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Error and Complexity
of Random Walk Monte Carlo Radiosity

Mateu Sbert, Member, IEEE Computer Society

Abstract —In this paper, we study the error and complexity of the discrete random walk Monte Carlo technique for Radiosity, both
the shooting and gathering methods. We show that the shooting method exhibits a lower complexity than the gathering one, and
under some constraints, it has a linear complexity. This is an improvement over a previous result that pointed to an 2(n log n)
complexity. We give and compare three unbiased estimators for each method, and obtain closed forms and bounds for their
variances. We also bound the expected value of the Mean Square Error (MSE). Some of the results obtained are also shown to be
valid for the nondiscrete gathering case. We also give bounds for the variances and MSE for the infinite path length estimators;
these bounds might be useful in the study of the biased estimators resulting of cutting off the infinite path.

Index Terms —Rendering, radiosity, Monte Carlo, random walk.

——————————   ✦   ——————————

1 INTRODUCTION

O study the complexity of a Radiosity algorithm we
should first establish a measure of error which gives us

an invariant between the different scenes to compare. In
Monte Carlo algorithms, the obvious choice for such a
measure is the variance of the radiosity estimator for each
patch (which manifests itself as noise in the final image),
and also the area weighted combination of those variances,
which, for an unbiased estimator, is simply the expected
value of the Mean Square Error (MSE). Then, to study the
complexity, we should study the variation in cost when we
change the different parameters but keep the same vari-
ances or MSE. A difficulty that arises is which exact solu-
tion we should use to measure the error. The obvious
choice would be the radiosity function over the whole
scene, solution of the integral equation (Rendering equa-
tion). However, this exact solution is never known, and as
in radiosity, we have to discretize the environment so as to
obtain the equations system, a possibility is to consider the
error made respective to the exact solution of the Radiosity
equations system. And it results that, although those exact
solutions are almost never known (except for very simple
environments), the expected value of the error made re-
spective to those solutions can be computed (or at least
bounded). We should also account somehow for the error
of discretizing, although this error decreases to zero when
the discretization becomes finer and finer. Another issue
that appears when studying random walk Monte Carlo
radiosity is how to define the trajectory of the particles car-
rying the light power in the simulation. If a particle must
follow the Form-Factor probabilities all along its trajectory,
the impinging point on each patch must be forgotten and a
new exit point and a direction must be selected randomly

(this is done implicitly in [16], [7]). The expected values of
the simulation are then the exact solutions of the Radiosity
system. On the other hand, following pure Particle-Tracing
[12], we use the same impinging point as the exit point for a
particle. Thus, the trajectory of a particle is described by
point to patch differential Form-Factors, not by the patch to
patch Form-Factor matrix, and the classical results on ran-
dom walk in [8], [14] are not directly applicable. Of course,
both kind of simulations converge to the same result when
the average size of a patch decreases.

In this paper, we will study both shooting random walk
and gathering random walk, that is, random walk from the
sources and random walk from the patches. When solving a
system of equations through random walk [8], [14], we are
provided with a dual set of solutions. The direct solution
corresponds to the gathering approach, and in the nondis-
crete case it would correspond to path-tracing (without the
shadow rays). The solution proceeds sending paths from
the patches of interest to gather energy when a source is hit.
On the other hand, the adjoint system solves for the impor-
tance or contribution that each source has for illuminating a
given patch [13]. The adjoint solution will appear when
solving the adjoint system of equations by the direct
method. As we are interested in solving for the importance
of the sources, the paths are traced from them to gather
importance from the patches. This can be interpreted as if
particles carrying energy were shot from the sources and
followed through the environment, to distribute their en-
ergy. Orthogonal to the shooting and gathering duality is
the duality between the radiosity and the power system,
although this orthogonality does not introduce any new
independent solution. We can solve either system by
shooting or gathering, but it is usual to solve the power
system by shooting and the radiosity system by gathering,
and we will do so in this paper. Another important point is
whether the estimators are biased or not. We will limit our-
selves to unbiased estimators, although biased estimators
exist and should be investigated.
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It must also be remarked that apart from random walk
Monte Carlo radiosity (or rather, discrete random walk
Monte Carlo radiosity) other Monte Carlo radiosity meth-
ods exist, such as the Stochastic Radiosity method [11],
global Monte Carlo methods [15], and others. Path-tracing
[9], and even distributed ray-tracing [4], [19], [20],  can be
considered as the limiting case of gathering random walk
for the nondiscrete case. Bidirectional ray-tracing [18], [10]
is a mixture of nondiscrete shooting and gathering. Shoot-
ing random walk methods have also been investigated in
the limiting, nondiscrete case [5], [6].

The complexity of shooting random walk Monte Carlo
radiosity has been understood to this date to be of order
2(n log n), where n is the number of patches in the scene
[17]. However, in [17], the study of the complexity is lim-
ited to the particular case where the total area in the scene
is kept constant. A second point is that variances are
bounded respective to a postulated (by physical reasons)
maximum radiance (or radiosity) in the scene, but no
bound is given for such radiance. So this result is, to our
understanding, incomplete. In this paper, we will try to
complete it in the following ways: first, we will define a
random walk unbiased estimator for the radiosity of a
patch and give a closed formula (not just a bound) for the
variance of this estimator. Second, we will give a bound for
the maximum radiosity on the scene and a bound for all the
variances. Third, we will show that Monte Carlo random
walk radiosity can be considered (under some restrictions)
to be 2(n). And last, we will define other unbiased estima-
tors and compare their efficiencies. We also give bounds for
an infinite path length estimator; this might be useful to
study the efficiency of the biased estimators obtained when
the path is cut off. All this will be done in the next section,
dedicated to the study of shooting random walk. In Section 3,
we will study gathering random walk. Closed forms for the
variances of estimators analogous to the ones for the
shooting case will be given, with bounds for the MSE, and a
study of the complexity will be done, showing that it ex-
hibits a higher complexity than the shooting case. And we
will show that a formula for the variance also applies to the
nondiscrete case. In Section 4, some results are presented
that confirm our theoretical findings. Finally, in Section 5,
we present our conclusions and future research.

2 SHOOTING RANDOM WALK

In this section, we study three unbiased and one infinite
path length estimators for the incoming power fi on a patch
i. The unbiased estimators were introduced by Shirley in
[17], although in a slightly different form. We will prove
that the unbiased estimators are indeed unbiased, after
which we present a closed-form expression for the variance
on each patch and bounds for both the variance and the
MSE. The complexity is also obtained.

