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Resum

Degut a les seves excel·lents propietats espećıfiques moltes estructures es fab-

riquen amb materials quasi-fràgils. Aquests materials es caracteritzen per la for-

mació d’una zona de procés de falla relativament gran respecte la mida de l’estructura.

L’existència d’aquesta zona provoca que la resistència nominal de l’estructura de-

pengui de la seva mida, efecte conegut com llei d’escala. Sovint, és necessari la

presència de forats, ja sigui per realitzar finestres, portes o punts d’accés. A més,

els forats són necessaris sempre que diferents elements vulguin unir-se mitjançant

cargols. Per tant, l’estudi de la resistència nominal i la llei d’escala en estructures

quasi-fràgils que continguin forats és un tema de gran importància.

El desenvolupament de models per predir la resistència nominal permet dis-

senyar aquestes estructures d’una manera econòmica ja que es redueix la necessi-

tat de realitzar costoses campanyes experimentals. Les estructures aeronàutiques i

aeroespacials contenten molts forats sota estats multidireccionals de forces que po-

den provocar l’aparició d’esquerdes que eventualment poden ser causa de la falla de

l’estructura. Per tant, la predicció de la resistència nominal d’estructures foradades

sota estats biaxials de càrregues és necessari pel disseny de moltes estructures. Les

estructures cargolades o reblonades són t́ıpiques en moltes aplicacions enginyerils i

la seva degradació pot causar el colapse catastròfic de l’estructura. La determinació

de la resistència última és essencial per un disseny eficient d’aquestes unions.

A la literatura existeixen models per predir la resistència nominal d’estructures

amb forats i cargols per materials quasi-fràgils. No obstant, els models anaĺıtics

avantatgen als numèrics en la seva velocitat de càlcul permetent agilitzar el proces

de disseny.

La principal contribució d’aquest treball és la d’introdüır un model anaĺıtic

capaç de generar diagrames de disseny que permeten obtenir la resistència nomi-

xxvii



xxviii RESUM

nal d’estructures quasi-fràgils que continguin forats. Els models de zona cohesiva

(CZM) permeten predir la resistencia d’estructures amb forats formades de ma-

terials quasi-fràgils amb una gran zona de procés de fallada confinada en un pla.

Aquests models també són capaços de predir l’efecte de la mida de l’estructura en

la resistència nominal. A més els CZM són un dels pocs (o els únics) que consideren

d’una manera expĺıtica la llei cohesiva en la seva formulació. Per aquestes raons, la

majoria de resultats presentats es basen en els models de zona cohesiva.

L’objectiu global d’aquesta tesis s’obté a partir de la consecució de tres objec-

tius parcials. El primer objectiu del treball es centra en la definició d’un model

anaĺıtic capaç de predir la resistència nominal d’estructures foradades sota estats de

càrrega biaxial formades per un material quasi-fràgil i isòtrop. El model considera

la llei cohesiva del material i s’estudien diverses formes d’aquesta llei. Els resultats

obtinguts es comparen amb altres mètodes de disseny, aquells basats en les teories

de les distàncies cŕıtiques.

El segon objectiu de la present tesis és la definició d’un model anaĺıtic capaç de

predir la resistència nominal d’estructures cargolades formades per un sol cargol i de

material quasi-fràgil i isòtrop. El model es formula considerant la llei cohesiva del

material. El model considera; la forma de la llei cohesiva, la distribució de pressions

sota el cargol, la mida del forat i l’amplada de la proveta. Com que la majoria

d’unions estan formades per més d’una fila de cargols, el darrer objectiu de la tesis

és extendre el model a unions formades per més d’una fila de cargols on sols part de

la càrrega externa és transferida per un cargol.

Els resultats obtinguts es comparen amb resultats experimentals obtenint bons

ajustos. Alguns dels resultats presentats són novedosos com els diagrames que

mostren l’obertura de l’esquerda (COD) en el moment de la fallada. Aquests gràfics

són molt útils per entendre certes caracteŕıstiques de la llei cohesiva. Per exemple,

mitjançant aquests diagrames es demostra que la primera part de la llei cohesiva

és la més important per determinar la resistencia nominal d’estructures amb forats.

Finalment, també es demostra que si la llei cohesiva es determina correctament els

models presentats permeten substitüır l‘ús de complexes models de dany continu

implementats en codis d’elements finits. A més, els resultats obtinguts permeten la

definició de diagrames de disseny que permeten l’estudi paramètric de la resistència

d’estructures foradades sota estats complexes de càrregues.



Resumen

Debido a sus excelentes propiedades espećıficas muchas estructuras se fabrican

con materiales casi-frágiles. Estos materiales se caracteizan por la formación de

una zona de proceso de fallo relativamente grande comparada con el tamaño de la

estructura. La existencia de esta zona provoca que la resistencia nominal de las

estructuras depenga de su tamaño, efecto conocido como ley de escala. A menudo,

es necesario el diseño de estucturas con agujeros, ya sea para realizar ventanas,

puertas o puntos de acceso. Además, los agujeros son necesarios siempre que se

quieran unir diferentes partes mediante tornillos o remaches. Por lo tanto, el estudio

de la resistencia nominal y la ley de escala en estructuras casi-frágiles con agujeros

es un tema de gran importancia práctica.

El dessarrollo de modelos para predecir la resistencia nominal permite diseñar es-

tas estructuras de una manera económica ya que se reducen las costosas campañas

experimentales. Las estructuras aeronáuticas y aeroespaciales contienen agujeros

bajo estados multiaxiales de fuerzas que provocan la aparición de grietas que even-

tualmente pueden ocasionar el colapso estructural. Por lo tanto, la predicción de

la resistencia nominal de estructuras con agujeros bajo estados biaxiales de carga

es un tema necesario para el diseño de muchas estructuras. Las uniones atornil-

ladas o reblonadas son t́ıpicas en muchas aplicaciones ingenieriles y su degradación

puede resultar en un colapso catastrófico de la estructura. La determinación de su

resistencia última es esencial para un diseño eficiente y seguro de estas uniones.

En la literatura existen varios modelos para predecir la resistencia de estructuras

agujereadas y atornilladas para materiales casi-frágiles. No obstante, los modelos

anaĺıticos aventajan a los numéricos en velocidad de cálculo permitiendo agilizar

enormemente el proceso de diseño.

La mayor contribución de este trabajo es la de introducir un modelo anaĺıtico
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para generar cartas de diseño que permiten obtener la resistencia nominal de es-

tructuras de materiales casi-frágiles que contengan agujeros. Los modelos de zona

cohesiva (CZM) son herramientas que permiten predecir la falla a tracción de es-

tructuras con agujeros formados de materiales casi-frágiles con una gran zona de

proceso de falla confinada en un plano. Los modelos de zona cohesiva también son

capaces de predecir el efecto del tamaño de la estructura en la resistencia nominal.

Además, es uno de los pocos modelos (o el único) que permite tener en cuenta la

ley cohesiva del material de una manera expĺıcita. Por estas razones, la mayoria de

resultados presentados se basan en los modelos de zona cohesiva.

El objetivo global de esta tesis se obtiene a partir de la consecución de tres

trabajos. El primero se centra en la definición de un modelo anaĺıtico capaz de

predecir la resistencia nominal de estructuras agujereadas bajo estados biaxiales de

cargas para materiales casi-frágiles e isótropos. El modelo considera la ley cohesiva

del material y se estudian diversas funciones entre las tensiones transferidas y la

apertura de la grieta. Los resultados obtenidos se comparan con otros métodos de

diseño, esos basados en las teoŕıas de las distancias cŕıticas.

El segundo objetivo de la presente tesis es la definición de un modelo anaĺıtico

capaz de predecir la resistencia nominal de estructuras atornilladas formadas por

un sólo tornillo de materiales casi-frágiles e isótropos. El modelo se formula con-

siderando la ley cohesiva del material. El modelo considera; la forma de la ley

cohesiva, la distribución de tensiones bajo el tornillo, el diámetro del agujero y el

ancho de la probeta. La mayoŕıa de uniones atornilladas constan de más de una

hilera de tornillos. El último objetivo de la tesis se centra en extender el modelo

a uniones de más de una hilera donde sólo parte de la carga es transferida a un

tornillo.

Los resultados obtenidos se comparan con evidencias experimentales obtenidas

de la bibliografia mostrando una buena correlación. Algunos de los resultados pre-

sesntados son novedosos como los diagramas que muestran la apertura de la grieta

(COD) en el momento de fallo. Estos gráficos son muy útiles para entender ciertas

caracteŕısitcas de la ley cohesiva. Por ejemplo, mediante los diagramas del COD se

demuestra que la primera parte de la ley cohesiva es la más importante para deter-

minar la resistencia nominal de estructuras con agujeros. Finalmente, también se

demuestra que si la ley cohesiva del material se puede determinar correctamente los
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modelos presentados pueden substituir el uso de complejos modelos de daño continuo

implementados en codigos de elementos finitos. Además, los resultados obtenidos

permiten la definición de diagramas de diseño que permiten el estudio paramétrico

de la resistencia de estructuras con agujeros bajo estados complejos de cargas.





Summary

Due to their superior specific properties many modern engineering structures

such as aircraft, ships and bridges are made of quasi-brittle materials. These mate-

rials are characterized by formation of a relatively large fracture process zone before

failure. The exitance of this region makes the strength of the structure depend on

its size known by the size effect. Moreover, presence of holes in most of engineering

structures is essential for different purposes. Open holes, for example, are required

to act as windows, doors and access points in aeronautical structures. Furthermore,

mechanically fastened joints, which require holes, are necessary for joining the dif-

ferent parts of these structures. As a result, studying of nominal strength and size

effect of quasi-brittle structures that contain holes is a very important research topic.

One of the main purposes for an accurate strength prediction is to get a reliable

design tool of a given structure. Since most of aircraft and aerospace structures

contain many holes and are subject to multidirectional loading conditions, due to

stress concentration, cracks will necessarily emanate from these holes before failure.

Therefore, the nominal strength prediction of open hole specimens under biaxial

loading conditions is very necessary for the safe design of these structures. Also,

since bolted/pinned joints are common elements in many engineering structures

and their failure can lead to catastrophic failure of these structures, their strength

prediction is essential for an accurate design of the joints and, consequently, for the

reliable design of the structure.

There are several models available in the literature that enable strength predic-

tion of Open Hole (OH) and bolt-loaded quasi-brittle structures. However, it is well

known that the analytical models have the privilege over the other models for their

ability to predict the behavior of a structure in a few minutes. Consequently, they

provide fast design tools for predicting nominal strength of a given structure.
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Based on the above, the main contribution of this work is to introduce analytical

models able to create simple design charts that would allow designers to quickly

determine the strength of quasi-brittle structures containing circular holes. Cohesive

Zone Models (CZM) are an excellent tool to model quasi-brittle structures with holes

in which a large failure process zone is confined in a plane. Also, the CZM is able

to predict the effect of the structure size on its strength. Moreover, it is one of the

few models (or the only model) that takes into account the material cohesive law

explicitly. Therefore, most of the presented models in this work are based on the

CZM.

The global objective of this thesis is expected to be achieved through three partial

objectives. The first objective is focused on development of an analytical model

able to predict nominal strength and failure envelope of isotropic quasi-brittle OH

specimens under biaxial loading conditions. In this model, the nominal strength

is analyzed taking into account the hole radius and the biaxiality load ratio. The

model is formulated based on the CZM considering various shapes of the cohesive

law. Other approaches implementing the different methods of the critical distance

theories are also presented and compared with the results of the cohesive crack

model.

The second objective of this thesis is to introduce an analytical model to predict

the net-tension strength of single-fastener double-lap joints in isotropic quasi-brittle

structures. The model is formulated based on the CZM. The effect of the material

cohesive law, the contact stress distribution due to presence of the bolt, the specimen

size and the hole radius to joint width ratio on the strength of the joint are considered

in this model. As the majority of bolted joints in engineering structures are multi-

bolt joints, the last objective of this thesis is to extend the previous model to handle

the multi-fastener double-lap joints.

The obtained results are compared with the available experimental data with

good agreement. Some of these results are new such as plots of the Crack Opening

Displacement (COD) at failure. These plots are very useful in understanding some

characteristics of the cohesive law. For instance, the importance of the initial part

of the cohesive law in computing the strength of isotropic quasi-brittle structures

with holes is confirmed with the COD charts. Also, the slope of the first part of the

cohesive law can be obtained with the presented results of the strength. Finally, if
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the material cohesive law is completely determined by some experimental procedure,

the introduced models can be considered as a reliable alternative to the use of

complex continuum damage models implemented in finite element models. Further,

the obtained results are suited for fast definition of simple design charts and for

effective parametric studies of open hole specimens and mechanically fastened joints

in isotropic quasi-brittle structures.





Chapter 1

Introduction

1.1 Overview

Quasi-brittle materials, such as laminated composites, possess superior specific

properties with respect to traditional engineering materials. High specific stiffness,

high specific strength and low weight as well as fatigue resistance are examples of the

excellent properties offered by these materials compared with traditional ones. For

this reason, modern engineering structures such as aircraft, ships, bridges and also

medical structures like dental implants are often made of quasi-brittle materials.

Many of these structures requires open holes or cut-outs to act as windows, doors

and as access points. Moreover, most of them are manufactured, initially, from

several parts. These parts must be joined together to produce the whole structure.

Welding, adhesion and mechanical fastening are the most common ways for this

purpose. In many situations there is a need to disassemble and assemble some of

these parts for shipping, inspection, repair and replacement if it is necessary. Bolted

joints are the best option in this case. As as a result, the presence of open holes

and loaded holes, for mechanically fastened joints, is essential for structures that are

made of quasi-brittle materials.

Usually, loading conditions in the aforementioned structures are complex. For

instance Open Hole (OH) specimens under biaxial loading conditions and bolted

joints under combined bearing-bypass loading are a sample of problems to be studied

in these structures. Presence of stress concentrators significantly reduce the load-

carrying capacity of a structure due to associated high stresses. Therefore, accurate

1
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and reliable models for analyzing failure behavior are very necessary for the safe

design of these structures.

1.2 Motivation and Objectives

As shown in the previous section, there is insisting demands to reliable and fast

design tools of quasi-brittle structures. An accurate strength prediction is one of the

most important demands to get safe and reliable design tools of a given structure.

There are several models available in the literature that enable strength predic-

tion of OH and bolt-loaded quasi-brittle structures. Finite element based models are

accurate and can handel complex geometries. However, they are computationally

expensive and very time consuming which makes them not suitable for the industry

where the results must be obtained quickly. Experimental work is reliable but it is

also very expensive and time consuming. On the other hand, it is well known that

the analytical models have the privilege over the other models for their ability to

predict the behavior of a structure in a few minutes. Consequently, they provide

fast design tools for predicting nominal strength of a given structure.

Based on the above, the global objective of this thesis is to create simple design

charts that would allow designers to quickly determine the strength of quasi-brittle

structures containing circular OHs or loaded holes due to presence of mechanically

fastened joints. These charts are obtained by means of analytical models. This

global objective is expected to be achieved through three partial objectives.

The first objective is concerned with introducing analytical models for strength

prediction of OH specimens under biaxial loading conditions. The main model is

based on the Cohesive Zone Model (CZM). In this model the effect of the shape of the

cohesive law on strength computation is studied. Other models based on different

methods of the Critical Distance Theories (CDTs) are also introduced and compared

with the first one. In all models, the effect of the hole size and the biaxiality load

ratio on the nominal strength is investigated.

The second objective is to develop an analytical model able to predict the net-

tension strength of single-fastener double-lap joints that are made of quasi-brittle

materials. The developed model is based on the CZM. The effects of the material

cohesive law, the contact stress distribution due to presence of the bolt, the joint size
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and the hole radius to joint width ratio on the strength of the joint are considered

in this model.

The majority of mechanically fastened joints in aerospace and many other en-

gineering structures are multi-fastener joints. Therefore, the last objective of the

present work is to extend the analytical CZM model to deal with this kind of joints.

The effect of the bypass stresses on the joint net-tension strength is studied in this

model. To calculate the bypass to the bearing load ratio in the joint, a simple an-

alytical spring-based model is developed. The global model is able to predict the

optimum geometry of the joints and, consequently, its maximum nominal strength.

1.3 Thesis Outline

According to the objectives of this thesis, its content is divided as follows:

Chapter 2 reviews the previous research relevant to this study. First, quasi-

brittle materials and some of their applications are given. Next, the effect of the

structure size on its strength is introduced. Then, different methods that are used

in strength prediction of quasi-brittle structures containing holes are discussed.

Chapter 3 presents a general mathematical formulation for the problem of strength

prediction and size effect of quasi-brittle structures with open or loaded holes. The

formulation is based on the CZM. Thus, this chapter starts with an overview of

the cohesive models and cohesive laws followed by the numerical formulation of the

problem.

