Degradation of the cytostatic etoposide in chlorinated water by liquid chromatography coupled to quadrupole-Orbitrap mass spectrometry: Identification and quantification of by-products in real water samples

Text Complet
Degradation-cytostatic.pdf embargoed access
Sol·licita còpia a l'autor de l'article
En omplir aquest formulari esteu demanant una còpia de l'article dipositat al repositori institucional (DUGiDocs) al seu autor o a l'autor principal de l'article. Serà el mateix autor qui decideixi lliurar una còpia del document a qui ho sol•liciti si ho creu convenient. En tot cas, la Biblioteca de la UdG no intervé en aquest procés ja que no està autoritzada a facilitar articles quan aquests són d'accés restringit.
Compartir
Once discharged into the sewage system, many pharmaceuticals may undergo degradation reactions in the presence of chemical disinfectants, generating by-products that may possess enhanced toxicity relative to the parent compounds. For this reason, the stability of the widely used cytostatic etoposide in chlorinated water has been investigated for the first time in the present work. Taking advantage of the high-resolution/accurate-mass capabilities of the hybrid quadrupole-Orbitrap mass spectrometer Q Exactive, two new oxidation by-products of etoposide were reliably identified. The time course of etoposide and its by-products was followed at different pH values, free chlorine concentrations and water matrices. Finally, the occurrence of etoposide and its major identified by-product (3'-O-desmethyl etoposide) was investigated in real water samples by on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry using a 4000QTRAP hybrid quadrupole-linear ion trap mass spectrometer. The etoposide by-product was found in various river and wastewater samples at levels between 14 and 33ngL-1, whereas etoposide was not detected in any sample ​
​Tots els drets reservats