assumed that there is an inverse correlation between the stock markets and the sovereign
bond yields: once uncertainty arises, funds tend to move to safer assets (bonds) and avoid risky
assets (stocks) until confidence is restored. Therefore, it would seem sensible to expect a good
fitness in the regression, since bonds should systematically behave better than stocks at rough
periods and the other way around in case the optimism is restored. However, that is not what
happened in Southern Europe in the time period we have studied. In Figure 4 we have presented
the evolution of ILR14 (Milano Stock Exchange versus 10 year Spanish bond) and the evolution
of ILR4 (AAA assets versus AA assets). If we look closely at the evolution of Milano stocks versus
Spanish bonds we will see that there are localized discrepancies between the fitted values and the
real values: in other words, it is not that the model consistently fits badly the data, the fact is
that there are certain time periods where the prediction is clearly different from the real situation.
If we look carefully at these discrepancies, we can easily understand what has happened. The first



Figure 4: Evolution of the ILR14 and ILR4 coordinates, corresponding to the ratios involving the Milano Stock
Exchange versus the 10 year Spanish bond yield and the AAA assets performance versus AA assets in the time
period 2004-2014. Each year has been marked with a vertical line (each year is equivalent to 52 weeks).

discrepancy arises in 2010, which corresponds to the Eurozone debt crisis: in that situation, the
model gets information of uncertainty, and predicts that bonds should perform better than stocks,
but this is not the case, since in this period Southern Europe bonds were assumed to be extremely
risky as well, so all the funds were escaping both from the stock market and the sovereign bond
market.

The second result we can comment on is that despite having different values for the R2 on the
18 regressions, the information from the Google browser users is clearly explicative of the be-
haviour of the relationships amongst different market indicators the following week, even though
the knowledge of such users on these market indicators might be (very) limited. In other words,
even though the Google users may not be individually able to infer an accurate prediction on how,
for example, AAA assets will perform with respect to Gold the subsequent week, they collectively
provide an extremely good approximation of such behaviour. This phenomenon was first intro-
duced in Surowiecki (2004) and referred as Wisdom of Crowds (for further information on this
concept Surowiecki (2005) and Koohang et al. (2008)).

5 Conclusions

The present project has tried to address the potential correlation between the popularity of 200
words in the Google browser and the evolution of a selection of key financial indexes form all
over the world. Rather than trying to predict the actual value for the indexes, a compositional
approach has been taken so the regression has been made on the ILR coordinates of the indexes,
corresponding to the log-ratios of the indexes in the way we have considered most appropriate,
according to the risk averse nature of any rational investor. The results of such regressions have
turned out to be very positive, since we have obtained that all 18 regressions are meaningful and
present good fitness.

The fact of having obtained a meaningful model leads to consider that even though the individual
knowledge of the Google users on the relationships of several dollarized worldwide economic in-
dicators may be limited, collective search patterns are an accurate estimator of further evolution
of what we understand as global financial markets. The present project has not been aimed to
address this phenomenon, recurrently referred as wisdom of crowds, yet it has proven that the
information of the popularity of certain words that are looked up by people who not necessarily
have thorough financial background is highly correlated with the performance of several economic
indexes the subsequent week.



The second conclusion we can highlight is that the best fitness coefficients of the model have been
for those groups of assets that recurrently behave in the same way. For example, AAA assets
systematically behave better than AA assets during recessions and worse in times of expansions.
This fact is consistent with what we could expect from a model with the characteristics we have
defined: we have calibrated a model with the assumption that the variable we are trying to predict
will behave the same way under similar circumstances, so its fitness will be insufficient in those cases
where the relationship between the assets does not evolve in a similar way under similar situations.
However, in case we are able to identify groups of assets whose relationship is consistent over time,
the fitness of the model becomes extremely powerful, with correlation coefficients above 0.93.

It is left to discussion whether the present approach is the best that can be taken. Indeed, there
is no evidence that any trading activity based on the present model would have performed better
than another one based on the regressions on the raw indexes (with any possible modifications
such as a log-scale transformations). However, the identification of key ratios whose evolution is
consistently well correlated with online search patterns is absolutely positive.
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Abstract 
 

The course of a day comprises a sequence of periods of sleep, sedentary behaviour (SED), 
moderate to vigorous activity (MVPA) and light activity (LIPA) incidental to tasks of 
daily living. These behaviours affect health in different ways. For example, it has been 
shown that 5 to 7 hours of sleep and over 30 minutes of MVPA are associated to better 
health outcomes. To date, the time allocated to each of these behaviours and its 
relationship to health has been studied in isolation or with partial adjustment for time 
spent in other behaviours. However, the time allocated to different activities over a day 
is essentially compositional, it represents a multivariate vector of positive amounts 
subject to a constant sum, a day is 24 hours long. Time spent in one behaviour necessarily 
displace time spent in, at least, another one. Hence, the relative and symmetric scale of 
measurement of physical activity patterns must be considered when conducting statistical 
analyses aimed at investigating relationships between activities, but also relationships 
between them and health outcomes. Using data from the U. S. National Health and 
Nutrition Examination Survey (NHANES), in this work we carry out a first compositional 
approach to investigate the effects of physical activity patterns on biomarkers of health 
issues such as obesity, diabetes or cardiovascular disease. The results show that the 
composition of the day is significantly associated with markers of obesity, cardiovascular 
and diabetes risks. Moreover, the compositional approach provides unique new insights 
into this field of research. 
 
Keywords: Physical activity; health risks; compositional data; log-ratio analysis. 

 



1   Introduction 
 
The course of a day is made of a sequence of periods of sleep, sedentary behaviors (SB) such as watching 
television, light activity (LIPA) incidental to tasks of daily living and moderate to vigorous activity 
(MVPA). Research showed that these behaviors are related to health. For example, there is good evidence 
that 5 to 7 hours sleep (Bansil et al., 2011), and over 30 minutes of MVPA per day (Haskell et al., 2007) 
are associated with better health outcomes. More recently, it has emerged that time spent in LIPA might 
play a positive role in preventing obesity (Kotz and Levine, 2005) and that sedentary time is detrimental to 
health (Owen et al., 2009). To date, the time allocated to each of these behaviors through the day and its 
relationship to health has been studied in isolation or with only partial adjustment for time spent in other 
behaviors (Pedisic, 2014). However, very little attention has been paid to the combined effect of the 
behavioral time budget as a whole and the technical peculiarities of this type of data. Indeed time is finite, 
in a circadian or diurnal cycle, and time spent in one behavior necessarily displace time spent in, at least, 
another one. This implies that the measurements are not independent but rather co-dependent relative 
amounts of time, which together add up to a finite total time equal to either 24 hours, the waking day or 
wear-time depending on the measurement protocol. That is, they are constrained data containing only 
relative information. This, for example, explains why standard statistical analyses commonly face 
collinearity problems when dealing with this type of data. Besides, the usual correlation measure becomes 
an inconsistent measure of pair-wise relationships (Pearson, 1897). It is also a sensible requirement that 
inferences about some behaviors should not depend on the presence or absence of any other behaviors in 
the data. Moreover, conclusions should not depend either on whether the data are expressed in raw units, 
say minutes, or re-scaled to e.g. proportions or percentages. 
 
These particularities can be accommodated when the entire profile of physical behaviors is analyzed within 
a compositional data analysis framework based on log-ratios of the original variables (Aitchison 1986, 
Pawlowsky-Glahn and Buccianti, 2011). The distribution of time spent in physical behaviors is intrinsically 
compositional. The aim of this study is to introduce a compositional approach to the most common data 
analysis in physical activity behavior epidemiology using information from a well-known database and 
demonstrate its benefits. 
 
2   Study design and data analysis 
 
This study considers data from the 2005-6 cycle of the National Health and Nutrition Examination Survey 
(NHANES) designed to assess the health and nutritional status of a representative sample of the United 
States population. This database is well-characterized and has been extensively used to determine the 
association of daily time spent sleeping, sedentary and in light and moderate to vigorous activity with 
cardio-metabolic health markers. The 2005-6 cycle is the only cycle that included concurrent waking day 
assessment of activity via accelerometry and data on sleep duration. After applying inclusion criteria based 
on validity of accelerometry data and non-missing self-reported sleep, covariates and biomarker data, a 
sample of 1937 adult (21 to 64 years old inclusive) participants was available for analysis.  
 
2.1   Data 
 
The day was partitioned in proportion of time spent in four physical behaviors: sleep, sedentary behavior 
(SB), light activity (LIPA) and moderate to vigorous activity (MVPA). Sleep duration was self-reported as 
an integer from 1 to 24 hours and then expressed as a proportion of 24 hours. Time spent in SB, LIPA and 
MVPA was assessed objectively using an accelerometer worn for seven days during waking hours. Days 
when the accelerometer was worn for at least 10 hours were considered valid. Participants were included if 
at least 5 valid days of their activity were available. Minutes spent in each of these three behaviors were 
tallied per day and averaged over all available valid days. The final values of SB, LIPA and MVPA were 
expressed as proportions of 24 hours and combined with sleep time to obtain the composition of the day 
for each participant in proportions adding up to one. 
 
As to cardio-metabolic markers, Body Mass Index (BMI), waist circumference and blood pressure were 
measured. Blood samples were analysed for non-fasting high-density lipoprotein (HDL) cholesterol and C-
reactive protein (CRP). A sub-sample also provided fasting specimen for measurement of fasting low-
density-lipoprotein (LDL) cholesterol, triglycerides (TRI), plasma glucose (GLU) and insulin (INS). The 
latter were used to compute homeostasis model assessment of insulin resistance (HOMA). 
 



Potential confounding factors were extracted from self-reported questionnaires. These included socio-
demographic variables; age, sex, race/ethnicity (Mexican American, other Hispanic, non-Hispanic white, 
non-Hispanic black, or other/multi-racial); marital status (married/living together, widowed, divorced, 
separated, or never married); education (<12 years, 12 years or equivalent, or some college or above); work 
status (not working, working part-time (<35 hours/week), or working full-time (≥35 hours/week); and ratio 
of family income to poverty level. Lifestyle factors considered were smoking status, consumption of 
caffeine and alcohol and total energy and saturated fat dietary intake. Self-reported health (SF-12), previous 
diagnosis of cancer, diabetes, cardiovascular disease and stroke diabetes; and current use of diabetic, 
antihypertensive or lipideamic drugs were also extracted. 
 
2.2   Statistical analysis 
 
Firstly, well-known compositional descriptive statistics of central position and dispersion were computed 
for the physical behavior data. Namely, we used the compositional geometric mean and the variation matrix. 
This latter contains all the pair-wise log-ratio variances between parts of the composition. These measures 
are coherent with the relative and symmetric scale of the data and have been shown to be optimal 
representatives of, respectively, the center and the variability of a cloud of compositional data points 
(Aitchison, 1986; Pawlowsky-Glahn and Egozcue, 2002). 
 
Linear regression models were fitted to examine the associations between cardio-metabolic risk markers 
and time spent in sleep, SB, LIPA and MVPA. The physical activity composition acted as explanatory 
variable and a health outcome as the response variable. The analysis was based on isometric log-ratio (ilr) 
transformations (Egozcue et al., 2003). Denoting a d-part physical behavior composition by 𝐵 =
[𝑏%, … , 𝑏(], where the components or parts 𝑏* are positive amounts satisfying 𝑏* = 𝑘(

*,% , with k being the 
constant total (e.g. 100 if working on percentages), one ilr transformation particularly convenient for 
regression analysis computes the ilr-coordinates 𝑧* as 
 

𝑧* =   
𝑑 − 𝑖

𝑑 − 𝑖 + 1
ln

𝑏*

𝑏6(
6,*7%

89:
, 
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with 𝑖 = 1, … , 𝑑 − 1 (Hron et al. 2012). The regression equation modelling the health outcome (Y) on the 
ilr-transformed coordinates and potential covariates adopts the form 
 

𝑌 =   𝛾= +   𝛾%  𝑧% +   𝛾>  𝑧> + 𝛾?𝑧? + ⋯+ 𝛾(A%𝑧(A% +   𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠   + 𝜀, 
 

(2) 

being 𝜀 a normally distributed random error term. This model accounts for the combined effect of all parts 
of the composition. It does not matter in what order the parts are transformed; the model produces 
equivalent fitting in all cases with identical R2 coefficient, residuals and estimated intercept 𝛾=. However, 
the interpretation of the 𝛾* coefficients requires some considerations. In standard linear regression we would 
normally interpret regression coefficients as the strength of the association between the behavior 𝑏* and 𝑌. 
This is often used to understand if time spent in a specific behavior has an independent effect on 𝑌 and to 
quantify this potential effect. However, because of the compositional nature of the time spent in physical 
behaviors, this way of thinking is largely nonsensical and should be abandoned. Instead we should reason 
in terms of relative amount spent in one behavior with respect to the others. From Equation (1), it is easy 
to see that the ilr-coordinate 𝑧% basically informs about the ratio between time spent in behavior 𝑏% and all 
the others. Therefore 𝛾%  can be directly interpreted as the strength of the association between the amount of 
time spent in 𝑏% relative to the other behaviors and the outcome 𝑌. The p-value associated to 𝛾%  can be used 
as usually to determine whether the behavior 𝑏% is statistically significant or not to explain the variation in 
𝑌. It may give a hint that 𝑏% is a significant part of the composition for 𝑌. However, it should not be 
interpreted as a sign that 𝑏% is a predictor of 𝑌 independently of the other behaviors, or that 𝑏% is 
independently associated with 𝑌. It is not possible though to interpret 𝑧>, or generally  𝑧>, … , 𝑧(A%, in the 
same way using the same model in Equation (2). So the question is how to extract information also about 
𝑏>, … , 𝑏(, how to obtain the same type of information for the other behaviors. Thanks to the permutation 
invariance of the regression fitting mentioned above, it is possible to construct 𝑑 equivalent models with 
each behavior sequentially playing the role of first part of the composition and being transformed into 𝑧%, 
and then interpret each 𝛾%  and its associated p-value sequentially: 

  
 



𝑌 =   𝛾= +   𝛾%  %𝑧%% + ⋯+ 𝛾(A%  %𝑧(A%% +   𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 +   𝜀
⋮

  𝑌 =    𝛾= +   𝛾%  (𝑧%( + ⋯+ 𝛾(A%  (𝑧(A%( +   𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 +   𝜀
 

(3) 

 
A superscript i indicates that the behavior 𝑏* is used in the numerator of Equation (1) to built 𝑧%. We then 
need to interpret each 𝛾%  * from Equation (3) which gives information about the association between the 
outcome Y and the relative amount of time spent on the behavior 𝑏*. These models were used to estimate: 
(a) the association of each behavior with the outcome adjusted for the time spent in all and each of the other 
behaviors, (b) the combined effect of the relative distribution of all the behaviors and (c) the effect of 
displacing time from one behavior to another one. 
 
We are generally interested in quantifying the size of the effect of the behaviours on health outcomes. In 
traditional regression analysis, the regression coefficients are directly interpreted as the change in 𝑌 
associated with a change in 𝑏*. For compositional data this is not the case because a change in 𝑏* is 
necessarily also concomitant with a change in the other behaviors. Moreover, the coefficients 𝛾*   associated 
to the log-ratios coordinates 𝑧* are not easily interpretable in terms of units of change of the raw behaviors. 
However, it is possible to quantify the effect of changing 𝑏* by considering log-ratios between time spent 
in 𝑏* and the other behaviors. This has the advantage of, not only giving a quantification of the effect of 
changing time spent in 𝑏*, but also quantifying this depending on which other behavior this change in 𝑏*  is 
displacing. This can be achieved by computing a change matrix by firstly applying the inverse ilr 
transformation to the regression coefficients 𝛾%, … , 𝛾(A% of the linear model [Eq. (2)] to obtain the 
composition 𝑈 = (𝑢%, … . , 𝑢() associated to them. Then, the change matrix between behaviors, of elements 
𝑐*6, is given by 
 

 𝑏% 𝑏> ... 𝑏( 
𝑏% 0 

𝑐%> =
𝑙𝑛(𝑢%/𝑢>)

4𝑑>
 

… 
𝑐%U =

𝑙𝑛(𝑢%/𝑢()
4𝑑>

 

𝑏> 
𝑐>% =

𝑙𝑛(𝑢>/𝑢%)
4𝑑>

 
0 … 

𝑐>U =
𝑙𝑛(𝑢>/𝑢()

4𝑑>
 

⋮ ⋮ ⋮ 0 ⋮ 

𝑏( 
𝑐U% =

𝑙𝑛(𝑢(/𝑢%)
4𝑑>

 𝑐U> =
𝑙𝑛(𝑢(/𝑢>)

4𝑑>
 

… 0 

 
A value 𝑐*6 provides information about the change in 𝑌 in response to change in the ratio between the times 
spent on behaviors 𝑏* and 𝑏6 by the mathematical constant 𝑒, which is approximately equal to 2.718. If 𝑐*6  

is positive the change corresponds to an increase in 𝑌. That is, this matrix informs about the effects on the 
outcome of all possible substitutions between behaviors in the composition of the day. More directly 
relevant and interpretable 𝑐*6 values could be obtained if, for example, we could evaluate the effect of 
substituting 10 minutes and compute the change in log-ratio for all pairs of behaviors around a set point, 
say the compositional center. Dividing this change by 𝑐*6 would give the estimated effect on 𝑌 of 
substituting 10 minutes of 𝑏6  for 𝑏*. Note also that the values 𝑐*6 of the change matrix give a trustworthy 
estimation of what pairs of behaviors are more influential on the outcome. High values of 𝑐*6 indeed indicate 
that the two behaviors 𝑏* and 𝑏6 involved are important as a ratio. 
 
Finally, note that non-normally distributed outcome variables were log-transformed. Confounders were 
entered in the models as covariates by backward elimination and were retained if the corresponding p-
values were <0.2. The same set of confounders was considered for each outcome. The linearity of the 
association between predictors and outcome, as well as the usual requirements for model residuals, were 
examined. Statistical significance was concluded for p-values below the usual 0.05 significance level. All 
analyses were conducted using the R statistical system version 3.1.1. 
 
3   Results 
 
Descriptive statistics of the percentage time spent on the four behaviors obtained are displayed in Table 1. 
On average, most time is spent on sedentary behavior, whereas least relative time is, by far, spent on MVPA. 
The data variability is summarized in the variation matrix. A value close to zero implies that the times spent 



on the two behaviors involved in the ratio (arranged by rows and columns) are highly proportional. For 
example, the variance of ln(sleep/SB) is 0.148, which reflects the highest (proportional) relationship or co-
dependence between any two behaviors. On the other end, it can be observed that the highest log-ratio 
variances all involve MVPA, which shows that time spent in MVPA is the least co-dependent on the other 
behaviors. This could explain why the effect of other behaviors can appear spuriously independent of 
MVPA using standard statistics. 
 
Table 1. Compositional descriptive measures of the percentage time spent on sleep, sedentary behavior (SB), light activity (LIPA) 
and moderate to vigorous activity (MVPA): compositional center and variation matrix. 
 

 Sleep SB LIPA MVPA 

Compositional center 28.71 40.58 29.23 1.48 

Variation 
matrix 

Sleep 0 0.148 0.168 1.077 

SB 0.148 0 0.248 1.285 

LIPA 0.168 0.248 0 0.909 

MVPA 1.077 1.285 0.909 0 
 
The distribution of the sample compositions is shown in Figure 1 by means of a matrix of ternary plots with 
three behaviors represented at a time. The overlapped heatmaps represent the distribution of the data points 
(the more intense the color is the higher the concentration of data points). The dispersion structure of the 
data is represented by 99% and 95% normal-based probability regions around the compositional center. 
These reflect that the highest variability is found in the direction of the MVPA behavior. 
 

 
Figure 1: Ternary plots of the compositions of time spent in sleep, sedentary behavior (SB), light activity (LIPA) and moderate to 
vigorous activity (MVPA) (black dots). The dotted lines refer to 95% and 99% normal-based probability regions. 
 
Results from the compositional linear regression models are presented in Table 2. It summarizes the 
relevant regression coefficients for each behavior and the associated p-values. They correspond to change 
in the log-ratio of the given behavior to the others. The models were adjusted for age, gender, ethnicity/race, 
self-reported health, diagnosis of health conditions, educational level, social economic status, smoking 



status, alcohol consumption, total dietary calories intake, fat intake, caffeine intake, usage of blood pressure 
drugs and diabetic drug. The overall significance of the model is also given (Overall column). 
 
Table 2. Coefficients and associated p-values from the compositional regression models of cardio-metabolic markers on the daily 
physical behavior composition: sleep, sedentary behavior (SB), light activity (LIPA) and moderate to vigorous activity (MVPA). 
Statistically significant coefficients (p < 0.05) are highlighted in bold. 
 
 Sleep SB LIPA MVPA Overall 

Marker 𝛾%  % p 𝛾%  > p 𝛾%  ? p 𝛾%  V p p 
BMI -1.40 0.009 1.40 0.002 0.98 0.029 -0.98 <0.001 <0.001 
Waist cir. -0.41 0.749 2.41 0.023 0.96 0.368 -2.96 <0.001 <0.001 
Systolic 
Blood Pr. -1.23 0.404 -0.04 0.972 1.30 0.301 -0.02 0.966 <0.001 

Diastolic 
Blood Pr. -2.22 0.048 1.03 0.269 0.70 0.461 0.49 0.198 0.003 

HDL† 0.02 0.286 -0.03 0.096 -0.01 0.549 0.02 0.012 0.121 
LDL 0.18 0.131 -0.04 0.664 -0.10 0.323 -0.03 0.410 0.434 
Triglyceri
des† 0.17 0.018 0.09 0.132 -0.21 <0.001 -0.04 0.062 <0.001 

CRP† 0.23 0.024 -0.04 0.562 -0.06 0.472 -0.12 <0.001 <0.001 
Plasma 
Glucose† 0.04 0.044 -0.03 0.070 -0.01 0.691 -0.01 0.811 <0.001 

Plasma 
Insulin† 0.05 0.488 0.10 0.077 -0.13 0.033 -0.02 0.316 <0.001 

HOMA† 0.10 0.158 0.07 0.249 -0.15 0.020 -0.03 0.295 <0.001 
†Log transformed outcome. 
 