Chapter 4 is concerned with the nominal strength of quasi-brittle OH specimens

under biaxial loading conditions. A brief introduction is first presented. Formula-

tions based on the CZM and the different methods of the CDTs are presented in

this chapter. Predictions obtained from all formulations are compared against each

other and against the available experimental data. Also, the obtained results based

on the size effect law are adjusted to match those obtained by the CZM formulation

and the experimental data to estimate the parameters of the size effect law.

Net-tension strength of mechanically fastened joints made of quasi-brittle ma-

terials is presented in Chapter 5. To avoid the effect of secondary bending, only

double-lap joints are considered in this work. Further, for simplicity, formulation of

a single-fastener joints is presented in this chapter. The formulation is based on the
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CZM taking into account the shape of the material cohesive law.

In Chapter 6, the model presented in Chapter 5 is extended to handle multi-

fastener double-lap joints. A simple spring-based model is developed to analyze

load distribution between the joint fasteners. The obtained plots provide a graphical

optimization procedure for determining the optimum geometry of the joint and, as

a consequence, its maximum net-tension strength.

Finally, conclusions and some related ideas for future work are presented in

Chapter 7.



Chapter 2

Literature Review

2.1 Quasi-brittle Materials

When considering failure it is observed that many engineering materials are not

perfectly brittle, but display some ductility and softening after reaching the strength

limit. In these materials a nonlinear zone forms around the existing stress risers,

such as cracks, inherent flaws, notches or holes, before collapse. This zone is known

as Fracture Process Zone (FPZ). It includes two regions: The first one describes

extrinsic dissipation mechanisms which are characterized by progressive softening or

decrease of stress with increasing deformation, whereas the second region considers

intrinsic dissipation mechanisms such as hardening plasticity or perfect plasticity.

In brittle materials, like glass, brittle ceramics and brittle metals, the size of the

FPZ is negligible compared to the structure size and the entire fracture process takes

place almost at one point ahead of the crack tip. In this case the whole body behaves

elastically until rupture, and failure is abrupt. Linear Elastic Fracture Mechanics

(LEFM) can be used to analyze the behavior of these materials. On the other hand,

for ductile materials, such as ductile metals, the non-softening region forms most of

the FPZ and the size of the FPZ is small but not negligible. The behavior of this

kind of materials is treated by elasto-plastic fracture mechanics.

In between the two previous situations, there is a set of heterogeneous materials

characterized by the presence of relatively large FPZ compared to the other structure

dimensions before complete failure. These materials have negligible intrinsic dissi-

pation mechanisms, while the major part of the FPZ undergoes progressive damage

5
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with material softening due to microcracking, voids formation, interface breakage,

and other similar phenomena. Moreover, failure of these materials is transitional

from elastic to plastic failure according to the size of the FPZ (`FPZ) which, in turn,

depends on the size of the structure. This phenomenon is known as the size effect

on the strength and it will be discussed in the following section. These materials

are called quasi-brittle materials and they are characterized by linear response up to

failure. Fiber composites, nanocomposites, tough ceramics, concrete, modern tough

alloys, dental cements, bones and rocks [1] are examples of quasi-brittle materials.

Figure 2.1 shows the FPZ of laminated and particulate composites.

Figure 2.1: Fracture process zone in composite laminates (a) and in particulate
composites (b).

2.2 Size Effect on the Strength

Stress analysis shows that failure of structures that are made of ideally brittle or

perfectly plastic materials is material size independent [2]. In contrast, the formation

of relatively large FPZ, which leads to a stable crack growth, prior to the attaintment
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of the peak load in structures that are made of quasi-brittle materials is the reason

for the size effect on their strength [1]. This can be explained by the existence of the

FPZ which redistributes the stress concentration and thus delays the final failure.

The dependency of strength on the size is known as the Size Effect Law (SEL). It

states that, for geometrically similar structures, the nominal strength decreases with

increasing the size of the specimen.

Due to the size effect it is expected that large structures can give much lower

notched strengths than small test specimens. Therefore, a proper understanding

of scaling effect -specimen size effect- is essential for safe and efficient use of these

structures.

One of the most important parameters of scaling effects on the strength of struc-

tures with open holes is the hole size [3]. When dealing with failure prediction of OH

specimens two extreme situations can be expected: brittle or ductile failure [1]. For

specimens with small holes the FPZ almost occupy the whole size of the specimen

and there is no stress concentration which means that the stress field throughout the

specimen is almost constant. With increasing the external applied load this stress

field approaches the material unnotched strength and the specimens fail according

to the plastic limit. Therefore, specimens with small holes are notch insensitive and

their failure is ductile. On the other extreme, in case of specimens with large holes,

the relative size of the FPZ is negligible with respect to the specimen size and brittle

failure is expected. For brittle failure the nominal strength depends on the elastic

limit according to the stress concentration factor. As a result, brittle failure is notch

sensitive. In between these extremes, quasi-brittle failure exists.

The nominal strength (σNf ) and expected failures of the OH specimens, under

uniaxial tensile load, are described in Figure 2.2. In this figure 2W and R are

respectively the specimen width and the hole radius, while σ̄Nf = σNf/σu is the

normalized nominal strength with respect to the material ultimate tensile strength

(σu).
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Figure 2.2: Notch sensitivity.

The SEL defines the transition from ductile to brittle failure with increasing the

specimen size in quasi-brittle structures. It is defined by asymptotically matching

the extreme responses of geometrically similar structures of different sizes [4–10].

It is initially developed for cracked structures and quickly expanded to specimens

without stress singularities. Based on this law, the nominal strength is expressed as

[11, 12]:

σNf = f∞t

(
1 +

RN

R + `SEL

)1/r

(2.1)

where R is the characteristic size of the structure (hole radius in case of OH spec-

imens), f∞t is the nominal strength for very large structure, RN is a characteristic

length related to the size of the FPZ, while `SEL and r are two adjusting parame-

ters that bound the strength for very small specimens and control the slope of the

transition from ductile to brittle response, respectively. If the nominal strength is

defined as the mean stress at failure plane just before failure, the following relations

are defined: f∞t = σu/Kt and RN = (Kr
t − 1)`SEL. Therefore, Equation (2.1) can be

written in normalized form as [12]:

σ̄Nf =

(
K−rt + ¯̀

SEL

1 + ¯̀
SEL

)1/r

(2.2)

where ¯̀
SEL = `SEL/R is related to the normalized length of the FPZ according to
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the SEL. For cracked structures (Kt →∞) of large size, Equation (2.2) must agree

with the LEFM law. Therefore, r = 2 and `SEL = `M/(πF
2) when R → ∞, where

F is a geometrical parameter. It must be pointed out that `SEL depends on both of

the specimen geometry through the parameter F and on the material through the

material characteristic length (`M) which will be defined later. For OH specimens

it is possible to fit the parameters of the SEL in Equation (2.2), `SEL and r, to

the experimental results of geometrically similar specimens of different sizes. Figure

2.3 shows the predicted nominal strength using the SEL for OH specimens under

uniaxial loading conditions, where ¯̀
M = `M/R. In this figure, Kt = 3 for a hole in

an infinite isotropic plate and ¯̀
SEL = ¯̀

M/π are used.
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Figure 2.3: Nominal strength according to the SEL for OH specimens under uniaxial
loading .

The effect of scaling on the OH tensile strength of quasi-isotropic composite

laminates has been investigated by some researches [13–15]. In their study the ply

and the laminate thicknesses as well as the hole diameter were investigated as the

independent variables, whilst the ratios of hole diameter to the width and to the

length were kept constant. They found that failure of specimens with single 0.125

mm thickness plies, no clustering, was brittle with the normal hole size effect. On

contrary, specimens of the same overall thickness with four plies blocked together

failed by delamination, with a trend of increasing strength with hole size (opposite

to the usual hole size effect). This new finding was attributed to the formation
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of delaminations at the edge of the hole. An intermediate response was found for

specimens with 0.25 mm thick ply blocks where failure of small specimens was

by delamination while large ones failed by fiber fracture. Finally, they concluded

that the delamination plays an important role in the tensile strength and failure

mechanisms of OH specimens. Also, the conventional hole size corrections may not

always be applicable.

Other researchers [3, 16] studied the size effect on the OH compressive strength

of quasi-isotropic laminates. They examined the effect of the hole size, stack-

ing sequence and ply blocking on the compressive strength. Two generic quasi-

isotropic stacking sequences were used in their investigations. The first one was

fabricated with blocked plies [45n/90n/ − 45n/0n]s and the other with distributed

layers [45/90/ − 45/0]ns with n = 2, 4 and 8 to control the total thickness of the

laminate. Unlike the situation of the tensile strength, the hole size effect on the

OH compressive strength has appeared in both of laminates with blocked and dis-

tributed plies. However, the laminate with blocked plies was less notch sensitive.

Also, they concluded that the thickness effect on the compressive notched strength

is negligible.

Camanho et al. [17] examined the size effect on the notched tensile strength of

quasi-isotropic CFRP laminates with open holes experimentally as well as by means

of a continuum damage model. The tested specimens were with stacking sequence

of [90/0/± 45]3s.

The size effect on the strength of composite laminates with central holes loaded

in tension and compression has been investigated experimentally and analytically by

Erçin et al. [18]. They compared the the size effect on the tensile and compressive

strengths of these laminates. Two lay-ups were used in their experimental work

namely [90/0/±45]3s (laminate 1) and [902/02/452/−452/90/0/45/−45]s (laminate

2). All the tested specimens showed strength decreasing with respect to the hole

size when the hole diameter to the specimen width ratio is kept constant for both

tensile and compression loading.
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2.3 Strength Prediction of Holed Structures

Behavior of quasi-brittle materials with stress concentrations due to presence of

holes is of great importance in their design. This is because of the resulting strength

reduction due to damage growth around these stress concentrators. It has been

found that the crack initiation and propagation in OH and bolted joint problems

are similar in tensile and net-tension failures, respectively [19]. This enables using

the same approaches for strength determination in both of them.

Failure behaviour of quasi-brittle structures has been studied by several re-

searches. Some of them investigated this behaviour experimentally. Others devel-

oped, numerical, semi-analytical and analytical models for predicting the notched

strength of these structures. Most of the available semi-analytical models were

based on the CDTs methods. These models and their drawbacks will be reviewed

briefly in the next section. After that some experimental and numerical studies that

have been conducted for strength prediction and notch sensitivity analysis of holed

quasi-brittle structures are reviewed.

Models that are based on the CZM dealt with the drawbacks of the CDTs models.

These models seem to be relevant for tensile and net-tension failure of OH and

bolted joint problems especially in materials that satisfy the model hypothesis such

as woven fabric and thin-ply laminates. Therefore, there is great attention to use the

CZM approach in the present work, and hence the next chapter has been allocated

to display these models.

2.3.1 Critical Distance Theories

It has been found that a parameter called characteristic length is a useful concept

in failure analysis of quasi-brittle structures containing stress concentrations. This

parameter, related to the size of the FPZ, controls the plastic to elastic transition of

the structural strength and is determined experimentally [12]. Methods that assume

that failure of quasi-brittle materials is affected by stress or energy flux acting on

this characteristic length are called the Critical Distance Theories (CDTs) and they

are widely used by the scientific community [20].

The CDTs have the common feature of combining a linear elastic analysis with

a characteristic length. They are also called two-parameter models. This is because
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of their ability to predict the notched strength by means of the material unnotched

strength and the characteristic length. Due to the easiness of the elastic stress

field computation by means of the finite element method and good agreement with

the experimental data, these techniques are attractive for quick structural design.

Recently, Taylor [21, 22] published a book and a review article dedicated to the

CDTs to show their relevance and widespread usage. Lately, a comprehensive review

to theses methods was presented in [12]. CDTs can generally be classified into

three groups: (1) Stress based models, (2) fracture mechanics based models and (3)

combined stress-fracture mechanics based models.

2.3.1.1 Stress Based Methods

Whitney and Nuismer [23] proposed two failure criteria to account for the hole

size effect in strength prediction of composites under uniaxial loading. These models

are based on the normal stress distribution (σy) adjacent to the edge of the notch and

are called the Point Stress Method (PSM) and Average Stress Method (ASM). PSM

postulates that the failure will occurs when the stress σy at some fixed distance

d0 ≡ `PSM from the hole boundary reaches the material unnotched strength σu.

Similarly, ASM assumes that failure takes place when the average stress value of

σy over a characteristic length a0 ≡ `ASM ahead of the notch becomes equals σu.

Both methods are explained graphically in Figure 2.4. Mathematically, the nominal

strength based on the PSM and the ASM are expressed as:

σPSM
Nf = σy(x, 0)|x=R+`PSM

= σu (2.3)

σASM
Nf =

1

`ASM

∫ x=R+`ASM

0

σy(x, 0) dx = σu (2.4)

where σPSM
Nf , σASM

Nf , d0 ≡ `PSM and a0 ≡ `ASM are the nominal strengths and the

characteristic lengths according to PSM and ASM, respectively.

PSM and ASM are applied by Tan [24, 25] for the strength prediction of fiber-

reinforced composite laminates containing an elliptical opening. His results showed

that theses methods have good correlation with the experimental data.

Camanho and Lambert [26] proposed a methodology based on the PSM and the

ASM to predict the final failure and failure mode of OH composite laminates under
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biaxial loading condition. Also, they applied their methodology to quasi-isotropic

double-shear mechanically fastened joints. The stress distribution in this model was

obtained numerically. The obtained results in their study were in good agreement

with the experimental ones.

Figure 2.4: (a) Point stress method and (b) average stress method.

The damage growth and fracture at an open circular holes in quasi-isotropic

woven glass fabric laminates, loaded in tension, has been studied by Belmonte et al.

[27]. They concluded that the notched strength data can be adequately described

by the PSM and ASM with the ASM being better than the PSM.

Some researchers [28–32] proposed a modification to the traditional PSM for

predicting the notched strength of woven fabric composites. They introduced the

characteristic length as a function of the specimen geometry. All of them concluded

that the modified PSM predictions were better than those obtained by the traditional

PSM and they are in good agreement with the experimental data.

Hwan et al. [33] proposed a similar modification to both of the PSM and ASM

for strength prediction of braided composite plates with a central hole. They found
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that both modified PSM and modified ASM gave better predictions of the nominal

strength than traditional PSM and ASM for all kinds of braided composite plates.

The stress based models are also used for predicting the failure strength and the

failure mode of mechanically fasted joints of quasi-brittle structures. Agarwal [34]

used ASM to predict the failure strength and failure mode of double-shear single

fastener composite joints. In his model the stress distribution around a fastener hole

was calculated by means of a finite element analysis.

Whitworth et al. [35, 36] evaluated the bearing strength of pin-loaded composite

joints by a model based on the PSM. In their study two-dimensional finite element

analysis is used to calculate the stress profile around the fastener hole. They ob-

served good agreement with experimental data of graphite/epoxy laminates when

the bearing strength is computed as a function of edge distance to hole diameter.

Whereas, when it is calculated as a function of plate width to hole diameter, con-

servative results were obtained.

2.3.1.2 Fracture Mechanics Based Methods

Fracture mechanics-based methods are based on linear elastic fracture mechanics.

These methods assume the existence of a flaw of some characteristic length ahead

of the notch and predict the nominal strength by the elastic solution. The Stress

Intensity Factor (SIF) of a crack starting in a notch is expressed as:

K = σN
√
πa F (a) (2.5)

where F is a shape factor that depends on the crack length (a), the material, the

geometry and the loading conditions. F can be obtained from a finite element

analysis. For OH specimens under uniaxial loading, the factor F is given as [37]:

F (a) = 1 + 0.358s+ 1.425s2 − 1.578s3 + 2.156s4 where s =
R

R + a
(2.6)

An analytical solution obtained by Newman [37] can be used to derive the shape

factor F for an isotropic plate with a cracked hole under biaxial loading and given

as [38]:



2.3. STRENGTH PREDICTION OF HOLED STRUCTURES 15

F (a, λ) = (1− λ)(1 + 0.358s+ 1.425s2 − 1.578s3 + 2.156s4)

+ λ(1 + 0.4577s+ 0.7518s2 − 0.8175s3 + 0.8429s4)
(2.7)

where λ is the biaxiality load ratio.

The fracture mechanics-based methods include two models, namely the Inherent

Flaw Model (IFM) and the Finite Fracture Mechanics (FFM). The IFM was devel-

oped initially by Waddoups et al. [39] for static failure of composite materials. This

model predicts failure by assuming a flaw of size `IFM and applying linear elastic

fracture mechanics. At failure the flaw size and the stress intensity factor reach their

critical values, a = `IFM and K = KC , and the nominal stress equals the notched

strength, σN = σNf . Accordingly, the σNf can be given as:

KC =
√
EGC = σNf

√
π`IFM F (`IFM) thus σNf =

√
EGC

π`IFM

F−1(`IFM) (2.8)

where KC , E and GC are critical stress intensity factor, the material Young’s mod-

ulus and the critical fracture energy, respectively.

The FFM was proposed by Taylor et al. [40]. It considers the mean energy

release rate of a crack growth with a characteristic length `FFM as the driving force.

