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An expansion of the energy functional in terms of the total number of electrons and the normal
coordinates within the canonical ensemble is presented. A comparison of this expansion with the
expansion of the energy in terms of the total number of electrons and the external potential leads to
new relations among common density functional reactivity descriptors. The formulas obtained
provide explicit links between important quantities related to the chemical reactivity of a system. In
particular, the relation between the nuclear and the electronic Fukui functions is recovered. The
connection between the derivatives of the electronic energy and the nuclear repulsion energy with
respect to the external potential offers a proof for the ‘‘Quantum Chemical le Chatelier Principle.’’
Finally, the nuclear linear response function is defined and the relation of this function with the
electronic linear response function is given. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1615763#
e-
a
a
d
in

ld
n
in

tro
e

ti
ca
f

the

m,

of
tant

t a

po-
e-
I. INTRODUCTION

According to Density Functional Theory~DFT!,1 the
electronic energy of a many-electron system is given by

E@r#5F@r#1E n~rW !r~rW !drW, ~1!

whereF@r# is the universal Hohenberg–Kohn functional d
fined as the sum of the electronic kinetic energy function
T@r#, and the electron-electron interaction energy function
Vee@r#, andn(rW) is the external potential that for an isolate
molecule is just the potential due to atomic nuclei, but
general it may also include contributions from external fie
or neighboring molecules. Minimization of the electronic e
ergy with respect to the electron density with the constra
of constant total number of electrons,N, leads to an Euler
equation of the form

m5n~rW !1
dF@r#

dr~rW !
. ~2!

The solution to this equation yields the ground state elec
density, from which one can determine the ground state
ergy.

Since the number of electrons and the external poten
completely determine the Hamiltonian of the system, one
write the electronic energy of the system as a functional oN
and n(rW) ~i.e., E5E@N,n#). On the other hand, Eq.~1! es-
tablishes thatE is a functional ofr(rW) and n(rW) ~i.e., E

a!Corresponding author. Electronic mail: miquel.sola@udg.es
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5E@r,n#). Differential expansion of the electronic energy,E,
for these two energy functionals allows us to determine
physical significance of the Lagrange multiplier,m, which is
found to be the electronic chemical potential of the syste
that is,

m5S ]E

]ND
n

, ~3!

and to find that the density is the functional first derivative
the energy with respect to the external potential at a cons
total number of electrons, i.e.,

r~rW !5S dE

dn~rW ! D
N

. ~4!

Second-order derivatives of the energy with respect toN
andn(rW) also have clear physical meanings.2 Thus, the sec-
ond derivative with respect to the number of electrons a
fixed external potentialn(rW) is the hardness:3

h5S ]2E

]N2D
n

, ~5!

while the second derivative with respect to the external
tential n(rW) at a fixed number of electrons is the linear r
sponse function,4
3 © 2003 American Institute of Physics
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x~rW,rW8!5S d2E

dn~rW !dn~rW8! D
N

5S dr~rW !

dn~rW8! D
N

, ~6!

which measures the variation of the electron density at p
r when the external potential of the system is locally p
turbed atr 8. Finally, the Fukui function, first defined by Pa
and Yang,5 is the second derivative with respect to extern
potentialn(rW) and the number of electrons,

f ~rW !5S d2E

]Ndn~rW ! D5S ]r~rW !

]N D
n

5S dm

dn~rW ! D
N

. ~7!

The Fukui function describes the local changes in the e
tron density of the system, due to the perturbation in
global number of electrons, so it reflects the character o
molecule to accept~donate! electrons from~to! an another
system. For a molecular or atomic system, the density
discrete function of the number of electrons. Because of t
Parr and Yang5 associated different physical meanings to t
left, right, and central derivative of the density with respe
to N, corresponding to a reactivity index for a nucleophi
f 1(rW), electrophilicf 2(rW), and radicalf 0(rW) attacks, respec
tively. By applying a finite difference approximation to E
~7!, these three approximate Fukui functions can be writ
as

f 1~rW !5rN11~rW !2rN~rW !, ~8!

f 2~rW !5rN~rW !2rN21~rW !, ~9!

and

f 0~rW !5
1

2
@rN11~rW !2rN21~rW !#, ~10!

whererN11(rW), rN(rW), andrN21(rW) are the electronic den
sities of the system withN11, N, andN21 electrons, re-
spectively.