2.1 An Unbiased Random-Walk Estimator for the

Incoming Power: The 
FT

iR1-  Estimator

Let us first consider what the expected value of any unbi-
ased Monte Carlo estimator should be for the incoming

power on a patch. Let us suppose that the initial power of
source s is Fs, fi is the incoming power on patch i, Fkl de-
notes the Form-Factor from patch k to patch l, and Rk de-
notes the reflectance of patch k. Then we have, by develop-
ing the Power system in Neumann series:

f i s si
s

s sh h hi
hs

s sh h hj j ji
jhs

F F R F

F R F R F

= +

+ +

Â ÂÂ
ÂÂÂ

F F
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This can be expressed as:

f f f fi i i i= + + +1 2 3a f a f a f L

where

f f

f

i s si
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i s sh h hi
hs

i s sh h hj j ji
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F R F R F
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and so on. That is, f i
( )1  represents the power arrived di-

rectly from the sources, f i
( )2  represents the power arrived

after one bounce, and so on.
Let us now consider the following simulation. A source s

is selected with probability F
F

s

T
, where FT is the sum of all

powers for all the sources. A particle exits from this source
according to the Form-Factors probability (simulated se-
lecting a random exit point and a random direction [15]),
and goes to patch j with probability Fsj. Then it survives or

dies according to the probabilities (Rj, 1 - Rj). The expected

length of the trajectory (or path) g  is bounded by 1
1-Rmax

[17], where Rmax is the maximum of the reflectivities. Now

let us define for patch i and path g the family of random

variables f f fi i i
1 2 3a f a f a f^ ^ ^

, , , K in the following way:
All of those random variables are initially null. If the

path g  happens to finish on patch i at length l (that is, the

particle dies at length l), then the value of f i
lb f^

 is set to FT

iR1- .

Let us also define a new random variable f i
^  as:

f f f fi i i i
^ ^ ^ ^

= + + +1 2 3a f a f a f L

PROPOSITION 2.1. For all l ≥ 1, the random variable f i
lb f^

 is an
unbiased estimator for the power arrived to patch i after l

bounces, and f i
^  is an unbiased estimator of the total in-

coming power arrived to patch i after any number of
bounces.

PROOF. Applying the definition of expected value, and re-
membering that the probability of selecting source s is
F
F

s

T
, the probability of landing on patch i just after

leaving source s is Fsi and the probability of dying on

patch i is 1 - Ri, we have
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Now, to go from a source s to i in a two length path
we can pass through any patch h, and survive in it
with probability Rh, so we have

E
R

F R F Ri
T

i

s

T
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hs
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and so on. Then, we have
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We have considered above the simulation for only one
path or particle. For N particles we would use N such esti-
mators and average by N. Or alternatively, we could con-
sider the sum of N estimators with 1

N  of the total energy
each. In any case, and due to the way we select the sources,
upon their power, each particle carries the same quantity of
energy.

PROPOSITION 2.2. The variance of the estimator f i
^  is:

Var
Ri i
T

i
if f f^F

HG
I
KJ =

-
-

F
HG

I
KJ

F
1c h

PROOF. Considering the definition for variance and the fact
that our estimator is unbiased:

Var Var
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But each term of the form E i
n

i
m( )

^ ^
f fa f a f  is null, be-

cause if a particle dies at length n on patch i it cannot
die again on the same patch at length m. So we have
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and so on. Then we obtain
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For the radiosity, our estimator is simply $ ^B Ei i
R
A i

i

i
= + f ,

where Ai is the area of patch i and Ei the initial emittance.

Then, if bi =  Bi - Ei is the reflected radiosity, we have

COROLLARY 2.3. The variance of the estimator $Bi  is:

Var B b
R

A R
bi i

T i

i i
i

$e j c h=
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Var B
R

A
Var

R

A Ri
i

i
i

i

i
i

T

i
i

$ ^e j c h=
F
HG

I
KJ =

-
-

F
HG

I
KJ

2

2

2

2 1
f f f

F

=
-

-
F
HG

I
KJ

b
R

A R
bi

T i

i i
i

F
1c h              (2)

�

2.2 A Global Bound for All the Variances
PROPOSITION 2.4. For all patches i

Var B
R

A Ri
T$e j c h£

-
%

F max

min max

2

1

where % = -maxs
E

R
s

s
( )1 , s indexes the sources, Amin is the

minimum patch area and Rmax the maximum reflectivity.

PROOF. From bi £ Rmax% , (see Appendix), and from the
value of the variance we have for all i:

Var B b
R

A R

R

A Ri i
T i

i i

T$e j c h c h£
-

£
-

F F
1 1

2

%
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min max

�

The above results are for a single particle. For N inde-
pendent particles, the variances must be divided by N, and
the bound results in (keeping the same name for the N par-
ticles estimator):
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COROLLARY 2.5.

Var B
R

NA Ri
T$e j c h£

-
%

F max

min max

2

1

This means that we can always set a number of paths N
so that the variance of any patch is below any pre-
established threshold.

2.3 Complexity
Consider the cost of intersecting a particle with a scene
composed of ns surfaces and np patches. The expected num-
ber of segments of a path is bounded by 1

1-Rmax
 (maximum

expected length). The cost of intersecting a line with the ns

surfaces in the scene is bounded by log ns [2] or ns, de-
pending on the existence or not of a hierarchical structure
of the scene (we suppose the cost of intersecting any surface
is bounded). This will provide us with the nearest intersec-
tion. Now, the cost of picking the right patch within the
nearest intersected surface depends on how patches are
organized. We can consider two cases: A bounded cost, as
with a regular grid, and a hierarchical structure of patches
within the surface, where the cost is logarithmic, that is

2(log )
n

n
p

s
, because the patches are distributed over all the

surfaces. So the complexity of intersecting plus picking a
patch is the maximum of both complexities. Then we have
the following cases for the cost C1 for one path:

1) structured scene, bounded cost for picking a patch
within a surface

C1 = 2(log ns(1 - Rmax)
-1)

2) structured scene, hierarchical structure of patches
within a surface

C
n
n Rp

s
1

1
1=

F
HG

I
KJ -

F
HG

I
KJ

-
2 max ns maxlog , log c h

3) Nonstructured scene, bounded cost for picking a
patch within a surface

C1 = 2(ns(1 - Rmax)
-1)

4) Nonstructured scene, hierarchical structure of patches
within a surface

C
n
n Rp

s
1

1
1=

F
HG

I
KJ -

F
HG

I
KJ

-
2 max ns max, log c h

Now, from the previous section, given a bound V for all
variances we can find the number of paths N to fulfill this
bound:

N V A R R T≥ -- - -1 1 1 21min max maxc h F %

Therefore, the total cost CT of the N paths, which is C1
times N, is given by:

1) structured scene, bounded cost for picking a patch
within a surface

C V A R R nT T s= -- - -
2 %

1 1 2 21min max maxc he jF log

2) structured scene, hierarchical structure of patches
within a surface

C V A R R n
n
nT T s

p

s
= -

F
HG

I
KJ

F
HG

I
KJ

- - -
2 %

1 1 2 21min max max maxc h F log , log

3) nonstructured scene, bounded cost for picking a patch
within a surface

C V A R R nT T s= -- - -
2 %

1 1 2 21min max maxc he jF

4) nonstructured scene, hierarchical structure of patches
within a surface

C V A R R n
n
nT T s

p

s
= -

F
HG

I
KJ

F
HG

I
KJ

- - -
2 %

1 1 2 21min max max maxc h F , log

Now imagine the following scenarios:

1) Increasing k times the number of surfaces retaining the
same minimum area. In this case we can also suppose
the number of patches gets increased by k, so the quo-

tient 
n

n
p

s
 remains constant. That is, 2(Amin) = 2(1),

2 2( ) ( )
n

n
p

s
= 1 .