Based on the FFM the required energetic condition for failure onset can be stated

as:
1

`FFM

∫ `FFM

a=0

G(a) da = GC (2.9)

Taking into account Irwin’s relation G = K2/E and the form of the SIF in Equation

(2.5), Equation (2.9) can be written as:

πσ2
N

E`FFM

∫ `FFM

a=0

aF 2(a) da = GC (2.10)

At failure σN = σNf and therefore,

σNf =

√
EGC`FFM

π
∫ `FFM

a=0
aF 2(a) da

(2.11)

Both of IFM and FFM are explained graphically in Figure 2.5
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Figure 2.5: (a) Inherent flaw model and (b) Finite fracture mechanics.

Curtis and Grant [41] analyzed the failure of carbon fiber composite plates with

unloaded and loaded holes by means of the ASM and the IFM. They found that

the ASM gives better estimates of the failure strength for a wide range of loading

conditions and failure modes. Schulz [42] predicted the net-tension strength of pin-

loaded single-fastener laminated composite joints by using the IFM.

Irrespective of their advantages, the CDTs have some drawbacks. First, they

assume that the characteristic length ideally depends on material parameters and

not on the shape and size of the specimen despite it has been confirmed that it is a

size and geometry dependent [12]. Second, they require experimentally determined

parameters for each material, geometry and size which is an additional cost in time

and money. Also, these approaches neglect the physical state of damage and the

softening occurring, in most of quasi-brittle materials, prior to the ultimate failure.

2.3.1.3 Combined Methods

Almost all the previous methods rely on curve fitting of test data to determine

the characteristic length and this is very expensive. Therefore, methods that are able

to self-produce this parameter are promised. These methods are called combined
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stress-fracture mechanics-based methods. The main assumption in these methods is

that both of stress and energetic failure criteria are satisfied simultaneously just be-

fore failure. This can be achieved by considering the characteristic length as variable.

Thus, equating the nominal strength defined by stress and fractures mechanics-based

methods results in an equation in terms of this characteristic length. Solving it gives

the characteristic length required for the same nominal strength based on both of

the two criteria. One of great advantages of these methods is that the characteristic

length as well as the nominal strength are defined solely by the material character-

istic length `M = EGc/σ
2
u.

Leguillon and Leguillon et al. [43, 44] coupled the PSM with the FFM for

strength prediction of quasi-brittle materials. They compared their results with

experiments in various domains: polymers, ceramics and rocks. Good agreement

was found between their results and experimental data particularly in the case of

holed specimens in tension and compression.

Belmonte et al.[27, 45] combined the ASM for damage growth with IFM for

catastrophic failure at circular holes in quasi-isotropic GFRP and CFRP woven

fabric laminates loaded in tension. Agreement between their theoretical results and

experimental data has been demonstrated for three thicknesses of two woven types of

quasi-isotropic CFRP based laminates. Also, their results showed that the proposed

approach is applicable to a wide range of woven fabric CFRP laminates.

In Berbinau et al. [38], the failure of the repaired impact damaged laminate has

been investigated. In their work the damaged area has been drilled and then the hole

was plugged with a perfect-fit core made of a dissimilar material. They analyzed

the laminate with the filled hole under biaxial tension-compression loading. They

used the complex variable mapping method to determine the stress profile in the

laminate. In this work the failure was predicted by coupling ASM with IFM.

Cornetti et al. [20] proposed a general model based on coupled ASM and FFM.

The strength of three point bending tests of various relative crack depths and dif-

ferent sizes is predicted using the prosed model. Camanho et al. [46] used a coupled

ASM-FFM model to predict the OH strength of composite laminates. Their results

were compared with the experimental data obtained in quasi-isotropic carbon-epoxy

laminates with good agreement.

Other combinations between the stress-based and the fracture mechanics-based
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models -such as PSM-IFM, PSM-FFM, ASM-IFM and ASM-FFM- has been per-

formed by Maimı́ et al. [12] for tensile strength prediction of cracked and OH

specimens under uniaxial loading.

Catalanotti and Camanho [47] introduced a semi-analytical model for the pre-

diction of the net-tension strength of mechanically fastened joints. Their model is

based on the coupled ASM-FFM approaches. The stress distribution around the

fastener hole and the stress intensity factor for the joint with two cracks emanating

from the hole edge were calculated by means of the finite element method.

2.3.2 Experimental and Numerical Techniques

The previously discussed models for failure prediction of quasi-brittle structures

can be classified as semi-analytical models. In addition to theses models, there are

a lot of experimental and numerical studies which have been conducted for strength

prediction and notch sensitivity analysis of holed quasi-brittle structures. In this

section some of theses investigations are briefly reviewed.

O’Higgins et al. [48] compared between the tensile strength of high strength

GFRP and CFRP OH specimens through an experimental study. They found that

the OH CFRP specimens were stronger, while the OH GFRP specimens had greater

ultimate strain. They found the higher levels of damage formation prior to failure

that occurred in the OH CFRP specimens was the reason for their higher strength.

Also, they found that the blocked-ply stacking sequences give higher damage levels

and higher OH tensile strength than sub-laminate level stacking sequences.

Arteiro et al. [49] investigated the mechanical response of thin non-crimp fabric

composites experimentally. They performed tensile and compressive tests in both

notched and unnotched specimens. The notched tests included specimens with cen-

tral cracks and with circular open holes loaded in tension and compression. They

observed a size effect on the strength for both OH tension and compression tests.

Also, they found an improved response to bolt-bearing loads for non-crimp fabrics

over traditional composite materials.

The tension and compression strength of quasi-isotropic laminates with holes

have been investigated by Wang et al. [50] by mean of experimental and numerical

procedures. They conducted linear elastic and progressive damage approaches in

their numerical analyses by using ABAQUS software package. They demonstrated
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that the progressive damage approach was more accurate in un-notched and notched

strength predictions.

O’Higgins et al. [51] performed an experimental and numerical study for tensile

strength prediction of carbon/epoxy open-hole specimens. Their numerical model

was based on a progressive damage analysis. The Hashin failure criteria have been

chosen in their analysis. Also, the effects of shear nonlinearity have been taken into

account in their model.

By using a mixed 2D/3D finite element model, Morais [52] predicted the open-

hole tensile strength of quasi-isotropic [0/± 45/90]ns laminates under uniaxial load-

ing.

The aforementioned references consider only OH specimens under uniaxial load-

ing conditions, while most of aircraft and aerospace structures are exposed to mul-

tidirectional loading conditions. Therefore, there was a need for some studies con-

sidering specimens under biaxial loading. Unfortunately, multi-axial strength data

is scarce because of the limited number of testing equipments and facilities available

for these tests and the enormous cost involved [3, 16, 53]. Nevertheless, some exper-

imental studies have considered laminated composite OH specimens under biaxial

loading [53–55].

Huang et al. [53] studied the effect of the OH presence on the strength of π/4

quasi-isotropic carbon epoxy laminates under biaxial loading via an experimental

work. They proposed an optimized design of a cruciform specimen for their biaxial

test. The digital image correlation technique was used to measure the strain field

in the hole neighborhood.

Khamseh and Waas [54] experimentally studied failure mechanisms of composite

plates containing a circular hole under compressive biaxial loading. In their inves-

tigations the hole diameter to plate width ratio was kept in a range suitable for

infinite plate assumption.

The effect of hole size on the failure of graphite/epoxy laminates under biaxial

tension has been investigated experimentally by Daniel [55]. Four hole sizes were

used in his investigation.

On the other hand, using numerical simulation, Shah et al. [56] predicted failure

envelopes of OH specimens made of two different quasi-isotropic carbon fiber-epoxy

composite laminates, namely, [45/90/− 45/0]4s and [0± 60]5s.
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As for mechanically fastened joints, experimental studies have been extensively

used for investigation of failure mode and failure load of several types of joints

[26, 47, 57–63].

Camanho and Lambert [26] studied the failure load and failure mode of double-

lap pin and bolt-loaded composite joints. In this work the material of the tested

joints was [90/0/ ± 45]3s Hexcel IM7-8552 carbon epoxy unidirectional laminate.

Catalanotti and Camanho [47] investigated the net-tension failure of double-lap

bolted joints that are made of the same material of the previous work. In these

studies it is found that the net-tension strength of the joint has a value between the

elastic and the plastic limits.

Failure strength and failure mode of composite laminates containing one or two

pin-loaded holes have been studied by Chang et al. [57]. Different ply orientations

were used in their investigations. Also, the two loaded holes were either in parallel

or in series.

Bearing strength and failure mode of pinned joints of carbon-epoxy composite

plates have been investigated by Aktaş et al. [58]. Effect of fiber orientations, end

distance to hole diameter ratio (θe) and the hole diameter to the joint width ratio

(θW ) have been studied. They found that the full bearing strength was developed

when θe and θ−1
W ratios are equal to or greater than 4.

Yan et al.[59] assessed the clamping effects on the net-tension strength and failure

response of composite laminates with bolt-filled holes. They concluded that in case

of net-tension failure, clamping improves the strength of the joint regardless of the

ply orientation.

Effect of the ratios θW and θe as well as the effect of woven fiber on the bearing

strength of pin-loaded woven laminated composite have been examined by Okutan

et al. [60]. Their results showed that the ultimate load capacity of woven-glass-

fiber reinforced epoxy laminates with pin connections grew with both θ−1
W and θe.

However, for θW < 1/3 and for θe > 2 the effect of theses geometrical factors on the

failure strength was insignificant.

A similar study has been performed by İçten and Karakuzu [61] to investigate

the effect of θW and θe on the bearing strength and failure mode of pinned-joint

carbon-epoxy woven composite plates. According to their results, the maximum

bearing strength was reached when θW = 1/3 and θe = 4 and the bearing strengths
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beyond theses values are very similar. When θe = 1, the bearing strength is small

and the failure mode is net-tension or shear-out. Net-tension failure occurred when

θW = 0.5 and the failure mode transformed to shear-out or bearing mode with

decreasing θW . Also, bearing strength had the maximum value with fiber orientation

θ = 0 ◦ and decreased with increasing the fiber orientation to reach its minimum

value at θ = 45 ◦.

The influence of geometry and material characteristics on the tensile behaviour of

single-lap composite joints has been investigated by Riccio and Marciano [62]. Differ-

ent bolt diameters and different interfaces, composite-to-composite and composite-

to-aluminum, were considered in this study. They found that the maximum sus-

tainable load grew with bolt diameter. Also, the joints with composite-to-composite

interface have been proven to be stronger that the composite-to-aluminum ones.

Jam and Ghaziani [63] explored the behaviour and the damage caused in bolted

joints in sandwich structures with laminates mad of glass fiber and foam core.

Finally, numerical techniques are frequently used for strength prediction of the

bolted joints [58, 61, 63]. Even though these techniques are accurate, they are

complicated and very time consuming.

2.4 Concluding Remarks

A concise overview is given of various techniques concerned with the strength

prediction of OH and bolt-loaded quasi-brittle structures. Many of the available

models are semi-empirical approaches such as the CDTs methods. It is observed

that almost all the reviewed methods were able to predict the size effect on the

strength. Regarding CDTs, it seems that the ASM and the FFM model are the

most accurate approaches for strength and size effect predictions of quasi-brittle

structures containing central holes. However, the main drawback in theses semi-

empirical models is the not understood physical meaning of the characteristic length

used in theses approaches.

Numerical techniques can simulate complicated geometries with complex loading

conditions and their predictions are accurate. However, these techniques require

complex continuum damage models implemented in the finite element method and,

therefore, they are still complicated and very time consuming.
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Experimental observations showed that the tensile failure of OH specimens and

net-tension failure of bolted joints are similar and that the local damage in these

failure modes occurs in self-similar fashion. This is confirmed for specimens made of

different quasi-brittle material such as woven GFRP and woven CFRP. As a result,

the same numerical or analytical model can be used for strength prediction of both

modes.

Experimental data of the bolted joints showed that the net-tension strength of

the joint had a value between the elastic and the plastic limits. Also, it is found

that quasi-isotropic laminates showed maximum bearing strength of the bolted joint

problems. Since failure of this kind of laminates matches with the CZM hypothesis,

as will be described in the next chapter, using the cohesive zone-based model in

the present work is more motivated. Further, the strength of single-lap joints is

lower than that of the double-lap ones. This is due to higher stress concentrations

generated by the nonsymmetric geometry and loading.

The following part of this thesis considers a mathematical formulation of the

nominal strength of OH specimens and net-tension strength of double-lap joints

based on the cohesive zone model.



Chapter 3

Mathematical Formulations Based

on the CZM

3.1 Overview of the Cohesive Models

Many design criteria are based on limits imposed by the ultimate strength of

the materials. As long as these limits are not violated, the structure is safe and the

collapse is unlikely to happen. However, many structures fail despite their ultimate

strength is never exceeded. This may be due to the inherent defects of the material,

or the structure, or because of the defects that grow to critical dimensions. As a

result, the maximum load that can support a structure must be dependant not only

on the strength of the material, but also on the size of the defects that may exist in

the structural element.

Linear elastic fracture mechanics [64–66] has proven to be a useful tool for solving

fracture problems provided a crack-like notch or flaw exists in the body and the size

of the nonlinear zone ahead of the crack tip is negligible with respect to all other

dimensions. Also, the linear elastic fracture mechanics assumes that the material

behaves elastically until the complete failure. Unfortunately, this is not always

the case. For instance, the size of plasticity in metals or the size of the FPZ in

quasi-brittle materials are lager than to be neglected in studying of fracture of

these materials. Therefore, more general fracture models capable of capturing larger

energy dissipation mechanisms are needed.

The cohesive zone models, CZMs, have emerged as a powerful tool for simulation

23
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of local non-linear fracture process. CZMs were proposed based on the assumption

that the material non-linearities, plasticity in metals or FPZ in quasi-brittle materi-

als, can be described by a cohesive zone around the crack tip [67–69]. The concept of

the CZM was initially proposed by Dugdale [67] and Barenblatt [68], independently,

as a possible alternative to the concept of fracture mechanics in perfectly brittle

materials.

Dugdale [67] developed a microscopic plasticity model for ductile materials to

represent the plastic deformation at the crack tip. Dugdale assumed that the stresses

at the plastic zone, which exists near the crack tip, are constant and equal the ma-

terial yield strength (σY ). Dugdale’s model is known as strip-yield model. Later

Barenblatt [68], independently, developed a similar model for brittle materials. Both

of the Dugdale and Barenblatt models take into account the nonlinear behaviour

at the crack tip by introducing cohesive forces at the crack surface. These cohesive

forces represent the material resistance to fracture during the application of remote

stress (σ∞), thereby eliminating the stress singularity at the crack tip. The differ-

ence between the two cohesive zone models is that the cohesive stresses (σc) in the

Barenblatt’s model represent the forces of molecular cohesion of the material and

they vary throughout the FPZ unlike their constant value as in Dugdale’s model,

as shown in Figure 3.1. These models are popularly known as Dugdale-Barenblatt

model and their application has been extended to various fields of fracture mechan-

ics.

Hillerborg et al. [69] extended the Dugdale-Barenblatt model to introduce a

generalized cohesive zone model for non-linear fracture problems. In Hillerborg

model it was assumed that the material is linear-elastic until damage initiation. In

addition, the FPZ is considered as fictitious crack that is capable of transferring

closure tension between its surfaces. This crack initiates, at damage onset, when

the material tensile strength σu is reached. At this moment, the closure stress, or the

cohesive stress, at the crack tip equals σu. As the crack propagates, the closure stress

decreases with increasing the Crack Opening Displacement (COD) and vanishes

when the COD reaches its critical value wc. The energy dissipated in the damage

zone, when the complete failure is reached, corresponds to the fracture energy which

is a property of the material. The relation between the closure stress σc and the COD

(w) is known as the tension-softening law or the Cohesive Law (CL) of the material,
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see Figure 3.2. The CL is generally considered to be a material property [70]. In

the following section, different shapes of the CL used in the analytical models and

numerical implementations for failure prediction of the quasi-brittle materials will

be illustrated.

Figure 3.1: (a) Dugdale’s and (b) Barenblatt’s cohesive zone models.

Figure 3.2: (a) Fictitious crack and (b) a general shape of the tension-softening law
according to Hillerborg.

The CZMs are now widely used for studying different damage mechanisms of

quasi-brittle materials. Plies delamination, friction between delaminated plies, plies
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splitting, multiple matrix cracking within plies, fiber rupture or micro-buckling (kink

band formation), process zones at crack tips representing crazing or other nonlinear-

ity and large scale bridging by through-thickness reinforcement or by crack-bridging

fibers are examples of these damage mechanisms [71].

Soutis et al. [72] studied the micro-buckling damage mechanism of carbon fiber-

epoxy laminate containing a single hole using the CZM. In this work the damage

around the open hole is represented by a cohesive crack.