Table 2 shows that the relative distribution of time amongst the four behaviors as a whole is statistically 
significantly associated with all outcomes except for cholesterol levels (HDL, p = 0.121, and LDL, p = 
0.434). For each behavior, the regression coefficients enable to estimate their relative effect (compared to 
the others) when the model is adjusted for the entire distribution of time. For BMI, the proportion of time 
spent in each behavior compared to the other three was statistically significantly detrimentally associated 
with SB (𝛾%  > = 1.40, p = 0.002) and LIPA (𝛾%  ? = 0.98, p = 0.029), but favorably with sleep (𝛾%  % =
−1.40, p = 0.009) and MVPA (𝛾%  V = −0.98, p < 0.001). Interestingly, the same effect sizes but with 
opposite effects were observed for SB and sleep. However, for waist circumference only SB (𝛾%  > = 2.41, 
p = 0.023) and MVPA (𝛾%  V = −2.96, p < 0.001) showed statistical significance with opposite effect and 
similar strength. No parts of the composition were statistically significantly associated with systolic blood 
pressure, but sleep was favorably associated with diastolic blood pressure (𝛾%  % = −2.22, p = 0.048). The 
contrast of time spent in MVPA was associated beneficially with HDL levels (𝛾%  V = 0.02, p = 0.012), and 
this was the only part of the composition exhibiting such result. Statistical evidence of association between 
MVPA and lower CRP levels was also obtained (𝛾%  V = −0.12, p < 0.001), although for this outcome sleep 
resulted statistically significantly associated with higher CRP (𝛾%  % = 0.23, p = 0.024). Finally, statistical 
support was obtained to conclude that the contrast between LIPA and the other behaviors was favorably 
associated with triglycerides (𝛾%  ? = −0.21, p < 0.001), plasma insulin (𝛾%  ? = −0.13, p = 0.033), and 
HOMA (𝛾%  ? = −0.15, p = 0.020); while SB was associated with worse outcomes only for obesity markers; 
and sleep deleteriously associated with triglycerides (𝛾%  % = 0.17, p = 0.018), CRP (𝛾%  % = 0.23, p = 0.024) 
and plasma glucose (𝛾%  % = 0.04,  p = 0.044). 
 
3.1 Effect of time re-allocation 
 
In order to further understand the role played by the relative amount of time spent on each behavior making 
up the composition of the day, we estimated the effect on the outcome (in percentage change about their 
mean value in the sample: BMI = 28.9 kg/m2, waist circumference = 97.7 cm, systolic blood pressure = 
120.1 mmHg, diastolic blood pressure = 70.8 mmHg, LDL = 3.06 mmol/L, HDL = 1.41 mmol/L, 
triglycerides = 1.65 mmol/L, CRP = 0.44 mg/dL, glucose = 5.74 mmol/L , insulin = 69.12 pmol/L, HOMA 
= 3.04) of transferring 10 minutes from one behavior to another one around the average composition (Table 
1). We chose 10 minutes because this is the smallest unit of change in activity recognized to have beneficial 
health effect (see e.g. Haskell et al., 2007). The results are presented in Table 3 for each health outcome.  



Table 3. Change matrices showing the effect on each outcome of taking away 10 minutes of time from the behavior in columns and 
allocating them to the behavior in rows. The effect is computed for time re-allocation around the compositional center and expressed 
as % change in the outcome about their mean value in the sample (see text for details). The behaviours are sleep, sedentary behaviour 
(SB), light activity (LIPA) and moderate to vigorous activity (MVPA). 
 

  
 

The effect of re-allocating time from one behavior to another one whilst the other two are kept stable was 
found to be small and not symmetric. For example, for BMI the largest effect was found when 10 minutes 
of MVPA were displaced by 10 minutes of SB, this changed BMI by 1.21%. However, the opposite, 
replacing 10 minutes of SB by 10 minutes of MVPA, only changed BMI by -0.001%. Sleep had a small 
positive effect on obesity markers. Small positive effects were also observed on systolic and diastolic blood 
pressure when displacing LIPA and MVPA with sleep, with larger effects observed when sleep replaces 
MVPA. Replacing MVPA with sleep changed positively log(HDL) by 0.09%, but only 0.004% and 0.003% 
changes were observed when sleep replaces LIPA and SB respectively. A similar, but more pronounced, 
pattern was observed for CRP, with sleep reducing the log(CRP) by 2.1% when replacing MVPA, but only 
by 0.004% and 0.002% when displacing LIPA and SB in that order. Finally, sleep showed detrimental 
effects on LDL, triglycerides, glucose and insulin level and HOMA, which were much stronger when sleep 
displaced MVPA. 
 
SB was found to lead to higher obesity markers if it displaced any of the other behaviors, but only by 
sizeable amounts if it replaced MVPA. Likewise, SB only had noticeable detrimental effects when 
displacing MVPA for HDL, triglycerides, glucose, insulin, and HOMA. Much smaller detrimental effects 
were observed when SB replaced LIPA or sleep time. Detrimental effects were observed when replacing 
MVPA and sleep with LIPA for both obesity markers, with stronger magnitude when LIPA replaced 
MVPA. On the contrary, LIPA had favorable effects on LDL, triglycerides, glucose, insulin and HOMA, 
substantially more pronounced when replacing sleep than when replacing SB. Finally, re-allocating time to 
MVPA from the other behaviors only had very small effect, most noticeable on HDL. 
 
4   Discussion and final remarks 
 
The fact that daily time is finite implies that time spent on one behavior is naturally co-dependent of the 
time spent on others and the effect of time spent on one behavior should naturally depend on the 
composition of the rest of the day. This study provides a statistically sound and comprehensive investigation 
of the associations between cardio-metabolic health markers and the relative distribution of time spent on 
different physical behaviors that make up the day using a compositional approach. It inherently deals with 
this issue of relative time adjustment and shows that, for most cardio-metabolic health markers (BMI, waist 
circumference, blood pressure, triglycerides, C - reactive protein, plasma insulin and HOMA), the 
composition of time spent in sleep, SB, LIPA and MVPA matters as a whole. 
 
Statistically significant associations between the proportions of time spent in MVPA and SB and the 
markers were found (Table 2), although Table 3 shows that the strongest effects are observed when SB 
displaced MVPA. We obtained that the relative times spent in SB and LIPA were both detrimentally 
associated with obesity markers, HDL, CRP and blood pressure, while MVPA showed a positive 
relationship. It is important to note that the strength of the negative relationship was higher with SB than 

Sleep SB LIPA MVPA Sleep SB LIPA MVPA Sleep SB LIPA MVPA
Sleep -0.002 -0.002 -0.07 Sleep -0.001 -0.001 0.29 Sleep 0 -0.001 -0.09

SB 0.003 0 1.21 SB 0.001 0.001 0.84 SB 0 -0.001 -0.001
LIPA 0.003 0 0.85 LIPA 0.001 0 0.55 LIPA 0.001 0 0.12

MVPA 0 -0.001 -0.001 MVPA -0.001 -0.001 -0.001 MVPA 0 0 0

Sleep SB LIPA MVPA Sleep SB LIPA MVPA Sleep SB LIPA MVPA
Sleep 0 -0.001 -0.36 Sleep 0.001 0.002 0.64 Sleep 0.003 0.004 0.09

SB 0.001 0 0.07 SB -0.002 0.001 0 SB -0.006 -0.001 -2.49
LIPA 0.001 0 -0.004 LIPA -0.002 0 -0.19 LIPA -0.004 0.001 -1.28

MVPA 0.001 0 0 MVPA -0.001 -0.001 0 MVPA 0 0.002 0.002

Sleep SB LIPA MVPA Sleep SB LIPA MVPA Sleep SB LIPA MVPA
Sleep 0.002 0.031 6.37 Sleep -0.002 -0.004 -2.1 Sleep 0.001 0 0.24

SB -0.004 0.032 6.8 SB 0.005 0 -0.95 SB -0.001 -0.001 -0.26
LIPA -0.032 -0.017 -5.2 LIPA 0.004 0 -0.79 LIPA -0.001 0 -0.03

MVPA -0.01 -0.004 0.007 MVPA 0.003 0.001 0.001 MVPA 0 0 0

Sleep SB LIPA MVPA Sleep SB LIPA MVPA
Sleep 0 0.001 0.16 Sleep 0 0.008 1.53

SB 0.001 0.002 0.49 SB 0 0.01 2.1
LIPA -0.001 -0.001 -0.19 LIPA -0.001 -0.001 -1.49

MVPA 0 0 0 MVPA -0.002 -0.002 0.002

Log(Triglycerides) Log(CRP) Log(Glucose)

Log(Insulin) Log(HOMA)

BMI Waist circumference Systolic blood pressure

Diastolic blood pressure LDL Log(HDL)



with LIPA. Table 3 shows that the effect of replacing MVPA with SB was stronger than with LIPA. In 
consequence we can say that, although LIPA might be detrimental, spending the rest of the day in LIPA 
might be better than sitting (SB). This conveys a relevant message in terms of public health as, even if 
people cannot or do not want to engage in MVPA, promoting LIPA may be beneficial. For diabetes risk 
markers (insulin and HOMA) we obtained evidence suggesting that that substituting sitting time for light 
everyday activities may contribute to preventing and managing diabetes. Moreover, in our analysis sleep 
was directly beneficially associated with obesity and blood pressure markers, but could have negative 
effects if it displaced MVPA. 
 
Importantly, our results do not disagree with current evidence about the benefits of MVPA to health, but 
they show that this relationship depends on the composition of the rest of the day. A striking result is that 
the effect of substituting MVPA with other behaviors was not the same if the proportion of time in MVPA 
was increased or decreased. That is, they were not symmetric. For example, replacing 10 minutes of MVPA 
with 10 minutes of SB corresponded to a 1.2% higher BMI, while the opposite, replacing 10 minutes of SB 
with 10 minutes of MVPA, had a 1000 fold lower effect. Hence, the compositional approach allows to 
obtain unique insights into the research question and contributes to investigate health risks associated to 
physical activity in a way that other approaches do not allow. 
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Abstract

An alternative to the de Finetti ternary diagram for representing variability
of species composition is presented. The proposed alternative is based on
the Aitchison geometry of the sample space. It allows statistical modelling
and analysis without the problems derived from spurious correlation, typical
of a standard analysis of proportions. The method is illustrated with data
representing the species composition of Free and FAD tuna school sets sam-
pled in the Indian and Atlantic Oceans during the 2002–2008 period by purse
seiners.

Introduction

The difficulties for a visual illustration of the variability of the species com-
position of sampled sets landed by purse seiners in the Indian and Atlantic
Oceans moved Fontenau et al. (2010) to propose the use of ternary plots,
named after de Finetti (Cannings and Edwards, 1968; Edwards, 2000), to
solve this problem. As summarised by Howarth (1996), there has been an
extensive use of the ternary diagram in many different science fields. The
ternary diagram has a major drawback in that only three part compositions
can be visualised. A similar representation with four parts is possible using
a tetrahedron. But the most important drawback is that, using standard
statistical methods with proportions is known to lead to spurious, nonsen-
sical results (Pearson, 1897; Chayes, 1960). Thus, it appears as desirable
to have tools that allow the visualisation and analysis of a larger number
of parts. These tools are available in the framework of compositional data
analysis based on the logratio approach. Here they are illustrated with real
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data corresponding to species composition of tuna landings. In addition to
this representation of species composition, it is shown how different groups
can be compared using an ANOVA approach.

1 The data

The data were kindly provided by Scientists from the IRD (Institut de
Recherche pour le Développement, France – http://www.ird.fr/). They cor-
respond to species composition of tuna landings. It is a subset of the so-called
“SPECIES” files, i.e. of the detailed species composition of all the sampled
sets collected in the Indian and Atlantic oceans. These data have been used
and described in Fontenau et al. (2010) to introduce the de Finetti ternary
diagrams to show species composition. They correspond to data collected
during the period 2002-2008 on the landing or transshipment operations of
the EU and associated purse seiners.

The characteristics of the data are summarised in Table 1. The available

fishing mode
N FAD BL

Atlantic Ocean (AO) 5784 3526 2258
Indian Ocean (IO) 4947 2857 2090

Table 1: Sample size of species composition of tuna landings by ocean and fishing mode.
N = total sample size; FAD = fish aggregating device; BL = free schools.

data correspond to 5784 operations in the Atlantic Ocean and 4947 in the
Indian Ocean, out of which a part has been obtained using a fish aggregating
device (FAD), while another corresponds to free schools (BL). For each ocean
and each fishing mode three species of tuna have been recorded, YFT =
yellowfin, SKJ = skipjack, and BET = bigeye. The data present a major
number of zeros, which distribution is summarised in Table 2. Once the two
cases with three zeros have been removed, a graphical representation in a
ternary diagram is possible, as can be seen in Figure 1. Zero values appear
in the border of the ternary diagram. If a single component is zero, the
data-point appears on an edge. More precisely, the data point is placed so
that the edge is partitioned into two segments, according to the proportion
between the two non-zero species. When there are zero-proportions in two
parts, the data point is represented in the vertex corresponding to the only
recorded species, independently of the value of the single component: the
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ocean AO IO
assoc FAD BL FAD BL

no zeros 3238 515 2452 98
zeros only in YFT 15 7 4 2
zeros only in SKJ 6 428 10 549
zeros only in BET 237 164 340 147

zeros in YFT and SKJ 0 0 0 6
zeros in YFT and BET 22 182 19 310
zeros in SKJ and BET 8 960 32 976

zeros in YFT, SKJ and BET 0 2 0 2

Table 2: Number of samples with zero and non-zero counts in species composition of
tuna landings (see text for details).

proportion of this species is one. However, Figure 1 may be confusing, as
data-points with small proportions in one or two species, appear close or
very close to those for which there is a zero proportion. This fact redirects
us to a deeper problem concerning the representation of proportions. It is
the question of the scale. For a couple of proportions like 0.01 and 0.005,
it is clear that the first doubles the second; consequently, their difference or
distance should be important. Compare it to the difference between 0.500
and 0.505; in this case, the difference can be considered irrelevant. We say
that proportions carry only relative information and that the scale is relative.
This relative scale is not shown in a ternary diagram, thus claiming for a
change of scale for the representation of proportions. The way out is to
use logratio transformations of the data in proportions. They account for
the relative scale of compositional data and, at the same time, open up a
way for applying standard statistical analysis to logratio transformed data
(Pawlowsky-Glahn et al., 2015; Mateu-Figueras et al., 2011; Aitchison, 1986).

2 Methods

We base our approach on the fact that compositional data, understood as
equivalence classes (Barceló-Vidal et al., 2001), can be represented as pro-
portions in a simplex; that the simplex is then a representant of the sample
space, and that it admits a Euclidean space structure (Pawlowsky-Glahn
and Egozcue, 2001), which leads to the so called Aitchison geometry. The
approach is based on the use of general scale invariant logratios, also called
log-contrasts.
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Figure 1: Representation in the ternary diagram of proportions of landed species. Indian
ocean in blue, Atlantic ocean in red. Data-points on the vertices and edges of the triangle
correspond to data with two or one zero-proportions.

Denoting the abundances ofD species by x = [x1, x2, . . . , xD], log-contrasts
appear as expressions like

ln
xα1
1 x

α2
2 · · · xαk

k

xβ1k+1x
β2
k+2 · · · x

αD
D

,
k∑
i=1

αi =
D∑

j=k+1

βj ,

where xi can represent proportions of landed species in an arbitrary order,
and D is the number of considered species, which in the present example
is D = 3. An important property of such log-contrasts is that their value
does not change when the data in proportions is multiplied by any positive
constant, e.g. 100 for obtaining percentages, or by an arbitrary positive
number when they are expressed in abundances. This is useful in the case
of the reference data, which are not given in proportions, but in some non-
homogenised units not adding to a prefixed constant. It does not matter, log-
contrasts maintain their values independently of the units in which data are
presented; in the present case, only ratios between the abundances of some
landed species are relevant. There are special cases of logratios which are
useful for the representation of compositional data: (a) simple logratios, like
ln(xi/xj), (b) centered logratios, used in the centered logratio transformation,
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which is given by

clr[x1, x2, . . . , xD] =

[
ln

x1
g(x)

, ln
x2
g(x)

, . . . , ln
xD
g(x)

]
, (1)

with

g(x) = (x1x2 · · · xD)1/D =

(
D∏
i=1

xi

)1/D

,

and (c) balances, which take the form of a logratio of geometric means of
groups of components. In the case of the reference data, with D = 3, a
possible choice of balances is

b1 =

√
2

3
ln

x3
(x1x2)1/2

, b2 =

√
1

2
ln
x1
x2
, (2)

which will be used as Cartesian coordinates of the composition of the three
species considered.

The use of logratios to represent compositional data impede the use of
zero-proportions, since logarithms of zero take negative infinite values. When
zero values in abundances or proportions are understood as values below a
detection limit, it is advisable to replace the zero values using some imputa-
tion criteria (Mart́ın-Fernández et al., 2011; Palarea-Albaladejo and Mart́ın-
Fernández, 2008; Palarea-Albaladejo et al., 2007; Mart́ın-Fernández et al.,
2003). In the present case, with D = 3 and a large number of zeros, all types
of imputation introduce serious distortions in the data set.

An important exploratory tool in compositional data analysis is the clr-
biplot (Aitchison and Greenacre, 2002). It is based on the principal compo-
nent analysis of compositional data (Aitchison, 1983) and is a compositional
version of the Gabriel (1971) biplot for real data. Elementary explanations
can be found in Pawlowsky-Glahn et al. (2015) and Thió-Henestrosa et al.
(2011). Construction of a clr-biplot starts transforming the data-set into their
clr’s (Eq. 1); a second step is centering the clr-components to place the origin
of axes in the center of the data; a singular value decomposition (SVD) of the
centered clr-data is then carried out, leading to orthogonal axes which show
maximum variability of the data set; finally, the data and the clr-variables
are simultaneously represented in a bi-dimensional plot. The bi-dimensional
projection of the data set provided by the clr-biplot has the advantage that
the data can have a large number of parts or components, thus performing
a dimension reduction with the minimum loss of variability. In the present
case, where D = 3, the biplot will represent 100% of the variability of the
data. Biplots can be scaled in several ways, being the so-called covariance
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and form biplots the most used. Covariance biplots scale the directions of
the clr-variables proportionally to their standard deviations, and the com-
ponents of data-points appear in a standardized way. Covariance biplots
are adequate to visualise relationships between clr-variables. Form biplots
normalise the representation of clr-variables, leaving the data-points so that
their inter-distances are the Aitchison distances in the simplex (Aitchison,
1983, 1986; Pawlowsky-Glahn and Egozcue, 2001); thus, they are adequate
to study the distribution of data-points.

To start with the analysis of the reference data set of landed species of
tuna, the zeros have been substituted all by the value 0.00005 in propor-
tions. This value is arbitrary and is chosen to visualise the effect of this raw
replacement in a clr-biplot. Figure 2 shows the covariance biplot where the
data-points have been colored according to the appearance of zeros (Table 2).
The biplot shows a clear separation of the groups corresponding to samples
with zeros, thus demonstrating that replacement of zeros introduces artifacts
in the data set. From a compositional perspective, this zero replacement re-

Figure 2: Biplot of data after zero replacement; grouped by categories with zero counts
(see text for details). Explained variability 100%.

spects the ratios between the non-zero parts. In the present case, with D = 3,
the dimension of the data set is 2 and, fixing one logratio, the degrees of free-
dom of a replacement of one zero is one. This effect is shown in Figure 2,
in which those cases with only one replaced zero appear dispersed and sepa-
rated from data-points with no-zeros (blue points), while those cases where
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the replacement is carried out in two components, substitution has two de-
grees of freedom and the replaced data-points appear aligned (gray, pink,
and yellow points). This kind of artifacts due to zero replacements appear
with any procedure of zero replacement in a composition with three parts
(D = 3); less rough replacement procedures can reduce the separation of the
replaced data-points from the data-points without zeros, and even introduce
a dispersion similar to that of data without zeros (Mart́ın-Fernández et al.,
2011).

For the subsequent analysis, data with zeros have been omitted. The
whole data set is classified by ocean (Indian IO, Atlantic AO) and by fishing
mode (FAD, BL). Under this two-way classification, the biplot is computed
assigning colors to the four different groups of data points. Figure 3 shows
the form (upper panel) and covariance (lower panel) biplot. The form biplot
(upper panel) is adequate to show the position of the data points. The
length of rays is the projection of a unitary vector in the direction of each
clr-variable. As in this case D = 3, the represented variance is 100%, and the
rays appear of equal length and unitary, thus telling that they are perfectly
projected on the plane of the two principal components. In cases of larger
dimension, a short ray points out that the clr-direction is not well projected
on the plane. Looking at the data, it can be observed that the classes clearly
overlap, although a small shift to the left of data from AO-FAD relative to IO-
FAD can be observed. Other classes are almost hidden by these two classes.
As the first principal component is approximately a logratio of the geometric
mean of YFT and SKJ over BET, the shift to the left of AO-FAD means
that FAD procedures are more effective in capturing BET, relative to YFT
and SKJ, in the Atlantic Ocean than in the Indian Ocean. However, this
is only a visual impression and this kind of conclusions should be confirmed
statistically.

The lower panel is a covariance biplot. As D = 3, not many differences
can be seen in comparison to the form biplot (upper panel). In a covariance
biplot attention is focussed on the clr-variables represented as rays from
the origin (in red). The length of the rays is proportional to the standard
deviation of each clr-variable corresponding to the logratio of each landed
species over the geometric mean of the other two. In a covariance biplot, the
main tool of interpretation relays on the segments linking the extreme points
of the rays, called links for short. The length of a link is proportional to the
standard deviation of the simple logratio between the species in the respective
labels. The links in the lower panel of Figure 3 are quite similar, although the
link between clr(SKJ) and clr(YFT) is a bit shorter than the link between
clr(SKJ) and clr(BET), or the link between clr(YFT) and clr(BET). A very
short link would imply association between the two involved parts, suggesting
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Figure 3: Biplots of data without zeros. Explained variability 100%. Upper panel: form
biplot by ocean and fishing mode. Lower panel: covariance biplot by ocean and fishing
mode.
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Table 3: Variation array of data without zeros. Upper triangle contains variances of
logratios of species by row and column. Lower triangle shows the mean of the logratios.
Total variance is 2.61.

species YFT SKJ BET
YFT 1.66 3.56
SKJ 1.43 2.62
BET -0.91 -2.34

that the proportions between landed species is almost proportional across the
sample (Egozcue et al., 2013; Lovell et al., 2013, 2015).

Features observed in the covariance biplot of Figure 3 are quantified in
the variation array (Aitchison, 1986), shown in Table 3. The three variances
of simple logratios in the upper triangle are of the same order of magni-
tude, indicating there is no special association between parts. Their square
roots, the standard deviations, are proportional to the links visualised in the
covariance-biplot of Figure 3. Mean values of the logratios are shown in the
lower triangle of Table 3. For instance, the sample mean of ln(BET/SKJ) is
−2.34 which indicates that, in overall mean, the landing abundance of BET
is small relative to SKJ landings. Variation arrays by ocean, by fishing mode,
or by both, show no significantly different features and are not shown here.