2) Dividing each existing patch into k equal patches. In
this case we do not increase the number of surfaces
but Amin gets divided by k. That is, 2 2( ) ( )A npmin = -1 ,

2 2( ) ( )
n

n p
p

s
n= .

Then, in scenario 1, cases 1 and 2 are 2(log ns), and cases

3 and 4 are 2(ns). As the quotient 
n

n
p

s
 remains constant, this

means 2(log np) or 2(np).
In scenario 2, cases 1 and 3 are 2(np), and 2 and 4 are

2(np log np).
To sum up, when we do not modify the minimum area

and the ratio 
n

n
p

s
, we obtain complexity 2(log np) or 2(np)

depending on the structuring of the scene. When we add
patches via evenly dividing existing patches into new ones,
if the cost of picking a patch from within a surface is
bounded the complexity is 2(np), if not it is 2(np log np).
This is represented in Table 1.

As a general conclusion we think that, if we restrict our-
selves to the case of bounded cost for picking a patch (cases 1
and 3), it is permitted to speak of linearity. And this does

TABLE 1
COMPLEXITY FOR THE DIFFERENT CASES AND SCENARIOS FOR

SHOOTING RANDOM WALK.

Case vs Scenario 1 2

1 2(log np) 2(np)

2 2(log np) 2(np log np)

3 2(np) 2(np)

4 2(np) 2(np log np)
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not depend on the existence of a hierarchical structure of
the scene (see case 3). But take into account that: First, al-
most all the parameters in the scene must be kept constant,
for instance, adding an object with a higher reflectivity can
break our bound, adding a surface with less area than the
minimum also breaks our bound, no power can be added,
and so on. Second, the variances are computed with respect
to the exact solution of the Radiosity equations system, not
respective to the exact solution of the Rendering integral
equation. But the majority of Monte Carlo and non-Monte
Carlo approaches also take the same reference solution.
What we have done here is, given a problem, the integral
equation of radiosity, approximate it with a new one, the
Radiosity equation system, and obtain the expected error
when solving this equation system using random walk.
How close our approximated problem is to the original one
remains out of the scope of this paper (a theoretical study of
the discretization error is found in [1]). We must say, how-
ever, that for scenario 2 the discretization error decreases
each time we divide the patches (this is not necessarily true
for scenario 1). This means linearity for scenario 2 respec-
tive to the exact solution of the Rendering integral equation.

2.4 Expected Value of the Mean Square Error
In this section, we will bound the expected value of the
MSE. To this objective we must first bound Âi fi.

PROPOSITION 2.6. The following bound holds

f i
i

T

RÂ £ -
F

1 max

PROOF. We have first

f i
i

s si
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s sh h hi
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s
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s
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F R F F

Â Â ÂÂÂ
Â Â Â ÂÂ

= + +
F
HG

I
KJ

+ +

F F

F F

L

Lmax

But

F F F F Fsh hi
h
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and as the power of a stochastic matrix is also a sto-
chastic matrix (see for instance [3]), we have

Fsii

2 1Â = . The same happens with any power, so:
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s
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PROPOSITION 2.7. For the expected value of the MSE, the bound
holds
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PROOF. Applying (2), we obtain:
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R
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R
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COROLLARY 2.8. For N particles, we have

E MSE NA A
R

R

T

T
a f

c h
£

-

F2 2

2
1min

max

max

    (4)

If we take the expected value of the MSE as a measure of
the error upon which to study the complexity, from (4), we
obtain linearity again, following the same discussion as in
Section 2.3. An interesting conclusion from (4) is that add-
ing surfaces keeping the product AT Amin constant, the ex-
pected value of the MSE remains below the same bound.

2.5 Other Unbiased Estimators

2.5.1 The 
FT

iR  Estimator

Let us now define for patch i and path g another family of

random variables ¢ ¢ ¢f f fi i i
1 2 3a f a f a f^ ^ ^

, , , K in the following way:
All of those random variables are initially null. If the

particle happens to survive on patch i at length l, then the

value of ¢f i
lb f^

 is set to FT

iR . Let us also define a new random

variable ¢$f i  as:

¢ = ¢ + ¢ + ¢ +$ ^ ^ ^
f f f fi i i i

1 2 3a f a f a f L

PROPOSITION 2.9. For all l ≥ 1, the random variable ¢f i
lb f^

 is an
unbiased estimator for the power arrived to patch i after l
bounces, and ¢$f i  is an unbiased estimator for the total in-
coming power arrived to patch i after any number of
bounces.

The proof follows the one of Proposition 2.1.

PROPOSITION 2.10. The variance of the estimator $ ¢f i  is

Var Ri i T
i

i i¢ = + -
F
HG

I
KJ

$ ( )f f x fd i F
1

2

where xi is the expected value of the total incoming power
on patch i due to emission of a unit power on the same
patch i (or also the incident radiosity or irradiance due to a
unit emittance).

PROOF. We will use the decomposition of (1). But now

the terms of the form E i
n

i
m( )

^ ^
¢ ¢f fa f a f  are no longer

null, because if a particle survives at length n on
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patch i it can also survive on it at length m. We must
then obtain the value of those terms.

E R R

F R F R

F R F R

F R F

i
n

i
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T
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s

T
sh h h i i

ih h h i i

i
n

T
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m
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F
H
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I
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1 11 1

1 1 1

1 1 1
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1 1 1

1

F F

F
F

F

F

where x i
m n( )-  is the expected value of the incoming

power on patch i after m - n bounces due to a unit
power on the same patch i (or also the incident radi-
osity or irradiance after m - n bounces due to a unit
emittance). But we have

x x xi
m n

n m
i
n

n
i

-

< £
Â Â= =a f a f

1

The first sum is for all integers greater than n, the sec-
ond for all integers greater or equal than 1. We obtain

E i
n

i
m

n mn
i
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T
n

i
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n
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On the other hand we have
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T
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and so on. Then we finally obtain

Var R

R

i
T

i
i i T i i i

i T
i

i i

¢ = + + + -

= + -
F
HG

I
KJ

$

( )

f f f x f f

f x f

d i e ja f a fF
F

F

1 2 22

1
2

L

�

For the radiosity, our estimator is simply $ $¢ = + ¢B Ei i
R
A i

i

i
f ,

and so

COROLLARY 2.11. The variance for the estimator ¢$Bi  is

Var B b
R

A R bi i
T i

i i
i i¢ = + -

F
HG

I
KJ

$ ( )e j
F 1

2x

PROOF.