Yang and Cox [71] used the CZM to represent delamination and splitting cracks

in composite laminates. They presented a cohesive element for simulating three-

dimensional mode-dependent process zones. In their formulation the delamination

crack shape can follow its natural evolution, according to the evolving mode con-

ditions calculated within the simulation. Fan et al. [73] developed an approach

to implement the concept of the cohesive zone in FEM for simulation of delamina-

tion development in fibre composites and failure of adhesive joints. Ye and Chen

[74] proposed a micro-mechanical model to simulate composites delamination via

CZM-based FEM.

Maimı́ et al. [75] introduced an analytical model based on the CZM for nominal

strength prediction of isotropic quasi-brittle structures. In their work the size of

the specimen and the shape of the CL are taken into account. Also, a comparison

between the obtained nominal strength of quasi-brittle structures based on the CZM

and other CDTs was held by Maimı́ et al. [12].

On the other hand, for bolted joints, Ahmad et al. [76] developed a 3-D finite

element model based on the CZM for modeling damage and fracture of double-lap

bolted joints that fail by net-tension. In their work the joints were made of woven

fabric composites. Hollmann [77] applied the CZM for simultaneous net-tension and

shear-out failure analysis of composite laminates containing a bolt-loaded hole.
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3.2 Cohesive Law

Most of quasi-brittle materials lose cohesion as the crack propagates. The ma-

terial cohesive law defines the constitutive behaviour of the material at the FPZ.

Results of strength predictions using cohesive models showed that the shape of the

CL has a key role in crack propagation and in computing the nominal strength of

the structures [12, 75, 78]. In spite of its importance there is still no fairly effective

technique to determine its form. Moreover, its experimental determination is diffi-

cult. Therefore, in practice, it has been common to assume a parameterized shape

for the CL to be used for the analytical models and numerical implementation.

If a meaningful modeling is desired, the choice of suitable CL for a given material

is critical. Constant, linear, exponential and bilinear functions are the most common

shapes of the CL, see Figure 3.3.

Figure 3.3: Constant (a), linear (b), exponential (c), curvilinear with initial linear
part (d) and bilinear (e) shapes of the cohesive law

In Constant Cohesive Law (CCL) the cohesive stress σc is constant, and equals

the material tensile strength σu, until some critical crack opening wc. After that the
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stresses drastically drop, as shown in Figure 3.3(a) where GC is the critical fracture

energy. CCL seems to be the best choice for typical yielding materials, like mild

steel, [69]. It corresponds to the Dugdale model with σu = σY and the COD equals

wc at initiation of crack growth. Also, the CCL simulates the behaviour of some

polymers. For the materials that exhibit some softening before failure such as some

composites, the Linear Cohesive Law (LCL) shown in Figure 3.3(b) provides enough

correct predictions of the structure behaviour and nominal strength. In case of CCL

and LCL, only two parameters are necessary to fully define the material cohesive

law. The first parameter is σu for the onset of softening and the second one is GC ,

and theses parameters can be easily measured experimentally.

On the other hand, for materials like concrete, their softening law can be approx-

imated by exponential function as shown Figure 3.3(c). The Exponential Cohesive

Law (ECL) is defined by the same two parameters as in the CCL and LCL. However,

it should be pointed out that the actual softening curve of concrete is rather curvi-

linear but has an initial linear part [70, 79], as shown in Figure 3.3(d). Despite this,

the full curve can be approximated by a bilinear curve, as shown in Figure 3.3(e),

and it has been proven that this approximation provides optimum solutions [80].

Also, the bilinear cohesive law is usually employed for composite laminates [12, 81],

where the first part represents the brittle fiber failure while the second one corre-

sponds to the fiber pull-out. The last two shapes of the CL need four parameters

to be fully defined; σu and GC are two of them. Other two additional parameters

are needed to describe the shape (the slopes of the branches h1 and h2, the fracture

energy G1 which corresponds to crack opening w1,...etc), but their measurement is

not well established by the researchers.

In general, any proposed shape for the CL should have two features. The first

one is that the material tensile strength is the cohesive stress at which the crack

starts to open and it is given as:

σc(0) = σu (3.1)

The second feature, or property, is that the area under the curve represents the total
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fracture toughness GC and it is given by:

GC =

∫ wc

0

σc(w) dw (3.2)

For composite laminates there is no standard procedure to obtain GC . However,

adaptations of the compact tension test can define a value of GC , which represents

the bulk (global) laminate fracture toughness. Since this value dependent on the

laminate stacking sequence, two laminates with different stacking sequence are con-

sidered two different materials with different cohesive laws.

Also, an important parameter for structural behavior is the so called material

characteristic length `M . This length is considered as an inverse measure of the

material embrittlement, the smaller `M the more brittleness of the material, and

given by:

`M =
EGC

σ2
u

(3.3)

Finally, it has been widely recognized that the cohesive law is able to model the

size effect on the structural strength [1, 6, 70, 79, 82]. The cohesive law can be

implemented in finite element codes by means of cohesive elements [69, 83, 84] or

by smearing the cohesive law in the solid element [85–88]. If the bulk response is

assumed as linear and small displacements are considered, the equilibrium equations

can be applied by imposing Dugdale’s finite stress condition. This condition states

that the stress intensity factor due to the remote stresses is in equilibrium with the

stress intensity factor due to the cohesive stresses [12, 72, 75].

In the present work analytical models based on the Dugdale-Barenblatt CZM are

developed to predict the nominal strength and size effect of quasi-brittle structures

containing OH and pin-loaded holes. In these formulations the Dugdale’s finite

stress condition is imposed as will be described in the following sections.

3.3 Nominal Strength Based on the CZM

As shown in the previous chapter, many of the available models that enable

strength prediction of OH and bolt-loaded holes quasi-brittle structures are semi-

empirical approaches such as the CDT methods. In most of these models the ma-

terial softening that occurs before fracture is neglected and this drawback can be
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treated when using the CZM. Also, experimental observations showed that for tensile

fracture of OH specimens and net-tension failure of bolted joints the local damage

occurs in a self-similar fashion which is suitable for the the applicability of the CZM.

This was confirmed for specimens that were made of different quasi-brittle material

such as woven GFRP and woven CFRP [19] which are extensively used in the man-

ufacturing of many engineering structures. This makes the adoption of the CZM

throughout the present work very motivating.

3.3.1 Hypotheses

When modeling failure behaviour of quasi-brittle materials based on the CZM

there are some hypotheses that should be imposed. These hypotheses can be de-

scribed as follows:

1. The material is assumed to be linear elastic up to the point of cracking initia-

tion, where softening begins and proceed continuously, and the initiation criteria is

of Rankine type. This means the cracking initiates when the maximum principle

stress at the critical point reaches the material tensile strength. The crack is as-

sumed to grow normal to the principal stress direction.

2. The cohesive law is assumed to be a material property. As a consequence, the

fracture energy is assumed to be constant.

3. Only extrinsic dissipation mechanisms due to damage are considered. This dam-

age, or the FPZ, is assumed to be modeled with a localized plane where the dissipa-

tion mechanisms take place. Thus, in CZMs, the other sources of nonlinearity such

as plasticity are not taken into account.

3.3.2 General Formulation for Holed Structures

As already alluded in the previous chapter, the existence of holes in most of

engineering structures is very essential. These holes can be open holes and the

structure is subjected to complex loading conditions such as biaxial loading. In other

situations these holes are loaded holes as in the case of bolted joint connections.

Therefore, in this section a general formulation based on the CZM for nominal

strength prediction of isotropic quasi-brittle structures with holes is presented.

Since the linear elastic analysis is assumed to be valid, the principle of super-
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position is applicable. For a specimen under generic loading condition as shown in

Figure 3.4, the total solution can be obtained by the superposition of two solutions.

The first one is the solution of an open hole specimen with open crack of length

equal to the size of the FPZ and subjected to the total external applied loads. The

second solution is the solution of the same specimen but only with cohesive stresses

at the FPZ. This superposition is illustrated graphically in Figure 3.4. In this figure

σ1, σ2 and σ3 refer to the external loads applied outside the hole while Lb is the

bearing load. Also, in the following chapters this superposition will be described in

details according to the actual existing loading conditions.

Figure 3.4: Generalized cohesive zone model.

For linear response and small displacements, the equilibrium equation can be

obtained by imposing the Dugdale’s finite stress condition. This condition states

that since there is no singular stresses at the crack tip in the complete problem, the

Stress Intensity Factor (SIF) due to the total external applied loads (KE) must be

in equilibrium with the SIF due to the cohesive stresses at the FPZ (Kσc), [67]:

KE +Kσc = 0 (3.4)
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The cohesive stress profile at the FPZ can be approximated by the superposition

of n problems with constant stress. Consequently, it is possible to define Kσc =∑n
i=1 σu(σ̄c)i

√
R(K̄σc)i, where σ̄c = σc/σu is the normalized cohesive stress and

K̄σc(¯̀
FPZ, θW ) is a normalized form of Kσc , while ¯̀

FPZ = `FPZ/R is the normalized

size of the FPZ and θW = R/W is a geometric parameter. Then, Equation(3.4) can

be written in normalized form as [38, 75]:

σu
√
R

(
σ̄NK̄E +

n∑
i=1

(σ̄c)i(K̄σc)i

)
= 0 (3.5)

where K̄E(¯̀
FPZ, θW , LP ) is the normalized form of KE and LP is a parameter that

represents the loading condition, while σ̄N = σN/σu is the normalized form of the

nominal stress (σN). Therefore, the normalized nominal stress is defined by:

σ̄N = βi(σ̄c)i (3.6)

where βi(¯̀
FPZ, θW , LP ) is a vector that relates the normalized cohesive stress at

position i to the normalized nominal stress.

The complete crack opening profile w can be computed by the superposition of

the COD due to the total external applied loads (wE) and the COD due to the

cohesive stresses (wσc). It can be written as:

w = wE + wσc = wE +
n∑
i=1

(wσc)i (3.7)

Equation (3.7) can be written in a normalized form as [75, 89]:

w =
Rσu
E

(
σ̄N w̄E +

n∑
i=1

(σ̄c)i(w̄σc)i

)
(3.8)

where w̄E(¯̀
FPZ, θW , LP ) and w̄σc(¯̀

FPZ, θW ) are the normalized forms of the corre-

sponding CODs, respectively. As the crack opening profile is discretized in n steps,

the total crack opening at position i can be related to the cohesive stress at position

j of the FPZ by means of Equations (3.8) and (3.6) as:

w̄i = fij(σ̄c)j (3.9)
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where w̄i = wiE/(Rσu) is the normalized total crack opening at position i and

fij(¯̀
FPZ, θW , LP ) is the profile that relates the crack opening at position i to the

stress at position j.

For a given shape of the cohesive law σ̄c(w̄) and parameters θW and LP , the

nominal stress can be obtained for a certain size of the FPZ, ¯̀
FPZ, using the system

of equations in (3.6) and (3.9). Since the nominal strength is the maximum nominal

stress before failure (σ̄Nf ) and the critical ¯̀
FPZ that is required to produce this value

of stress is unknown, the following condition must be imposed:

∂σ̄N
∂ ¯̀

FPZ

= 0 (3.10)

By solving the system of equations in (3.6) and (3.9) with the condition in Equa-

tion (3.10), it is possible to obtain an expression for σ̄Nf (θW , ¯̀
M , LP ), the critical

size of the FPZ ¯̀
FPZ(θW , ¯̀

M , LP ) and the maximum normalized crack opening at

failure w̄N(θW , ¯̀
M , LP ).

3.3.3 The Validity of the Model

There are many materials that meet the model hypothesis such as ceramics,

some polymers, metals under fatigue loads and some composites especially those

with random or particulate reinforcement.

In composite laminates failure mechanisms can be, broadly, divided into in-

plane and out-of-plane failure modes. Matrix tensile cracking at location of stress

concentration, matrix shear cracking between fibers in off-axis plies, macroscopic

splitting cracks (in splitting), fiber rupture (in tension), fiber micro-buckling (in

compression) are in-plane failure mechanisms. This is because they, typically, occur

in individual plies and are mostly related to in-plane stresses. Whereas delamination

is an out-of-plane damage mode and its evaluation is dictated by the interlaminar

stresses [71].

Interaction of the aforementioned damage mechanisms depends on the material

properties of individual layer, geometry, stacking sequence and loading conditions.

The resulting complex damage mode from this interaction governs the macroscopic

mechanical response of the laminate. For instance, during the stable growth of

the damage zones, preceding the final failure, the formation of new free surfaces



34 CHAPTER 3. MATHEMATICAL FORMULATIONS BASED ON THE CZM

of subcritical cracks will alter the load paths and result in load redistribution and,

consequently, increasing the strength of the structure. The combined effects of the

competing damage processes generally lead to nonlinearity in macroscopic stress-

strain curves. This non-linearity, as mentioned before, can be modeled using the

CZMs.

The described analytical formulation based on the CZM is applicable for com-

posite laminates under some assumptions. For OH specimens under biaxial loading

the model is valid under two conditions. The first one is that the laminate should

be delamination and ply-splitting resistant. This can be achieved by avoiding ply

clustering, stitching the laminate, using thin plies or woven fabric plies [13, 90, 91].

Delamination resistant laminates are usually considered as a result of good design

[92]. The second condition is that the laminates are isotropic from elastic, strength

and toughness point of view. The elastic isotropy can be rigorously fulfilled if the

laminate is composed by quasi-isotropic sublaminates, for example sublaminates

with stacking sequence [0/ ± 60]s, [0/ ± 45/90]s or [0/ ± 36/ ± 72]s. On the other

hand, the strength and toughness isotropy will never strictly be reached, but the

anisotropy is reduced by reducing the mismatch angle between the plies that com-

pose the laminate [90, 93]. In the case that the principal stress direction as well

as the direction of the failure plane are kept constant, the model can be applicable

only assuming elastic isotropy.

In addition of localized damage the net tension strength of bolted joints requires

that the failure plane is normal to load direction. It happens in almost all isotropic

and orthotropic laminates with principal directions aligned with the loads. The

results presented in this thesis are only valid for isotropic materials but its gener-

alization to anisotropic materials requires the redefinition of the functions βi and

fij. Since these are obtained from two dimensional elasticity solutions with stress

boundary conditions, the differential equation that defines the stress state depends

on the roots of a four order characteristic polynomial [94]. Therefore, for a general

anisotropic material the solution depends on four nondimensional material parame-

ters that defines its anisotropy. For orthotropic materials, with material directions

aligned with the load, only two nondimensional parameters are required to charac-

terize completely the functions βi and fij. If further symmetries exist, as for example

cross-ply laminates with the same Young modulus in the load direction and perpen-
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dicularly, one material parameter is required. Finally, it must be noted that in the

case of laminated composites the material properties that fed up the model are the

homogenized properties of the laminate. Therefore, two laminates with different

stacking sequences are considered two different materials.





Chapter 4

Open Hole Specimens under

Biaxial Loading

4.1 Introduction

Most of aircraft and aerospace structures are made of quasi-brittle materials.

These structures contain many holes and are subject to multidirectional loading

conditions. Due to the industrial importance of these structures, the development of

stress concentrations arising from the existing holes has been always of great concern.

The prediction of the ultimate notched strength remains the main challenge in the

simulation of their mechanical response [95].

Quasi-brittle materials develop a stable FPZ before failure, whose size `FPZ de-

pends on the material characteristic length `M = EGC/σ
2
u. The reason of the

influence of the size effect on the structure’s strength (Figure 4.1b) is linked to the

development of this FPZ. Due to the importance of this effect, it must be considered

in the predictions of the nominal strength of quasi-brittle structures [13, 82, 96–99].

When dealing with failure prediction of open hole specimens two extreme situ-

ations can be expected: brittle or ductile failure. Specimens with small holes are

notch insensitive: the perturbation of the stress field caused by the hole is enclosed

in a region smaller than the length of the FPZ and the specimen fails according to

the plastic limit (line P Figure 4.1a). On the other extreme, specimens with large

holes are notch sensitive and the relative size of the FPZ is negligible with respect

to the specimen size; herein brittle failure is expected (line E Figure 4.1a). The

37
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nominal strength for brittle failure is predicted by the elastic limit depending on

the value of the stress concentration factor (Kt). For a hole in an infinite plate it

depends on the load biaxiality ratio (λ) so that Kt = 3 − λ. The transition from

ductile to brittle failure occurs smoothly by increasing the hole radius.

(a) Open hole specimen under biaxial loading
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(b) Size effect law on the structural strength

Figure 4.1: Loading condition and size effect law

As shown in Chapters 3 and 4, there is a shortage in analytical models and nu-

merical simulations that investigate the nominal strength of quasi-brittle structures

subjected to multidirectional loading conditions. So, the objective of this chap-

ter is to introduce analytical models able to find the nominal strength of isotropic

quasi-brittle OH specimens under biaxial loading conditions.