In the form biplot (Figure 3, upper panel), the coordinates of data-points
on the first principal axis are approximately proportional to the following
log-contrast

ln
(YFT)0.58(SKJ)0.21

(BET)0.79
, (3)

which corresponds to the projections of rays on the first principal axis. How-
ever, the interpretation of such coordinates is not easy, specially when there
are more than three species in the data set. Therefore, it is common to use
more simple log-contrasts to represent and analyse the compositions. This is
done using balances, like those in Equation (2).

Within the Aitchison geometry of the simplex, it is advisable to work on
orthonormal coordinates, called isometric logratio (ilr) coordinates (Egozcue
et al., 2003) to which all the standard statistical methods, devised for real
random variables, can be applied (Mateu-Figueras et al., 2011). Those
coordinates, shown in Figure 3 (upper panel) or in Equation (3), are ilr-
coordinates generated in the principal component analysis. However, in
practice, the coordinates used correspond to a sequential binary partition,
as described in (Egozcue et al., 2003; Egozcue and Pawlowsky-Glahn, 2005,
2006; Pawlowsky-Glahn and Egozcue, 2011). The generated ilr-coordinates
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are then called balances and have a simpler form (Eq. 2). For the reference
data, a three part composition, the balance-coordinates used here are

b1 =

√
2

3
ln

(
BET

(YFT · SKJ)1/2

)
, (4)

and

b2 =

√
1

2
ln
(

YFT

SKJ

)
. (5)

They can be visualised in a dendrogram like the one in Figure 4. These

Figure 4: Dendrogram for data without zeros grouped by ocean and fishing mode.

kind of balance dendrograms (Pawlowsky-Glahn and Egozcue, 2011; Thió-
Henestrosa et al., 2008) are designed to show graphically and simultaneously:
(a) the sequential binary partition used for designing the coordinates; (b) the
decomposition of the total variance by coordinates; (c) dispersion of balances
using box-plots; (d) mean values of balances; and (e) all these features for
different populations or groups. In Figure 4, the horizontal junction from
the group (SKJ,YFT) to BET corresponds to the balance b1 (Eq. 4); the
horizontal junction of SKJ and YFT corresponds to the balance between
these two species denoted b2 (Eq. 5). Note that in presence of more species
the dendrogram would have as many junctions as the number of parts minus
one. The length of vertical bars over the junction of each balance is propor-
tional to the variance of the balance, thus constituting a decomposition of
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the total variance of the sample. The horizontal junction between groups of
parts is used to show the dispersion of the balance. All horizontal junctions
represent the same range and are scaled accordingly. The zero of the balance
(equality of the numerator and denominator of the balance) is the central
point, independently of the length of the junction. The boxplots under the
junction visualize the dispersion of the sample balances. In the scale of the
horizontal junction, the fulcrum of the vertical bars is the mean of the cor-
responding sample-balance. This is, when the mean balance is placed at the
left side, as is the case in Figure 4, it points out that the parts on the left
have greater proportions than the parts placed at the right: it works like a
lever in equilibrium i.e. a balance in the plain sense. The whole structure
is built up using the whole sample, which corresponds to the black vertical
lines. When the sample is divided into different populations the variance
decomposition of each sub-population is superimposed, respecting the scales
of the horizontal junctions. In this way, both variances and mean of each
balance can be visually compared.

In Figure 4 the whole sample of landed species (no zeros) is divided by
ocean and by association, giving rise to a classification into four groups.
As can be seen, variability within each group is pretty similar and some
differences might be significant in the means of the balances. For example,
the group of tuna landed in the Atlantic Ocean using FAD (FADAO, red)
seems to be different in b1, while the group of tuna landed in the Indian Ocean
from BL (BLIO, green) shows a more differentiated mean in b2. Boxplots for
b1 and b2 are reproduced with more detail in Figure 5 (left and right panels
respectively).
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Figure 5: Boxplots of balance b1 (left) and balance b2 (right) (enlarged).
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Standard statistical methods can be applied to balance-coordinates, in-
cluding model adjustment or testing of hypothesis, e.g. testing equality of
means or performing an analysis of variance. Figures 6 and 7 represent the
data in ilr-coordinates (Eqs. 4 and 5), balances in this case, after removing
samples with zeros. Data have been split into four sets, crossing Atlantic
Ocean (AO) and Indian Ocean (IO) with the extraction techniques, FAD
and BL. A bidimensional normal distribution has been adjusted to the data
represented by balances. Some isodensity contours of the normal distribu-
tion are shown in these figures. Before carrying out a statistical test on the
goodness-of-fit, the normal distribution for the balance-coordinates seems a
first option for modelling. This corresponds to a normal distribution on the
simplex (Aitchison and Shen, 1980; Aitchison, 1982; Mateu-Figueras et al.,
2013; Pawlowsky-Glahn et al., 2015). For the whole sample a low, but
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Figure 6: Atlantic ocean data without zeros represented in balance-coordinates (b1, b2).
Normal contours (probabilities, 0.5, 0.75, 0.90, 0.95) fitted to data. Left panel, FAD-fishing
mode; right panel, BL-fishing mode.

significant, correlation coefficient of −0.23 is obtained when comparing b1
and b2. Separating the four groups, the correlation coefficients were −0.25
for AO-BL, 0.33 for IO-BL, −0.26 for AO-FAD, and −0.07 for IO-FAD, thus
indicating a weak linear dependence between the balances in the four groups.

A test on equality of means of each balance b1 and b2 gave p-values < 10−4,
indicating that the hypothesis of equality of means should be rejected. The
groups responsible of these significative differences for mean balances are
those mentioned when looking at the dendrogram in Figure 4. For balance
b2 the only mean differing significantly from the others is that of IO-BL.

12



●●

●

●

●
●

●●

●

●●

●

● ●●

●

●
●

●
●● ●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●●

●

●
●

●

● ●

●

●

●

●

●
● ●●

●

●

●

●

● ●
●

●

●
●

●●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●
●

●
●

●

●

●● ●●

●

●

●
●

●

●

●

●

●

●

●●

● ●
● ● ●

●

●

●

●
●

●

●

●
●●

●
●●

●
●

●
●

●
●

●

●

●
●

●
●

●

●
●

●● ●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●

●

● ●●

●

●

●●

●
●

●

●
●

●
●

●

●●

●

●
● ●

●

●
●

●

●●
●

●

●
●

●
●

●
● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
● ● ●●

●

● ●
●

●

● ●

●●

●

●
●

● ●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●● ●
●

●
●●

●

●
●

●●●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●●

●

●

●
●

●

●
●●

●

●

●●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●
●

● ● ●

●
●

●

●
●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●● ●

●

●
●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●
●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●
●

●

●
●

●
●

● ●

●

●
●

●

●

●

●
●

●
● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●
●

●

●

●

●

● ●●

●

●

●
●

●
●

●●
●

●

● ●

●●

●

●

●●

●●●
●

●●

●

●●
●

●
●

●●

●

●

●

●
●

●

●

●●

●

●● ●

●

●

●
●

●

● ●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●
●

●
●●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●
●

●

●

●

●

●●

●

●●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●●

●

●
●

●

●

●
●

●
●

●

●●
●

●

●
●

●
●

●

●●
● ●●
● ●

●● ●

●

●

●

●
●●

●

●

●

●●

●● ●

●

●

●
●●

●

●

●● ●
● ●

●

●

●
●●

● ●

●
●●

●
●

●

●

●
●

● ●

●

●●
●

●

●

●

● ●●

●
●

● ●

●

●

●
●

●●

●

● ●

●

●

●

●

●●
●●

●●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●
●

●
● ●

●

●

●
●

●

●●

●

●

●

●

●
●● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●
●

● ●

●

●
● ●
●

●
●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●
●

●

●

● ●
●

●

●

●

●

●
●

●
●

●●

● ●

●

●

●

●

●

●

●●
●●

●

●

●

●●

● ●

●
●

●

●

●● ●

●●

●

●

●
●● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●●●

●

●
●

●
●

●

●
●

●
●●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●
● ●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●●●

●●
● ●

●●
●

●

●

●

●

●

●●

●

●●

●
●

●
●●●

●

●
●

●

●
●

●

●●

●

●●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

● ●● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●●

●●
●

●

●

●

●

●

●

●●
●

●

●
●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

● ●

●●
●

●

●
●
● ●

●

●

●
●

●

●●●
●

●●
● ●

●

●●
●

●●

●●
●
●

●

●
● ●

●●●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●
●●

●

●

●

●
● ●

●
● ●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●● ●

●●

●

●● ●●
●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●●
●

●
●

●

●

●

●●

●

●●●

●
●

●●

●

●

●

●

●

●
●

●

●●
●

●

●●●●

● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●
●

●

●
●●

●

● ●
●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●●
●

●
●●

●
● ●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●
●

●

●

●
● ●● ●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●
● ●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

● ●●

●

● ●●

●

● ●
●

●

●

● ●

●●
●

●●●

●

●

●●

●● ●

●●

●
●

●
●

●

●

●●

●
●

●

●●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●
●●

● ●

●

●
●

●

●

●
●

●

● ● ●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●●

●
●

●

●

●
●

●
●

●●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●●

●
●

●

●

●
● ● ●
●

●

●

●
●

●

●

●●● ●
●

●

●
●

●
●

●
●●●

●

● ●

●

● ●

●
●

●

●

●

●
● ●

●

●

●

●
●● ●●

●

●
●●

●

●

●
●

●

●

●

●

●●

●

●
●●

●

●
●●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●
●

●● ● ●
●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

−6 −4 −2 0 2

−
4

−
2

0
2

4
IO−FAD

balance b1, BET|YFT−SKJ

ba
la

nc
e 

b2
, Y

F
T

|S
K

J ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

● ●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

−6 −4 −2 0 2

−
4

−
2

0
2

4

IO−BL

balance b1, BET|YFT−SKJ
ba

la
nc

e 
b2

, Y
F

T
|S

K
J

Figure 7: Indian ocean data without zeros represented in balance-coordinates (b1, b2).
Normal contours (probabilities, 0.5, 0.75, 0.90, 0.95) fitted to data. Left panel, FAD-fishing
mode; right panel, BL-fishing mode.

For balance b1, the mean differing significatively from the others is AO-FAD,
specially when compared with IO-BL. This means that the proportions of
the three tuna species landed depend on the ocean and on the fishing mode,
although the difference in mean is not strong.

3 Conclusions

Representation of a composition of species in ternary diagrams, in this case
landed species of tuna, was proposed by Fontenau et al. (2010). Here we
show that this representation can be complemented using the exploratory
and graphical tools of the compositional data analysis. Ternary diagram rep-
resentations have two main shortcomings: proportions are not represented
in an appropriate scale; and they cannot be generalised to more than four
species. logratio analysis overcome these shortcomings. The visual tools pro-
posed are: the compositional biplot, the balance dendrogram and scatterplots
of balance coordinates. Compositional biplots simultaneously represent data
in ilr-coordinates (form biplot) and allows a quite intuitive visualisation (co-
variance biplot) of relationships between variables. Balance dendrograms
allow comparison of means and variances of balance-coordinates, selected
by the analyst, from different populations. They graphically show all the
elements for an ANOVA analysis to compare means of balances. Finally,
representation of compositions by ilr-coordinates allow to construct all de-
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sired scatterplots. Statistical modelling of balances or other ilr-coordinates is
reduced to the standard statistical multivariate techniques. Moreover, other
sets of log-contrasts can be studied separately using standard techniques. Fi-
nally, all these representations can be generalised to a large number of parts.
For a number of parts greater than 3, the clr-biplot is an optimal projection;
the balance dendrogram grows as a tree; and the selection of interpretable
balance-coordinates gets more involved, but feasible. In summary, working
on coordinates of the simplex is a powerful tool for the representation and
analysis of compositional data.
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Abstract 

 

Exploratory compositional data analysis allows insights to the bio-geochemical and 

physical processes controlling sedimentation in Lake Iznik (NW, Turkey).  

 

Based on the pattern investigation of clr-biplots from geochemical data, generally three 

main groups of elements are identified: (a) siliciclastic elements, (b) elements related to 

the carbonate accumulation; (c) elements related to organic productivity. The first group 

originates from the detrital input to the lake, i.e. catchment derived material that is 

transported by rivers as particles. The high variance between the siliciclastic elements 

and the second group, represented by calcium, indicates that a different process controls 

the majority of calcium accumulation in the sediments. Most of the calcium reaches the 

lake in dissolved form, originating from carbonate occurrences in the catchment, and 

further re-precipitates as carbonate from the water column. The third group, 

characterized by the total organic carbon content, represents the organic productivity 

within the lacustrine system. Some elements are unrelated to these three groups, such as 

Mn, Na, S, P, and therefore other processes than the fluvial transport, carbonate 

accumulation, or organic production of the lake control the behaviour of such elements. 

Based on the pattern investigation of clr-biplots of mineral data, we conclude that 

calcite has a distinct origin from aragonite, as from the siliciclastics. Additionally, 

kaolinite displays relative higher variance to the other aluminosilicates. One source of 

kaolinite is the weathering of albite. The evaluation of balance-dendograms reveals that 

the calcium accumulation, i.e. carbonate precipitation in the lake, retains most of the 

variability within the data-sets. 

 

A pattern comparison between ternary subcompositions of elements and minerals leads 

to the conclusion of increased chemical weathering since the middle Holocene, 

implying increased moist conditions. Such conclusions are of importance for further 

investigations in which the paleo-environment for the Marmara region is reconstructed 

for the past 31 ka calBP. 

 

Keywords: aragonite, calcite, weathering, kaolinite, albite 

 



1   Introduction 
 

Minerals and geochemical elements, as essential building blocks of sediments and its components, are 

indispensable for understanding the evolution of a lake and its catchment, and also provide understanding 

for sedimentation processes. The closed nature of the mineralogical and geochemical sedimentary 

compositions requires that such data is explored and interpreted using the proper methods. 

 

Lake Iznik (NW, Turkey) is a potential site to reconstruct the paleo-environment in the Marmara region 

(Franz and others, 2006). In the present study, we apply exploratory compositional data analysis to 

investigate the sediment profile IZN09/LC2&LC3 (Fig. 1), which originates from the centre of the lake. 

The final objective of this study is to gain information about the bio-geochemical processes that control 

sedimentation within Lake Iznik over time, and the relationship between them. The sediment record dates 

back to circa 31 ka calBP (Roeser, 2014), and five sediment units (SU V to SU I) have been defined 

based on changes in lithology and magnetic susceptibility (Roeser and others, 2012). These sediment 

units represent the time intervals from the Late Pleistocene (V and IV), the transition to the Holocene 

(III), the early Holocene (II), until circa middle Holocene (I). The Last Glacial Maximum (LGM) - at 

circa 22ka BP, and the Younger Dryas (YD) event - that marks the beginning of the Holocene, are 

retained in the profile (Fig. 1). 

 

 

 

 
 

 
Figure 1: Overview on the composite sediment profile IZN09/LC2&LC3. Depth scale on the left is given in meters composite 

depth. Lithology bar highlights the distribution of monosulfides (black spots) and distinct white (w) or black (b) layers. Exemplary, 

the ratio Ca/Ti, an expression of the carbonate accumulation in the sediments, is presented as obtained from Itrax core scans [count 
ratio] in 1 cm resolution, and as obtained from traditional X-Ray Fluorescence in 5 cm resolution. The right bar highlights 

previously defined sedimentary units. LGM: last glacial maximum. YD: Younger Dryas event. 



2   Exploratory Compositional Analysis – a short review 
 

The exploratory statistical analysis of compositional data consists of the following steps: (1) compute the 

descriptive compositional statistics, (2) center the data for a better visualization in ternary diagrams, (3) 

investigate the clr-biplot to discover patterns in the data set, (4) define an appropriate representation on 

orthonormal coordinates, and (5) compute the summary statistics of the coordinates and represent results 

in a balance dendogram  (Pawlowsky-Glahn and others, 2011). Each of these steps is summarized in the 

following paragraphs. 

 

For compositional data, classical statistical summaries carry no information, due to the spurious 

correlation effect. Therefore, the compositional summary is used, which consists of the determination of 

the geometrical mean of the composition, and the investigation of the variation matrix, which describes 

the dispersion in the compositional data set. It is a tool to analyze the relations between the pairs of 

variables (geochemical elements or minerals). The total variance gives a measure of global dispersion of 

the composition. Centering the compositional data, means that a perturbation is applied to shift the data 

set around its barycenter. For this, the samples are perturbed by the opposite of the geometric mean, g-1. 

Centering the data set is used for better visualization within the ternary diagrams. 

 

A useful exploratory tool which displays the samples and the related variables at the same time is the clr-

biplot, which is a projection of the variability of the data (Tolosana-Delgado, 2012). Like in a principal 

component analysis, the clr-biplot consists of a singular value decomposition, which in this case is 

applied to the matrix of centered logratio transformed data (Aitchison, 2003a). The clr-biplot has unique 

mathematical properties, which are used for interpretation of results. The most striking property is that 

information is contained mainly in the links, i.e. distances between the apexes, or vertices (Aitchison and 

Greenacre, 2002). The length of links is proportional to the variance in-between the variables. 

Furthermore, the angles in-between links in the covariance biplot can give an estimation of the 

relationship between the variables (Aitchison and Greenacre, 2002). For instance, orthogonal links 

indicate that the associated logratios might be independent. Additionally, coincident vertices (very small 

variance in-between links) carry the same, or redundant, information. Whilst for collinear vertices the 

associated subcomposition is a one dimensional biplot, i.e. a compositional line (Aitchison, 2003b). The 

biplot does not allow a conclusion to be drawn on a single component, because as the projection refers to 

a clr logratio transformation (which contains the ratio to the geometric mean of the complete 

composition) it implies a weight of all the parts and not only a single component. 

 

As a result of the exploratory analysis, or given a priori knowledge of the data set, the investigation of a 

certain sequential binary partition might become interesting. A graphical representation for the 

coordinates based on such a partition is the balance dendogram (Egozcue and Pawlowsky-Glahn, 2006; 

Pawlowsky-Glahn and others, 2011). CoDa balance-dendograms are not dendograms in the ‘traditional’ 

sense. They go beyond descriptive statistics, and represent a first step to conceptualizing the data, as the 

balances are defined according to reasonable interpretation approaches. The graphical display of balance 

dendograms are represented by structure from which we can read mainly two characteristics for each 

coordinate: (1) the sample variance, which is given by the ‘height’ of the vertical line (2) the sample 

mean, which is indicated by the contact point (Pawlowsky-Glahn and others, 2011). 

 

3   Lake Iznik: sediment geochemistry and mineralogy 
 

For the sedimentary profile of Lake Iznik (IZN09/LC2&LC3) three data sets are used for exploratory 

compositional analysis: (1) geochemical data obtained with X-Ray fluorescence (XRF) directly on wet 

core halves (Itrax core scanner); (2) inorganic geochemical data for discrete samples, from traditional 

XRF together with organic content obtained from an elemental analyser; and (3) mineralogical data 

obtained from X-Ray diffraction. Whilst the Itrax core scanner allows for the analysis of geochemical 

information in high resolution, conventional XRF on melt tablets and press pellets offers a wider range of 

measurable elements. Details on analytical measurements are given elsewhere (Roeser, 2014). 

 

All three data-sets are of a compositional nature, therefore they can be expressed as vectors of positive 

components which sum up to a total, and each part represents relative information. Geochemistry from 

Itrax core scanners was obtained in 1 cm resolution, resulting in a sample size of circa 1320. The 

geochemical data measured with traditional X-Ray fluorescence as well as the mineralogy data were 

obtained in approximately 5 cm resolution, resulting in a sample size of circa 330. 



In the following sections the compositional statistical summary, clr-biplots and selected ternary 

compositions are presented for the investigated data-sets. Also, possible binary partitions and associated 

interpretation approaches for the balances are proposed for selected subcompositions. All calculations 

were undertaken using Codapack (Comas-Cufí and others, 2011). 

 

3.1   Major element geochemistry – Itrax core scanner 

 
A subset of elements was chosen from those measured with the Itrax core data, resulting in the 

subcomposition (Ti, Al, Fe, Si, Ca, K, S, and Sr). These elements were selected according to the 

following criteria: (a) count rates of minimum 150 counts per 10 seconds; (b) low data scattering1, (c) the 

data-sets contained only a few zeros (less than 0.5% for each variable). No zero replacement was 

undertaken for the Itrax data, and therefore the respective samples were ignored. 

 

The clr-biplot of the selected subcompotision (Fig. 2) shows that there is one set of elements that have 

very small variance to each other, characterizing the siliciclastic sedimentation: Ti, Al, Fe, Si, and K. 

Whereas the alkaline earth metals Ca and Sr characterize the carbonate sedimentation. Strontium is 

typically incorporated into the lattice of aragonite. Sulfur belongs to neither of the two observed groups 

and presents one-dimensional variability in relation to both of them. Moreover, the clr-biplot in Figure 2 

highlights that the pre-defined sedimentary units (SU I to SU V) present an intrinsic geochemical 

differentiation.  

 
Table 1. Variation matrix for the subcomposition (Al, Si, S, K, Ca, Ti, Fe, Sr) obtained from the Itrax core scanner. Total variance is 

1.3559. Values presented in bold typeface highlight smallest variances and values in italic typeface mark intermediate variances. 
 

Xi\Xj Si S K Ca Ti Fe Sr 

Al 0.0454 0.842 0.0434 0.9769 0.0419 0.0511 0.5538 

Si  0.6416 0.0074 0.7368 0.0169 0.0244 0.3605 

S   0.6413 0.3721 0.6861 0.6654 0.2663 

K    0.7627 0.0075 0.0165 0.3798 

Ca     0.8385 0.8448 0.132 

Ti      0.0123 0.4331 

Fe       0.4469 

 

A possible sequential binary partition (SBP) for the Itrax data is proposed in Table 2. The balances 

resulting from the SBP are interpreted as: (b1) importance of carbonate phase relative to detrital fraction; 

(b2) importance of strontium co-precipitation in carbonate; (b3) distribution of monosulfides against 

detrital elements, (b4) importance of iron for sulfide precipitation; (b5) distribution of aluminosilicates 

and clay minerals (K, Al, Si) against Ti; i.e. evaluating if Ti is contained in clay minerals; (b6) 

distribution of micas and kaolinite against Si (which is possibly influenced by the production of biogenic 

silica by organisms); and (b7) distribution of micas against kaolinite.  