Var B
R

A R

b
R

A R b

i
i

i
i T

i
i i

i
T i

i i
i i

¢ = + -
F
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I
KJ

= + -
F
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I
KJ

$ ( )

( )

e j
2

2

1
2

1
2

f x f

x

F

F

�

The quantity Rixi is the indirect importance [13] that
patch i has to illuminate itself (this means that for a source
of importance with value 1 for patch i and zero elsewhere,
the total importance for patch i will be 1 + Rixi). A bound
for xi is given by (see Appendix)

x i
iR£ -

1
1 (5)

However, we can expect xi ! 1 for the following reason.
Given (3), we have that the total incoming power for all
patches due to a unit power is bounded by 1

1-Rmax
. The aver-

age incoming power per patch is then 1
1n Rp ( )- max

. We can

suppose xi be of this order of magnitude. Obviously, the

average incoming power decreases to zero when np Æ •.
Using now the bound in (5) we have

PROPOSITION 2.12. The following bound holds

Var B b
R

A R
bi i

T i

i i
i¢ £

+
-

-
F
HG

I
KJ

$e j c h
c h

F 1

1

PROOF. Using the bound for xi in (5) we obtain

Var B b
R

A R R bi i
T i

i i i
i¢ £ + - -

F
HG

I
KJ

$ ( )e j
F 1 2

1

=
+
-

-
F
HG

I
KJ

b
R

A R
bi

T i

i i
i

F 1

1
c h
c h        (6)

�

This variance can be bounded in the same way as in Sec-
tion 2.2 and obtain the same linearity results as in Section
2.3. Now, to obtain the expected value of the MSE, we pro-
ceed as in Section 2.4 and arrive to:

PROPOSITION 2.13. The following bound holds

E MSE A A
R R

R

T

T
a f c h

c h
£

+

-

F2

2

1

1min

max max

max

2.5.2 The FT Estimator
Now we will define a third family of random variables for

patch i and path g : ¢¢ ¢¢ ¢¢f f fi i i
1 2 3a f a f a f^ ^ ^

, , , K in the following
way:

All of those random variables are initially null. If the
particle happens to hit patch i at length l, then the value of

¢¢f i
lb f^

 is set to FT. Let us also define a new random variable

¢¢f i
^

 as:

¢¢ = ¢¢ + ¢¢ + ¢¢ +f f f fi i i i
^ ^ ^ ^1 2 3a f a f a f L
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PROPOSITION 2.14. For all l ≥ 1, the random variable ¢¢f i
lb f^

 is an
unbiased estimator for the power arrived to patch i after l

bounces, and ¢¢f i
^

 is an unbiased estimator of the total in-
coming power arrived to patch i after any number of
bounces.

The proof follows the one of Proposition 2.1. Using an
analogous proof as for Proposition 2.10, we have:

PROPOSITION 2.15. The variance of the estimator ¢¢f i
^

 is given by

Var Ri i T i i i¢¢
F
HG

I
KJ

= + -f f x f^ F 1 2c hd i

For the radiosity, our estimator is simply $ $¢¢ = + ¢¢B Ei i
R
A i

i

i
f ,

and so

COROLLARY 2.16.

Var B b
R

A R bi i
i T

i
i i i¢¢ = + -

F
HG

I
KJ

$e j c hF
1 2 x (7)

And bounding xi with 1
1-Ri

 we obtain

PROPOSITION 2.17.

Var B b
R R

A R
bi i

i i T

i i
i¢¢ £

+
-

-
F
HG

I
KJ

$e j c h
c h

1

1

F

We can find a global bound in the same way as in Sec-
tion 2.2 and obtain the same linearity results as in Section 2.3.
To obtain the expected value of the MSE, we proceed as in
Section 2.4 and obtain:

PROPOSITION 2.18.

E MSE A A
R R

R

T

T
a f c h

c h
£

+

-

F2 2

2

1

1min

max max

max

2.6 The Relation Between the 
F FT

i

T

iR R1- , , and FT

Estimators
It is interesting to study the relation between the three es-
timators defined in Sections 2.1, 2.5.1, and 2.5.2. The first
estimator only scores a patch where the path dies, the sec-
ond scores all the patches in the trajectory except where it
dies, and the third scores all the patches in the trajectory.
This gives a strong intuitive reason to consider the latter
estimator as the best of all three. In this section we will give
a mathematical support to the intuition. We have the rela-
tion among the three estimators:

¢¢ = ¢ + -$ $ $f f fi i i i iR R1c h
This implies that we should have the following relation

between the variances:

Var R Var R Vari i i i i¢¢ = ¢ + -$ $ $f f fd i d i c h d i2 2
1

+ - ¢2 1R R Covi i i ic h d i$ , $f f    (8)

The only value we don’t know from the above expression

is the covariance. Once found, substituting each variance and
the covariance with their value, we should obtain an identity.

PROPOSITION 2.19. The covariance between the ¢f i
^

 and $f i  esti-
mators is given by

Cov i i T i i i¢ = -$ , $f f x f fd i F 2

PROOF. We have

Cov E E E Ei i i i i i i i i¢ = ¢ - ¢ = ¢ -$ , $ $ $ $ $ $ $f f f f f f f f fd i d i d i d i d i 2
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 (9)

The last equality follows because after a particle dies
on a patch at length n, it can not survive on a patch at
length m ≥ n. That is

E i
n

i
m

n m

f fa f a f^ ^
¢

F
H
GG

I
K
JJ =

£ £
Â

1

0

Now we will obtain the last sum of (9). First we have:
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And then
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It is easy to check that substituting the obtained value for
the covariance and the three values for the respective vari-
ances in (8), we obtain an identity.

We will now compare the estimators. Comparing the re-
spective variances, we easily obtain when the estimator

FT

iR1-  is better than the estimator FT

iR , that is

PROPOSITION 2.20. For Ri £ 1
2  we have
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Var Vari i
$ $f fd i d i£ ¢

PROOF. It follows from the inequality

1
1

1
2- £ +R Ri i

ix

which holds for Ri £ 1
2 , because xi ≥ 0. �

Equally the estimator FT is always better than the esti-

mator FT

iR :

PROPOSITION 2.21. The inequality

Var Vari i¢¢ £ ¢$ $f fd i d i
always holds.

PROOF. It follows from the inequality

1 2
1

2+ £ +x xi
i

iR

which holds for Ri £ 1. �

As the estimator FT is a linear combination of the esti-

mators FT

iR1-  and FT

iR , we can ask whether this combination

is optimal. The answer is affirmative if we consider only
direct illumination, that is for the case

¢¢ = ¢ + -f f fi i i i iR R1 1 11a f a f a fc h^ ^ ^

the combination can be shown to be optimal. In the general
case we have

¢¢ = ¢ + - £ £$ $ $f af a f ai i i1 0 1a f
and we must minimize

Var Var Var
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i i i

i i

¢¢ = ¢ + -
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f a f a f

a a f f

d i d i a f d i
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The optimal value for a is

a
f f f

f f f f
=

- ¢

¢ + - ¢

Var Cov

Var Var Cov

i i i

i i i i

$ $ , $

$ $ $ , $

d i d i
d i d i d i2

and after substituting and simplifying we obtain

a x= - -R Ri i i1 1c hd i
As xi can be assumed small respective to 1 (see Sec-

tion 2.5.1), the estimator FT is an optimal combination, and
therefore it has lower variance than both components, in

particular than the estimator FT

iR1- . So a good heuristic is to

consider the FT estimator as the best estimator of the three
considered.

2.7 An Infinite Path Length Estimator
For the sake of completeness, we introduce here an unbi-
ased infinite path length estimator.