This chapter is organized as follows: in Sections 4.2 and 4.3 a formulation based

on the CZM and its results are presented; in Section 4.4 the obtained results based

on the SEL are presented and compared with those of the CZM and the available

experimental data; formulations based on CDTs are introduced in Section 4.5; in

Section 4.6 the obtained results of the CDT models are showed as well as a general

discussion; and finally the conclusions of the presented work are listed at the end of

the chapter.
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4.2 Formulation Based on the Cohesive Zone Model

(CZM)

In this section the nominal strength of infinite quasi-brittle open hole specimens

under biaxial loading conditions, as shown in Figure 4.1 (a), is analyzed. The

presented model is based on the Dugdale/Barenblatt CZM. The complete solution

of this problem under the hypothesis of linear elastic analysis can be obtained by

summation of two solutions as shown in Figure 4.2. The first one is the solution of

an open hole with a crack of length `FPZ and an applied biaxial remote stress. The

second is the solution of a specimen with cohesive stress at FPZ.

Figure 4.2: Open hole specimen with a failure process zone modeled as a superpo-
sition of two linear problems.

As no singular stresses are present in the complete problem, the total stress

intensity factor K must be null [67]:

K = KE +Kσc = 0 (4.1)

where KE and Kσc are the stress intensity factors due to the applied remote stresses

(σ and λσ) and the cohesive stress at the FPZ, respectively. Equation (4.1) can be

written in normalized form as [38, 75]:

K = σu
√
R

(
σ̄N K̄E

(
¯̀
FPZ, λ

)
+

n∑
i=1

(σ̄c)i K̄(¯̀
FPZ, i/n)

)
= 0 (4.2)
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In Equation (4.2), the non-dimensional forms of the stress intensity factors, K̄E and

K̄, can be obtained from the literature [38, 75]. Consequently, it is possible to define

σ̄N with respect to (σ̄c)i as:

σ̄N = (σ̄c)i βi(¯̀
FPZ, λ) (4.3)

where βi is a vector relating the normalized stress at position i to the normalized

remote stress.

As described in Chapter 3, the total crack opening profile w is obtained by the

superposition of the displacement caused by the remote stress wE and the displace-

ment due to the cohesive stresses wσc . In a normalized form, it can be written as

[38, 75]:

w = R
σu
E

(
σ̄N w̄E(¯̀

FPZ, λ) +
n∑
i=1

(σ̄c)i w̄c(¯̀
FPZ, i/n)

)
(4.4)

where w̄E and w̄c define the normalized crack opening profile under a remote stress

and a cohesive stress at position i, respectively. If the crack opening profile is

discretized in n steps, the crack opening at position i can be related to the stress at

position j of the FPZ with the following expression:

w̄i = fij(¯̀
FPZ, λ) (σ̄c)j (4.5)

where w̄i = E/(Rσu)wi is the normalized crack opening at position i, fij is the

profile that relates the crack opening at position i to the stress at position j and

(σ̄c)j is the normalized cohesive law relating the normalized stress with respect to

the normalized crack opening displacement. As `FPZ is unknown, it is necessary to

look for the maximum of the remote stresses with respect to it. Accordingly, the

following condition should be imposed:

∂σ̄N
∂ ¯̀

FPZ

= 0 (4.6)

By solving the system of Equations in (4.5) and (4.3) with the condition in Equation

(4.6) for a given cohesive law σ̄c(w̄) it is possible to obtain expressions for the nominal

strength σ̄Nf (λ, ¯̀
M), ¯̀

FPZ(λ, ¯̀
M) and the maximum crack opening w̄N(λ, ¯̀

M) at

failure load. A more convenient way to normalize the crack opening displacement
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is w̃N(λ, ¯̀
M) = w̄N/(2¯̀

M).

4.3 Results of the Cohesive Zone Model

The cohesive law defines the constitutive behavior of the FPZ. This is defined

by an onset criteria defined with the stresses and a critical fracture energy that

corresponds to the complete area under the cohesive law. When computing the

nominal strength of notched structures the shape of the cohesive law is also of

importance [12, 75]. In Figure 4.3 different shapes of the cohesive laws those used

in the present formulation are shown.

Figure 4.3: (a) Constant cohesive law, (b) linear cohesive law and (c) linear and
exponential cohesive laws with the same initial slope

In the constant cohesive law the nominal strength is reached at a crack opening

of wN = GC/σu, (w̃N = 1/2), that corresponds to the moment when the FPZ is

completely developed and a crack starts to grow in a self-similar way. The normalized

nominal strength and corresponding failure envelopes for a constant cohesive law are

shown in Figure 4.4.

In the case of small holes with large λ ratios, it is no longer acceptable to consider

that the FPZ grows in only one plane. On the contrary, as the FPZ starts growing

in one plane, say in the x direction, high stresses of similar magnitude appear in

the perpendicular, say y, direction. This case corresponds to the area enclosed by

the dotted line in Figure 4.4 (b). Experimental results actually show that in the

specific case case of λ = 1 three equally spaced cracks emanate from the hole [55].
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This is reasonable because this crack distribution pattern requires less energy than

four equally spaced cracks.
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Figure 4.4: Normalized nominal strength and failure envelopes based on constant
cohesive law

With the linear cohesive law the failure is reached before the FPZ is completely

developed and the crack opening at failure is wN<2GC/σu [100]. The normalized

crack opening displacement, the size of the FPZ at failure normalized with respect to

`M (˜̀
FPZ = `FPZ/`M), the nominal strength and the corresponding failure envelopes

for the linear cohesive law are shown in Figure 4.5. For specimens with small and

large holes the failure load is obtained at very small crack openings. Thus, it seems

that the initial part of the cohesive law is an important parameter in the nominal

strength prediction of the open hole specimens especially for small and large holes.

Also, it is observed that as the stress concentration factor increases (while λ de-

creases) the crack opening displacement at failure becomes larger. Therefore, the

initial part of the cohesive law will gain importance as λ tends to one.

An important conclusion from the crack opening displacement plot for the linear

cohesive law is that after the critical crack opening (w̃N) the shape of the cohesive

law does not play any role in the determination of the nominal strength. In a linear

cohesive law, for very small and very large hole radii, the nominal strength depends

on the initial slope of the cohesive law and not on the total critical fracture energy.

This means that a better way to normalize the material characteristic length is to
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use the initial slope of the cohesive law (H), as shown in Figure 4.3 (c). If the

material characteristic length is defined as:

`M =
E

2H
(4.7)

for a linear cohesive law it is equivalent to Equation (3.3), but it becomes equal to

half this value in case of an exponential cohesive law. In Figure 4.6 the response of

a linear and exponential cohesive law has been normalized with the expression (4.7)

where LCL and ECL refers to linear and exponential cohesive law.
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Figure 4.5: Crack opening displacement, fracture process zone, normalized nominal
strength and failure envelopes based on linear cohesive law

Since the COD is related with the size of the FPZ, results of Figure 4.5 (b) can
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explain the obtained shape in COD plots.
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Figure 4.6: Importance of the initial slope of the cohesive law in failure analysis of
the open hole specimens

The results in Figure 4.6 show that a material with a linear cohesive law of

a given critical fracture energy will respond almost in the same way as a material

with an exponential cohesive law with twice the fracture energy (but the same initial

slope H). This is specially true when λ approaches one because of the small values of

each stress concentration factor and the obtained w̃N . This means that the results

in Figure 4.5 can be used for any cohesive law if its initial part is specified in a

proper way.

When the hole radius tends to zero, a material strength criterion is defined. As

shown in Figures 4.4 (b) and 4.5 (d) the Rankine failure envelope is reached. This

is due to the onset criterion defined in the cohesive law. To reach another failure

surface it is required to take into account normal stresses parallel to the crack in

the strength onset of the cohesive law. Presently, only some models consider these

stresses [73, 101]. Most of the cohesive models implemented in finite elements codes

as ABAQUS [102] do not take them into account.

4.4 Results Based on the Size Effect Law

For OH specimens under biaxial loading it is possible to fit the parameters of the

SEL, described in Equation (2.2), to the linear and the constant cohesive laws. As
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mentioned before, under biaxial loading conditions the stress concentration factor

that defines the maximum normal stress at hole boundary with respect to the remote

stress corresponds to Kt = 3− λ. In Figure 4.7 the predictions of the SEL adjusted

to the results obtained by the LCL and the CCL as well as to the experimental

results of reference [55].

The best fitting to the experimental data is obtained with the parameters r = 0.8

and ¯̀
SEL = ¯̀

M/π, as shown in Figure 4.7 (a). With these values, for small holes

and high values of λ there is an error between the SEL and the LCL with maximum

value of 10.7 % for λ = 1. In case of CCL, the parameters r = 2.7 and ¯̀
SEL = ¯̀

M/π

results in a good agreement.
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Figure 4.7: Predicted nominal strength based on the SEL

4.5 Formulations Based on Critical Distance The-

ories (CDTs)

Models based on CDTs have been used with remarkable success to adjust exper-

imental results for various kinds of materials, especially for quasi-brittle materials.

Its main advantage is that they are easy to implement. The stress based methods

depend on the elastic stress field. The hoop and radial stress fields at the failure

plane for a hole in an infinite plate under biaxial loading in the normalized form,
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σ̄θθ and σ̄rr, can be expressed as [24]:

σ̄θθ(x̄, 0) =
1

2

{
(1 + λ)

[
1 + (1 + x̄)−2

]
+ (1− λ)

[
1 + 3(1 + x̄)−4

]}
(4.8a)

σ̄rr(x̄, 0) =
−1

2

{[
(1 + x̄)−2 − 1

] [
2λ− 3λ(1 + x̄)−2 + 3(1 + x̄)−2

]}
(4.8b)

where x̄ = x/R is the normalized distance to the intended point measured from the

hole boundary.

The PSM considers failure when the strength criteria is satisfied at a character-

istic distance `PSM of the hole boundary. In the ASM the stress is averaged over a

line of some characteristic length `ASM. The normalized nominal strength can be

defined by means of the linear elastic stresses defined in equation (4.8a) as [12, 23]:

σ̄PSM
Nf = 2

{
(1 + λ)

[
1 + (1 + ¯̀

PSM)−2
]

+ (1− λ)
[
1 + 3(1 + ¯̀

PSM)−4
]}−1

(4.9a)

σ̄ASM
Nf =

2(1 + ¯̀
ASM)3

(¯̀
ASM + 2)(2¯̀2

ASM + 4¯̀
ASM + 3− λ)

(4.9b)

where ¯̀
PSM and ¯̀

ASM are the normalized characteristic lengths in PSM and ASM,

respectively. In the stress based methods the characteristic length is fitted by ad-

justing the response of large size fracture-mechanics specimens. The characteristic

length must be fitted to asymptotically obtain the linear elastic fracture mechanics

response [12, 23], resulting in:

¯̀
PSM =

¯̀
M

2π
and ¯̀

ASM =
2¯̀

M

π
where ¯̀

M =
`M

R
=
E GC

Rσu2
(4.10)

According to the IFM a crack emerges from the hole boundary and the strength

is defined by linear elastic fracture mechanics. The FFM considers the mean energy

release rate of a crack growth with a characteristic length as a driving force. The

normalized nominal strength can be represented as [12, 40]:

σ̄IFM
Nf (¯̀

IFM, λ) =

√
¯̀
M

π ¯̀
IFM

F−1(¯̀
IFM, λ) (4.11a)

σ̄FFM
Nf (¯̀

FFM, λ) =

√√√√ ¯̀
FFM

¯̀
M

π
∫ ¯̀

FFM

ā=0
ā F 2(ā, λ) dā

(4.11b)



4.6. RESULTS OF CDTS AND DISCUSSION 47

where ā = a/R is a normalized crack length and F (ā, λ) is a shape factor that can

be obtained from the bibliography as in Berbinau et al. [38], similar to Equation

(2.7).

In IFM and FFM the characteristic length is fitted for a small crack in an infinite

specimen to reach the material strength, or the plastic limit for very small specimens,

[12, 39] resulting in:

¯̀
IFM =

¯̀
M

π
and ¯̀

FFM =
2¯̀

M

π
(4.12)

It must be pointed out that in the present work the characteristic lengths of

the cracked specimen, in Equations (4.10) and (4.12), are used for the open hole

specimens.

Finally, a modification of the CDTs emerges when both a stress and fracture

mechanics criteria are imposed to be simultaneously fulfilled. Choosing one of the

criteria of Equation (4.9) and equating it to a fracture-mechanics criterion, Equation

(4.11), we get a common length of FPZ for both criteria. For example when the

ASM is coupled with the FFM the normalized length ¯̀
FPZ can obtained, for a given

`M and λ, by solving the following equation:

4π ¯̀
FPZ

¯̀−1
M

∫ ¯̀
FPZ

¯̀=0
[(1 + ¯̀) F 2(¯̀, λ)] d¯̀(∫ ¯̀

FPZ
¯̀=0

(
(1 + λ)[1 + (1 + ¯̀)−2] + (1− λ)[1 + 3(1 + ¯̀)−4]

)
d¯̀
)2 = 1 (4.13)

Using the resulted value of ¯̀
FPZ, the normalized nominal strength can be obtained

as:

σ̄ASM-FFM
Nf =

2(1 + ¯̀
FPZ)3

(¯̀
FPZ + 2)(2¯̀2

FPZ + 4¯̀
FPZ + 3− λ)

(4.14)

However, no physical meaning shall be attributed to the length `FPZ.

4.6 Results of CDTs and Discussion

The predicted nominal strength based on CDTs is shown in Figure 4.8. Taking

into account the different combination of stress and energetic methods, the obtained

nominal strength is illustrated in Figure 4.9. For very small hole specimens the

nominal strength is correctly predicted and the plastic limit is reached for all of the

applied methods. However, for specimens with very large holes the nominal strength
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is incorrectly predicted: the reached elastic limit in the fracture mechanics based

methods is 1.12 times smaller than the expected value, 1/Kt, as shown in Figure 4.8

(b). This deviation from the usual elastic limit in IFM and FFM is due to the free

edge effect. For other methods, the elastic limit is correctly reached.
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Figure 4.8: Nominal strength based on CTDs.
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Figure 4.9: Nominal strength based on combined CTDs.

The predicted failure envelopes based on CDTs are shown in Figure 4.10. As in

the CZM, the stress based methods and the fracture mechanics methods coincide

with the Rankine theory for small hole radii.
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Figure 4.10: Predicted failure envelopes based on CTDs.

To obtain another failure criterion the stress based methods are easier than the

other methods, CZM or fracture mechanics based methods. In this case, in order to

take into account the effect of the radial stress in the failure process, the Von-Mises

failure criterion can be imposed instead of the adopted Rankine type in the original

PSM and ASM. Consequently, the normalized nominal strength based on a modified

PSM (SMPSM
N ) and a modified ASM (SMASM

N ) can be defined by means of the linear

elastic stresses from Equation(4.8) as:

σ̄MPSM
Nf =

[
σ̄2
rr(

¯̀
PSM, 0)− σ̄rr(¯̀

PSM, 0)σ̄θθ(¯̀
PSM, 0) + σ̄2

θθ(
¯̀
PSM, 0)

]−1/2
(4.15a)

σ̄MASM
Nf =

¯̀
ASM∫ ¯̀

ASM

x̄=0
[σ̄2
rr(x̄, 0)− σ̄rr(x̄, 0)σ̄θθ(x̄, 0) + σ̄2

θθ(x̄, 0)]
1/2
dx̄

(4.15b)

Due to the complexity of the load in Equation (4.15b), it is solved numerically.

Figure 4.11 (a) shows the predicted failure envelopes based on the modified ASM.

The obtained results show that an ellipsoidal failure type is reached as the hole radius

tends to zero. Some quasi-brittle materials fit better to this type of failure, as in the

case of [0/ ± 45/90]s graphite/epoxy laminate, according to [55]. For this reason,

when the experimental results of [55] are fitted for λ = 0 it is found that the best

fitting-minimum error-for biaxial loading is obtained from modified ASM due to its

ellipsoidal failure type, as shown in Figure4.11 (b). In Figure 4.11 MASM refers to
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the modified average stress method.
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Another possibility to obtain a failure theory with fracture mechanics methods

relies in considering that the fracture toughness depends on the biaxiality ratio. It

is well known that the critical fracture energy depends on T-stress. Unfortunately,

while the fracture toughness decreases in many material with respect to the tri-

axiality ratio, the strength usually increases until reaching a constant value [101].

On the other hand, the CZM, which represents the physical process of failure more

precisely, shows that for small holed specimens the failure is reached at null crack

opening. Therefore, the failure theory must be applied to the strength criterion, not

on the fracture toughness.

Finally, the obtained results show that all of the presented models, namely CZM

and CDTs models, are able to predict the decrease of the strength with respect to

the hole radius. CZM have the advantage to link the material cohesive law with

the nominal strength, the length of the FPZ and the critical crack opening. Again,

an interesting conclusion with CZM is that the critical fracture energy is not an

appropriate measure of the notch sensitivity. This is so because failure depends on

the first part of the cohesive law, while its tail -that can dissipate an important

amount of energy- is only important in cracked specimens of large size [12, 75].