 

Overall, balances b3 and b4 evaluate the geochemical signature of the early diagenetical overprint on the 

sedimentation. Note that the interpretation of balances b5 and b6 is not without problem, since Al and Si 

are elements common to a variety of feldspars and clay minerals. The balance dendogram obtained for the 

SBP from Table 2 is given in Figure 3. 
 

Table 2. Possible sequential binary partition for the data of subcomposition (Al, Si, S, K, Ca, Ti, Fe, Sr). 

 

balance Al Si S K Ca Ti Fe Sr 

b1 -1 -1 -1 -1 +1 -1 -1 +1 

b2 0 0 0 0 -1 0 0 +1 

b3 -1 -1 1 -1 0 -1 1 0 

b4 0 0 1 0 0 0 -1 0 

b5 -1 -1 0 -1 0 1 0 0 

b6 -1 1 0 -1 0 0 0 0 

b7 1 0 0 -1 0 0 0 0 

                                                           
1 The absolute difference between subsequent count values for the selected elements is proportionally less than 7% of the average 

total of counts for Ti, Fe, Si, Ca, K and Sr; 14% for Al, and 24% for S. 



 
 

 
Figure 2: (1st vs. 2nd) projection of clr-biplot for subcomposition (Al, Si, S, K, Ca, Ti, Fe, Sr). Data obtained from the Itrax core 

scanner. The cumulative explained proportions by the principal components are PC1(0.8012), PC2(0.9482), and PC3(0.9722) 
 

 
 

 
Figure 3: (A) balance-dendogram of data of subcomposition (Al, Si, S, K, Ca, Ti, Fe, Sr); (B) and (C) zoomed parts of the balance 

dendogram, related to balances b2 (Ca, Sr) and b5 (Ti in relation to the fine fraction), respectively. 



 

From the obtained balance dendogram the highest variance is given for balance 1, highlighting the 

distinct nature of carbonate deposition in relation to siliciclastic input (Fig. 3). Strontium accumulation in 

the sediments has very small variances to that of Ca, except for sediment unit IV (Fig. 3C). Among the 

siliciclastic elements, Fe retains a high amount of variability. Iron shows somewhat elevated variance to 

S, and is therefore not primarily controlled by monosulfide precipitation. The siliciclastis Ti, Si, Al, and 

K, present nearly constant ratios for all sedimentary units. 

 

3.2 Bulk Geochemistry 

 
From the discrete samples the determined major elements are C, S, N, Si, Al, Fe, Mn, Mg, Ca, Na, K, Ti, 

and P. For the carbon content, total inorganic carbon (TIC) and total organic carbon (TOC) fractions were 

determined separately with an elemental analyser. From the measured trace elements, the selected 

elements for CoDa analysis were V, Cr, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Y, Zr, Nb, Ba, W, Pb, Th, and U, 

as for these elements less than 10% of data is below the detection limit 2. 

 

Generally, the logratio approach is not suitable if the data set contains spots of missing data or zeros. If 

the zeros are of the type rounded zeros – which is the case when measurement of a determined element is 

below the detection limit, imputation techniques can be used to replace those zeros. It is practical to 

replace them by small, non zero, values. If the data set has less than 10% (of the complete matrix) of 

values below zero, a non-parametric replacement is appropriate, and the threshold 0.65 of the detection 

limit is a reasonable option (Martín-Fernández and others, 2003). This was the case for uranium. 

 

The variation matrix of the bulk geochemistry is not shown herein due to formatting issues. The total 

variance of geochemical data-set is of 2.2021. Pairs of variables with the smallest variances are specially 

related to the siliciclastic sedimentation, for example Al-K, Al-Ti, Rb-K, or Zn-Ti. 

 

Generally, three groups of elements are recognized in the clr-biplot in Figure 4 (gray circles): (a) 

siliciclastic elements, (b) elements related to the carbonate accumulation, and (c) and elements related to 

the organic productivity. The first group originates from the detrital input to the lake, i.e. catchment 

derived material that is transported by rivers as particles. The detrital elements have nearly coincident 

vertices highlighting their immobile geochemical character. These elements are Si, Al, Fe, K, Ti, V, Cr, 

Co, Ni, Cu, Zn, Ga, Rb, Y, Zr, Nb, W, and Th. The high variance between the siliciclastic elements and 

the second group, represented by calcium, indicates that a different process controls the majority of 

calcium accumulation in the sediments. Most of the calcium reaches the lake in dissolved form, 

originating from carbonate occurrences in the catchment, and further re-precipitates as carbonate from the 

water column. Elements with low to intermediate variance to Ca are the total inorganic carbon (TIC), and 

Sr. Both are part of the carbonate mineral lattice, TIC in the form of CO3
++, and Sr co-precipitates with 

aragonite from the water column. The organic group is given by the low to intermediate variances 

between total organic carbon (TOC), and N. Notably, Mg shows very small variance to the organic group, 

especially to nitrogen. But Mg also has low variance to Si, Al and Fe. Also, U shows small variance to the 

carbonate and organic groups. 

 

Elements associated to neither of the three identified groups are S, Mn, Na, P, As, Pb, and U. Hence, for 

these elements, the rate of supply, and/or fixation into the sediments is further controlled by additional 

processes.  

 

For example, generally early diagenetical processes, i.e. shortly after burial, might remobilize determined 

elements under the new geochemical millieu, forming authigenic minerals. Such new mineral formations 

can remobilize S, Pb and As to sulfides (e.g. arsenopyrite), P to phosphates (e.g. vivianite) and Mn to 

carbonate (e.g. rhodochrosite). Iron can also be subject to such remobilization processes.  

 
From the behavior in the ternary diagrams (Fig.5), Na displays a distinct pattern between the Holocene 

(sediment units I and II) and the Pleistocene (sediment units III, IV, and V) (Fig.5A). Strontium and Mn 

behave distinctly for sedimentary unit IV, which encompasses the Last Glacial Maximum (LGM) (Fig.5B 

and 5C). Notably, the subcomposition (U, Ti, Mn) resembles a linear behavior (Fig.5D). Whilst Mn is 

geochemically mobile under anoxic conditions, U is mobile under oxic conditions and favorable bound to 

the carbonate lattices.  

                                                           
2 Further trace elements were not considered herein because they have scattered information, more than 10% of values under the 

detection limit (rounded zeros), or the rounded zeros appear grouped, which require a different approach to replace the zeros. 



 
 

 
Figure 4: (1st vs. 2nd) and (1st vs. 3rd) projections of the clr-biplot for composition (TIC, TOC, S, N; Si, Al, Fe, Mn, Mg, Ca, Na, 

K, Ti, P; V, Cr, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Y, Zr, Nb, Ba, W, Pb, Th, U). The cumulative explained proportions are PC1 

(0.6828), PC2(0.7915), PC3(0.8499). Gray circle in the 3rd and 4th quadrant refers to (Si, Al, Fe, K, Ti, V, Cr, Co, Ni, Cu, Zn, Ga, 

Rb, Y, Zr, Nb, W, and Th) - element symbols were omitted from figure for simplicity. 
 

 

 

 
 

 
Figure 5: Selected ternary diagrams for the bulk geochemical sediment composition 



 

A meaningful subcomposition was selected to contain a representative element for each of the groups: the 

detrital deposition (Ti), the carbonate accumulation (Ca), the organic production and preservation (Corg), 

in addition to the elements with moderate to high variance to the three groups. A SBP for the 

subcomposition (Corg, Na, Mg, S, Ca, Ti, Mn) is given in Table 3. The resulting balances are interpreted 

as: (b1) Importance of detrital phase against carbonate and organic; (b2) organic control on carbonate 

deposition; (b3) distribution of Mg co-precipitation with carbonates (high Mg calcite); (b4) importance of 

organic decomposition by sulfur pathway; (b5) importance of albite in relation to detrital; and (b6) 

importance of redox processes (Mn) against immobile Ti.  

 
Table 3: Possible binary partition for major element subcomposition (Corg, Na, Mg, S, Ca, Ti, Mn) 

 

balance Corg Na Mg S Ca Ti Mn 

b1 +1 -1 +1 +1 +1 -1 -1 

b2 -1 0 +1 -1 +1 0 0 

b3 0 0 -1 0 +1 0 0 

b4 +1 0 0 -1 0 0 0 

b5 0 +1 0 0 0 -1 -1 

b6 0 0 0 0 0 +1 -1 

 

Similarly to the balance of Figure 3, the highest variance is retained by balance 1 that evaluates the 

siliciclastic and the carbonate accumulation, and Ca retains high variability within the data-set. Calcium 

and Mg also retain high variability when related to the preservation of organic matter. For sediment unit 

IV there is ‘abnormal’ high variance related to the carbonate accumulation, and the Mn accumulation, 

when compared to the further sediment units.  

 

 
 

 
Figure 6: Balance dendogram for subcomposition (TOC, Na, Mg, S, Ca, Ti, Mn ) 

 

 



3.3 Mineralogy 
 

The major minerals that compose the bulk mineral assemblage of Lake Iznik sediments are quartz, 

feldspar (plagioclase), kaolinite/chlorite, muscovite/illite, and the carbonate polymorphs calcite and 

aragonite (Franz and others, 2006). In the present study, the identified feldspar is the sodium end member 

of the plagioclase series, albite. The concomitant presence of kaolinite and chlorite (chlinoclore) in the 

bulk sediment is determined by the typical double-peak appearance allowing for good separation in 

between them. Illite is per definition a smaller grain size of muscovite (Moore and Reynolds, 1997) and 

therefore, muscovite/illite is considered one mineral phase. 

 

The seven identified mineral phases were quantified along the profile means rietveld analysis, which 

results in a closed data vector for each depth. The clr-biplot of the mineralogical data set shows that 

variability of the information is retained by the carbonates; at the same time as aragonite and calcite also 

have high variance in between each other. The nearly perpendicular links of log(aragonite/quartz) and 

log(calcite/albite), enlighten that the processes related to the mineral ratios originating the links have low 

correlation, or are independent. Similar independent processes can be found in the biplot for other ratios, 

although always in relation to the carbonate minerals. 

 
Table 4: Variation matrix for the subcomposition (quartz, calcite, aragonite, muscovite/illite, chlinoclore, kaolinite, albite). Total 

variance is of 1.7407. Values presented in bold typeface highlight smallest variances. 

Xi\Xj Cal Ara M / I Chli Kao Alb 

Quartz 0.4521 1.6841 0.0332 0.0258 0.0887 0.0282 

Calcite  1.3379 0.4627 0.4126 0.4749 0.4702 

Aragonite   1.6383 1.6089 1.3863 1.6447 

Musc. /Illite    0.0327 0.0579 0.0865 

Chlinoclore     0.0593 0.0611 

Kaolinite      0.1391 

 

 

 
 

 
Figure 7: Compositional clr-biplot for major mineral assemblage. Cumulative explained proportions are PC1 (0.7588), 

PC2(0.9377), PC3(0.9784). 

 



The overall pattern of compositional lines observed within the ternary diagrams of mineral 

subcompositions highlights the intrinsic geochemical discrimination of the sedimentary units, especially 

with units IV and II as extremes (Fig. 8). Distinct patterns from the Pleistocene in relation to the 

Holocene are given for the subcompositions (aragonite, quartz, kaolinite) in Figure 8D, or for the 

subcomposition (aragonite, quartz, albite) in Figure 8C. The pattern becomes clearer by amalgamation of 

the carbonates and clay minerals (Fig. 8A). 

 

 

 

 
Figure 8: Selected ternary diagrams 

 

A sequential binary partition for the mineral data set is proposed in Table 5. The associated balances offer 

the following interpretation approaches: (b1) importance of aluminosilicates, against carbonate and 

quartz; (b2) importance of primary carbonate production (aragonite); (b3) origin of calcite (detrital vs. 

chemically precipitated); (b4) clays of the type 2:1 against feldspar and 1:1 clays; (b5) K bearing versus 

Fe and Mg bearing clays; (b6) importance of weathering of albite into kaolinite. 

 
Table 5: possible binary partition for the major mineral composition (quartz, calcite, aragonite, muscovite/illite, chlinoclore, 

kaolinite, albite). 

 

balance Quartz Calcite Aragonite Musc./Illite Chlinoclore Kaolinite Albite 

b1 +1 +1 +1 -1 -1 -1 -1 

b2 -1 -1 +1 0 0 0 0 

b3 -1 +1 0 0 0 0 0 

b4 0 -1 0 +1 +1 -1 -1 

b5 0 0 0 +1 -1 0 0 

b6 0 0 0 0 0 +1 -1 

 



 
 

 
Figure 9: (A) balance dendogram for the major mineral assemblage; (B) zoom into balances b4 and b6; (C) zoom into balance b3. 

 

Within the balance dendogram in Figure 9, again, highest variance lies between the carbonates and the 

detrital input. For the balances relating carbonates and detrital, sediment unit IV holds the highest 

variances, because this sedimentary unit retains a highly detrital character, and reduced Ca accumulation 

(Fig. 1, and Fig. 9 b2), expressed by nearly absent aragonite (Fig. 8B, 8C, and 8D). Balance 3 shows a 

very small variance of calcite related to the detrital quartz input, leading to the inference that calcite has a 

detrital character. Although the high variance from calcite to the siliciclastics, as well as to the primary 

produced aragonite (Fig.7) indicates that calcite accumulation and preservation in Iznik sediments is 

manifold. For instance in addition to the possible detrital or primary origins, the shells of ostracodes are 



made of biogenically precipitated calcite. Figure 9B zooms into the ratio between kaolinite and albite, 

which increases for the Holocene (sediment units I and II). The chemical weathering of the feldspar albite 

originates kaolinite, and dissolved Na as by products (Berner, 1971, and 1980). The observations from 

Figure 9 balance 6, as well as the patterns from ternary subcompositions (Ca, Na, Ti) in Figure 5A and 

(carbonates, quartz+albite, clays) in Figure 8A strongly suggest increased chemical weathering for 

sediment unit I, implying a increased atmospheric moisture supply for the Marmara region, during the 

middle Holocene. 

 

4 Conclusions 

 
Based on absolute concentrations of elements, on average silica is more abundant than calcium in Iznik 

sediments, however data also shows that a great amount of geochemical variability is retained by calcium, 

and mineralogical variability by aragonite. Hence, Lake Iznik is unique for its carbonate accumulation in 

the form of aragonite, which is favored by distinctive water chemistry of the lake. 

 

Overall, the clr-biplots of geochemical data, show three main groups of elements: (1) those that present 

low variance to calcium, (2) those that present low variance to the organic carbon, and (3) siliciclastic 

elements. Nevertheless, some elements present a slight higher variance in relation to the siliciclastic 

phase, for example: manganese – which is subject to early diagenetical reactive transport due to changes 

in the redox conditions; and sodium – which is impoverished in the Holocene sediments. 

 

A distinct pattern observed for the geochemical ternary subcomposition (Ca, Na, Ti) in Figure 5A, is 

observed also for the mineral ternary subcomposition (carbonates, quartz+albite, clays) in Figure 8A, 

suggesting that the impoverishment in sodium accumulation during the middle Holocene results from the 

enhanced chemical weathering of albite in the basin. 

 

The mineral clr-biplot displays analogies to the geochemical biplot. The siliciclastic and carbonate groups 

identified in the geochemical clr-biplot refer to the detrital minerals, and aragonite in the mineral clr-

biplot, respectively. Calcite clearly has an additional and distinct source in relation to the siliciclastic 

elements, as well as to the primary carbonate aragonite. In fact, this mineral also builds shells of 

ostracodes.  

 

Overall, this study shows that a parallel exploratory data analysis of two different compositional data sets 

(in this case geochemical and mineralogical) from the same geological matrix can give meaningful 

insights about the genesis of such geological material. The development of appropriate compositional 

methods to explore patterns or relationships in between such compositional data sets is highly desirable. 

 

References 

 
Aitchison, J. 2003a. The Statistical Analysis of Compositional Data. 2nd ed: The Blackburn Press. 

 

Aitchison, J. 2003b. A Concise Guide to Compositional Data Analysis. Lecture Notes. Available online at 

CoDaWeb. 

 

Aitchison, J., and Greenacre, M. 2002. Biplots of compositional data. Journal of the Royal Statistical 

Society Series C-Applied Statistics 51:375-392. 

 

Berner, R. A. 1971. Principles of Chemical  Sedimentology, International Series in the Earth and 

Planetary Sciences: McGraw-Hill Book Company. 

 

Berner, R. A. 1980. Early Diagenesis - A Theoretical Approach. New Jersey: Princeton University Press. 

 

Comas-Cufí M, Thió-Henestrosa S. CoDaPack 2.0: a stand-alone, multi-platform compositional software. 

In: Egozcue JJ, Tolosana-Delgado R, Ortego MI, eds. CoDaWork'11: 4th International Workshop on 

Compositional Data Analysis. Sant Feliu de Guíxols; 2011. 

 

Egozcue, J. J., and Pawlowsky-Glahn, V. 2006. Simplicial geometry for compositional data. Geological 

Society, London, Special Publications 264 (1):145-159. 

 



Martín-Fernández, J. A., Barceló-Vidal, C. and Pawlowsky-Glahn, V. 2003. Dealing with Zeros and 

Missing Values in Compositional Data Sets Using Nonparametric Imputation. Mathematical Geology 

35 (3):253-278. 

 

Moore, D. M., and Reynolds Jr., R. C. 1997. X-Ray diffraction and the identification and analysis of clay 

minerals. 2nd Edition ed. Oxford: Oxford University Press 

 

Pawlowsky-Glahn, V., Egozcue J. J., and Tolosana-Delgado, R. Lecture Notes on Compositional Data 

Analysis. pp. 96. Girona, Barcelona: Univeristy of Girona, Technical University of Catalonia, 2011. 

 

Roeser, P. (2014). Paleolimnology of Lake Iznik, PhD Thesis, pp. 201., University of Bonn 

 

Roeser, P. A., Franz, S. O., Litt, T., Ülgen U. B., Hilgers, A., Wulf, S., Wennrich, V., Akçer Ön, S., 

Viehberg, F. A., Çağatay, N. M., and Melles, M. 2012. Lithostratigraphic and geochronological 

framework for the paleoenvironmental reconstruction of the last ∼36 ka cal BP from a sediment 

record from Lake Iznik (NW Turkey). Quaternary International 274 (0):73-87 

 

Tolosana-Delgado, R. 2012. Uses and misuses of compositional data in sedimentology. Sedimentary 

Geology 280 (0):60-79. 

 



Joint compositional calibration: a geochronological example

R. Tolosana-Delgado1, K. G. van den Boogaart1,
E. Fiserova2, K. Hron2, and I. Dunkl3

1Helmholtz Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology,
Freiberg, Germany r.tolosana@hzdr.de

2Palacky University, Dept. Mathematical Analysis and Applications of Mathematics,
Olomouc, Czech Republic

3Georg August University, Dept. Sedimentology and Environmental Geology, Goettingen, Germany

Abstract

This contribution explores several issues arising in the measurement of a (geo)chemical composition,

specially in the case that the quantities of interest are linear functions of (log)-ratios. This is the

case of multi-isotopic geochronological analyses, where an age of a geological material is inferred

as a function of several logratios in the isotopic system (Hg202, Pb204, Pb206, Pb207, Pb208,

Th232, U235, U238), by using several ratios (e.g., Pb208/Pb206, Pb206/Pb204, Hg202/Pb204,

U238/U235), quantities that are scaling invariant and subcompositionally coherent, but which in

general cannot be estimated without taking into account additive noise effects incompatible with

a purely compositional approach. The proposed ways to a solution heavily build upon the multi-

Poisson distribution, higlighting the counting nature of the readings delivered by these measuring

machines.



1 Introduction

Elemental abundances are obtained with LA-ICP-MS (Laser Ablation Inductively Coupled Plasma

Mass Spectrometry): the matter to analyse is ablated with a laser and the resulting gas is in-

troduced in a plasma, where its atoms part with their most loosely bound electron to form a

(+1)-charged ion. These are then separated by a magnetic field, on the basis of their mass-charge

ratio, each colliding with a detector. The result is a vector of counts (collisions per unit of time)

for several possible masses, which must then somehow be related to concentrations or relative

abundances of the several elements or isotopes present, usually in a proportional way.

Thus, the machine is often used alternatively with analytes of unknown composition (samples) or

of known composition (standards), in order to derive the proportionality factor between signal and

composition. It is worth noting that the detectors receive counts even when no analyte is present

(background or blank, due to e.g. rest samples, other gases in the plasma, etc.), and that the

signal received while analysing standards shows systematic drifts at several time scales (along the

day, during a measurement, etc).

Thus, the desired ratios of abundances must be estimated from data on counts, taking into account

the noise in the signal and a (potenially non-constant) proportionality between ratios of signals

and ratios of abundances along time. This setting is often attacked by calibrating each isotope

abundance separately, subtracting an additive noise and assuming a proportionality function on

time interpolated between standards. Several interpolation methods have been reported to be

used, though mostly they are piecewise linear interpolations or polynomial fits.

None of the existing methods considers in any sense the possible compositional nature of the

problem. This contribution explores the reasons behind that and presents several ways of taking

that into account. This work builds upon materials presented at the previous edition of CoDaWork

(2013).

2 Basics of Laser Ablation Inductively Coupled Plasma Mass

Spectrometry (LA-ICP-MS)

2.1 Recall of Poisson distribution properties

A random variable X is said to follow a Poisson distribution with intensity parameter λ, denoted

as X ∼ Po(λ) if and only if its probability density function is

fX(x) =
λx

x!
e−λ, x = 0, 1, 2, 3, . . . .

The expected value and population variance of X are E[X] = Var[X] = λ, hence this parameter is

often called expected number of counts. Note that, in spite of this identification, X is an integer,

while the parameter and these statistics are real positive values λ ∈ R+. Its dispersion coefficient

defined as D = Var[X]/E[X] = 1 always. Note that this is not the coefficient of variation.



If λ is large, the Poisson distribution can be excellently approximated by a normal distribution

with mean and variance both equal to λ.

The sum of two independent Poisson distributed variates X1 ∼ Po(λ1) and X2 ∼ Po(λ2) follows

as well a Poisson distribution Y = X1 + X2 ∼ Po(λ1 + λ2). The difference Z = X1 −X2 follows

a Skellam distribution (Skellam, 1946), but if λ1 >> λ2, then approximately Y = X1 − X2 ∼
Po(λ1 − λ2).