Upon the course of a chemical reaction, molecules ad
their number of electrons and their external potential. T
implies changes in both the electronic structure, charac
ized by the electron densityr(rW), and the geometric struc
ture defined by the position vectors$Ra% of the nuclei. To
describe the electronic changes, one can use the Fukui f
tion, the hardness, and the linear response function. Th
are electronic indexes that measure the electron density
electronic chemical potential responses to a change inN or
n(rW). A Kohn–Sham formulation of the chemical electron
responses has been provided by Senet.6 To describe the geo
metrical changes, a set of nuclear reactivity indexes
characterize the response of the nuclei due to changes inN or
n(rW) of the system have been recently defined.7,8 In particu-
lar, the nuclear Fukui function~NFF! has been defined b
Cohen and coworkers7 as the electronic forceF acting on the
nuclei due to the perturbation inN at a constantn(rW):

fa5S ]FW a

]N
D

n

. ~11!

In analogy with the electronic Fukui function, it is possib
to define three NFFs corresponding to nucleophilic, elec
philic, and radical attacks as9
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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fa
15S ]FW a

]N
D

n

1

5FW a~N11!2FW a~N!52¹WaE~N11!, ~12!

fa
25S ]FW a

]N
D

n

2

5FW a~N!2FW a~N21!5¹WaE~N21!, ~13!

fa
05S ]FW a

]N
D

n

0

5
1

2
„FW a~N11!2FW a~N21!…

5
1

2
„¹WaE~N21!2¹WaE~N11!…. ~14!

The last equality in Eqs.~12! and~13! is only valid when the
N electron system of reference is at its equilibrium geome

@FW a(N)50#.
Baekelandt8 via a Maxwell relation has shown that th

NFF can be interpreted as the conformational contribution
the change in the electronic chemical potential:

fa5S ]FW a

]N
D

n

52S ]2E

]NdRW a
D 52S dm

dRW a
D

N

. ~15!

From Eq.~15!, three definitions of the NFF corresponding
the left, right, and central derivatives are also possible:10

fa
152S ]2E

]NdRW a
D 1

>S dA

dRW a
D

N

>2S d«LUMO

dRW a
D

N

, ~16!

fa
252S ]2E

]NdRW a
D 2

>S dI

dRW a
D

N

>2S d«HOMO

dRW a
D

N

, ~17!

and

fa
052S ]2E

]NdRW a
D 0

>S dm2

dRW a
D

N

>S dm1

dRW a
D

N

, ~18!

where the Koopmans’ theorem11 has been used in Eqs.~16!
and ~17!, andm2 and m1 in Eq. ~18! refer to the following
operational approximations for the electronic chemical p
tential:

m252
1

2
~ I 1A!, ~19!

m15
1

2
~«L1«H!. ~20!

It is remarkable the similarity between Eqs.~7! and ~15!.
Geerlings and coworkers have computed NFFs for diato
molecules using Eqs.~12! and~13!, as well as from numeri-
cal calculations of the negative derivative of the chemi
potential with respect to the atomic coordinates@Eqs. ~16!
and ~17!#9 and with an approximate analytical method10 de-
veloped in analogy with Komorowski and Balawender’s12

coupled Hartree–Fock approach to the electronic Fukui fu
tion. They have found that analytical and numerical resu
show a high correlation. Finally, it is worth mentioning th
the relationship between the NFFs and the Berlin’s bind
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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function13 has been recently discussed8,9,14 and new defini-
tions of nuclear/geometric reactivity indexes have been a
put forward.15–17 These studies8–12,14–17have reinforced the
idea that a complete representation of the total chemica
sponse to a given perturbation must involve the analysis
both electronic and nuclear reactivity descriptors.

Because of the coupling between the electronic a
nuclear responses to external perturbations, one can ex
that relationships between nuclear and reactivity indexes
ist. In the present paper we apply the general functional
pansion scheme to expand the potential energy,U, and the
total electronic energy,E, of the systems in terms of the tota
number of electrons,N, and normal coordinates displac
ments,$Qk%, to derive relationships between electronic a
nuclear indexes that connect the electronic and nuclear
sponses in front of a given perturbation. The energy exp
sion is carried out within the canonical ensemble, for wh
the natural variables are the global variableN and the local
variablen(rW).

II. ENERGY REPRESENTATIONS

In the Born–Oppenheimer approximation, the Poten
Energy Surface~PES! of a system can be divided into a
electronic (E) and nuclear repulsion (Vnn) energy terms as

U@r,n#5E@r,n#1Vnn@n#. ~21!