The random variables ¢¢¢ ¢¢¢ ¢¢¢f f fi i i
1 2 3a f a f a f^ ^ ^

, , , K are defined
in the following way:

All of those random variables are initially null. If the

path g arrives at patch i at length l, and if s, h1, h2, º, hl-1, i is

the trajectory the path has followed, then the value of ¢¢¢f i
lb f^

is set to R R Rh h h Tl1 2 1
K

-
F . Let us also define a new random

variable ¢¢¢$f i  as:

¢¢¢ = ¢¢¢ + ¢¢¢ + ¢¢¢ +$ ^ ^ ^
f f f fi i i i

1 2 3a f a f a f L

It can be easily shown that those estimators are unbi-
ased. Lower and upper bounds for the variance of the radi-

osity estimator $ $¢¢¢= + ¢¢¢B Ei i
R
A i

i

i
f  are
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As Rmax < 1, we have
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So at equal cost, this new estimator should be the best. The
problem is that one can not deduce that the estimator ¢¢¢$f i  is
better than ¢¢$f i  because ¢¢¢$f i  is an infinite length estimator.
Neither is it usable, of course. What we do then is to cut off
the trajectory of a path when it reaches a predetermined
length, or alternatively in the following way: A path s, h1, h2,

º, hk is stopped when R R R th h hk1 2
K £ , where t is a pre-

established threshold. Then, if t is small enough we can be
confident that the variance of the resulting biased estimator
is near enough the variance of the infinite length estimator.
As for the bias error, we can consider this small percentage
of undistributed energy acceptable (the variance accounts
for the noise in the image, the bias for the undistributed
energy), or use Russian Roulette, which consists simply of
switching to the FT estimator to distribute the remaining
energy. A thorough study of the efficiencies of those biased
estimators is beyond the scope of this paper.

To obtain a bound for the expected value of the MSE, we
proceed as in Section 2.4 and arrive at:

E MSE A A
R R

R R
T

T
a f c h

c he j
£

+

- -

F2 2

2

1

1 1min

max max

max max

3 GATHERING RANDOM WALK

In this section, we study four gathering estimators, analo-
gous to the ones shown in Section 2. Some derivations are
omitted or only sketched, as they follow the same approach
as in Section 2.
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3.1 An Unbiased Random-Walk Estimator for the

Radiosity: The E
R
s

s1-  Estimator

Let us first consider what the expected value of any unbi-
ased Monte Carlo estimator should be for the radiosity of a
patch. Let us suppose that the emittance of source s is Es, bi
is the reflected radiosity, or radiosity of patch i due to the
received power (that is bi = Bi - Ei, thus for a nonemitter
patch it equals the total radiosity), Fkl denotes the Form-
Factor from patch k to patch l, and Rk denotes the reflec-
tance of patch k. Then we have, by developing the Radiosity
system in Neumann series (dropping the zero order term):

b R E F R E F R F

R E F R F R F

i i s is
s

i s ih h hs
sh

i s ih h hj j js
sjh

= +

+ +

Â ÂÂ
ÂÂÂ L

This can be expressed as:

b b b bi i i i= + + +1 2 3a f a f a f L

where

b R E F b R E F R F

b R E F R F R F

i i s is
s

i i s ih h hs
hs

i i s ih h hj j js
jhs

1 2

3

a f a f

a f

= =

=

Â ÂÂ
ÂÂÂ

, ,

,

and so on. That is, bi
( )1  represents the radiosity due to direct

illumination, bi
( )2  represents the radiosity after one bounce,

and so on. It is also useful to define the following quanti-
ties:

b b bis is is= + +1 2a f a f L

bis
( )1  represents the radiosity due to direct illumination from

source s, bis
( )2  represents the radiosity after one bounce from

source s, and so on. It is clear that:

b bi is
s

= Â
Let us now consider the following simulation. A path

starts from patch i with probability pi (this probability can
be considered as the initial or received importance of the
patch), and goes to patch j with probability Fij. Then it sur-

vives or dies according to the probabilities (Rj, 1 - Rj). The
expected length of the trajectory is bound by 1

1-Rmax
 [17],

where Rmax is the maximum of the reflectivities. Now let us

define for patch i and path g the family of random variables
$ , $ , $ ,( ) ( ) ( )b b bi i i

1 2 3 K in the following way:
All of those random variables are initially null. If the

path g  happens to die on source s at length l, then the value

of $( )bi
l  is set to Ri

E
p R

s

i s( )1- . Let us also define a new random

variable $bi  as:

$ $ $ $b b b bi i i i= + + +1 2 3a f a f a f L

PROPOSITION 3.1. The random variable $( )bi
l  is an unbiased esti-

mator for the radiosity due to the power arrived at patch i

after l bounces (reflected radiosity), and $bi  is an unbiased
estimator for the total radiosity of patch i due to the power
arrived after any number of bounces.

PROOF. Applying the definition of expected value, and re-
membering that the probability of selecting patch i is
pi, the probability of arriving at source s just after
leaving patch i is Fis and the probability of dying on
source s is 1 - Rs, we have

E b R
E

p R
p F R bi i

s

i s
i is s

s
i

$ 1 1

1
1a f a fe j c h c h=

-
- =Â

Now, to go from patch i to a source s in a two length
path we can pass through any patch h, and survive in
it with probability Rh, so we have
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p F R F R bi i
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and so on. Then, we have
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PROPOSITION 3.2. The variance of the estimator $bi  is given by

Var b
R
p

E

R
b bi

i

i

s

s
is i

s

$e j c h=
-

-Â 1
2

PROOF. We can use an analogous decomposition for the
variance to that given by (1) and observing that each
term of the form E b bi

n
i
m( $ $ )( ) ( )  is null, because if a path

dies at length n on a certain source it cannot die again
at length m, we have

Var b E b E b bi i i i
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and so on. Then we obtain
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For the radiosity, our estimator is simply $b Ei i+ . So, as Ei
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is a constant, we have

Var b E Var b
R
p

E

R
b bi i i

i

i

s

s
is i

s

$ $+ = =
-

-Âe j e j c h1
2      (10)

3.2 Some Particular Cases
Suppose we are only interested in patch i. We put pi = 1,
and then

Var b R
E

R
b bi i

s

s
is i

s

$e j c h=
-

-Â 1
2           (11)

A remarkable property of (11) is that it is also valid for the
nondiscrete case. This is because (11) is independent of any
discretization of the scene, and so it gives us the variance for
the estimator of the radiosity of the point origin of the path (it
is not possible to obtain formulae for the nondiscrete shoot-
ing case because the probability of a path impinging on a
given point is null). For a single source, bis = bi, and if we
trace N paths:

Var b N
R E

R
b bi

i s

s
i i

$e j c h=
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-
F
HG

I
KJ

1

1
2

If we are interested in all the patches without prefering

any one in particular, a possibility is to consider pi
A
A

i

T
= ,

where Ai is the area of patch i and AT is the total area. This
means assigning importance to them according to their
area. We have, for N paths

Var b N
R A

A
E

R
b bi

i T

i

s

s
is i

s

$e j c h=
-

-
F
HG

I
KJÂ1

1
2

3.3 A Global Bound for All the Variances
Let us see how we can find a bound for all variances.

For all patches i, we have, remembering that bi £ Ri% and
E

R
s

s1- £ %  (see Appendix), and calling Amin the minimum

area:

Var b
R
p

E

R
b b

R
p b

R
p b

R
p

i
i

i

s

s
is i

s

i

i
is

s

i

i
i

$e j c h=
-

- £

£ £

Â Â1
2

2 2

%

% %max

min

and for N paths

Var b
R
Npi

$e j £ max

min

2 2
%

When pi
A
A

i

T
=  we obtain

Var b
R A

NAi
T$e j £ max

min

2 2
%

This means that we can always obtain a number of paths
N so that the variance for any patch is below any pre-
established threshold. Observe also that this bound keeps
holding when we add emissivity to any patch j under the

constraint 
E

R
j

j1- £ % .