A vector of D Poisson variates Xi ∼ Po(λi) follows a multi-Poisson distribution with parameter

vector λ = [λ1, λ2, . . . , λD]. This is a vector of non-negative integer components characterized by

the following conditional construction:

1. the sum of these components XT =
∑D
i Xi ∼ Po(λT =

∑D
i λi) gives a total number of

counts; note that this holds because the several components are independent by the nature

of the Poisson process;

2. conditional on a drawn total number of counts xT , the number of counts on each category

follows a multinomial distribution with parameters p = C [λ] and n = xT .

2.2 Technical procedure

Laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) is an in situ analytical

instrument that is used for determining the elemental and isotopic composition of micrometer-sized

areas of solid materials such as minerals, glasses, metal alloys, bones, teeth, calcareous shell and

wood, and fluids trapped as inclusions within solids. The analytes are polished and cleaned before

introduction into the laser cell. Typically an excimer UV laser (193 nm) is used for ablation, the

generated aerosol from the ca. 20 to 100 µm diameter laser spot is transported by a Helion-Argon

gas mixture into the ICP-MS. Here all atoms are excited to plasma state by removal of one electron

of each atom. The resulting +1 ions are accelerated in a magnetic field, which makes them take

different, well-defined, trajectories according to their mass-to-charge ratio: i.e. given that the

charge is always +1, according to their atomic mass.

A sensor placed at the end of the trajectory of a given mass counts the number of impacts of

atoms of that mass during a certain time period (dwell time). Then the sensor moves to a second

position, corresponding to a second mass, and counts impacts there. And so on, until the complete

set of masses has been visited. Afterwards the sensor comes back to the starting position and

counts again, thus starting a new time slice. Several of such time slices occur during a second,

producing a multivariate reading. In spite of the sequential character of the measurements within

a time slice, these are considered simultaneous.

This reading procedure is applied in three different situations:

blank the readings obtained with no material,

standard the readings obtained with an analyte of known composition,

sample (s.s.) with an analyte of unknown composition.



Given that the counts are registered for each atomic mass during a fraction of a second (the dwell

time, which might be different for each element), the resulting total counts per time window are

linearly upscaled to counts per second.

2.3 Conventional data analysis approach

Typically, each measuring interval Tk contains a period of blank readings and a period of sample

or standard readings, with more or less sharp transitions between them. The first step is the

identification of time windows of blank [tA, tB ] ⊂ Tk and of measurement [tM , tN ] ⊂ Tk (see Fig.

3 later on, for an example), a task that is often manually done by the lab analyst guided by some

homogeneity statistics.

The second step is the characterization of the blank. This is usually done for each measuring

period and for each istope i separately. All readings in the blank window, denoted {xi(tA), xi(tA+

1), . . . , xi(tB)}, are considered as independent realizations of a Poisson distribution of unkwown

parameter λi. With the standard assumptions of statistics of Poisson variates, this parameter can

be estimated as the mean readings of that variable in the blank window, denoted as bki. Some labs

implement a quality control assessment on the dispersion coefficient

D̂ =
Var[xi(tA), xi(tA + 1), . . . , xi(tB)]

E[xi(tA), xi(tA + 1), . . . , xi(tB)]
=
s2bi(Tk)

bki

with heuristic rules that suggest a too-strong non-Poissonal regime if the hypothesis D̂ = 1 is not

acceptable. In this case, typically the analysts reconsider their choice of blank window.

The third step is the definition of the expected readings for each sample or standard measuring

window. This is sometimes applied to the absolute readings (in case of LA-ICP-MS measurements

of concentrations), but in geochronological studies the following ratios of interest are rather used:

Pb206/U234, Pb207/U235, Pb207/Pb206 and eventually Pb208/Th232. A first approach would be

to neglect fractionation effects on those ratios and apply the same procedure of the blank at the

set of readings {∆xi(tM ),∆xi(tM + 1), . . . ,∆xi(tN )} vs. {∆xj(tM ),∆xj(tM + 1), . . . ,∆xj(tN )}.
Note that these values are obtained subtracting to the read counts the blank levels bki and bkj .

Some labs work with the arithmetic mean of the ratios ∆xi(tm)/∆xj(tm), while other work with

the ratios of the count means ∆xi/∆xj within the measuring window. More elaborate approaches

consider the fractionation trend as a line or as a curve, and attempt several ways of extracting

a representative average ratio. For instance, an option is to fit a linear regression trend to the

fractionation drift and extrapolate it to the time moment when the analyte plasma arrived at the

chamber. Whichever method is used, for each measuring interval one has a value blank value and

a measurement value for each quantity of interest (ratio or concentration) ykl where k is the index

of the measuring interval and l is the quantity of interest.

The fourth step is to study the several measurements {ykl} available for the standards, which due

to their homogeneity, should be “equal”, i.e ideally realizations of the same random variable. If

this can be assumed, then the average of all standard readings ystdl is compared with the known



nominal value µstdl , and all measurements for unknown analytes are upscaled conveniently as

ykl =
µstdl
ystdl

ykl.

If the several readings of the standard show too obvious systematic drifts, then it is common to

assume some functional model for this drift, fit it to the available measurements of the standard,

predict its value ystdl (Tk) for a measuring interval Tk and then upscale the value at that interval

accordingly

ykl =
µstdl

ystdl (Tk)
ykl.

Some effort in these data processing steps is devoted to evaluating the “measurement error” (sta-

tistical error, uncertainty). Denoting by x̄i, s
2
xi and bi, s

2
bi the means and variances of the signal

(no blank correction) and of the background (dropping the dependence on Tk for simplicity) of the

isotope i, the variance of the corrected signal is

s2ci = s2bi + s2xi,

under the hypothesis that the blank and the corrected signal are considered as independent Poisson

distributions which sum gives the uncorrected signal. These concepts and statistics allow as well

the definition of detection limit. The detection limit is defined as that level of signal which cannot

be distinguished from the blank. It is customary to take the detection limit of each isotope counts

as DLi = bi + 3 · sbi.

3 Compositional calibration models for ICP-MS

3.1 Amount-scalar upscaling model

Following the ideas of the practitioners, we assume the blank vector of D components to be a

random realization of a multi-Poisson distribution, i.e. at each time slice

X(tk) ∼ Po(ω0λb), tk ∈ [tA, tB ],

where λb = [λb1, λb2, . . . , λbD] is the expected counts per second of the blank and ω0 is the length

of the dwell time in seconds. The corrected signal at a given time slice tk while analysing a sample

of amounts z is assumed to be

X(tk) ∼ Po(ω0λ(tk)z), tk ∈ [tM , tN ], (1)

where λ(tk) is an upscaling factor that describes how many counts per second are expected for a

gram of the sample. The quantity λ(tk) captures the time-varying sensitivity of the machine. Note

that Eq. (1) implies a non-compositional nature of the process, as the intensity of the Poisson

process is not scaling invariant. The quantity (ω0λ(tk)z) is actually rather an object of RD+ , the

multivariate positive real space.



Under the parsimonious assumption of independent signal and blank, the signal read is

X(tk) ∼ Po(ω0(λ(tk)z + λb)).

This equation is actually also valid for the blank, because in that case z = 0. Again, the non-

compositional nature of this equation must be highlighted, in this case derived from the additivity

properties of the Poisson distribution.

Note as well that the counts X(tk) follow a multinomial distribution with parameter vector

C [λ(tk)z + λb], and n the total number of counts, with n ∼ Po (ω01
′ · (λ(tk)z + λb)). This model

assumes that the sensitivity λ(tk), though time-varying, is the same for all elements.

3.2 Amount-perturbation upscaling model

A first modification of the preceding model is to assume a different sensitivity parameter for each

element, but no interaction between the several elements, i.e. that:

• one gram of pure element i produces λi(tk) expected counts; and

• the counts of two grams of the same element are simply added together, i.e. that mass is

additive.

Thus a mass zi of element i produces ziλi(tk) expected counts, and a vector of amounts z produces

total expected counts λ(tk) = z′ ·λ(tk) =
∑
i zi ·λi(tk). The actual number of total counts obtained

by the machine n is then distributed as n ∼ Po (ω0(λ(tk) + 1′ · λb)), and these are split in the D

elements following a multinomial with parameters n and C [z⊕ λ(tk) + λb]. In this expression, ⊕
denotes the perturbation in RD+ , i.e. without closure (Pawlowsky-Glahn and Egozcue, 2001; van

den Boogaart and Tolosana-Delgado, 2008).

3.3 Amount-matrix upscaling-interaction model

Finally, the last option implies interaction between the counts of the several elements, i.e. that a

vector of masses z produces a vector of expected counts Λ(z) with Λ(·) an application between RD+
and RD+ . Given the additive character of both masses and counts, it is reasonable to assume that

Λ(z) can be considered a linear form Λ · z, i.e. Λ = [λij ] is a matrix of (D,D)-elements, where λij

is the contribution of component j to the counts of component i.

In general, all elements λij(tk) represent time-dependent sensitivities, which would be quite difficult

to estimate. However, it is reasonable to assume that the relative sensibility interaction coefficients

λ∗ij = λij(tk)/λjj(tk) are quasi constant, meaning that the counts generated by a mass zj are split

among the D components in fractions which do not change with time. In this case, a vector of

amounts z produces a vector of expected counts Λ∗ ·(z⊕λ(tk)), with a constant interaction matrix

Λ∗ = [λ∗ij ], dominantly diagonal with elements λij = 1, and a time-dependent sensitivity vector

λ(tk). Adding the blank, we obtain a model where the total number of counts n is distributed



as a Poisson with intensity ω01
′ · (Λ∗ · (z⊕ λ(tk)) + λb), and these counts are split among the D

components following a multinomial with parameters n and C [Λ∗ · (z⊕ λ(tk)) + λb].

Note that these expressions do not entirely correspond to any geometry of those summarized by

Pawlowsky-Glahn and Egozcue (2001) or van den Boogaart and Tolosana-Delgado (2008) for the

simplex, the positive real space RD+ or the real space RD: perturbation ⊕ relates in this case to the

Abelian group operation on RD+ ; addition + and the linear form Λ∗ act on the classical Euclidean

geometry of RD, and the closure C [·] projects the combination of signal and background onto the

simplex. This is a typical construction in multi-Poisson processes.

3.4 Models ignoring the blank or with multiplicative effects

From the point of view of (log-ratio based) compositional data analysis, all models derived before

are particularly complicated by the presence of the additive blank. If this could be ignored (e.g.

because it is very small with regard to the signal), and the sum of the components of z equals one

(i.e. a whole composition is analysed), then the following models are derived:

• scalar upscaling: [X(tk)|n] ∼Mu(z;n) and n ∼ Po(ω0λ(tk));

• perturbation: [X(tk)|n] ∼Mu(z⊕ λ(tk);n) and n ∼ Po(ω0

∑D
i λi(tk)), in this case with ⊕

the perturbation on the simplex;

• interaction-perturbation: [X(tk)|n] ∼ Mu(C [Λ∗ · (z⊕ λ(tk))] ;n) and n ∼ Po(ω01
′ · (Λ∗ ·

(z⊕ λ(tk)))), in this case with ⊕ the perturbation on RD+ .

This last model is still a mixture of additive and multiplicative geometries. The following models are

purely compositional alternatives, using in the compositional part only operations on the simplex

• scalar upscaling: [X(tk)|n] ∼Mu(z⊕ λb;n) and n ∼ Po(ω0λ(tk)
∑D
i λbi);

• perturbation: [X(tk)|n] ∼Mu(z⊕ λ(tk)⊕ λb;n) and n ∼ Po(ω0

∑D
i λbiλi(tk));

• interaction-perturbation: [X(tk)|n] ∼Mu(Λ∗� (z⊕λ(tk))⊕λb;n) and n ∼ Po(ω01
′ · (Λ∗�

(z⊕ λ(tk))⊕ λb)), in this case with ⊕ the perturbation on the simplex.

In these expressions, we have used the notation � after Pawlowsky-Glahn, Egozcue and Tolosana-

Delgado (2015, Chap. 4) to denote a simplicial endomorphism operation, i.e. one such that once

expressed in any basis of the simplex becomes a simple matrix-vector product. Note that these

purely compositional models imply, among other effects, that the noise induced by the blank

upscales with the signal, i.e. larger signal should show more blank variability.

3.5 Minor modifications of the preceding models

As mentioned, sensitivities can be equal for all elements or have a different value for each element,

be an endomorphism is some geometry (hence a matrix) or even be a general functional; and



they can be constant on time or show a trend, which we will parameterize through a vector

θ. Common cases for trends are polynomial trends, or piecewise linear trends. For the sake of

the illustration later on, we will assume a linear trend, e.g. for an amount-perturbation model,

Λ(z(ti),λb,θ; ti) = z ⊕ θ0 ⊕ t � θt + λb, i.e. with some initial sensitivities θ0 and their rates of

change along time θt, different for each isotope and without interaction.

In any case, we finally have distributions for the number of counts on each element class that

belong to the multi-Poisson family, with an intensity vector model ω0Λ(z,λb,θ; tk) capturing the

relationship between the expected partial counts and the composition of the analyte. Hence, we

can always consider that the total number of counts n(tk) follows a Poisson distribution with

λTk = ω01
′ · Λ(z,λb,θ; tk); and, conditional on that total, the vector of counts for each element

follows a multinomial distribution with probability parameter vector pk = C [Λ(z,λb,θ; tk)].

A relevant minor modification for the example we will present later consists of the case that the

dwell times are not equal for all isotopes. If we denote the vector of dwell times as ω0 ∈ RD+ ,

then it is immediate to show that the number of counts on each element class belong to the multi-

Poisson family, with a perturbed intensity vector model ω0 ⊕Λ(z,λb,θ; tk), with perturbation on

RD+ . Again, the total number of counts n(tk) will follow a Poisson distribution, albeit with total

expected counts λTk = ω′0 ·Λ(z,λb,θ; tk); and the vector of counts for each element conditionally

follows a multinomial distribution with probability parameter vector pk = C [ω0 ⊕Λ(z,λb,θ; tk)].

4 Methods

4.1 Notation and common asumptions

Let us assume one particular model Λ(z(ti),λb,θ; ti) from those mentioned before. A set of

readings of count vectors {x(ti), ti ∈ T} is available, obtained along a session T split in K intervals

T1, T2, . . . , TK . Each interval contains two non-overlapping windows, the blank window Bk ⊂ Tk

and the measurement window Mk ⊂ Tk. All readings during the blank window are obtained with

no material being analysed, i.e. z(ti) = 0,∀ti ∈ B =
⋃K
k=1Bk. During the measuring window

Mk an analyte of different composition was analysed, i.e. z(ti) = zk. Some of these compositions

{z1, z2, . . . , zK} are known (those corresponding to standards) and some other are unknown and

the actual target of this problem (the samples). Let the set of indices K = {1, 2, . . . ,K} be

partitioned in two disjoint subsets Ks (corresponding to the time intervals when a standard was

analysed) and Km (corresponding to the intervals when a sample of unknown composition was

analysed). The goal is thus to estimate all zk for k ∈ Km, given the set of all observations

{x(ti), ti ∈ T} and the composition of the standards zk for k ∈ Ks. The set of data can also be

split in measurements corresponding to all blank periods and measurement of standards Xs, the

calibration set Xs = {x(ti), ti ∈ B ∪
⋃
k∈Ks

Mk}; and data correspond to measurement windows

of samples of unknown composition, the prediction set Xm = {x(ti), ti
⋃
k∈Km

Mk}.

Given this setting, we will assume a multi-Poisson distribution for the data {x(ti), ti ∈ T}, with

intensity model Λ(z(ti),λb,θ; ti). This will allow us eventually to study this system in the two

contributions, i.e. with total counts Poisson distributed, and these counts then as Multinomial



distributed. We will as well assume two different sensitivity models:

• an amount perturbation-scaling model,

• some form of a amount-matrix upscaling-interaction model (be it an an additive or a multi-

plicative geometry).

4.2 Generalized linear model (GLM)

To apply the formalism of generalized linear models (Nelder and Wedderburn, 1972) we need to

further assume that the composition of the standards is perfectly known and homogeneous. In this

case we can consider the problem divided in two steps:

1. Calibration phase. In this phase we consider only the data available from all blank windows

and the measurement windows of the standard.

2. Prediction phase. In this phase the model is used to predict the composition of the unknown

samples.

4.2.1 Amount-perturbation model with time drift

This case is the easiest to understand, as the lack of any form of interaction allows to estimate

each component separately. In this case we have

Xs
j (ti) ∼ Po(ω0j [(θ0j + θjti)zj(ti) + λbj ]) ∼ Po(aj + bjzj(ti) + cjzj(ti)ti).

In the calibration phase, given that zj(ti) and ti are known everywhere, this model can be estimated

with a generalized linear model of the Poisson family with identity link, a non-canonical choice.

In this step aj = ω0jλbj , bj = ω0jθ0j and cj = ω0jθj are the parameters to be estimated. In the

prediction phase, with estimates ãj , b̃j , c̃j set, the unknown is zj(ti), i.e. the model becomes again

a generalized linear model

Xm
j (ti) ∼ Po(ãj + [b̃j + c̃jti]zj(ti)),

where ãj is an offset and the predictor variable [b̃j + c̃jti] is known everywhere. This model has

no intercept allowed. These models can be estimated in both steps with the GLM maximization

likelihood procedures.

Note that the canonical choice of the Poisson family (the logarithmic link) would give rise to

the multiplicative perturbation-scaling model, but it is not compatible with the physics of the

phenomenon, dominated by the additive character of mass.



4.2.2 Amount-matrix upscaling-interaction model with time drift

In this case, given the interaction between components it is not possible to consider them totally

independently any more. Considering a linear drift Λ(ti) = Λ0 + Θti, the joint model is then

X(ti) ∼ Po(ω0 ⊕ [(Λ0 + Θti)⊕ z(ti) + λb]) = Po(diag [ω0] · [(Λ0 + Θti) · z(ti) + λb]),

or distributing

X(ti) ∼ Po (diag [ω0] ·Λ0 · z(ti) + diag [ω0] ·Θ · [tiz(ti)] + diag [ω0] · λb)

∼ Po (a + B · z(ti) + C · [tiz(ti)]) .

with intercept vector a = diag [ω0] · λb and two matrices of coefficients B = diag [ω0] · Λ0 and

C = diag [ω0]·Θ. Arrived at this point, it is possible to split the problem in the several components

of the response, i.e.

Xj(ti) ∼ Po
(
aj + b′j · z(ti) + c′j · [tiz(ti)]

)
.

where a = [a1, a2, . . . , aD] and where b′j and c′j are the j-th rows of the matrices B and C

respectively. These models are all estimable with the same GLM framework, with a response of

the Poisson family and an identity link. Note that the estimation of this model requires the use of

several standards with different compositions.

As we did in the preceding case, in the calibration step we use the data Xs and the known

predictors {ti ∈ T} and {zk, k ∈ Ks} to obtain estimates ãj , b̃j and c̃j of the model parameters.

In the prediction step, fixing these parameters on their estimated values, the model

Xj(ti) ∼ Po
(
ãj + [b̃′j + tic̃

′
j ] · z(ti)

)
can be fitted with an offset ãj and known predictors [b̃′j + c̃′jti] to obtain estimates of z(ti). Note

that one can obtain a (different) estimate of the whole vector z(ti) for each component of the

counts Xj(ti). Alternatively, one can also use the model for the total counts

1′ ·X(ti) ∼ Po
(
1′ · ã + 1′ · [B̃ + tiC̃] · z(ti)

)
.

4.3 Further models

The preceding models were characterized by an identity link function, a requirement of the additive

nature of the blank and the signal. If this condition is removed, then the class of models can be

extended to models with logarithmic link function (actually, the canonical choice of Poisson GLMs).

This setting would be suitable to consider the multiplicative models mentioned in section 3.4. The

same structure as before would then be used, namely a calibration phase in which all parameters

would be estimated with a GLM; and a prediction phase in which another GLM with an offset

(equal to the multiplicative blank) would be used to estimate the unknown composition of the

samples.

All models mentioned before share several main limitations:



• perfectly known standard compositions are required;

• it is not possible to model inhomogeneities of the materials considered (standards or samples);

• no solution exists for other more realistic and flexible models, like a multiplicative interaction-

perturbation model with additive error;

• if the hypothesis of Poisson distribution is verified to be inaproppriate, the likelihood cannot

be computed exactly, and GLM fitting procedures might fail.

All these issues can be tackled with Bayesian estimation techniques. Though they are not much

more complex than the methods presented so far, these fall beyond the scope of this contribution

and are left for future research. Interested readers can consider the work of van den Boogaart et

al. (2013), dealing with a model that can accomodate some of these effects.

5 Application

To illustrate the presented concepts, models and solving techniques we use a data set of geochrono-

logically relevant isotopes. These are 35 samples, including 9 analyses of standards, which were

analsed for 6 isotopes: Hg202, Pb204, Pb206, Pb207, Pb208, Th232, U235, U238, of which the first

two are only used for quality control (Fig. 1). This figure shows 9 samples in 3 blocks of 3, which

composition is very similar: these are actually standards. It is also possible to see that, except for

some outliers, the isotopes are ordered in decreasing order of abundance as U238, then Th232 or

Pb206, and finally U235, Pb208 and Pb207 in varying orders. Dwell times considered are reported

in Table 5

Table 1: Dwell times for the several elements considered
Hg202 Pb204 Pb206 Pb207 Pb208 Th232 U235 U238
1.00 1.00 0.50 2.00 1.00 0.50 0.50 0.50

A closer look at the last three measurement periods (Fig. 2), including one standard and two

samples, shows several remarkable aspects:

• First, Hg202 and Pb204 do not show up in the samples or in the standard in a way significantly

different from the blank. These elements are used for analytical quality control, and are not

relevant for the problem itself.

• Second, several isotopes show clear exponentially decreasing trends while being shot (linear

in log scale), an effect of fractionation of the gas cloud while the laser penetrates deeper in

the material.

• Finally, a more relevant aspect for modelling, the variability of these time series is neither

additive nor multiplicative, because the background and the signal do not have comparable

levels of variability neither in raw nor in log scales. This is the reason why purely multiplica-

tive models (like those presented in section 3.4) are not realistic.
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Figure 1: Time series of counts obtained for each component considered, in raw scale (top) and in log scale (bottom)

Other aspects and relevant concepts are shown as well is Figure 3. Beside the clear fractionation

effects occuring while the laser is shot (increasing trend, followed by a shallow exponential decrease)

or right after switching it off (pronounced decrease), we see as well the presence of zonations of

different composition, thus potentially of different age. The figure also shows that readings have

much stronger drifts and variabilities than the relevant isotopic logratios in the measuring windows.