On the other hand, CDTs models assume that the nominal strength can be
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computed with the elastic stress field and a material characteristic length, which is

a material property. Although the CDTs models offer an acceptable fitting to the

experimental results in general, the characteristic length is usually fitted with the

experimental results obtained for specimens with the same geometry. Furthermore,

the best fitting to experimental results is obtained for variable characteristic length

[29, 30]. As the CZM predicts that failure is reached at variable length of the FPZ,

it comes out that both hypothesis can not be simultaneously fulfilled.

4.7 Conclusions

The nominal strength and the failure envelope of open hole isotropic quasi-brittle

structures under multi-directional loading have been presented in this chapter. Dif-

ferent shapes of the cohesive law were used in the problem formulation. The effect

of the hole radius and the load biaxiality ratio on the structures nominal strength

have been studied.

It is observed that the first part of the cohesive law seems the most important

parameter in the prediction of the nominal strength. Also, the linear cohesive law

can represent any cohesive law when the slope of the initial part of the cohesive law

is adjusted in a proper way. This is specially true when the biaxiality ratio tends to

one.

The obtained results from the adopted CZM are similar to those obtained from

the different methods of the CDTs and to the available experimental results. The

modified ASM provides a more accurate strength prediction than those obtained

with the other models in case of materials that exhibit an ellipsoidal failure surface.

The obtained graphs can be readily used as design charts for quasi-brittle structures

with open hole after rescaling their dimensions.





Chapter 5

Single-fastener Double-lap Joints

5.1 Introduction

Most of aircraft and aerospace structures contain many components joined to-

gether. These components should be occasionally disassembled for inspection and,

eventually, replacement of the damaged parts. Bolted joints are a preferred op-

tion as mechanical fasteners for this purpose because they can be easily assembled

and disassembled. Although riveted joints are more difficult to remove than bolted

joints, they are widely used in these structures.

Since these joints act as load transfer elements in many engineering structures,

the performance of these structures is greatly dependent on their behavior. Reliable

design of the mechanically fastened joints requires an accurate prediction of its

strength depending on the expected type of failure. Bearing, net-tension, shear-

out and cleavage are the most frequent types of failure encountered in bolted joint

connections. Net-tension and cleavage failures are abrupt, whereas bearing and

shear-out are more ductile.

In bolted joints, there are more than one measure of the stresses applied to the

joint. They are defined by the bearing load (Lb) divided by some characteristic

length of the structure. At the same time they can be normalized with respect to

the material strength σu. The remote stress (σ∞) in its normalized form can be

given by:

σ̄∞ =
σ∞
σu

=
Lb

2Wtσu
(5.1)

where σ̄∞ is the normalized remote stress, 2W is the joint width and t is the joint

53
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thickness. This measure of the joint stress is the one used in the ASTM standards

[103, 104].

Sometimes, it is more interesting to define the mean stress at failure plane σN

by the bearing load divided by the net area, σN = Lb/[2(W −R)t]. This is the usual

measure of stress in stress concentration handbooks as Peterson [105]. Another

possibility is to use the hole radius as a measure of the applied stress [106], σb =

Lb/(2Rt), where σb is the bearing stress. These measures of stress, in normalized

form, can be related by:

σ̄∞ = σ̄N(1− θW ) = σ̄bθW (5.2)

where σ̄b = σb/σu is the normalized bearing stress and θW = R/W is the hole radius

to the joint width ratio.

The net-tension strength of bolted joints in composites is neither defined by per-

fectly elastic nor perfectly plastic analysis [107, 108]. This intermediate response is

attributable to the stable growth of the FPZ before failure in quasi-brittle materi-

als. Under bearing load, the plastic and elastic limits are defined with respect to

the normalized nominal stress as:

(σ̄N)Plastic = 1 and (σ̄N)Elastic =
1

Kt
(5.3)

where Kt is the stress concentration factor due to the bearing stress. To define the

corresponding normalized stresses with respect to the gross area or the hole radius,

Equation 5.2 can be used.

The joint geometry, loading, strength limits and failure modes when the ratio of

the end distance to the hole diameter (θe = e/(2R)) is sufficiently large are shown

in Figure 5.1. In this figure, e refers to the end distance and (σ̄∞)f is the remote

stress at failure(σ∞)f in its normalized form. The factor Kt depends on the contact

stress profile due to the bolt and the geometric parameters θW and θe [105, 106].

Therefore, the elastic limit in Figure 5.1 is plotted according to Peterson’s data [105].

Also, the bearing strength (Sb) depends mainly on the hole radius and the material

compressive strength. The bearing limit in Figure 5.1 corresponds to a [90/0/±45]3s

IM7-8552 CFRP laminate [17, 26], where Sb = 737.8 MPa and σu = 845.1 MPa.

It must be noted that, at the bearing limit σ̄bf ≡ S̄b, where S̄b = Sb/σu is the
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normalized bearing strength and σ̄bf = σbf/σu is the normalized form of the bearing

stress at failure (σbf ).
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Figure 5.1: Geometry, loading and failure modes of bolted joints when θe is large
enough

Bearing failure is non-catastrophic and is characterized by damage accumula-

tion and permanent deformation of the hole [26]. Typically, the bearing strength

is defined when the permanent deformation is 4% of the hole diameter [104]. In

composite materials this will happen before the other modes of failure when θW is

less than 1/4 provided that θe is sufficiently large [109]. As θW increases, the failure

mode shifts from bearing to net-tension failure. The maximum strength of the joint

is expected around the transition from bearing to net-tension failure, within the

range 1/4 6 θW < 2/3 for many joints [110].

Literature of the previous chapters shows that there is a shortage in analytical

models that predict the net-tension strength of the bolted joints. So, the objective of

this chapter is to develop an analytical model capable of predicting the net-tension

strength of single-fastener double-lap joints made of isotropic quasi-brittle material.

This model is based on the CZM.

This chapter is organized as follows: In the next section a mathematical for-

mulation of the problem based on the CZM is presented. The obtained results as

well as a general discussion are presented in Section 5.3. Finally, conclusions are

summarized at the end of the chapter.
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5.2 Numerical model for net-tension failure

A numerical model for the net-tension failure of mechanically fastened joints of

isotropic quasi-brittle structures is introduced in this section. The present formula-

tion is based on the CZM. In this model the cohesive law defines the constitutive

behavior at the FPZ. Therefore, it is expected that its shape will affect the compu-

tation of the net-tension strength of the joint as in the case of the nominal strength

of notched structures [12, 75, 111]. To examine this influence, constant and linear

shapes of the cohesive law are considered in the present model as shown in Figure

5.2.

Figure 5.2: (a) Constant and (b) linear cohesive laws

Again, it must be pointed out that the applicability of the present model is

limited to the joints of structures that are made of isotropic quasi-brittle materials.

In these materials the damage, FPZ, can be modeled within a localized plane where

the dissipation mechanisms take place. Also, it is assumed that the only source of

nonlinearity is the localized FPZ.

Under these assumptions, the complete solution of the problem can be obtained

by the superposition of the solution of two problems as shown in Figure 5.3. The

first one is the solution of a loaded hole specimen with a critical crack length `FPZ

and subjected to stresses due to the presence of the bolt. The second one is the

solution of a specimen with cohesive stress σc at the FPZ.
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Figure 5.3: Bolted/pinned joint as a superposition of two problems

As stated in Chapter 3 the Dugdale’s finite stress condition is given by:

KE +Kσc = 0 (5.4)

where KE = σ̄Nσu
√
RK̄E

(
¯̀
FPZ, θW

)
and K̄E is its normalized form. Equation(5.4)

can be written in normalized form as:

σu
√
R

(
σ̄NK̄E +

n∑
i=1

(σ̄c)i(K̄σc)i

)
= 0 (5.5)

The normalized SIF due to the cohesive stresses K̄σc is given in Appendix A.1

[75, 89]. Using Equation (5.5), σ̄N can be related to (σ̄c)i by:

σ̄N = (σ̄c)i βi(¯̀
FPZ, θW ) (5.6)

The vector βi which relates the normalized cohesive stress at position i to the nor-

malized net-tension stress is given in Appendix A.1.



58 CHAPTER 5. SINGLE-FASTENER DOUBLE-LAP JOINTS

As before, the complete crack opening profile w is given by:

w = wE +
n∑
i=1

(wσc)i (5.7)

Equation (5.7) can be written in a normalized form as:

w̄ = σ̄N w̄E +
n∑
i=1

(σ̄c)i(w̄σc)i (5.8)

The normalized forms of the CODs w̄E and w̄σc are given in Appendix A.1 [75, 89,

112]. As the crack opening profile is discretized in n steps, the relation between the

crack opening at position i and the stress at position j of the FPZ is:

w̄i = fij(¯̀
FPZ, θW )(σ̄c)j(w̄j) (5.9)

The profile fij that relates the crack opening at position i to the stress at position

j is described in Appendix A.1.

The condition of the maximum net-tension stress with respect to `FPZ is:

∂σ̄N
∂ ¯̀

FPZ

= 0 (5.10)

For a given cohesive law σ̄c(w̄), by the system of Equations in (5.9) and (5.6) it is

possible to obtain the net-tension stress required for a given length of the FPZ. With

the condition in Equation (5.10) the ¯̀
FPZ(θW , ¯̀

M) that causes the net-tension failure

is obtained. At this length the normalized nominal stress at failure, normalized

net-tension strength, σ̄Nf (θW , ¯̀
M) is determined. The normalized bearing stress at

failure, σ̄bf (θW , ¯̀
M), and the normalized remote stress at failure, (σ̄∞)f (θW , ¯̀

M),

can be obtained by means of Equation 5.2. Finally, the maximum normalized crack

opening at failure, w̃N(θW , ¯̀
M), is also obtained.

It is important to point out that the SIFs of loaded holes have been studied by

many authors [113–115]. Applying the principle of superposition to these factors

and that of the open hole, it is possible to obtain an expression for the SIF of a

bolted joint, Figure 5.4. Then, KE can be expressed as:
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KE = 1
2

(Krb +Kb) (5.11)

where Krb = σ̄Nσu
√
RK̄rb

(
¯̀
FPZ, θW

)
is the SIF due to the remote stress caused by

the bearing load, Kb = σ̄Nσu
√
RK̄b

(
¯̀
FPZ, θW

)
is the SIF of the contact stress due

to the bolt, and K̄rb and K̄b are their normalized forms, respectively. Kb depends

on the assumed distribution of the contact stress due to the bolt. Expressions for

K̄b and K̄rb are given in Appendix A.1 [75, 113, 114] based on the assumed contact

stress profiles.

Figure 5.4: External loads as a superposition of two problems

Uniform and cosinusoidal stress distributions on the hole edge due to the presence

of the bolt are introduced in the present model, Figure 5.5. In case of uniform

stress distribution the contact stress due to the bolt (σ) can be expressed [113, 114]

as σ = σb, while for the cosine distribution it is expressed [61, 106, 114, 116] as

σ = (4σb/π) cos θ, where θ is the angle shown in Figure 5.5 (b).

Accordingly, the COD due to the external loads (wE) can be given by:

wE = 1
2

(wrb + wb) (5.12)

where wrb and wb are the CODs due to the contact stress and the remote stress,
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while w̄rb and w̄b are their normalized forms, respectively. Expressions for w̄rb and

w̄b are introduced in Appendix A.1 [89, 112] depending on the functions of the

corresponding SIFs.

Figure 5.5: (a) Uniform and (b) cosinusoidal contact stress profiles due to bolt/pin

5.3 Results and discussions

5.3.1 Results for constant θW

In this section the ability of the cohesive law to predict the size effect on the joint

net-tension strength has been examined. The size effect law defines the decrease of

the structural strength by increasing the specimen size while keeping its geometry

constant. This means that, for a constant θW , the source of embrittlement is the

decrease of the relative size of FPZ with respect to the joint size.

The normalized nominal strength with respect to the nondimensional hole radius

for different values of θW is presented in Figure 5.6. For all values of θW either with

the linear or the constant cohesive laws, the net-tension strength increases when the

hole radius decreases. This response is due to the larger relative size of the FPZ

with respect to the joint size associated with small holes.

Also, for two materials with the same characteristic length, `M , it is observed that

the predicted net-tension strength is higher with the constant cohesive law than with

the linear one. It is known that for materials like concrete or composite, a bilinear

softening function is appropriate. For other materials, such as some polymers, the
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cohesive law is constant until some critical crack opening, after that the stresses

drastically drop. As a result, for constant `M , a material with constant cohesive

law must be less notch sensitive than a material with linear law. This implies that

the shape of the material cohesive law affects the computation of the net-tension

strength of the bolted joints.

Further, as shown in Figures 5.6 (a) and 5.6 (b) the predicted net-tension strength

for the uniform stress distribution is higher than that obtained with the cosinusoidal

one. This is reasonable because of the lower stress concentration factor associated

with the uniform stress distribution due to the larger contact area between the bolt

and the hole surface. However, the cosinusoidal stress distribution is more realistic

when modeling mechanically fastened joints [61, 114, 116]. Therefore, the rest of

this work is focused on this type of stress distribution.
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Figure 5.6: Normalized nominal strength with respect to nondimensional hole
radius for different θW

The normalized CODs at failure due to cosinusoidal stress distribution for dif-

ferent values of θW and with the linear cohesive law is shown in Figure 5.7. It is

observed that the COD grows with a decreasing θW due to the increment of the

stress concentration factor. Also, for joints with small or large holes the joint net-

tension strength is reached at small CODs for the different geometries. As a result,

it can be concluded that the first part of the cohesive law is an important parameter

in the determination of the net-tension strength of these joints.
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5.3.2 Results for constant hole radius (R)

As mentioned before, for net-tension failure the nominal strength is defined be-

tween the elastic and the plastic limits. Figure 5.8 shows the bearing stress at

net-tension failure with respect to θW for different values of ¯̀
M with both constant

and linear cohesive laws. For each value of ¯̀
M the maximum load, with a minimum

joint weight, is obtained at the limit between net-tension and bearing failure.
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Figure 5.8: Normalized bearing stress with respect to θW for CSD

For large W the bearing failure is reached and the failure is ductile. Again,

the bearing limit in this figure and in the next one is for the [90/0/ ± 45]3s IM7-
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8552 CFRP laminate presented in [17, 26] and assumed to be size and geometry

independent.

The experimental results on quasi-isotropic [90/0/± 45]3s Hexcel IM7-8552 car-

bon epoxy laminate [26, 47] are adjusted with that of the linear cohesive laws as

shown in Figure 5.8 (b). In those studies all specimens had the same hole radius

R = 3 mm and all of them failed in net-tension mode. There is a reasonably good

agreement between the present prediction and the experimental results.

5.3.3 Results for constant width (W)

The normalized remote stress at failure for different values of the normalized

material characteristic length with respect to width (˜̀
M) is shown in Figure 5.9,

where ˜̀
M = `M/W .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

θW

(σ̄
∞
) f

˜̀
M

=
2.72

˜̀
M = 0.61

˜̀M = 0.14

Plastic
Lim

it

Be
ar
in
g
Li
m
it

Elastic Limit

←

Figure 5.9: Normalized remote stress for CSD with LCL

For large joints (large W or small ˜̀
M) the optimum geometry of the joint cor-

responds to θW ≈ 0.45. Decreasing the hole radius results in lower net-tension

strength even though the net section is larger. This is a consequence of the high

stress concentration factor for a small values of θW . On the other hand, for small

joints (large ˜̀
M) the maximum net-tension strength of the joint and its optimum

geometry are defined when the net-tension strength equals the bearing strength.
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5.4 Conclusions

The net-tension strength of single-fastener double-lap joints of isotropic quasi-

brittle structures has been presented. The constant and the linear shapes of the

material cohesive law were used in the problem formulation. The effects of the

contact stress distributions in the hole boundary, the shape of the cohesive law, the

joint size and the ratio between the hole radius and the joint width on the joint

net-tension strength have been studied.

The contact stress distribution due to the presence of the bolt and the shape of

the cohesive law affect the computation of the net-tension strength of the joint. Also,

it is concluded that the first part of the cohesive law is an important parameter in the

determination of the net-tension strength of these joints. The obtained predictions

have been compared with the available experimental results with good agreement.

Finally, if the cohesive law of the material and its bearing strength are completely

determined by some experimental procedure, the present model can be considered as

a reliable alternative to the use of complex continuum damage models implemented

in finite element models. Further, the obtained results are suited for fast definition

of simple design charts and for effective parametric studies of mechanically fastened

joints in isotropic quasi-brittle structures.



Chapter 6

Multi-fastener Double-lap Joints

6.1 Introduction

As mentioned in the previous chapter, mechanical fasteners are used extensively

in aerospace and many other engineering structures as load transfer elements. How-

ever, the majority of mechanically fastened joints in these structures are multi-

fastener joints. These joints act as weakness spots in the structure because of high

stress concentrations due to the presence of holes and fasteners. Therefore, an ac-

curate strength prediction of these joints is essential for a reliable design of the

structure.