3.4 Complexity
From the previous section, given a bound V for all vari-
ances we can find the number of paths N to fulfill this
bound:

N V A A RT= - -1 1 2 2
min max%

And so, remembering from Section 2.3 the cost C1 for a
path, the total cost CT of the N paths is given by:

1) structured scene, bound cost for picking a patch
within a surface

C V A A R nT T s= - -
2 %

1 1 2 2
min max loge j

2) structured scene, hierarchical structure of patches
within a surface

C V A A R n
n
nT T s

p

s
=

F
HG

I
KJ

F
HG

I
KJ

- -
2 %

1 1 2 2
min max max log , log

3) nonstructured scene, bound cost for picking a patch
within a surface

C V A A R nT T s= - -
2 %

1 1 2 2
min maxe j

4) nonstructured scene, hierarchical structure of patches
within a surface

C V A A R n
n
nT T s

p

s
=

F
HG

I
KJ

F
HG

I
KJ

- -
2 %

1 1 2 2
min max max , log

Introducing the same scenarios as in Section 2.3 and fol-
lowing the same discussion, taking into account that in sce-
nario 1, 2(AT) = 2(ns) and in scenario 2 2(AT) = 2(1), we
obtain the results for gathering in Table 2. We can compare
them in the same table with the results for shooting. For
scenario 1 the complexity is higher in the gathering case.
This is because adding new area means adding new sources
of paths (or sources of importance). This was not allowed in
the shooting case, that is, we kept the total power constant.

TABLE 2
COMPLEXITY FOR THE DIFFERENT CASES AND SCENARIOS FOR

SHOOTING AND GATHERING RANDOM WALK.

Shooting 1 2

1 2(log np) 2(np)

2 2(log np) 2(np log np)

3 2(np) 2(np)

4 2(np) 2(np log np)

Gathering 1 2

1 2(np log np) 2(np)

2 2(np log np) 2(np log np)

3 2( )np
2

2(np)

4 2( )np
2

2(np log np)
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3.5 Expected Value of the Mean Square Error
In this section we will bound the expected value of the MSE

when pi
A
A

i

T
= . Let us first bound bisiÂ . Using (3), we can

easily prove

PROPOSITION 3.3.

b
R

A Ris
s

sÂ £
-

max

min max

F
1c h

Then we have for the expected value of the MSE:

PROPOSITION 3.4.

E MSE
R

A R
Ta f c h£

-
max

min max
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%F

PROOF.
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R
E
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R

R
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R
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c h

c h c h

c h c h
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-
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£
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£
-

=
-

Â
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1

1

1

1

1 1

1 1

2
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$

max

max
max

min max

max

min max

max

min max

F

F
F% %

�

And for N paths

E MSE
R

NA R
Ta f c h£

-
max

min max

2

1

%F
(12)

Interestingly, if we take the expected value of the MSE as
a measure of the error upon which to study the complexity,
from (12) we obtain linearity, following the same discussion
as in Section 2.3. This result is not contradictory to the one
in Section 3.4, because there we took a different measure,
the individual variances of the patches.

3.6 Other Unbiased Estimators

3.6.1 The E
R

s

s
 Estimator

Let us now define for patch i and path g  another family of
random variables ¢ ¢ ¢$ , $ , $ ,( ) ( ) ( )b b bi i i

1 2 3 K in the following way:
All of those random variables are initially null. If the

path g  happens to survive on source s at length l, then the

value of ¢$ ( )bi
l  is set to Ri

E
p R

s

i s
. Let us also define a new ran-

dom variable $¢bi  as:

¢ = ¢ + ¢ + ¢ +$ $ $ $b b b bi i i i
1 2 3a f a f a f L

We can proceed as in Section 3.1 and prove that our es-
timators are unbiased. As for the variance we have

PROPOSITION 3.5.

Var b
R
p

E b
R b bi

i

i

s s

s
is i

s

¢ =
+

-Â$e j
2 2

PROOF. We can decompose Var bi( $ )¢  as in (1), but now the

terms of the form E b bi
n

i
m( $ $ )( ) ( )¢ ¢  are no longer null, be-

cause if a path survives at length n on source s it can
also survive on source s¢ at length m. We must then
obtain the value of those terms. Proceeding as in the
proof of Proposition 2.10 we obtain

E b b
R
p b

b
Ri

n
i

m i

i
is
n s

m n

ss

¢ ¢ =
-

Â$ $a f a f a f
a f

e j

Then

E b b
R
p b

b
R

R
p b

b
R

i
n

i
m

n mn

i

i
is
n

ns

s
m n

sn m

i

i
is

s

ss

¢ ¢
F
HG

I
KJ =

=

<£ £

-

£
ÂÂ ÂÂ Â

Â

$ $a f a f a f
a f

e j
1 1

and also

E b R
E

p R p F R R
E

p R b

E b R
E

p R p F R F R

R
E

p R b

i i
s

i s
i is s

s
i

s

i s
is

s

i i
s

i s
i ih h hs s

sh

i
s

i s
is

s

¢ =
F
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I
KJ =

¢ =
F
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I
KJ

=

Â Â

ÂÂ

Â

$

$

1 2
2

1

2 2
2

2

a f a f

a f

a f

e j

e j

and so on. Then we obtain

Var b
R
p

E
R b b

R
p b

b
R b

R
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E b
R b b

i
i

i

s

s
is is

s

i

i
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s
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s
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+ -

=
+

-
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2
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For the radiosity our estimator is simply ¢ +$b Ei i , and as Ei

is a constant we have

Var b E Var b
R
p

E b
R b bi i i

i

i

s s

s
is i

s

¢ + = ¢ =
+

-Â$ $e j e j
2 2     (13)

And this variance can be bound as in Section 3.3. Putting

pi = 1 or pi
A
A

i

T
=  we have the same particular cases as in

Section 3.2. Now, to obtain the expected value of the MSE

when pi
A
A

i

T
=  we proceed as in Section 3.5 and arrive at:

E MSE
R

A R

E R
R

s s s

ss

a f c h
c h

£
-

+Âmax

min max

2

1

2F %
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3.6.2 The Es Estimator

Let us now define for patch i and path g another family of
random variables ¢¢ ¢¢ ¢¢$ , $ , $ ,( ) ( ) ( )b b bi i i

1 2 3 K in the following way:
All of those random variables are initially null. If the

path g  happens to arrive at source s at length l, then the

value of ¢¢$ ( )bi
l  is set to Ri

E
p

s

i
. Let us also define a new ran-

dom variable ¢¢$bi  as:

¢¢ = ¢¢ + ¢¢ + ¢¢ +$ $ $ $b b b bi i i i
1 2 3a f a f a f L

We can easily prove as in Section 3.1 that our estimators
are unbiased. As for the variance we obtain, proceeding as
in Section 3.6.1.