A further assessment on the possible structure of the variability of this series is displayed in

Figure 4, which makes use of the property that Poisson distributed variates should show dispersion

coefficients of D̂ = 1. For the blank windows, overdispersion is clear to see in the heavy ions

(U238, Th232). Dispersion coefficients for the measurement period are only reported for the sake

of completeness, as they are difficult to estimate due to the presence of the irregularities mentioned

before: the values reported in this case are obtained using the residual variance with respect to a

fitted exponential trend, which might deliver reasonable estimates for well-behaved samples, but is

completely inappropriate for zoned samples. Nevetheless, it shows roughly a similar distribution

with a certain bias towards underdispersion.

Given the considerations of this preliminary descriptive analysis, the natural conclusion must be

that appropriate models for this dataset should be flexible enough to consider at least the following

three effects:

1. natural variability on the composition of the materials (these are not homogeneous), in par-

ticular including zonation of samples and random inhomogeneities of standards and samples;

2. downhole fractionation effects of heavy isotopes, which appears as local exponentially de-
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Figure 2: Time series of counts obtained for each component considered, in raw scale and in log scale, for the last
three samples. In particular, note that the variability of the data has neither a pure additive nor a pure multiplicative
structure.
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Figure 3: Time series of counts obtained for each component considered, for a well-behaved sample (left) and for a
sample showing clear zonation (right). Upper plots show the counts (in log scale) while lower plots show the naive
logratios relevant for geochronological calculations. Note as well the dashed vertical lines, showing the windows for
blank (between the first two lines) and measurement (between the last two lines).
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Figure 4: Dispersion coefficients of the blank and measurement windows for each sample. Vertical dashed lines
mark the standards.



creasing trends;

3. Poisson overdispersion (something which is included in state-of-the-art GLM fitting models);

4. additive blank variability.

Unfortunately, none of the models presently implemented within the framework of generalized

linear models can deal with all these effects, the main limitation being that one cannot simmulta-

neously treat as linear the additive background and the exponential trends. Nevertheless, as we

have opted for leaving Bayesian methods for future work, the following is an approximate set of

results ignoring the first and third shortcomings using a Poisson GLM regression with identity link

(Section 4.2.1).

Results (Fig. 5) show several interesting patterns. The proportionality factors for the standards

(Fig. 5 lower plot) should be all 1. The standards show a remarkably constant composition,

suggesting that no long-range time drift is necessary. The method proposed is quite robust, for

instance showing no to minor influences of the outliers of Pb208 in samples 915-005 or Z-025. If

we order the elements by decreasing abundance on the estimated composition and on the observed

counts, results are the same, which given the several shortcomings we had to take is a good result.

6 Discussion

The most obvious implication of these results is the fact that models without additive error cannot

be accepted as reasonable descriptions of the physical LA-ICP-MS measurement process, specially

when the target value is small because then the contribution of the multiplicative error to the

measurement uncertainty becomes irrelevant in comparison with the contribution of the additive

error. That was particularly visible on the reduction of the estimated concentration of the minor

isotopes of the standards.

This has implications in the treatment of values below the detection limit: for all purposes, the

values below the detection limit obtained from mass spectrometry data (at least those obtained

with techniques analogous to ICP-MS) should not be treated with an additive logistic normal

model, because those dramatically underestimate the uncertainty of the values below and around

the detection limit.

A second family of implications relates to the fact that logratios seem to be much more effectively

estimated than their numerator and denominator elements separately. Nevertheless, this is not

conclusive, and further studies focusing on this aspect are required.

Finally, to obtain a full joint compositional calibration model remains a difficult task because of the

need of several standards of different composition, which should be each homogeneous, perfectly

known and of the same kind of material than the samples to analyse. Given the practical problems

of fulfilling these conditions in real-world applications even for a single standard, it is foreseeable

that ICP-MS calibration will remain univariate.

The proposed methodology can nevertheless produce sensible results, even ignoring the multivariate
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Figure 5: Results of the analysis of counts for each isotope: (1) original data, (2) results for the major components,
(3) results for the minor components, and (4) proportionality factors.



nature of the underlying composition. Though it is premature to extract conclusions of this single

study, this is perhaps so because ICP-MS does actually count individual atoms/ions/isotopes, and

matter (or mass) is an additive property. Building a composition out of the obtained measurements

of the several isotopes is then a choice of the analyst, and not intrinsically demanded by the data.

This might not apply to other analytical techniques.
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Abstract

As the development of computer-related technology, collection and storage of data become more
and more convenient, which makes the existence of unrelated variables unavoidable in a specific
problem. In this setting, various variable selection methods have been proposed in the literature,
but there is little consideration about the structure among the predictors, especially about com-
positional data. For compositional data, the summation of nonzero components is one, which is
a prior sum constraint before modelling and makes the consideration of correlation between com-
ponents indispensable. In the regression model, when there are multiple compositional data and
multivariate scalar data mixed in the predictors for predicting the scalar response, we propose to
select the significant predictors and estimate the associated coefficients simultaneously with this
mixed type of data in groups for compositional data and individuals for multivariate scalar data,
where several group variable shrinkage methods can be implemented in this procedure, such as
group Lasso and group SCAD. Besides, considering the robustness of estimator, we choose the
quantile loss function to weaken the effect of outliers and reflect the distribution of the reesponse.
Simulation and a real data example illustrate the effectiveness of our proposed method.

Key words: group variable selection, compositional data, quantile, norm



1 Introduction

Compositional data appear frequently in a wide range of applications, such as topic composition-
s of documents in machine learning, geochemical compositions of rocks, household patterns in
economics and so on. It is the fact that the components of a composition must sum to unity
that distinguishes compositional data analysis from other fields or types of data. This constraint
makes many traditional multivariate statistical methods be inapplicable to compositional data.
The recent years have witnessed the fruitful development of compositional data analysis, since the
seminal work of Aitchison (1982). Nowadays, the rapid development of computer-related technol-
ogy brings big data in both sample size and dimensionality. The research in compositional data
analysis concentrates on cases with fixed numbers of components, or the number of compositions
is one or much smaller than the sample size.

Lin et al. (2014) proposed variable selection procedure in the framework of regression model with
compositional covariates, where the number of components of a composition is diverging with sam-
ple size. However, even we obtained the significant components, we have to know the values of
all components to attain the percentages. Little formal effort has been made to consider principal
tools with diverging number of compositions. Here we concern about regression models with di-
verging numbers of compositions, but for each compositional predictor, the number of components
is fixed. Under this condition, if we want to select significant predictors, they must be selected
in groups. For a composition, if at least one components are significant, it can enter the model.
Unless all components of a composition are not significant, it is removed from the model.

Besides, in a regression model, it is rare that all the predictors are compositional ones. Usually
some scalar predictors appear and play significant roles. For example, in the macroeconomics, to
predict the percent of people out of work, the internal structure of the whole economics, such as
the percentages of first, second and third production, may be significant. At the same time, the
effect of the total amount of gross domestic production (GDP) can not be ignorable. In modeling,
both compositional data and common scalar covariates should be included.

A main focus in the literature has been the conditional mean function E(Y |·), while, under many
circumstances structural change in the conditional quantile function is more important. For ex-
ample, when studying income inequality, it is more interesting to examine whether (and how) the
income differential between different racial groups, conditional on observable characteristics, has
changed over time. An increase in inequality may increase the conditional dispersion of the differ-
ential, while leaving the mean change little or even unchanged. Thus, the conditional mean ceases
to be informative and the conditional quantiles should be considered (Oka and Qu, 2011; Qu and
Perron, 2007).

The main purpose of this paper is to identify significant predictors from many predictors, including
compositional and common scalar ones under the quantile loss function. During the procedure,
group variable selection methods are implemented. Regularization methods (or penalty methods)
for simultaneous variable selection and parameter estimation in linear regression and more general
contexts have gained intense interest in these years. Fan and Li (2001) proposed a variable selection
method via penalized likelihood approaches and summarized many regularization methods.Fan
and Lv (2010) presented a brief account of the recent developments of theory, methods, and
implementations for high dimensional variable selection.

Let Y be a real-valued random variable, {Xj , 1 ≤ j ≤ p} be compositional predictors, and Z is a
q− dimensional random vector. It’s assumed that the scalar response Y is linearly related to the
compositional predictors X

′

js and multivariate scalar predictors Z through the relationship

Y = α+

p
∑

j=1

〈βj ,Xj〉+ g(Z) + ǫ (1)

where Z is a random vector and by the unknown function g(·) it affects the response. In fact, g(·)
can be usually estimated by spline tools and transformed into linear combination of basis function,



then for simplicity, it is assumed that g(Z) = ZTγ, then the considering model is

Y = α+

p
∑

j=1

〈βj ,Xj〉+ ZTγ + ǫ (2)

where {γ, βj, 1 ≤ j ≤ p} are unknown and need estimating. The 〈·, ·〉 in 〈βj ,Xj〉 is an uniform
denotation of inner product operation. 〈βj ,Xj〉 =

∑sj
k=1

xjkbjk, where Xj = [Xj1, · · · , Xjsj ] is a
composition with sj components, while βj = [bj1, · · · , bjsj ] is the corresponding coefficient vector.
For simplicity, let s1 = · · · = sj ≡ s0. In practice, they can be different. Model (2) can be rewritten
as

Y = α+

p
∑

j=1

s0
∑

k=1

Xjkbjk + ZTγ + ǫ. (3)

2 Variable Selection and Estimation

In this section, we will introduce the specific procedure to select significant predictors and estimate
the associated coefficients simultaneously, considering the number of covariates may be larger than
sample size. The intercept α is omitted here, since it can be deleted by centering the response and
covariates.

2.1 The linear log-contrast model

The unit-sum constraint renders the s0 components of a compositional predictor not vary freely.
Therefore, it is necessary to omit certain components to ensure identifiability. However, this
operation will bring the difficulties in providing appropriate interpretations for the associated
parameters. To resolve this problem, Aitchison and Bacon-shone (1984) proposed the linear log-
contrast model by applying the log-ratio transformation to compositional predictors. By the same
operation, model (2) can be updated as

Y =

p
∑

j=1

H−
j β∗−

j + ZTγ + ǫ. (4)

where H−
j = [log(Xjk/Xjs0), 1 ≤ j ≤ s0 − 1], β∗−

j = [b∗j1, · · · , b
∗
j,s0−1]

T is the associated s0 − 1
dimensional coefficient vector. Also we can obtain a more conveniently expressed symmetric model
by introducing new coefficients b∗j,s0 = −

∑s0−1

k=1
b∗jk as

Y =

p
∑

j=1

Hjβ
∗
j + ZTγ + ǫ,

s0
∑

k=1

b∗jk = 0, 1 ≤ j ≤ p. (5)

where Hj = [log(Xj1), · · · , log(Xjs0 )], β
∗
j = [b∗j1, · · · , b

∗
j,s0

]T .

Denote H̃ = [H1, · · · , Hp, Z], B∗ = [β∗T
1 , · · · , β∗T

p , γT ]T , then our model can be expressed as

Y = H̃TB∗ + ǫ, subject to (6)

RB∗ =









1 · · · 1 0 · · · · · · · · · 0 0 · · · 0
0 · · · 0 1 · · · 1 0 · · · 0 0 · · · 0
0 · · · · · · · · · · · · · · · 0 · · · 0
0 · · · 0 · · · · · · · · · 1 · · · 1 0 · · · 0









B∗ = W =









0
0
0
0









.

It is clear that this is a regression model with linear constraints on the coefficients. By Lagrangian
multiplier method, it can be obtained that

B̂∗ = BLS − (H̃T H̃)−1RT [R(H̃T H̃)−1RT ]−1[RBLS −W ], (7)



where BLS is the ordinary least square estimator without constraints. However, the estimator (7)
is based on the assumption that all predictors are significant for the response, which is usually not
true. Then we need distinguish the significant ones from redundant variables.

3 Group variable selection

Assume we have obtained the observations {(yi, zi, xi,j1, · · · , xi,js0 ), 1 ≤ j ≤ p, 1 ≤ i ≤ n)}. Based
on model (5), we consider the constrained convex optimization problem to attain the estimator

(β̂∗−, γ̂) = argmin

n
∑

i=1

ρτ (yi −

p
∑

j=1

H−
ijβ

∗−
j − zTi γ) +

p
∑

j=1

λj ||β
∗−
j ||∞ +

q
∑

j=1

µj |γj | (8)

where ρτ (t) = t(τ − I(t < 0)), H−
ij = [log(Xi,jk/Xi,js0), 1 ≤ k ≤ s0 − 1], β∗−

j = [b∗j1, · · · , b
∗
j,s0−1]

T ,

|| · ||∞ means the sup-norm and ||β∗−
j ||∞ = max{|b∗j1|, · · · , |b

∗
j,s0−1|}.

From the above formulation, we only need to solve a linear program, which greatly simplifies
the computation. Here we take the advantage of the specific choice of loss function and penalty
function. As we have mention early, other losses and penalty functions can also be chosen in
principle. However, complicate penalties and loss functions usually involves intensive computation.

In the penalty term we choose the sup-norm, and ||bj ||∞ < C is equivalent to the every compoent
bjk < C, k = 1, · · · , s0. Similar to Bang and Jhun (2012), the optimization problem (8) can be
reformulated as a linear programming problem by introducing 2n slack variables and then lpsolve
package provided in R can be used to implement this linear programming problem.

Denote the the slack variable by {(ui, vi), i = 1, · · · , n} and they represent the positive and negative
parts of residuals for the ith observation. They satisfy the equality constraint

yi −

p
∑

j=1

H−
ijβ

∗−
j − zTi γ = ui − vi.

Also bjk can be rewritten as bjk = b+jk − b−jk, then minimizing the objective function in (8) can be
obtained by minimizing

1

n

n
∑

i=1

(τui + (1− τ)vi) +

p
∑

j=1

λjM1j +

q
∑

l=1

µlM2l,

subject to

p
∑

j=1

H−
ij (b

+

jk − b−jk) +

q
∑

l=1

zil(γ
+

l − γ−
l ) + ui − vi = yi

M1j ≥ b+jk + b−jk, M2l ≥ γ+

lm + γ−
lm

b+jk ≥ 0, b−jk ≥ 0, γ+

lm ≥ 0, γ−
lm ≥ 0, ui ≥ 0, vi ≥ 0

for i = 1, · · · , n, j = 1, · · · , p, l = 1, · · · , q.

From the above formulation, we only need to solve a linear program, which greatly simplifies
the computation. Here we take the advantage of the specific choice of loss function and penalty
function.

3.1 Tuning Parameter

In (8) we can also utilize other norm. In Yuan and Lin (2006), they chose to penalize the L2 norm
of the coefficients within each group. Note that both ||β∗−

j ||∞ and ||β∗−
j ||2 are singular only when



the whole vector β∗−
j ≡ 0, then the L2 norm penalty and L∞ norm penalty select variables in

groups, or “all-in-all-out” fashion.

Let λj = λ||b̃j ||
−1
∞ , µj = λ||γ̃j ||

−1 (where b̃j, γ̃j are the unpenalized quantile estimator), then only λ
needs selecting. As to the selection of regularization parameter λ we use the generalized information
criterion proposed by Fan and Tang (2013). we define the generalized information criterion in our
problem as

GIC(λ) = log σ̂2
λ + (sλ + q − 1)

log logn

n
log((p+ q) ∨ n) (9)

where σ̂2 =
∑n

i=1
(yi− ŷi)

2/n, sλ is the number of groups with nonzero coefficients and (p+q)∨n =
max(p + q, n). Alternatively, cross validation methods can be implemented, such as the k− fold
cross validation, which can trade off between model selection consistency and prediction accuracy.

4 Large Sample Properties

5 Numerical Results

5.1 Simulation

We conducted simulation studies to compare the numerical performance of the proposed estimator.

Similar to Lin et al. (2014), we generated the covariate data X1, X2, X3 in the following way,
respectively. We first generated an n × s0 data matrix W = (ωij) from a multivariate normal
distribution Ns0(0,Σ), then by the transformation xij = exp(ωij)/

∑s0
k=1

exp(ωik) we can obtain
the covariate matrix X = (xij). To describe different levels of correlations among components, let
Σst = 0.3|s−t|, 1 ≤ s, t ≤ s0. Set s0 = 5, β1 = [1, 0,−1, 0.5, 0], β2 = β3 = 0. We trichotomize Z1 as
0, 1 or 2 by the quantiles 1/3, 2/3 of standard normal distribution. Z2 is valued in {0, 1} with the
same probability. Z3 is also from the standard normal distribution. Then true response variables
are generated by

Yi = 〈X1i, β1〉+ 0.05Z1i + 0.02I(Z2i = 0)− 0.03Z3i + σǫi. (10)

The following three different distributions are considered for ǫi: the standard t-distribution with
3 degree freedom (T (3)), the standard t-distribution with 5 degree freedom (T (5)), the standard
double exponential (dexp) and Cauchy distribution. Two different values are tested for σ 0.1 and
0.3, representing weak and strong signal-to-noise ratios. For comparison, results by group lasso
method with square loss function is listed. “Q” and “G” mean the proposed quantile method
in this paper and group lasso method with square loss function, respectively. Average number
of correctly identified nonvanishing coefficients (TP) and average number of incorrectly identified
nonvanishing coefficients (FP) are listed.

Table 1: Simulation results with T (3) error with σ = 0.1

Q.TP G.TP Q.FP G.FP
τ = 0.25 Mean 3.8920 3.9230 1.3700 1.3600

Sd 0.3451 0.2727 0.9391 0.9972
τ = 0.50 Mean 3.8600 3.9900 0.8700 1.8000

Sd 0.3835 0.1000 0.8246 0.9640
τ = 0.75 Mean 3.9100 3.9300 2.1100 1.8700

Sd 0.2727 0.2564 1.0411 0.9812

According to Table 1-6, we can know that quantile method and group lasso method can select the
nonzero scalar and compositional predictors correctly, but they tend to select predictor with zero
coefficients into the model. When τ = 0.50, the quantile selection result is better than group lasso.



Table 2: Simulation results with T (3) error with σ = 0.3

Q.TP G.TP Q.FP G.FP
τ = 0.25 Mean 3.8900 3.7400 1.8200 1.4100

Sd 0.3145 0.5140 1.0385 0.9650
τ = 0.50 Mean 3.8300 3.8700 1.0000 1.4500

Sd 0.3775 0.3487 0.7785 0.8919
τ = 0.75 Mean 3.8400 3.7200 1.7900 1.6600

Sd 0.4197 0.4794 1.0306 0.9767

Table 3: Simulation results with T (5) error with σ = 0.1

Q.TP G.TP Q.FP G.FP
τ = 0.25 Mean 3.9760 3.9430 1.9200 1.7100

Sd 0.2227 0.2387 0.9917 1.0080
τ = 0.50 Mean 3.8900 3.9600 1.1100 1.7200

Sd 0.3145 0.2429 0.7233 0.8885
τ = 0.75 Mean 3.9300 3.9800 1.8700 1.6500

Sd 0.2564 0.1407 0.8487 0.8805

Table 4: Simulation results with T (5) error with σ = 0.3

Q.TP G.TP Q.FP G.FP
τ = 0.25 Mean 3.8850 3.8370 1.8600 1.4000

Sd 0.3562 0.4034 0.9103 0.8762
τ = 0.50 Mean 3.8740 3.8020 1.2400 1.4900

Sd 0.3380 0.4020 0.8055 0.9999
τ = 0.75 Mean 3.8760 3.8510 1.9300 1.4500

Sd 0.3667 0.3860 0.9771 1.0577

Table 5: Simulation results with double exponential error with σ = 0.1

Q.TP G.TP Q.FP G.FP
τ = 0.25 Mean 3.8900 3.9200 1.8800 1.4600

Sd 0.3451 0.2727 0.9773 0.9579
τ = 0.50 Mean 3.9000 3.9000 1.0300 1.6900

Sd 0.3015 0.3015 0.7029 0.9713
τ = 0.75 Mean 3.8900 3.8700 1.9000 1.6700

Sd 0.3015 0.3380 0.8469 0.9434

Table 6: Simulation results with double exponential error with σ = 0.3

Q.TP G.TP Q.FP G.FP
τ = 0.25 Mean 3.8100 3.6200 2.1200 1.3600

Sd 0.4264 0.5646 0.8200 0.8821
τ = 0.50 Mean 3.7300 3.6100 1.3400 1.3800

Sd 0.4894 0.5318 0.7551 0.9077
τ = 0.75 Mean 3.8800 3.5700 2.0000 1.4300

Sd 0.3562 0.6416 0.9211 0.8558

Table 7: Simulation results with Cauchy error with σ = 0.1

Q.TP G.TP Q.FP G.FP
τ = 0.25 Mean 3.7900 2.3800 1.7300 1.0400

Sd 0.4333 1.3241 0.8147 0.9092
τ = 0.50 Mean 3.8800 2.0400 1.0300 0.9000

Sd 0.4025 1.4017 0.7714 0.8469
τ = 0.75 Mean 3.7800 2.1600 1.8000 0.9900

Sd 0.4522 1.3228 0.8876 0.9265



Table 8: Simulation results with Cauchy error with σ = 0.3

Q.TP G.TP Q.FP G.FP
τ = 0.25 Mean 3.5600 1.1900 2.3500 0.8200

Sd 0.6541 1.0318 0.8333 0.9032
τ = 0.50 Mean 3.6100 1.1800 1.4000 0.7400

Sd 0.5464 1.1044 0.7521 0.8947
τ = 0.75 Mean 3.6200 1.2400 2.1300 0.7900

Sd 0.5505 1.0929 0.8487 0.8680

Especially when the error term are with heavier tails, such as Cauchy distribution, the group lasso
can not identify the nonzero predictors effectively, see Table 7,8. The signal-to-noise ration also
affects the variable selection result clearly. With higher noise, it is more difficult to identify the
true model.

5.2 Real Data

6 Conclusion

For compositional data, the prior sum constraint makes the modeling more complicated. of correla-
tion between components indispensable. In the paper we considered the regression model with are
multiple compositional data and multivariate scalar data mixed in the predictors, and proposed to
select the significant predictors and estimate the associated coefficients simultaneously in groups
for compositional data and individuals for multivariate scalar data, where several group variable
shrinkage methods can be implemented in this procedure. Besides, we concern more about the
quantile function, not just the conditional mean. Simulation and a real data example illustrate the
effectiveness of our proposed method.
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Abstract 
 

Mineralization and alteration processes will result in zones with distinct geochemical characteristics 
within an orebody. To visualize the mine scale variability that arises as a result of these processes, 
geochemical domains are defined using a k-means clustering algorithm to analyze multi-element data. 
The fact that the chemical values can be grouped in a defined 3D location clearly suggests that the 
clusters have meaning in terms of geological process. Principal component analysis (PCA) of these 
clusters can further improve the understanding of this variability. These clusters form the basis of the 
geochemical domains which have direct implications for characterization and proportional sampling 
of geometallurgical and waste rock domains. 
 