To determine a multi-fastener joint strength, first the load distribution between

joint fasteners must be determined. Then, the critical bolt-hole is analyzed under its

bearing and bypass stresses to obtain the joint strength according to the expected

failure mode.

Load distribution in multi-bolt joints has been investigated by many authors

using different methods. Some of them [117, 118] used experimental techniques

in their investigations. Others used numerical methods such as the finite element

method [119–121] and the boundary element method [122]. Analytical methods

such as the complex variable approach [123, 124], the boundary collocation method

[119, 125] and spring-based methods [126, 127] are also used to study the load

distribution in these joints. Using these analyses it is possible to determine the

critical fastener-hole. Accordingly, the ratio between the bearing and the bypass

load of this hole can also be determined.

65
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In multi-fastener joints, fasteners in the same row almost carry equal load por-

tions [121–125] provided that all fasteners are symmetrically positioned in the joint

and have the same clearance and friction conditions. In addition, the most loaded

row in the joint is one of the most outer rows. Also, in single-column joints the

critical fastener-hole is one of the most outer holes [117, 119, 120, 126, 127]. As a

result, a multi-column joint can be approximated by a single-column joint. Figure

6.1 shows approximation of a multi-column double-lap joint as a single-column one,

where Lbi is the bearing load of the corresponding fastener and i refers to the fas-

tener number. Further, it is possible to approximate this single-column joint by a

single-fastener joint as explained in the next section.

Figure 6.1: Approximation of a multi-column joint as a single column joint

As mentioned before, cleavage, shear-out, bearing and net-tension failures are

the common failure modes encountered in mechanically fastened joints. Generally,

the joints are designed to avoid shear-out and cleavage failures [121]. This can be

achieved by using a sufficiently large edge distance and a sufficient number of off-axis

plies in case of laminate joints that are made of unidirectional plies. Bearing failure

is characterized by a permanent deformation of the hole. It is a gradual, progressive

and in-plane failure mode. Being easy to detect and a non-catastrophic failure

mode, it is desired in some practical applications [128]. Conversely, net-tension

failure is an abrupt and catastrophic failure mode. In spite of its dangerousness,

it is a primary failure mode in multi-bolt joints specially for large bypass loads

[47, 49, 129]. Therefore, the net-tension strength prediction of these joints is of
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great importance for a reliable design of many engineering structures.

In case of a single-fastener, the joint strength can be controlled with the joint

geometry for a given material and applied load. A more complex load situation

is encountered in multi-fastener joints. This is because of the interaction of the

bearing-bypass stress concentrations. Therefore, the bypass stresses play an impor-

tant role in controlling the failure of these joints [127]. A measure of the bypass

ratio (ζ) can be defined as the ratio between bypass (LB) and bearing load, Lb, as:

ζ =
LB
Lb

(6.1)

The joint net-tension strength is the mean stress at failure plane (σN = L/(2(W−
R)t) just before failure. L is the sum of the bearing and the bypass load; in the

most outer row it is the total load transferred by the joint. σN can be normalized

with respect to the material strength σu as: σ̄N = σN/σu. Also, it is related to the

normalized total remote stress (σ̄∞ = σ∞/σu = L/(2Wtσu)) and the normalized

bearing stress (σ̄b = σb/σu = Lb/(2Rtσu)) by:

σ̄N =
σ̄∞

1− θW
=
σ̄bθW (1 + ζ)

1− θW
(6.2)

For constant geometry -constant θW - the brittle failure is reached when the

relative size of the FPZ with respect to the joint size, ¯̀
FPZ = `FPZ/R, is very small.

This happens in very large joints. On the other extreme, when ¯̀
FPZ is very large,

the stress field in the whole joint approaches its material strength σu and the joint

failure is ductile. This occurs in case of very small joints. The elastic and plastic

limits are defined with respect to the normalized net-tension stress as:

(σ̄N)Elastic =
1

Kt

and (σ̄N)Plastic = 1 (6.3)

where Kt is the stress concentration factor due to the combined bearing-bypass

stresses, as shown in Figure 6.2 [105].

As the bypass load tends to zero, the joint response is the same as that of the

single-fastener joint. Conversely, when it is close to the total applied load, the

joint strength approaches that of the open hole specimen with the same material

and geometry. For a material with a linear cohesive law, the expected net-tension
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strength for these joints is shown in Figure 6.3. The predicted strengths in this

figure correspond to θW = 0.128 [75, 130].
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The literature shows that the problem of multi-fastener joints is very important

in engineering structures. Also, it shows that the majority of the available models for

predicting strength of multi-fastener joints are numerical models. It is well known

that the analytical models have the advantage of its ability to predict the behavior of

these joints in a few minutes. Thus, the main objective of this chapter is to develop

an analytical model able to predict the net-tension strength of multi-fastener double-

lap joints. The present model is based on the CZM which is able to predict the effect

of the structure size on its strength. Moreover, it takes into account the material
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softening that occurs before fracture which is neglected in most of the other models.

The present model is restricted to the joints that are made of isotropic quasi-brittle

materials.

This chapter is arranged as follows: In Section 6.2, a numerical model for net-

tension failure of multi-fastener joints is presented. The obtained predictions are

presented in Section 6.3. A general discussion is introduced in Section 6.4, where

a simple analytical model for calculating the bypass to the bearing load ratio of

the critical bolt in the joint is described. Moreover, it is explained how to find the

optimum design of the joint. Finally, at the end of the chapter the conclusions are

summarized.

6.2 Mathematical Formulation of the Problem

Multi-fastener joints can be modeled as a single-fastener joint under combined

bearing-bypass loading conditions as shown in Figure 6.4 (a). As mentioned before,

Lb represents the load supported by the critical fastener, whilst LB represents the

corresponding bypass load. The present formulation is based on the CZM. It is

one of the few models (or the only model) that takes into account the cohesive law

explicitly. In the previous chapter it is shown that the shape of the cohesive law

affects the computation of net-tension strength of bolted joints [130]. Also, it has

been confirmed that the linear cohesive law can represent any cohesive law when the

slope of its initial part is adjusted in a proper way [75, 111]. Thus, only a triangular

shape of the material cohesive law is considered in the present model, Figure 6.4

(b).

It is necessary to point out, again, that the following model is only applicable

to the joints that are made of elastic isotropic quasi-brittle materials with localized

(or extrinsic) dissipation mechanisms.

The actual stress profile due to the fastener presence is complex and dependent

on several factors. Material properties of the fastener and connected parts as well as

the fastener-hole friction and clearance are some of these factors. To develop a simple

analytical model for the strength prediction of these joints it is not convenient to

take all these factors into account. As a consequence, the following assumptions are

imposed in the present formulation: (1) a cosine stress profile due to the presence
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of the fastener is assumed and (2) the secondary bending and the fastener-hole

clearance are neglected.

(a) Simplified multi-fastener joint (b) Linear cohesive law

Figure 6.4: Joint geometry, loading and its material cohesive law

A global solution of this problem can be obtained by applying the principle of

superposition to three problems as shown in Figure 6.5. The first one is an open hole

specimen with critical crack length `FPZ and subjected to a remote bypass load LB.

The second problem is a bolted-hole specimen with the same crack under bearing

load Lb and a remote stress due to the bearing load σbr = Lb/(2Wt). Finally, the

third one is a specimen with cohesive stress σc at the FPZ.

Provided that linear response and small displacements conditions are valid, Dug-

dale’s finite stress condition can be imposed and given by [67, 72]:

KE +Kσc = 0 (6.4)

where KE = σ̄Nσu
√
RK̄E

(
¯̀
FPZ, θW , ζ

)
. KE includes the SIF due to the bypass load

(KrB) and that of the fastener bearing load (Kf ), as will be explained. Equation(6.4)

can be written in normalized form as:

σu
√
R

(
σ̄NK̄E +

n∑
i=1

(σ̄c)i(K̄σc)i

)
= 0 (6.5)

The normalized SIF due to the cohesive stresses K̄σc is given in Appendix A.2
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[75, 89]. Using Equation (6.5), σ̄N can be related to (σ̄c)i by:

σ̄N = (σ̄c)i βi(¯̀
FPZ, θW , ζ) (6.6)

The vector βi which relates the normalized cohesive stress at position i to the nor-

malized net-tension strength is given in Appendix A.2.

As before, the complete crack opening profile w is given by:

w = wE +
n∑
i=1

(wσc)i (6.7)

where wE = (Rσuσ̄N/E) w̄E
(
¯̀
FPZ, θW , ζ

)
. The normalized CODs w̄E and w̄σc are

given in Appendix A.2 [75, 89, 112]. It is easy to write Equation (6.7) in a normalized

form as:

w̄ = σ̄N w̄E +
n∑
i=1

(σ̄c)i(w̄σc)i (6.8)

where w̄ = wE/(Rσu) is the normalized total crack opening.The relation between

the crack opening at position i and the stress at position j of the FPZ is:

w̄i = fij(¯̀
FPZ, θW , ζ) (σ̄c)j (6.9)

The profile fij is described in Appendix A.2. To relate the obtained total COD to

its critical value for a given cohesive law, it is more convenient to normalize it with

respect to the material characteristic length as w̃N(θW , ¯̀
M , ζ) = w̄/(2¯̀

M).

For a given cohesive law σ̄c(w̄), geometrical parameter θW and loading parameter

ζ, the nominal stress can be obtained for a certain size of the FPZ using the system

of equations in (6.6) and (6.9). The condition of the net-tension strength, the

maximum nominal stress before failure, is:

∂σ̄N
∂ ¯̀

FPZ

= 0 (6.10)

By solving the system of equations in (6.6) and (6.9) with the condition in Equa-

tion (6.10), it is possible to obtain an expression for σ̄Nf (θW , ¯̀
M , ζ), ¯̀

FPZ(θW , ¯̀
M , ζ)

and the maximum normalized crack opening at failure w̃N(θW , ¯̀
M , ζ). Also, the

normalized bearing stress at net-tension failure σ̄bf (θW , ¯̀
M , ζ) and the normalized
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remote stress at net-tension failure (σ̄∞)f (θW , ¯̀
M , ζ) can be obtained by means of

equation 6.2.

Figure 6.5: Bolted joint with bypass stresses as a superposition of three problems

KE can be calculated as the superposition of the SIF due to the bypass load

(KrB) and the bearing load (Kf ). It can be expressed as [113–115]:

KE = KrB +Kf = KrB + 1
2

(Krb +Kb) (6.11)

To determine the SIF associated with the bearing load, we can consider the super-

position of the problems shown in Figure 5.4. KrB, Krb and Kb can be written in a

non-dimensional form in order to obtain KE and its normalized form K̄E as shown

in Appendix A.2 [75, 113, 114].

Similarly, an expression for the COD due to the external loads (wE) can be given

by:

wE = wrB + 1
2

(wrb + wb) (6.12)

where wrB, wrb and wb are the CODs corresponding to the SIFs KrB, Krb and

Kb respectively, while w̄rB, w̄rb and w̄b are their normalized forms, respectively.

Expressions for these CODs are given in the Appendix [89, 112] according to the

functions of the corresponding SIFs.



6.3. RESULTS 73

6.3 Results

The ability of the cohesive law to model the structure size effect on its strength

has been confirmed [1, 12, 70, 75, 79, 82, 111, 130]. Again, the size effect law

states that, for geometrically similar structures, the nominal strength decreases with

increasing the size of the specimen. In this case, the relative size of the FPZ decreases

and the specimen brittleness grows. Therefore, when θW is kept constant, the joint

net-tension strength increases when decreasing the hole radius. The normalized net-

tension strength with respect to the non-dimensional hole radius for different values

of θW and ζ is presented in Figure 6.6.

The net-tension strength for small joints corresponds to the plastic limit and

is independent of the bypass ratio. By increasing the joint size, the embrittlement

on the structural strength results in a different nominal strength depending on the

stress concentration factor. As can be seen in Figure 6.2 the stress concentration

factor is larger for the bearing load than for the bypass load when θW < 0.5. In these

cases the remote load that causes the joint collapse grows with the bypass load. On

the other hand, for θW > 0.5 the net-tension strength is almost independent of the

bypass ratio.
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Figure 6.6: Normalized net-tension strength for different values of ζ and θW

The normalized CODs at failure for different values of θW and ζ are shown in

Figure 6.7. Results predict larger crack openings in case of fastened joints with

respect to open holed specimens. This is true for θW < 0.5 and indeed reasonable

because of the higher stress concentration associated with the fastener presence, as
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shown in Figure 6.2. Also, the COD grows with lower bypass ratios due to higher

stress concentrations. The important conclusion to be drawn from these plots is that,

for small θW and large ζ the initial part of the cohesive law gains more importance

in the net-tension strength computation of the joint.
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Figure 6.8 presents the normalized bearing-bypass stresses. In this figure σ̄nB is

the normalized bypass stress with respect to the net area and is given by:

σ̄nB =
LB

2(W −R)tσu
=

ζσ̄N
1 + ζ

(6.13)

while β is a measure of the bearing to bypass load ratio:

β =
σ̄b
σ̄nB

=
1− θW
ζθW

(6.14)

The results of the model are consistent with the experimental results (� and ♦)

of Crews et al. [131] and Hart-Smith [107], as shown in Figures 6.8 (a) and 6.8 (b),

respectively. In Crew’s work all tested specimens had the same hole radius R = 3.198

mm and the same width 2W = 50 mm. In his work, the net-tension failure is the

dominant failure mode. Only one specimen (♦) failed in bearing mode and the

others failed in net-tension. According to [132] the bearing strength Sb increases

with respect to the bypass load. This can be explained by the compressive hoop

stress caused by the bypass load under the bolt. This stress induces a confinement

of fibers improving the compressive strength. This result is in accordance with the

method presented in [26] for the determination of the elastic limit. On the other
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hand, according to the point stress method applied in [26] the bearing strength

decreases with the bypass load. However, in the present work Sb is assumed to be

size, geometry and β independent as in Hart-Smith’s and Crews’s work [107, 131].

The bearing limit (S̄b = Sb/σu) shown in Figure 6.8 (a) is that of the [0/45/90/−45]2s

graphite/epoxy laminate [131], where Sb = 518 MPa and σu = 414 MPa. In this

figure the net-tension failure is defined below the bearing limit between the elastic

and plastic limits. Results show that for small values of β the net-tension failure is

the dominant failure mode.
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Figure 6.8: Normalized bearing-bypass stresses at net-tension failure

In Hart-Smith’s work, the tested specimens are made of [0/45/90/ − 45]2s

graphite/epoxy laminate with σu = 468 MPa. All specimens had a hole radius

R = 3.175 mm and width 2W = 25 mm. Also, all tested specimens failed in tension

and therefore the bearing strength was not defined.

6.4 Discussion

6.4.1 Load distribution of single-column double-lap joints

For multi-bolt joints, determination of the load distribution between joint fas-

teners is of capital importance in their strength prediction. Fastener stiffness and

stiffness of the connected parts as well as the bolt-hole clearance and the number
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of bolts are the most important parameters on the load sharing between the joint

fasteners.

Figure 6.9 (a) shows a single-column double-lap joint where tI , tO, EI and EO

are the thicknesses of the inner and the outer plates and their corresponding Young’s

moduli respectively, while q and Ef are the fastener spacing and the fastener Young’s

modulus.

A simple spring model for load distribution analysis of these joints is shown in

Figure 6.9 (b). In this model the non-linearity due to the bearing damage, the

bolt-hole clearance and the secondary bending are neglected. kI and kO are the

stiffnesses of the inner and the outer plates, respectively, while kf and i are the

fastener stiffness and the fastener number.

Figure 6.9: A double lap joint and a spring model for calculating its fasteners load
sharing

The equilibrium equation, in matrix form, of an arbitrary bolt i is given by:
kI 0 −kI 0

0 kO + kf −kf −kO
−kI −kf kI + kf 0

0 −kO 0 kO



u2i−1

u2i

u2i+1

u2i+2

 =


L2i−1

L2i

L2i+1

L2i+2

 (6.15)

The global equilibrium equation is obtained by assembling the individual bolt equi-
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librium equations relating the loads {L} and the nodal displacements {u}. Since the

global stiffness matrix and the global load vector are known, the global equilibrium

equation can be solved for the displacement vector. Finally, the normalized load car-

ried by any bolt i (L̄bi) can be easily determined as: L̄bi = Lbi/L = kf (u2i+1−u2i)/L

and the normalized bypass load (L̄Bi) as: L̄Bi = (kI(u2i−1 − u2i+1) − kf (u2i+1 −
u2i))/L.

Practically, there are several empirical formulas used for the fastener stiffness

calculation in lap-joints. Among these equations, Huth’s [133] formula has the

advantage of its applicability to double lap joints and is given by:

1

kf
=

(
tI + tO

4R

)m
b

N

(
1

tIEI
+

1

NtOEO
+

1

2tIEf
+

1

2NtOEf

)
(6.16)

where m and b are two empirical parameters that are depend on the type and the

material of the joint, while N equals 1 for single-lap and equals 2 for double-lap

joints. It must be pointed out that in Huth’s equation the fastener tightening and

the fastener-hole clearance are not taken into account. The stiffness kf combines the

fastener stiffness and the local deformations of the plates. Therefore, the different

terms in the parenthesis of Equation (6.16) represent the compliance of the inner

and outer plates and that of the fastener.