PROPOSITION 3.6.

Var b
R
p E b b bi

i

i
s s is i

s

¢¢ = + -Â$e j c h2 2

For the radiosity our estimator is simply ¢¢+$b Ei i , and as Ei

is a constant we have

Var b E Var b
R
p E b b bi i i

i

i
s s is i

s

¢¢+ = ¢¢ = + -Â$ $e j e j c h2 2      (14)

And this variance can be bound as in Section 3.3. Putting

pi = 1 or pi
A
A

i

T
=  we have the same particular cases as in

Section 3.2. Now, to obtain the expected value of the MSE

when pi
A
A

i

T
=  we proceed as in Section 3.5 and arrive at:

E MSE
R

A R
E Rs s s

s

a f c h c h£
-

+Âmax

min max

2

1
2F %

3.7 The Relation Between the E
R

E
R

s

s

s

s1 ,-  and Es

Estimators
It is interesting to study the relation between the three es-
timators defined in Sections 3.1, 3.6.1, and 3.6.2. If we use
the following decomposition

$ $b bi is
s

= Â
where $bis  is the estimator for the radiosity due to source s,
and similarly for the other estimators, we have the relation

¢¢ = ¢ + -Â$ $ $b R b R bi s is s is
s

1c h       (15)

For the particular case where all sources have the same
reflectivity R (this is obviously the case for a single source),
we have simply

¢¢ = ¢ + -$ $ $b Rb R bi i i1a f
This implies that we should have the following relation

between the variances:

Var b R Var b R Var bi i i¢¢ = ¢ + -$ $ $e j e j a f e j2 21

+ - ¢2 1R R Cov b bi ia f e j$ , $ (16)

The only value we don’t know from the above expres-
sion is the covariance. This can be found proceeding as in

Proposition 2.19, and we obtain

Cov b b
R
p b

b
R bi i

i

i
is

s
i

s

¢ = -Â$ , $e j 2

We can easily check that substituting the obtained value
and the three values for the respective variances
(considering all sources with the same reflectivity R) in (16)
we obtain an identity.

Another interesting point is the comparison of the esti-
mators. From the respective formulae for the variances we

can see that the estimator E
R
s

s1-  is better than the estimator
E
R

s

s
, that is

Var b Var bi i
$ $e j e j£ ¢

when Rs £ 1
2  for all sources s.

Equally as

Var b Var bi i¢¢ £ ¢$ $e j e j
is always true, the estimator Es is always better than the es-

timator E
R

s

s
.

For the particular case considered above where all
sources have the same reflectivity R, as the estimator Es is a

linear combination of the estimators E
R
s

s1-  and E
R

s

s
, we can

ask whether this combination is optimal. The answer is af-
firmative if we consider only direct illumination, that is for
the case

¢¢ = ¢ + -$ $ $b Rb R bi i i
1 1 11a f a f a fa f

the combination can be shown to be optimal. In the general
case we have

¢¢ = ¢ + - £ £$ $ $b b bi i ia a a1 0 1a f
and minimizing the variance we obtain as optimal value

a = - - Â
Â

R R
b b

E b
s iss

s iss

1a f

If for all s, bs can be assumed small respective to Es, the
estimator Es is an optimal combination, and therefore, it has
a lower variance than both components. So a good heuris-
tics is to consider the Es estimator as the best estimator of
the three considered.

That the general case (15) is also heuristically optimal
can be seen because each term in the sum represents an
optimal combination for a single source case.

3.8 An Infinite Path Length Estimator
For the sake of completeness, we introduce here an unbi-
ased infinite path length estimator.

The random variables ¢¢¢ ¢¢¢ ¢¢¢$ , $ , $ ,( ) ( ) ( )b b bi i i
1 2 3 K are defined in

the following way:
All of those random variables are initially null. If the

path g  happens to arrive at source s at length l, and if i, h1,

h2, º, hl-1, s is the trajectory the path has followed, then the
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value of ¢¢¢$ ( )bi
l  is set to R R R Ri h h h

E
pl

s

i1 2 1
K

-
. Let us also define a

new random variable ¢¢¢$bi  as:

¢¢¢= ¢¢¢ + ¢¢¢ + ¢¢¢ +$ $ $ $b b b bi i i i
1 2 3a f a f a f L

It can be easily shown that those estimators are unbi-
ased. Lower and upper bounds for the variance of the radi-
osity estimator, ¢¢¢+b Ei i , are given by

R
p E b R b b Var b Ei

i
s s

s

n
is
n

i
n

i i+ - £ ¢¢¢ +Â Â -2 1 2c h e ja f
min

$

and

Var b E
R
p E b R b bi i

i

i
s s

s

n
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i
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¢¢¢ + £ + -Â Â -$e j c h a f2 1 2
max

As Rmax < 1, we have

Var b E
R
p E b b b
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p E b b b Var b E
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i
s s
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n

i
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i

i
s s is i

s
i i

¢¢¢ + < + -

= + - = ¢¢+
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e j c h

c h e j

a f2

2

2

2

Now the same discussion would follow as in Section 2.8.
To obtain a bound for the expected value of the MSE,

when pi
A
A

i

T
= , we proceed as in Section 3.5 and taking into

account that

b
R
A

R
Ais

n

i
is
n

i

n

s
a f a fÂ Â£ £max

min

max

min
f F

we arrive at:

E MSE
R

A R
E Rs s s

s

a f
e j

c h£
-

+Âmax

min max

2

21
2F %

4 RESULTS

4.1 Shooting Monte Carlo
Here we present some experiments performed on a very
simple scene, a cubical enclosure with each face divided
into nine equal size patches, the reflectivities of the faces
being 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, respectively, and a source
with emissivity 1 in the middle of the first face, in patch 4.
Thus patches 1 to 9 receive no direct lighting and have re-
flectivity 0.3, patches 10 to 18 reflectivity 0.4, and so on. The
disposition of the patches is shown in Fig. 1. For this scene

we computed a reference solution with the FT

iR1-  estimator

and 108 paths. With the radiosity values so obtained we
computed the variances (for a single path) with the formu-
lae for the variances obtained in Section 2 for the three es-

timators: FT

iR1-  (2), FT

iR  (6), and FT (7), with the approxima-

tion xi = 0. After that, for each estimator we ran 100 execu-

tions of 104 paths each, to obtain 100 sets of radiosities, that
were compared to the reference solution to obtain the
square errors. Those 100 sets of square errors were aver-
aged and so we obtained an estimator of the variance for
one single path (after multiplying by 104). In Figs. 2a, 2b,

and 2c, respectively, we compare the theoretically expected
variances (square dots), and the experimentally obtained

ones (average of square errors) for the FT

iR1-  (diamonds), FT

iR

(triangles), and FT (circles) estimators, respectively. The big
differences between the variances for the different estima-
tors account for the differences between the vertical axes. In
Fig. 2d we compare the experimentally obtained variances
(average of square errors) for the three estimators used. The
results are as expected from the theoretical findings in Sec-
tion 2.6. The estimator FT shows itself as the best for all

patches, while the FT

iR1-  estimator is better than the FT

iR  esti-

mator for patches with reflectivity less than 0.5, that is,
patches from 1 to 27. It must be remarked here that in the
respective formulae for the variances the fact that the radi-
osity of a patch is due to direct or indirect illumination is
completely irrelevant; but directly illuminated patches usu-
ally receive more radiosity than the other ones, and the
variances, being inverted parabola functions, can be con-
sidered within a wide interval to be increasing with respect
to reflected radiosity. Thus a higher variance is to be ex-
pected with directly illuminated patches.