In the case study presented, pre-mining geochemical characterizations were undertaken at an 
epithermal gold deposit to support metallurgical sampling and mine planning. k-means cluster analysis 
and principal component analysis of the geochemical clusters was used to support the metallurgical 
sampling program by identifying domains for variability testing. The geochemical clusters identified 
were used to define the oxide, sulphide and transition zones, a critical factor for mineral processing 
and recoveries and a key variable in the economics of the project.  
 
The R software environment for statistical computing was used for exploratory data analysis (e.g. 
PCA; zCompositions, robCompositions) and k-means analysis (fpc). 
 



1   Introduction 
 
A new gold or base metal mine can take 10 – 15 years to permit and construct and involves an 
investment of > $1B USD. Inadequate characterization of the orebody can lead to unexpected issues 
with geotechnical stability, metallurgical recoveries, environmental impacts, or other problems. 
Kinross has determined that a thorough understanding of its orebodies is critical to the success of 
these major, long term investments and that geochemistry is a key component of this understanding. 
 
Mineralizing and alteration processes will result in zones with distinct geochemical characteristics. 
The fact that the chemical values can be grouped in a defined 3D location clearly suggests that the 
clusters have meaning in terms of geological process. This forms the basis of the geochemical 
domains, which have direct implications for sampling locations for variability testing of 
geometallurgical recoveries. 
 
The geochemical domains will reflect the mineralogy of the domains with a granularity not always 
visible by geological mapping and logging alone. For example, alteration events associated with gold 
mineralization can overprint the host lithology to a degree that the original rock type is unable to be 
properly identified, or metasomatism may result in chemical changes to mineralogy not fully evident 
through visual inspection alone. The use of geochemical domains supports a more concrete link 
between mineralogy and metallurgical variables such as cyanide consumption, metal recoveries, 
concentration of deleterious elements, as well as comminution properties (hardness, grindability). 
 
2   Methodology 
 
The ultimate goal of the geochemical modelling process is to produce geochemical domains that are 
relevant for metallurgical study on a scale compatible with the proposed mining method. As such 
there will be a trade-off between granularity and complexity of the model. Geochemical domains need 
to be viewed within the context of lithology and alteration so that metallurgical variables can be linked 
to mineralogy. 
 
2.1   Data pre-processing 
 
The dataset used for the geochemical modelling must consist of spatially co-located data. For 
example; samples for gold analysis and multi elements analysis should be collected over the same 
intervals. Any hyperspectral logging (qualitative mineralogy) or QEMSCAN (quantitative 
mineralogy) should also be spatially co-located with the geochemical and metal assay data. The 
sampling strategy needs to be assessed for possible sampling bias. This can be accomplished by 
visualization of the data in 3D space, examination of sample lengths and counts by lithology, 
alteration, structure through histograms and box and whisker diagrams. Exploratory data analysis of 
the multi element geochemistry (i.e. summary stats, detection limits) is key to understanding the 
nature and distribution of the dataset (Grunsky, 2010). 

 
2.1.1   Data imputation 
 
The modified “Expectation-Maximisation” 
(EM) algorithm from the zCompositions 
package (Palarea-Albaladejo and Martin-
Fernandez, 2014) within the R statistical 
computing program was used to impute values 
below the lower limits of detection (LOD) as 
well as any missing values in the dataset. This 
procedure fills in the lower tail of the 
distribution of each element while still 
preserving the covariance structure of the data. 
The zCompositions modified EM-imputation 
algorithm imputes values based on a reference 
dataset (i.e. samples with no missing 
observations) and on the threshold values (i.e. 
the limit of detection for a given element). 
Following the application of the imputation Figure 1. Quantile-Quantile plot of imputed 

values and reported values for Hg



routine every imputed value was visually inspected on a quantile – quantile plot (Figure 1) for a given 
element to assess the appropriateness of the replacement. 
 
 
2.1.1   Data transformation 
 
The working dataset was transformed using log ratio normalization (Aitchison, 1986). Compositional 
data is by definition constrained to a constant sum (e.g. reported as percent or per mil) and as such the 
individual variables will not vary independently. This induced correlation introduces a bias into the 
covariance structure of the data and may obscure the true relationships between the variables.  Log 
ratio normalization takes into account the constant sum constraint of compositional data and centres 
the data in a way that removes this bias. For robust PCA (see below) the working datasets are 
normalized using an isometric log-ratio transform (ilr; Egozcue et al., 2003). K-means clustering is 
performed on a centred log ratio transformed (clr) dataset. 
 
2.2   rPCA 
 
In a mining environment understanding the behaviour of outliers is of significant interest. Gold 
mineralization tends to be inherently non-uniform and as a result many samples within the ore zone 
may have “anomalous” values compared to the waste rock. These samples need to be understood with 
respect to their geological context (lithology, alteration and structure) for vectoring and targeting 
purposes, as well as for understanding the nature of the gold distribution within the ore body. Unless 
sampling issues or analytical errors are confirmed the dataset is examined inclusive of outliers. 
 
Principal component analysis (PCA) is the simplest of the true eigenvector-based multivariate 
analyses. Its purpose can often be thought of as revealing the internal structure of the data in a way 
which best explains the data variance.  It is a technique used to change a set of original variables into a 
number of basic dimensions. The algorithm used here for the calculation of the principal components 
was the “Robust PCA” from the robCompositions package (Filmozer et al., 2011) within the R 
statistical computing program. Robust PCA (rPCA) is less affected by outliers in the dataset and 
provides more reliable calculation of the covariance matrix for the analysis. The rPCA algorithm from 
the robCompositions package utilizes a minimum covariance estimator (MCD) by examining a subset 
of h observations with the smallest determinant of their sample covariance determinant. In order to 
maximize the robustness of the MCD location the h used here was ½ of the total sample size because 
the number of outliers tends to be high. 
 
  
2.3   k-means cluster analysis 
 
K-means clustering is a method of cluster analysis which aims to partition n observations into k 
clusters, in which each observation belongs to the cluster with the nearest mean. K-means clustering 
uses the minimum Euclidian distance (difference between values) as the main criterion to discriminate 
between different groups. These clusters can be back-coded into the database and viewed in 3D space 
for interpretation within the context of lithology, alteration and metallurgical responses. 
 

The number of clusters to partition a 
dataset can be assessed using a plot of the 
sum of squared errors (SSE) versus 
number of clusters (Figure 2). The best 
number of clusters to describe the 
structure in the dataset can be determined 
by locating the break in slope on a plot of 
the SSE versus number of clusters. For 
geochemical modelling of an orebody a 
combination of the SSE plot, 
visualization of the clusters in either 
principal component space or classical 
discriminant coordinates and a visual 
(3D) inspection of the clusters in a 
geological modelling software was used 

Figure 2. An example of a sum of squared errors (SSE) 
plot versus number of clusters. 



to determine the “best” number of clusters. For example, from figure 2, four clusters are suggested; 
however five clusters showed distinct separation in 3D space (see Figure 9). 
 
2.3.1   Statistical validation of clusters 
 
The robustness of the clusters was determined using a bootstrapping algorithm from the fcp package 
(Hennig, 2007) within the R statistical computing program which resamples the dataset 100 times and 
returns a measure of the stability of the cluster, the Jaccard similarity value, which is assigned a value 
between 0 and 1. Generally, a valid, stable cluster should yield a mean Jaccard similarity value of 0.75 
or more (Hennig, 2007). 
 
 
2.3.2   Geochemical and spatial validation of clusters  

 
 The geochemical variability 
of the clusters can be 
examined within either 
principal component space or 
with a discriminant analysis. 
The sample dataset was tagged 
with the cluster number and 
plotted with their rPCA 
coordinates (see Figure 3). 
This type of plot can also 
provide as assessment as to the 
suitability of the number of 
clusters selected for k-means 
cluster analysis. For example, 
samples from cluster 7 (red) 
and cluster 5 (blue) completely 
overlap in PC1-PC2 space, 
suggesting that there is very 
little variability between these 
clusters. These samples were 

then examined spatially to 
determine if they have a 
defined location in space 

(Figure 4) and can be explained within the context of known lithology, alteration or structure or 
whether they just describe the inherent geochemical heterogeneity within that domain. 
 

 
 

Figure 3. Plot of PC1 vs PC2 coordinates for samples colour coded 
by cluster number 

Figure 4 Drill hole intervals back-coded with cluster number viewed in 3D space 



2.4   Wireframes and characterization of domains  
 
The first pass wireframe construction process uses Leapfrog geological modelling software to create 
surfaces based on the criteria outlined above to encapsulate the back coded clusters.  The surfaces are 
created independently of the lithological or alteration domains, however the geochemical domains will 
correspond to a combination of the lithological, alteration and weathering domains determined from 
visual logging.  
 
3   Case Study 1 
 
Deposit A is interpreted as having been emplaced into a phreatomagmatic diatreme-dome complex 
with local diatreme fill. Mineralization is associated with high sulphidation vuggy silica with 
advanced argillic quartz-alunite or quartz-pyrophyllite alteration which grades outward into quartz-
clays.  The alteration assemblage appears to have a high percentage of silica and lesser amounts of 
clay.  In oxidized portions, the gold and silver are residual, but at depth gold and silver are associated 
with multiple sulphides (mostly enargite and pyrite, with lesser covellite and sphalerite) and 
sulphosalts.  

 
The depth of oxidation varies from less than 
100 metres to over 300 metres and is 
typically around 120-150 metres. There is a 
narrow and discontinuous “mixed” horizon at 
the oxide-sulphide interface (transition zone), 
less than 10 metres thick, but it invariably 
includes secondary chalcocite.  
 
Within this transition zone metal recoveries 
can be significantly less than in the oxide 
zone; in this case 75% recovered Au 
compared to 82%. A robust definition and 
identification of this domain is critical to 
determining the economics of the project. 
However determination of this transition 
zone by visual logging is difficult and 
subjective. 
 
A detailed geochemical model was created 
within the mineralised vuggy silica zone of 
Deposit A to determine a consistent and 
unbiased definition of the oxide, transition 
and sulphide zones to accurately assess the 
amount of recoverable metals and better 
understand the economic potential of the 
deposit. 
 
 
3.1   Data and Data Pre-Processing 
 
The working dataset consisted of information 
collected on two very different resolutions. 
The logged lithology, logged alteration and 
metal assay data were collected with a 2 
metre resolution. In contrast,  the multi-
element data (collected by previous 
operators) consisted of 10 metre composites 
created by taking a 20 g sample from every 5 
assay sample pulps (originally collected on 2 
metre intervals) down hole, homogenizing 

Figure 5. Elemental distribution of raw data - all 
expressed as ppm, (n) indicates samples >LOD



those 5 samples and sending an aliquot of the composite for aqua regia digest and multi-element 
analysis by ICP. In order to properly merge the two datasets the data in the 2 metre Au, Cu, Ag, As, 
Pb, Zn and Hg assay tables needed to be composited over 10 metres. Multi element data sampled over 
2 metre intervals, consistent with the Au sampling protocol would be preferable.  

The statistical distribution of each element was inspected individually. Elements were removed from 
the dataset if a significant portion of samples measured below detection limits (>50%) or if the data 
was severely quantized due to the analytical resolution. This resulted in the removal of Sc, Cd, Tl, Ti, 
Th, B, Be, W, La, Ga and U (Figure 5). 

3.2   rPCA 
 
The Deposit A rPCA was constructed using the multi-element data to examine relationships found in 
Au-bearing lithology and alteration types.  The numerical variables analysed were the assayed 
elements: Au, Ag, As, Al, Ba, Bi, Ca, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, S-
total, Sulphide, Sulphate, V and Zn.    

Partial digestion, using aqua regia, was used 
to extract elements for analysis. This method 
dissolves minerals selectively and therefore 
the bulk rock chemistry is not reflected in 
the major elements determined by this 
method. The recovery of each element will 
depend on the mineralogy. The aqua-regia 
method only targets the trioctahedral 
silicates (biotite, chlorite), clays, sulfosalts 
and some oxides. It will not recover 
elements hosted by other silicates and 
refractory oxides. Consequently, extra care 
must be given to interpretation of the major 
element data obtained by partial rock 
dissolution. 

The observed chemical relationships of 
selected elements show patterns that are 
assumed to be a function of the type of 
mineralization and accompanying alteration. 
In the rPCA variable map in Figure 6 a 
number of elements are correlating with Au 
(Cu, Ag, Hg, Fe, SO4 and S; the vectors are 
in close proximity to each other). The 
presence of enargite (Cu3AsS4) is suggested 
by the Cu-As association. The strong 
correlation of Al-K implies an illite (K – Al 
clay) association. The vector describing Zn 
is the longest vector in the PCA suggesting 
that the occurrence of sphalerite (ZnS) is 
highly variable; however as demonstrated in 
the k-mean analysis, discussed below, the Zn 
variability can be spatially defined. 

 

 

Figure 6 rPCA variables map for Deposit A multi 
element data 



3.2   k-means cluster analysis 
 
All the elements used in the 
rPCA are also used in the 
clustering exercise. For Deposit 
A, the preliminary cluster 
analysis resulted in domains 
that broadly correspond to the 
alteration zones (see Figure 4). 
To provide further resolution of 
the variability within only the 
mineralized ore zone, a k-means 
cluster analysis was carried out 
on the geochemical data from 
intervals in the vuggy silica 
oxide, vuggy silica sulphide and 
alunite alteration zone. 
 
For Deposit A, a combination of 
the SSE plot, visualization of 
the clusters in discriminant 
coordinate space (Figure 8) and 
3D space (Figure 9) was used to 
determine the appropriate 
number of clusters.  
 
From figure 7, four clusters are 
suggested; however five clusters 
showed distinct separation in 
both geochemical space (Figure 
8) and 3D space (Figure 9). 
 
 
 
 
 
 

Figure 7 Sum of squared errors (SSE) vs number of clusters 
 

Figure 8 Visualization of the clusters in geochemical space  

Figure 9 Deposit A drill hole intervals back-coded with cluster number viewed in 3D space 



The robustness of the clusters was determined using a bootstrapping algorithm which resamples the 
dataset 100 times and returns a measure of the stability of each cluster, the Jaccard similarity value, 
which is assigned a value between 0 and 1. Generally, a valid, stable cluster should yield a mean 
Jaccard similarity value of 0.75 or more. The mean Jaccard values for Clusters 2, 4 and 5 range from 
0.82 to 0.84, while the Jaccard values for Cluster 1 and Cluster 3 are 0.66 (Figure 8 and 9). 
 
These clusters can be briefly characterized as: 

Cluster 1: A low copper (mean content of 0.5%) high zinc domain within the sulphide zone 
corresponding to sphalerite rich zones. The gold within this domain is highly refractory and not 
recoverable by current processing methods. 

Cluster 2: A “mixed” horizon at the oxide-sulphide interface with elevated soluble copper content 
corresponding to the transition domain. 

Cluster 3: A high copper (mean content of 2%) and arsenic domain within the sulphide zone 
corresponding to enargite rich zones. Due to the high arsenic content and the refractory nature of 
the gold the metals in this domain are not economically recoverable by current processing 
methods. 

Cluster 4: An oxide domain (mean S content of 0.2%) within the vuggy silica zone corresponding to 
the oxide zone. This domain has the highest gold recoveries. 

Cluster 5: A potassium and aluminium rich domain that slightly overprints the vuggy silica alteration 
and transitions into the quartz-illite alteration halo on the margin of the deposit. There is 
recoverable metal in this domain, but the differing mineralogy will result in differing behaviour in 
the mill. This domain also contains the highest mean Pb content of all the domains. 

 
Clusters 2 (transition domain) and 4 (oxide domain) occur predominantly within the portion of the 
deposit logged as oxide. Visual logging frequently misidentifies transition and oxide materials, 
particularly near the oxide-sulphide interface due to difficulty in visually identifying these zone and 
subjective nature of the geological logging (Figure 10). Because the identification of the transition 
zone is relevant for metallurgical processing and key to determining metal recoveries, this 
geochemical determination provides a unbiased and consistent way to identify this zone. 
 

 

  

Figure 10 Drill core photos of intervals classified as oxide domain (cluster 4) and transition 
domain (cluster 2). Within the oxide zone vugs are either empty or filled with quartz (A). 
Within the transition domain vugs are filled with quartz + fine grained disseminated 
sulphides (photo is cm scale). 

A  B 



The transition domain at the oxide-sulphide interface includes the secondary copper minerals, 
chalcocite. Chalcocite provides high concentrations of soluble copper will have a negative effect on 
the total cyanide consumption and possibly reduced gold recoveries.  
 
Figure 11 shows how the spatial separation of clusters 2 and 4 relate to the redox limits as established 
by visual logging. Chemical cluster 4, interpreted as the oxide domain, is hosted by the vuggy silica 
alteration well within the visually logged oxide zone while the intervals assigned to cluster 2, 
interpreted as transition domain, correspond to the vuggy silica alteration at the interface between the 
oxide and sulphide zones.  

 
Figure 11 A vertical cross section through the ore zone showing the lithological and spatial 
relationship of the geochemically determined oxide zone (blue intervals) and transition zone 
(red intervals). Also shown is the logged vuggy silica domain (light grey shape) and the redox 
boundary identified by visual logging (darker grey). 
 
Clusters 1 and 3 occur within the visually logged sulphide zone and differ from each other in copper 
content. Cluster 3 has mean copper content of 2% and cluster 1 has a mean copper content of 0.5%. 
Cluster 3 most likely represents copper rich feeder zones or copper rich veins within the low copper 
domain (cluster 1; Figure 12). However, the overlap between cluster 1 and 3, spatially and 
geochemically likely reflects the inability of the 10 metre composited data to precisely discriminate at 
this scale. Depending on the ultimate metallurgical processing flowsheet, resolution of these high 
copper zones may or may not be necessary. 

 

Figure 12 Drill core photos of intervals classified 
as (A) low Cu – high Zn sulphide domain (cluster 
1) characterized by coarse grained interlocking 
sulphides and (B) high Cu–As sulphide domain 
(cluster 3) characterized by massive Cu- rich 
sulphide veins. (photo is cm scale) 

A  B



The high copper domain within the sulphide zone of vuggy silica alteration (cluster 3) is centered on 
the main feeder zones of the vuggy silica alteration.  The low copper domain (cluster 1) is more 
predominant on the peripheries of the vuggy silica alteration zone to the north and south (Figure 13). 

 

Figure 13 Plan view of the logged vuggy silica alteration (grey shape) within the sulphide zone 
showing the spatial relationship between the high Cu-As sulphide domain (cluster 3; green drill 
strings) and the low Cu – high Zn sulphide domain (cluster 1; purple drill strings). 

Cluster 5 corresponds to a potassium and aluminium rich domain that slightly overprints the vuggy 
silica alteration on the margin of the deposit. This domain is characterized by high sulphate content 
consistent with the appearance of the sulphate minerals alunite and jarosite (Figure 14). This domain 
extends beyond the logged vuggy silica zone into the advanced argillic alteration halo within the host 
rock (see figure 15). Due to the presence of sulphate minerals, the ore in this domain has a higher lime 
consumption and is slightly softer than the vuggy silica ore. Characterization of this domain is 
relevant for mine planning because these variables can affect processing costs and throughput 
estimates. 

 
 
Figure 14 Drill core photo of interval alunite rich domain (cluster 5). These rocks are easily 
identified by their distinct yellow-beige colour  



 
 
 

 
 
Figure 15 Plan view of the logged vuggy silica zone (grey) and logged advanced argillic 
alteration (yellow) showing the spatial relationship between the alunite-rich domain (light blue 
drill strings) and the logged geology and alteration. 
 
4   Conclusions 
 
Geochemical domains were created using a k-means clustering algorithm to analyze multi-element 
data from the vuggy silica zone of a high sulphidation epithermal gold deposit (Deposit A). This 
analysis was able to partition the deposit into several distinct geochemical domains that correlate with 
the known geological and alteration domains of the deposit, but also provided additional information 
on the delineation of the transition zone between the oxide and sulphide zones. 
 
The transition zone at the oxide-sulphide interface includes secondary chalcocite, Cu2S, which is 
soluble in cyanide solutions. When cyanide consumption and copper gold recoveries were examined 
the transition domain (cluster 2) was found to contain higher soluble copper concentrations than the 
oxide domain (cluster 4). Gold recoveries within the transition domain (cluster 2) were on the average 
of 75%. Within the oxide domain (cluster 4) gold recoveries were approximately 83%. 
 
Because the gold recoveries are so variable between the oxide and transition zone for Deposit A the 
robust, unbiased delineation of the oxide and transition zones is critical to assessing the economic 
viability of this project. Compositional data analysis, including robust principal component analysis 
and k-means cluster analysis is an effective tool for increasing the understanding and knowledge of an 
orebody. 
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Abstract

In recent years, regression models for compositional data that consider spatial depen-
dency have been discussed mainly in the field of geology. In compositional data analysis,
most methods integrating spatial dependency have been geo-statistical approaches; re-
search using spatial econometric approaches has been limited to a few recent studies.
Furthermore, these studies’ methods for considering spatial dependency have not taken
into account the effects of neighboring pixels, commonly used in the field of image
processing. Thus, the present study extends these studies’ approaches to spatial de-
pendency by presenting an empirical regression model for compositional data with a
spatial econometric approach. To do so, we briefly review past work on relevant regres-
sion model, and then, propose a method under which spatial dependency is assumed
to decrease with geographical distance. We then test the method through an empirical
examination using land-use data with the characteristics of compositional data; this
allows us to evaluate the proposed method in terms of predictive accuracy.

Key words: compositional data, spatial autocorrelation, spatial econometrics, land-
use data.



1 Introduction

Research and empirical study of the statistical model of compositional data have been developed
thus far as a methodology of geology. Thus, they are biased toward the geological field via,
for example, composition investigation of mineral resources. On the other hand, there is less
accumulated knowledge and empirical studies with regard to socioeconomic data than geological
data.

In recent years, there has been increasing need to consider the spatial effects typified by positive
spatial autocorrelation, which can be expressed as “everything is related to everything else, but near
things are more related than distant things” (Tobler, 1970). When analyzing data with location
information, the use of spatial information of the data improves the estimation and prediction
accuracy of the statistical model and it is possible to increase reliability.