Neglecting the hole effect, the connected parts between the fasteners can be

approximated as bar elements and, therefore, their stiffnesses are given by:

kI =
2WtIEI

q
and kO =

4WtOEO
q

(6.17)

Figure 6.10 shows the load distribution in three- and four-fastener double-lap

joints based on the described model. The joint plates are of the same material,

namely quasi-isotropic multi-layer symmetrical glass fiber laminates (GFRP), as

described in [121]. The Young’s moduli of the connected plates are Ex = Ey =

EI = EO = 25 GPa, while the joint dimensions are tI = 2tO = 30 mm, R = 7 mm,

W = 30 mm and q = 60 mm. The bolts are made of stainless steel with Ef = 200

GPa. The parameters that define the joint type in Equation (6.16) are taken as

reported in reference [133]: N = 2, m = 2/3 and b = 4.2.

For symmetric double-lap joints with constant thickness and material properties
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(Figure 6.9), the bypass to the bearing load ratio of the first, critical, row (ζ) depends

on the two relative stiffnesses (k̄O and k̄I) and the number of bolts (n): ζ(k̄O, k̄I , n),

where k̄O = kO/kf and k̄I = kI/kf . In the typical case in which k̄O = k̄I = k̄,

the load distribution between bolts depends on the relative stiffness k̄. Using the

empirical parameters, m and b, as described in [133] for bolted graphite/epoxy joints,

the empirical Equation (6.16) results in k̄ = 5.56.
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Figure 6.10: Load distribution in three- and four-fastener double lap joints

Since the current joint is made of GFRP, a better fitting to the results obtained by

the finite element analysis [121] is found with k̄ = 3.33. Therefore, the discrepancy

observed in Figure 6.10 can be assigned to the stiffness approximation.

The variation of ζ with respect to the number of bolts in the joint for different

k̄ is shown in Figure 6.11. For very stiff fasteners or very compliant arms, k̄ tends

to zero and ζ tends to one for any number of bolts. This means that only the bolts

in both extremes of the column would be working. Conversely, for very compliant

fasteners with stiff arms the bypass loading is equally distributed between the joint

bolts and the parameter ζ = n− 1.

On top of that, joints that are made of ductile materials are able to redistribute

the bypass load among the bolts by means of plasticity at the hole boundary. This

plastic flow contributes more to the reduction of fastener stiffness than to the re-

duction of the plate stiffness. As a result, the load is uniformly distributed between

the bolts. This means that the number of bolts is of great importance on the load

sharing between joint fasteners in that case. This is not the case for joints that

are made of quasi-brittle materials -such as laminated composites- due to its brittle
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nature. These materials are not able to relief the stress concentration. As a conse-

quence, increasing the number of bolts -over a certain number- has a slight effect on

the load distribution between the bolts.

Quasi-brittle materials have little or null ability to redistribute the load between

the bolts by plastic flow in the net-tension area. But the fastener yielding and

the stable bearing failure acts by reducing the fastener stiffness, thus helping to

redistribute the load. Therefore, in joints with small θW ratios the onset of bearing

damage produces a load redistribution that reduces the fastener load.

1 2 3 4

0.5

1

1.5

2

2.5

3

Number of fasteners in the joint

ζ
=

L
−L

b
1

L
b
1

=
L̄
−1 b1

−
1

 

 

k̄ = 10

k̄ = 5.56

Ref.(121)

k̄ = 3.33

k̄ = 1.5

Figure 6.11: Variation of ζ with the number of fasteners in the joint

6.4.2 Optimal joint

When considering the optimal design of a mechanically fastened joint, the max-

imum joint strength is the objective. This goal can be obtained by changing some

design variables under given constraints. Fastener-hole radius, joint width and hole-

diameter-to-width ratio are among the geometrical design variables. If there are

limitations to the joint dimensions, its maximum strength is attained at the opti-

mum value of the parameter ζ.

Normally, the maximum joint strength is expected around the transition between

the bearing and the net-tension failures. Bearing stress at failure against θW for

different values of ¯̀
M and ζ is shown in Figure 6.12. In this figure and the next

one the elastic and plastic limits are defined by means of Equations (6.2) and (6.3),

whereas the bearing limit is for the [0/45/90/−45]2s graphite/epoxy laminate [131].
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In addition, the net-tension failure is defined below the bearing limit and between

the elastic and plastic limits.

For a joint with specified material and number of bolts, the optimum geometric

parameter θW for a constant radius (constant ¯̀
M) is obtained at the limit between

the bearing and the net-tension failures. This is specially true for small joints (large

¯̀
M) and small values of ζ. This optimum geometry produces a joint with maximum

net-tension strength and minimum joint weight. Also, it is observed that for the

same joint, as ζ increases, the failure mode turns from bearing to net-tension failure.
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Figure 6.12: Normalized bearing stress at failure with respect to θW for different
hole radiuses

Sometimes the design constraints are on the joint width, its own material and

number of fasteners. In this situation the maximum strength of the joint is attained

by changing the fastener-hole radius until the optimum joint geometry is obtained.

Figure 6.13 shows the normalized total remote stress at failure against θW for differ-

ent values of the normalized joint width, where ˜̀
M = `M/W is the inverse normalized

width with respect to the material characteristic length of the joint.

For large joints (small ˜̀
M) the optimum geometry corresponds to θW ≈ 0.45

in case of single-fastener joints while it corresponds to θW ≈ 0.3 for two-fastener

joints. In both cases the net-tension strength decreases if the hole radius decreases,

in spite of the net area being larger. This is because of the high stress concentrations
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associated with small θW as shown in Figure 6.2. Otherwise, for small joints (large

˜̀
M) the optimum joint geometry and its maximum strength are obtained when the

net-tension strength and the bearing strength are equal.
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Figure 6.13: Normalized remote stress at failure with respect to θW for different
joint widths

An important conclusion from Figure 6.13 is that, when a single-fastener joint is

designed for its optimum geometry, increasing the number of bolts has a very slight

effect on its strength. However, increasing the number of bolts has a significant effect

on the joint strength when the joint is designed for its new optimum geometry. That

is, when we have more than one bolt the optimal geometry moves to smaller values

of θW . For example, the optimum geometry of the joint of ˜̀
M = 0.61 with a single-

fastener is θW ≈ 0.33 and its maximum strength is (σ̄∞)f ≈ 0.4. Adding another

bolt to this joint with the current geometry almost does not affect its strength.

Whereas, when the two-bolt joint of ˜̀
M = 0.61 is used with its optimum geometry

(θW ≈ 0.2), the maximum strength grows from (σ̄∞)f ≈ 0.4 to (σ̄∞)f ≈ 0.5.

When the joint geometry is mandatory, its maximum strength is reached by

defining the optimum ζ to be used. For a given θW the optimum ζ is defined at the

bearing limit in Figure 6.8 for each value of the hole radius by means of Equation

(6.14). The optimum number of bolts to be used in the joint can be determined

using this optimum ζ and a plot similar to Figure 6.11.
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6.5 Conclusions

An analytical model able to predict the net-tension strength of multi-fastener

double-lap joints is presented. The model is based on the cohesive zone model and

is restricted to joints that are made of isotropic quasi-brittle materials. The effect

of the bypass loads on the optimum geometry of the joint and, consequently, on its

maximum strength has been studied. Also, a simple analytical spring-based model

has been used for calculating the bypass to the bearing load ratio of the critical

fastener in the joint.

The cohesive zone model is able to predict the joint size effect on its strength.

The initial part of the cohesive law is an important parameter in joint strength

computation. For small ratios of hole radius to joint width, as the bypass load

increases, this initial part gains more importance in the computation of the joint

net-tension strength.

An important conclusion is that, when a single-fastener joint is designed with its

optimum geometry, increasing the number of bolts has a slight effect on its strength.

But, if more than one bolt is used, the bypass load increases and a new geometric

optimum can be found. This optimum design corresponds again to the condition

of simultaneous bearing and net-tension failure. Furthermore, it is advisable for

designers to even reduce a little bit the hole radius so that failure happens in the

bearings. This brings two advantages together, namely, that it is possible to detect

damage of the structure thus precluding catastrophic failure nd that, when three or

more bolts are used, the non-linearity of the bearing bearing deformation helps in

redistributing the load from the bolts of the outer rows to the central bolts.

Finally, the obtained results can be considered as valuable design charts for the

double lap joints that are made of isotropic quasi-brittle materials. An important

requirement for that is that the material cohesive law and the bearing strength of

the joint be thoroughly defined by means of some experimental procedure.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

Simple analytical models based on the physically-based CZM are introduced for

the strength and the size effect predictions of quasi-brittle structures with holes.

Various loading conditions are considered in this work. First, a model for structures

with OHs and subjected to a biaxial loading condition is developed. Also, models for

net-tension strength of double-lap joints under bearing and under coupled bearing-

bypass loading conditions are introduced.

In light of the results and the discussions introduced in the previous chapters,

the following conclusions can be drawn.

The CZM is able to predict the size effect on the strength of the structure. The

shape of the material cohesive law affects the computation of the nominal strength

of OH structures as well as the net-tension strength of the mechanically fastened

joints. Materials with constant cohesive law resulted in higher nominal strength

than materials with other shapes of the traction law. This is because the former

materials are less notch sensitive than the latter ones. The initial part of the cohesive

law and its slope are the most important parameters in strength predictions. For

small ratios of hole radius to specimen width, or to joint width, these parameters

gain more importance in the strength computation. Also, the linear cohesive law

can represent any other cohesive law when the slope of its initial part is adjusted in a

proper way. This is especially true when the biaxiality load ratio, λ, approaches one

in case of OH specimens and for high values of the bypass load in case of multi-faster
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joints.

For OH specimens under biaxial loading conditions, the nominal strength and

the failure envelope have been obtained for different sizes of specimens. As the hole

radius tends to zero, the Rankine failure envelope is reached. This is due to the onset

criterion defined in the cohesive law. To reach another failure surface, the adopted

CZM must be modified to take into account the stresses parallel to the crack in

the strength onset criterion of the cohesive law. As for CDTs, a modification to

the ASM has been introduced by imposing the Von-Mises failure criterion instead

of the adopted Rankine type; and the ellipsoidal failure type is reached as the hole

radius tends to zero. It is found that the modified ASM provides a more accurate

strength prediction than that obtained with the other models in case of materials

that exhibit an ellipsoidal failure surface.

For double-lab joints, analytical models capable of predicting the net-tension

strength of single- and multi-fastener joints are presented. All models are based

on the CZM and are restricted to joints that are made of isotropic quasi-brittle

materials.

In case of single-fastener joints, the constant and the linear shapes of the mate-

rial cohesive law were used in the problem formulation. In addition, uniform and

cosinusoidal stress distributions on the hole edge due to the presence of the bolt are

considered. The effects of the contact stress distributions, the shape of the cohesive

law, the specimen size and the ratio between hole radius and the joint width on

the joint strength have been studied. Results showed that the predicted net-tension

strength for the uniform stress distribution is higher than that obtained with the

cosinusoidal one. This is because of the lower stress concentration factor associated

with the uniform stress distribution due to the larger contact area between the bolt

and the hole surface. However, the cosinusoidal stress distribution is more realistic

when modeling mechanically-fastened joints.

For multi-fastener joints, only the linear cohesive law and the cosinusoidal stress

distribution are used in the mathematical formulation of the problem. The effect

of the bypass loads on the optimum geometry of the joint and, consequently, on its

maximum strength has been studied. For this purpose, a simple analytical spring-

based model has been developed for calculating the load sharing between the joint

fasteners and, thus, the bypass to the bearing load ratio of the critical fastener in
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the joint. An important conclusion is that, when a single-fastener joint is designed

with its optimum geometry, increasing the number of bolts has a slight effect on its

strength. But if more than one bolt is used, the bypass load increases and a new

optimum geometry can be found. This optimum design corresponds to the condi-

tion of simultaneous bearing and net-tension failure. Furthermore, it is advisable

for designers to even reduce a little bit the hole radius so that failure happens in

the bearings. This brings two advantages together, namely, that it is possible to

detect damage of the structure thus precluding catastrophic failure, and that when

three or more bolts are used, the non-linearity of the bearing deformation helps in

redistributing the load from the bolts of the outer rows (the critical bolts) to the

central bolts.

Generally, one of the most important conclusions in this work is that the initial

part of the CL and its slope are the most important parameters in strength predic-

tions. This mean that the fracture toughness is not an appropriate parameter to

adjust the characteristic lengths used in the CDTs because only the first part of the

CL is important in strength computing. Also, as shown in the presented results,

failure is reached before the FPZ is completely developed and the crack opening

at failure is less than its critical value. Hence, failure is reached before the regime

of self-similar crack growth. Therefore, self-similar crack growth is not necessary

condition in the presented models.

The main conclusion of the present work is that the introduced models are able

to create simple design charts that would help designers to quickly determine the

strength of structures with open holes and for double-lap joints made of isotropic

quasi-brittle materials. An important requirement is that the material cohesive law

and the bearing strength, in case of double-lap joints, be thoroughly defined by

means of some experimental procedure. The introduced models are applicable to

many materials that are of interest in industry. Ceramics, some polymers, met-

als under fatigue loads and delamination and ply-splitting resistant laminates are

examples of these materials.

Finally, it must be emphasized that in case of laminated composites the material

properties that fed up the introduced CZM models are the homogenized properties of

the laminate. Since stacking sequence of a laminate is expected to affect its cohesive

stresses and its bulk properties, two laminates with different stacking sequences are
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considered two different materials with different cohesive laws. For anisotropic or

orthotropic layered plates that are not fulfill the hypotheses of the presented models

all expressions of the SIF and COD must be corrected.

7.2 Future Works

Probably the most interesting areas of work related to that presented in this

thesis include:

(1) Determination of the cohesive law for the most applicable quasi-brittle materials

such as the thin-ply laminates with different stack sequences. This could be done

experimentally or by micromechanical models to, at least, obtain the general shape

of the cohesive law.

(2) Determination of the bearing strength of the joint material to enable optimization

of its geometry using the present model.

(3) The application of the open hole model to strength prediction of other shapes

of cut-outs. Elliptical shape is an important example to be studied.
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[4] Z. P. Bažant. Scaling theory for quasibrittle structural failure. Proceeding of

National Academic Sciences USA, 101(37):13400–13407, 2004.
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[69] A. Hillerborg, M. Modéer, and P. E Petersson. Analysis of crack formation and

crack growth in concrete by means of fracture mechanics and finite elements.

Cement and Concrete Research,, 6(6):773–781, 11 1976.
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Appendices

A.1 Normalized SIFs and CODs for Single-fastener

Joints
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A.2 Normalized SIFs and CODs for Multi-fastener

Joints

K̄b

(
¯̀
FPZ, θW , ζ

)
= 1−θW

θW (1+ζ)

√
π
(
1 + ¯̀

FPZ

)
f1CF2

K̄rb

(
¯̀
FPZ, θW , ζ

)
= 1−θW

1+ζ

√
π
(
1 + ¯̀

FPZ

)
f2F2

K̄rB

(
¯̀
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dā

(A-4)


	List of Symbols
	List of Acronyms
	List of Figures
	Resum
	Resumen
	Summary
	Introduction
	Overview
	Motivation and Objectives
	Thesis Outline 

	Literature Review
	Quasi-brittle Materials
	Size Effect on the Strength
	Strength Prediction of Holed Structures
	Critical Distance Theories
	Stress Based Methods
	Fracture Mechanics Based Methods
	Combined Methods

	Experimental and Numerical Techniques

	Concluding Remarks

	Mathematical Formulations Based on the CZM
	Overview of the Cohesive Models
	Cohesive Law 
	Nominal Strength Based on the CZM
	Hypotheses
	General Formulation for Holed Structures
	The Validity of the Model


	Open Hole Specimens under Biaxial Loading
	Introduction
	Formulation Based on the Cohesive Zone Model (CZM)
	Results of the Cohesive Zone Model
	Results Based on the Size Effect Law
	Formulations Based on Critical Distance Theories (CDTs) 
	Results of CDTs and Discussion
	Conclusions

	Single-fastener Double-lap Joints
	Introduction
	Numerical model for net-tension failure
	Results and discussions
	Results for constant W 
	Results for constant hole radius (R)
	Results for constant width (W)

	Conclusions

	Multi-fastener Double-lap Joints
	Introduction
	Mathematical Formulation of the Problem
	Results
	Discussion
	Load distribution of single-column double-lap joints
	Optimal joint

	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Works

	Bibliography
	Appendices
	Normalized SIFs and CODs for Single-fastener Joints
	Normalized SIFs and CODs for Multi-fastener Joints