4.2 Gathering Monte Carlo
With the same scene and reference radiosities as in the pre-
vious section, we computed the variances (for one path)
with the formulae for the variances obtained in Section 3 for

the three estimators: E
R
s

s1-  (10), E
R

s

s
 (13), and Es (14), taking

pi
A
A

i

T
= , and with the approximation bs = 0. After that, for

each estimator we ran 100 executions of 104 paths each, to
obtain 100 sets of radiosities, that were compared to the
reference solution to obtain the square errors. Those 100
sets of square errors were averaged and so we obtained an
estimator of the variance for one path (after multiplying by
104). In Figs. 3a, 3b, and 3c, respectively, we compare the
theoretically expected variances (square dots), and the ex-
perimentally obtained ones (average of square errors) for

the three estimators: the E
R
s

s1-  (diamonds), E
R

s

s
 (triangles) and

Es (circles). In Fig. 3d we give the experimentally obtained
variances (average of square errors) for the three estimators
used. The results are as expected from the theoretical find-
ings in Section 3.7. The estimator Es shows itself as the best

for all patches, while the E
R
s

s1-  estimator is better than the E
R

s

s

estimator because the source reflectivity (0.3) is less than
0.5. The variances are much higher than for the shooting
method; this is because each path from the source in the
shooting method updates every visited patch, while a path
from a given patch in the gathering methods only updates
this given patch. In addition to that a path can die without
having hit any source, in this case its contribution is null.

5 CONCLUSIONS

In this paper we have studied the error and complexity of
Random Walk Monte Carlo Radiosity, both shooting and
gathering methods. The complexity is summarized in Table 2.
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Given some constraints, the shooting random walk tech-
nique exhibits a linear complexity with respect to the num-
ber of patches. We also have obtained closed forms and
bounds for the variances of three unbiased estimators for
both shooting and gathering methods. We have studied the
relative efficiency of the three estimators for each case,
shooting and gathering. The variances of the different esti-
mators are shown in Table 3. Bounds are also given for the
infinite path length estimators, and for the expected values
of the Mean Square Errors. The MSE bounds are shown in
Table 4. Our future work in the subject will be, first, to
study the efficiency of biased estimators, second, to study
the RGB case, that is, to obtain the best estimator (unbiased
or not) for a color scene. We will also try to obtain actual
bounds for the discretization error based on the theoretical
bounds given in [1]. Another subject of research will be to
obtain heuristics, based on the variances, for hybrid meth-
ods using both shooting and gathering; for instance a first
coarse pass for shooting, and a posterior refinement for
gathering on small or more important patches. Pavol Elias
suggested (personal communication) that the methods in
[16] and [7] can be considered as a breadth-first approach to
the FT estimator, which in turn would represent a depth-
first approach. In this case, complexity and variance results
should also apply to [16] and [7]. If the same results apply
to other Monte Carlo techniques will be investigated.

(a)

(b)

(c)

(d)

Fig. 2. Comparison of the expected variances (plotted as square dots)

and the experimentally obtained square errors for the 
FT

iR1-  (a, dia-

monds), 
FT

iR  (b, triangles), and FT (c, circles) estimators, for the 54

equal area patches of a cube (on x axis), with face reflectivities 0.3,
0.4, 0.5, 0.6, 0.7, 0.8. A source with emittance 1 is in the middle of the
first face, in patch 4. Patches 1 to 9 receive no direct lighting. In (d), we
compare the results for the different estimators.

Fig. 1. Numbering the patches in the test scene. Patches 1 to 9, with
reflectance 0.3, are not shown. Patch 4 is the emitter. Patches 10 to 18
have reflectance 0.4, 19 to 27, 0.5, and so on.
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(a)

(b)

(c)

(d)

Fig. 3. Comparison of the expected variances (plotted as square dots)

and the experimentally obtained square errors for the 
E
R
S

s1-  (a, dia-

monds), 
E
R

S

s
 (b, triangles), and Es (c, circles) estimators, for the

same scene as Fig. 2. In (d), we compare the results for the different
estimators.

TABLE 3
VARIANCES FOR THE DIFFERENT ESTIMATORS

Estimator Variance
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R
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TABLE 4
BOUNDS FOR THE EXPECTED VALUE OF THE MSE FOR THE

DIFFERENT ESTIMATORS

Estimator MSE
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APPENDIX

The np radiosities solution of the Radiosity system of equa-
tions

B R F B Ei i ij j i
j

np

= +
=
Â

1

exist and are finite (supposing of course the matrix of the
system is non-singular and all reflectivities less than one.
Additionally we suppose here all areas and reflectivities are
greater than zero). Consider now Bmax = maxiBi. Then we
have

B R F B E R B F E

R B E

i i ij i
j

n

i ij i
j

n

i i

p p

£ + = +

= +
= =
Â Âmax max

max

1 1

Suppose now this maximum value corresponds to patch k.
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Then Bk £ RkBk + Ek and so Bk(1 - Rk) £ Ek and as Rk < 1, di-
viding by (1 - Rk) we obtain

B B
E

R
E

Rk
k

k

s

s
max smax= £ - £ -

F
HG

I
KJ1 1

where s indexes the sources. We obtain as an upper bound
for Bi

Bi £ Ri% + Ei

calling % = -maxs
E

R
s

s1e j . And if bi is the reflected radiosity,

we have

bi = Bi - Ei £ Ri% £ Rmax%

This gives a bound for the radiosity of any patch due to
the incoming power. Now, this bound is independent of how
we discretize the scene in patches, supposing the sources
are all diffuse. This is due to the fact that the value

maxs
E

R
s

s1-
F
HG

I
KJ  is always the same in whatever subdivision of

the scene we could imagine.
Suppose now that the only power we have is unit power

on patch i, which means an emittance of 1
Ai

. Then

maxs

E
R A R
s

s i i
1

1

1-
F
HG

I
KJ =

-c h
and calling this incoming power on patch i, xi, a bound for
it is then given by

x i
i i

i i

A b
R R= £ -

1
1

Note that xi can be alternatively considered as the irradi-
ance or incident radiosity on patch i due to unit emittance
on the same patch i.
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