Consideration of spatial effects on the analysis of compositional data has been triggered by geo-
logical requirements for deep-mine studies, although there are many other examples of using the
technique of geo-statistics to handle data as a continuous amount of space, which involves separate
counting units. However, to the best of our knowledge, there are only limited studies using the
technique of spatial econometrics dealing with data as a discrete amount of space.

Based on the current situation, this study aims to undertake an analysis using socioeconomic data
that has never been covered sufficiently by compositional data model. From the viewpoint of
applicability to compositional data model to socioeconomic data, this attempt is significant for
the promotion of accumulated research. Moreover, by applying the spatial effects to compositional
data model, we can consider even socioeconomic data using the technique of spatial econometrics,
which indicates the usefulness of the study in comparing different setting of spatial effects.

2 Statistical model of compositional data

2.1 Log ratio transformation

The compositional data for the sample yi = (yi1, . . . , yiD) in a D-dimension refer to data that have
a constant sum constraint (Equation (1)):

yi1 + · · ·+ yiD = 1, yi1, . . . , yiD > 0. (1)

Here, n is the number of samples. This is a compositional data condition because it belongs to
simplex space that is included in real space where it is inappropriate to apply compositional data
techniques of statistical analysis directly (Aitchison, 1986). Use of a statistical analysis technique
that is defined in the real space of the compositional data, is necessary to map the compositional
data from a simplex space into real space, and such a technique is employed often as a method of
log ratio transformation.

Log ratio transformation is divided by common standardized variables in each attribute of the
compositional data, and replaces the value for each attribute in the ratio of the transformation
operation by taking the logarithm to the ratio (Aitchison, 1986). Here, this study takes the
ratio to solve a constant sum constraint and the ratio between the compositional data is used
to approximate a log-normal distribution closely. In addition , this operation can approximate
the compositional data after transformation into easily normal distribution analysis by taking the
logarithm.

This study directly uses a dimension of compositional data in standardized variables, using an
additive log ratio transformation, which is a typical log ratio transformation method (Equation
(2)):



zik = ln (yik/yiD), k = 1, . . . , d. (2)

Here, yiD are normalized variables, d = D − 1.

2.2 Multivariate conditional autoregressive model

In this study, in line with Allen and others (2013), we can consider spatial autocorrelation by in-
corporating spatial random effects into the multivariate conditional autoregressive (MCAR) model
proposed by Mardia (1988).

Now, in Equation (3), the dependent variable zi = (zi1, . . . , zid) is assumed to follow d-dimensional
normal distribution Nd:

zi ∼ Nd

(
BTxi + ηi,V

)
. (3)

Here, B is a parameter matrix of (p+1)× d, xi is an explanatory variable vector of (p+1)× 1, ηi

is a random effect vector of d×1, and V is the variance–covariance matrix of d×d, T is the symbol
representing the transpose. Moreover, in order to consider spatial autocorrelation, as Equation (4)
shows, prior distribution of the autoregressive type ηi is assumed:

ηi|
{
ηj

}
j ̸=i

∼ Nd

 1

Si

n∑
j=1

wijηj ,
1

Si
Σ

 . (4)

Here, Si is the row sum of the i-th row of the spatial weight matrix W (described in section 3) of
n× n with wij to the elements, Σ is the variance–covariance matrix of d× d.

2.3 Parameter estimation method

Since the parameter estimation method of the MCAR model is used widely in Bayesian estimation
with the Markov chain Monte Carlo (MCMC) method, we use this estimation method in this study.

Now, with Bayesian estimation, prior distribution of the parameters B, V, and Σ are assumed to
be independent and are set as the respective prior distribution Equations (5)–(7):

vec (B) ∼ Nd(p+1)

(
vec [µ 0d×p] , λ1d(p+1)

)
, (5)

V ∼ IWd (mV ,MV ) (6)

Σ ∼ IWd (mΣ,MΣ) (7)

Here, IWd is the d-dimensional inverse Wishart distribution, vec () is an operator to convert the
matrix to a column vector, µ = (µ1, . . . , µd) is a vector of d× 1 with µk = xT

i βk to the elements,
βk is (p+ 1)× 1 of the parameter vector k column of B, 0d×p is the matrix of d× p with 0 to all
the elements, the matrix of 1d(p+1) is d(p + 1) × d(p + 1) with 1 to all the elements, and λ, mV ,
MV , mΣ, and MΣ are hyperparameters, which will be described later.

From Bayes’ theorem, the joint probability density function expressed by Equations (3) and (4), and
the prior distribution expressed by Equations (5)–(7), can be derived by the conditional posterior
distribution of Equations (8)–(11):



vec(B)|zi,X,V,ηi ∼ N1

(
Ω−1

(
V−1 ⊗XTX

) (
XTX

)−1
n∑

i=1

xi (zi − ηi) ,Ω
−1

)
, (8)

V|zi,X,B,ηi ∼ IWd

(
mV + Si,MV +

n∑
i=1

EiE
T
i

)
, (9)

ηi|zi,X,B, {ηi}j ̸=i,Σ ∼ Nd

A−1

V−1
(
zi −BTxi

)
+Σ−1

 n∑
j=1

wijηj

 ,A−1

 , (10)

Σ|ηi ∼ IWd

mΣ + Si,MΣ +
n∑

i=1

n∑
j=1

(DW −W)ij ηiη
T
i

 . (11)

Here, X is the explanatory variable matrix of n× (p+ 1), Ω = λId(p+1) +V−1 ⊗XTX, Id(p+1) is
the identity matrix of d(p+1)×d(p+1), E = zi−BTxi−ηi, A = V−1+SiΣ

−1, DW is a diagonal
matrix of n×n with Si to the diagonal elements, and ⊗ is the Kronecker product. From Equations
(8)–(11), the conditional posterior distribution of parameters for are both standard distribution,
thereby enabling efficient parameter estimation by the MCMC method using Gibbs sampling.

3 Spatial autocorrelation in the model

In this study, in order to take into account the spatial autocorrelation of compositional data in the
statistical model, previous research (e.g., Allen and others, 2013) of the simple Rook type used
in W (WRook) (Figure 1A) rather than more socioeconomic data of the Queen type is believed
to represent spatial characteristics with W (WQueen) (Figure 1B). Much of the socioeconomic
data are spatial data with geographic information, which has the property of Tobler (1970). When
dealing with spatial data, it is desirable to assume that W better represents the characteristics.

Figure 1: Comparison of how to set the degree of spatial autocorrelation (elements of W) to the center of the mesh

This study attempts to extend the nature of the relationships of spatial autocorrelation (degree)
in close proximity (Figures 1A and 1B) in the future, based on the distance considered to be the
standard, in order to apply the technique of spatial econometrics accumulated in the methodology
of using W in the statistical model of compositional data.

We use two models in which W differs from that described in Section 3; specifically, we compare
prediction accuracy by only the difference in the setting of the spatial weight matrix W. We call
these the SPRook and SPQueen models, using the WRook and WQueen spatial weight matrix W,
respectively.



4 Empirical analysis

4.1 Data overview

In this study, we use land-use data from Ibaraki Prefecture in Japan, (n = 5, 904) as the compo-
sitional data. Here, we describe the data used. The dependent variable is digital national land
information that is available from land-use third-order mesh data for fiscal 2006 in Ibaraki Pre-
fecture. The data for each mesh is stored as the land area occupied . If calculating the ratio, the
data can be regarded as compositional data. Furthermore, since a zero value is not allowed in the
ratio of each land use in Equation (2), this study follows Allen and others (2013) in using a minute
value (0.01) to calculate the ratio in the terms added to each land use. The explanatory variables
are 13 variables as follows: the logarithm of population density [people / m2], average elevation
[m], average inclination [degrees], total road length [km], distance to the nearest railway from
the mesh center of gravity [km], distance to the nearest first-grade river [km], a microtopography
(alluvial fan, natural levee, marsh, delta, state sandbar-gravel) dummies, a lakes dummy, and an
urbanization control area dummy.

4.2 Prediction results

For the prediction, in the normalized variable yiD of Equation (2), we adopted the fewest categories
of composition in land-use, and for the initial value of the hyperparameters, λ = 1, 000, mV =
mΣ = (d+2), we set MV = MΣ = 2Id. There are 20,000 random numbers generated in the Gibbs
sampling and the burn-in period is 2,000 times.

The evaluation of the prediction accuracy used is the Aitchison distance (Equation (12) )

ADi (yi, ŷi) =

√√√√√√ D∑
K=1

ln
 yiK(∏D

K=1 yiK

)1/D
− ln

 ŷiK(∏D
K=1 ŷiK

)1/D


2

, (12)

which represents the similarity between the compositional data. Table 1 summarizes the basic
statistics for the predicted and measured values of the two models to calculate the respective
targets. Incidentally, the predicted values of the compositional data are obtained by performing
inverse transformation of Equation (2) to the posterior mean of the predicted values of zi (Aitchi-
son, 1986). This is because it does not follow the normal distribution performed in a Wilcoxon
signed-rank test. This results in p = 0.00 (< 0.01), supporting a difference in the median SPRook
and SPQueen (Median) models at the 1% significance level. That is, there is a significant statistical
improvement in the prediction accuracy for the Queen-type spatial weight matrix over the Rook
type.

Table 1: Descriptive statistics of ADi (yi, ŷi)

Model Min. Median Mean Max. SD

SPRook 0.010 0.292 0.457 2.737 0.528
SPQueen 0.009 0.263 0.424 2.683 0.533

5 Concluding remarks

This study undertook a prediction of compositional data by using a spatial weight matrix rep-
resenting proximity. It found there is higher expressive power than the spatial weight matrix



representing adjacency used in previous studies. This result suggests that a method based on dis-
tance is effective for a spatial weight matrix of the statistical model of socioeconomic compositional
data.
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Abstract

Biomonitoring is a method of environmental pollution estimation. It involves the use of living
organisms to assess type and degree of environment contamination. One of the species most
frequently used in biomonitoring is moss. It accumulates substances deposited from air, among
them the dust containing different contaminants.
Composition of a precipitate is determined both by distant emission sources and local secondary
redeposition.  It  is  highly  desirable  to  differentiate  between  both  deposition  components.
Distinction between them would be helpful in spatiotemporal characterization of pollution and
estimation of its sources. 
Combustion  of  fossil  fuels  and  some  industrial  activities  produce  large  amounts  of  dust
containing radioactive isotopes, which are then deposited on the ground surface. These include
natural radioisotopes and their decay products as well as some artificial radioisotopes. 
In our studies samples of moss and its ground base were collected in Bory Stobrawskie forest,
located in southwestern part of Poland. In samples specific activity concentrations of gamma-
radioactive isotopes Cs-137, K-40, Bi-214 and Pb-210 were determined.
The  specific  activity  concentrations  were  recalculated  to  mass  concentrations.  In  the  results
exploration  the  methods  designed  for  the  compositional  data  analysis  were  used.  In  cluster
analysis  a  matrix  of  distances  between  points  was  taken  for  dissimilarity  matrix.  To study
relationship between the radioisotope concentrations a method based on actual data resampling
was proposed.

Key words: biomonitoring, soil, moss, radioisotope, covariability.



Introduction

In  many  production  branches,  as  a  result  of  industrial  activities,  large  amounts  of  dust  containing
radioactive isotopes is produced. These include uranium, radium, thorium and their decay products, which
together with the produced dust are spread over large areas (Borrego et al., 2007; Bou-Rabee et al., 2009;
Peroni et al., 2012; Abdel Rahman et al., 2013). Another source of radionuclides in the environment are
dusts arising after the nuclear test explosions carried out in large numbers especially in the late 50s and
60s of the 20th century. These dust  falling gradually covered  the entire  surface  of  the Earth (Simon,
Bouville, and Beck 2004; Tsumune  et al., 2011). Though their radioactivity is often low and does not
create threats to health of living organisms, they could be used in estimation of other contaminants spread
in environment. 

The dust comprising radioisotopes can be transported in atmosphere in the long distances. When the dust
is deposited on surface of earth it becomes an element of local environment. Discrimination between the
fallen  dust  and  the  local  matter  can  help  in  localization  of  pollution  sources.  An information  about
dispersion range of pollutants could be also achieved in such way. 

The aim of the studies was investigation of radioisotopes content in moss and in surface soil layer. It was
expected that relationships between different radioisotopes content in plant and soil matrix will provide
information about the deposited dust sources.

Sampling locations and measurements

Samples of the mosses (Pleurozium schreberi) and soil surface layer, were taken at 21 places in forests
around Opole (south-western Poland) in an area of Bory Stobrawskie limited approximately by a 40 km ×
20 km rectangle. The moss samples were taken manually from forest glades at the places located not less
than 200 m from roads. Subsamples were kept at room temperature for a few days and then dried at
105ºC until constant mass was reached (usually about 24 h). Before measurement, subsamples from each
sampling place were carefully mixed together and a portion of the mixture was placed in a Marinelli
container. 

The measurement  of  radionuclide  activity  in  moss  and  soil  samples  was  carried  out  by means  of  a
gamma-spectrometer with a germanium detector HPGe (Canberra) of high resolution: 1.29 keV (FWHM)
at  662 keV and 1.70 keV (FWHM) at  1332 keV. Relative efficiency:  21.7%.  Energy  and efficiency
calibration of the gamma spectrometer was performed with the standard solutions type MBSS 2 (Czech
Metrological  Institute,  Praha).  The  geometry  of  the  calibration  source  was  a  Marinelli  container
(447.7±4,5 cm3),  Time of  measurement  was 24 h for  all  samples.  Measuring process  and analysis  of
spectra were computer controlled with use of the software GENIE 2000. The results were corrected to the
same date of measurement.

Computations

In data analysis,  clustering methods were used. Results of unsupervised clustering method application
provided assessment of structures presence in data. Initial results supposing number of clusters were used
in fuzzy clustering analysis. For each sampling point contribution of a cluster was calculated. To estimate
contribution of the k-th radioisotope in the j-th cluster structure, value of the following expression can be
considered [Eq. 1]:

FC j=∑
i=1

n

f ji cki (1)

 where fji is contribution of the j-th cluster at sampling site i and cij is fraction of the k-th isotope at the 
same site. 

Matrix representation FC of Equation 1 can be formulated as follows [Eq. 2]:

FC=F '⋅C (2)
where  F is  cluster  contribution  matrix,  C is  concentration  (fraction)  matrix  and  '  is  transposition
operation. 



Covariabilty  character  of  two components  can  be  deduced  from variability  of  the  components  ratio,
defined in the relationship [Eq. 3]:

VR=var( log cAcB ) (3)

Increase in both components values results in constant (for proportionality) or almost constant logratio of
these variables. In opposite, decrease in one component value with increase in values of the second one
produces differentiated logratios. In pairs sorted, for example, by increasing values of the first variable A,
the ratio of the first pairs would contain a small number in nominator and a big number in denominator.
The corresponding ratio would be small. In ratios calculated from the pairs close to the end of the sorted
data, the number in nominator would be big and the one in nominator would be small. The logratios
would  be  much  bigger  than  the  ones  calculated  from  the  pairs  at  the  sorted  data  beginning.  The
relationship  in  which  local  extreme  values  are  observed,  are  described  by  intermediate  logratio
variabilities. Similar effect can be expected for independent variables.

Assessment of covariability type on the base of logratio variance is not obvious. It is difficult to deduce
covariability type from raw logratio variance without information about its range of changes. Though the
lower limit of the variance is 0, its upper limit is not defined. To solve this problem resampling method
can be used. From the two actual data vectors, describing content of two components in a system, random
samples of data can be drawn.  For each drawing variance of logratio  can be calculated.  In  this way
conditional distribution of the variance can be estimated. 

Comparison of  the  actual  VR value  with its  distribution obtained from the data  resampling allow to
estimate type of the variables covariability. If the actual VR value is low among the others calculated from
the resampled data, then an increase in A variable with increase in B can be supposed. When the actual
VR value is high among the other, then an increase in A variable with decrease in B can be concluded. 

All statistical computations were performed using R language (R Development Core Team 2015). In 
cluster analysis the R package “cluster” was used (Maechler et al., 2014; Kaufman and Rousseeuw 2005).

Results and discussions

Activity concentrations of Cs-137, K-40, Bi-214 and Pb-210 were determined in moss and soil samples.
The Cs-137 is artificial isotope with half-life time 30.1 years.  Its  main source in environment  are the
nuclear test explosions carried out in large numbers especially in the late 50s and 60s of the 20 th century
and  accidents  in  nuclear  power  plants  (Chernobyl  1986,  Fukushima  Da-Ichi  2011)  (Aleksakhin,
Sanzharova, and Fesenko 2006; UNSCEAR 2008; Hirose 2012; Akahane  et al., 2012). The radioactive
dust falling gradually covered the entire surface of the Earth.

The long-living K-40 radioisotope with half-life time 1.25·109 years, is common in nature. It is strictly
bounded with natural potassium in which its abundance is 0.0119%. The Bi-214 (half-life time 19.9 min)
and Pb-210 (half-life time 22.2 years) are members of the radium decay chain. 

Activity concentrations of the radioisotopes were recalculated to mass fractions from the formula [Eq. 4]:

c=
t1 /2M

ln2 N A

a (4)

 
where c is mass fraction of the radionuclide, t1/2 is its half-life time, M is its molar mass, NA is Avogadro
constant and a is specific activity concentration of a radionuclide.

In Table 1 the statistical summary of the calculated concentrations (fractions) is shown. The min and max
are, respectively, minimum and maximum values, q25 and q75 are lower and upper quartiles, q50 is median,
mean is arithmetic mean, SD is standard deviation and MADN is normalized median absolute deviation
about the median (Maronna, Martin, and Yohai 2006).



Table 1. Statistical parameters of the radioisotopes concentrations in moss and in soil 

moss soil

Cs-137
·1013

K-40
·107

Bi-214
·1020

Pb-210
·1014

Cs-137
·1013

K-40
·107

Bi-214
·1020

Pb-210
·1014

min 0.07 5.48 0.08 4.12 0.03 4.09 0.22 0.66

q25 0.47 7.20 0.19 5.76 0.08 4.95 0.33 1.21

q50 1.19 8.46 0.21 10.35  0.25 6.08 0.40 2.19

mean 1.30 8.20 0.94 9.89 0.60 5.95 0.40 2.36

q75 1.52 8.92 1.13 13.95  0.95 6.65 0.45 2.91

max 3.84 11.20  3.66 15.33  2.17 8.49 0.58 6.10

SD 1.27 1.84 1.29 4.68 0.67 1.22 0.10 1.57

MADN 0.60 0.94 0.20 6.63 0.33 1.12 0.09 1.54

An assessment of the structure presence in data was performed. To estimate groups formation in data,
distances between compositional points A and B in simplex space da were calculated, using Equation 5:

da=∑
j=1

D

ln
cAj
g (c A)

ln
cBj
g(cB)

(5)

where g(c) is geometric mean of components concentrations. 

The  distances  matrix  was  used  in  construction  of  dendrograms.  Both  divisive  and  agglomerative
clustering methods were used. Additionally each branch in dendrogram was marked by symbol of the
material type, “s” for soil and “m” for moss. Structures of the dendrograms are shown in Figure 1. In both
of them two groups of data can be distinguished, but the material type is not crucial in the separation
observed. 

In further analysis fuzzy clustering method was used. In description of grouping trends, existence of two
clusters were assumed. From cluster contributions and concentrations, elements of the  FC matrix were
calculated. In Table 2 the computation result is shown. Significant difference in FC values for Cs-137 was
observed  in  clusters.  It  is  a  result  of  uneven  contamination of  the  studied  region  with Cs-137 after
Chernobyl  NPP breakdown.  It  can  be supposed that  the observed  clustering  is  not  related  to  spatial
distribution of other than Cs-137 radioisotopes determined. 

Covariability of a radioisotope concentrations in moss and soil was tested using VR coefficient. On the
base of  VR conditional  distribution, estimated from the actual  data resampling,  the type of reciprocal
changes in radionuclides concentrations was studied. 

As  an  example,  the  results  of  studies  on  the  relationship  between  Cs-137 and  Pb-210  in  moss  are
described.  In  Figure  2 graphs  of  the  empirical  probability  distribution  function  (EPDF)  a)  and  the
empirical cumulated distribution function (ECDF) b) are shown. Actual, calculated from the data, VRa is
marked with vertical, dashed line. The VR distribution is unimodal, and particularly low parameter values
correspond  to  positive  covariability  (low  ECDF  values)  and  particularly  high  values  correspond  to
negative  covariability  (high  ECDF  values).  Intermediate  VR describes  significantly  non-linear  or
multimodal relationships, or mutually independent variables.

In the example position of VRa in graphs does not confirm linear dependence between Cs-137 and Pb-210 
concentrations in population, neither positive nor negative.

The  VR estimated  distribution  function  enables  the  quantiles  calculation.  In  this  way  hypotheses
concerning VR value, and covariability character, can be tested. In Table 3 the actual  VRa values (upper
part of cell) and ranges of the 95 % confidence intervals (lower part of cells) are shown for relationships
between radioisotopes concentrations in moss and in soil. 



Table 2. Elements of the FC matrix calculated for 2 clusters

FC Cs-137 K-40 Bi-214 Pb-210

Cluster 1 0.6 8.1 6.4 4.9

Cluster 2 1.4 9.0 7.7 6.5

The results  shown in Table  3 suppose  absence  of  reliable  linear  relationships  between  radioisotopes
concentrations in moss and in soil. 

Table 3. The VR values and ranges of 95% confidence intervals estimated from actual data resampling 

radioisotopes Cs-137 K-40 Bi-214

moss

K-40
1.6

1.4-1.9

Bi-214
3.9

1.7-7.7
1.6

1.6-4.8

Pb-210
2.4

1.4-2.9
0.39

0.29-0.57
1.2

1.0-3.4

soil

K-40
1.7

1.3-2.4

Bi-214
1.8

1.7-2.4
0.053 

0.061-0.15

Pb-210
1.4

1.6-3.2
0.50

0.36-0.61
0.42

0.34-0.64

The VRa value for K-40 and Bi-214 in moss and soil, as well as Pb-210 and Cs-137 in soil suppose linear
relationship between corresponding concentrations. 

Figure  1:  Structures of the distances  dendrogram obtained using agglomerative a) and divisive b)
methods.



Low values of  VR suppose proportionality of the listed radioisotopes concentrations,  though they are
different  in  moss  and  in  soil.  No negative  covariabilities  (increase-decrease)  in  concentrations  were
observed.

Conclusions

The proposed  approach  to  compositional  data  analysis  provides  methods  of  covariabilties  estimation
between a system components. Statistical inference based on covariance analysis can be replaced by the
VR consideration. In compositional data mining the distances between points in simplex space can be
used in structures recognition.  
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