As stated for the electronic energy, one can also write
PES of the system as a functional ofN and n(rW), i.e., U
5U@N,n#:

U@N,n#5E@N,n#1Vnn@n#. ~22!

A Taylor series functional expansion of the PES aroun
reference external potentialno(rW) and total number of elec
trons N, retaining terms up to second order, acquires
form ~note that the nuclear repulsion term does not dep
on N)

DU5S ]E

]ND
n

DN1E S dE

dn~rW ! D
N

Dn~rW !drW

1E S dVnn

dn~rW ! D
N

Dn~rW !drW1
1

2 S ]2E

]N2D
n

DN2

1
1

2 E E S d2E

dn~rW !dn~rW8! D
N

Dn~rW !Dn~rW8!drWdrW8

1
1

2 E E S d2Vnn

dn~rW !dn~rW8! D
N

Dn~rW !Dn~rW8!drWdrW8

1E S d2E

dn~rW !]NDDNDn~rW !drW. ~23!

Equation~23! is the same used by Ayers and Parr to expl
the effect that changing the external potential has on che
cal reactivity.18 Now, substituting Eqs.~3! to ~7! into Eq.~23!
one finds that
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DU5mDN1E r~rW !Dn~rW !drW1E S dVnn

dn~rW ! D
N

Dn~rW !drW

1
1

2
hDN21

1

2 E E x~rW,rW8!Dn~rW !Dn~rW8!drWdrW8

1
1

2 E E S d2Vnn

dn~rW !dn~rW8! D
N

Dn~rW !Dn~rW8!drWdrW8

1DNE f ~rW !Dn~rW !drW. ~24!

Let us now consider a molecule in an isotropic and homo
neous environment. In this case, the external potential
pends only upon the relative nuclear positions. These rela
positions can be specified using a set of 3N-6 ~or 3N-5 for
linear molecules! coordinates, the most natural choice bei
the use of the normal coordinates,$Qk%. Given that the
external potential for an isolated molecule can be defin
from a set of$Qk% coordinates, one can write the energ
of this system as a functional ofN and $Qk%, i.e., U
5U@N,$Qk%#. In this functional form, a Taylor series expan
sion of the total energy up to second order yields

DU5S ]E

]ND
n$Qk%

DN1 (
k51

3N26 S ]U

]Qk
D

N

DQk

1
1

2 S ]2E

]N2D
n$Qk%

DN21 (
k51

3N26 S ]2U

]Qk
2D

N

DQk
2

1 (
k51

3N26 S ]2E

]N]Qk
DDQkDN, ~25!

DQk being the displacement of the normal modek from the
equilibrium position. It is worth noting that since the extern
potential can be written as a function of the normal coor
nates, it is possible to transform the derivatives with resp
to the external potential to derivatives with respect to norm
coordinates by using the chain rule. In this way, it is a
possible to derive Eq.~25! from Eq. ~23!.

If we take as the reference state a molecule in its eq
librium geometry, then the term

(
k51

3N26 S ]U

]Qk
D

N

DQk , ~26!

in Eq. ~25! and the term

E S dU

dn~rW ! D
N

Dn~rW !drW

5E r~rW !Dn~rW !drW1E S dVnn

dn~rW ! D
N

Dn~rW !drW, ~27!

in Eq. ~24! are zero. We note in passing that Eq.~27! leads to
the following interesting relationship that holds for an is
lated molecule in its equilibrium geometry:

S dE

dn~rW ! D
N

5r~rW !52S dVnn

dn~rW ! D
N

. ~28!
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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This equation is the result of the fact that, in the equilibriu
geometry, the electronic energy change due to a perturba
in n(rW) equals the negative of nuclear repulsion ene
change, providing a relation between electronic and nuc
reactivity descriptors. Further, it is a nice proof to the fir
order and within the framework of conceptual DFT19 of the
‘‘Quantum Chemical le Chatelier Principle’’ formulated b
Mezey some years ago.20 This principle states that the elec
tronic energy change induced by an external perturbatio
compensated by a modification of the nuclear repulsion
ergy by a similar amount~in absolute value!, in such a way
that the value of the total energy (electronic1nuclear) is
approximately conserved.

Now, from Eq. ~25!, using Eqs.~3! and ~5! and taking
into account that

S ]2E

]N]Qk
D52S ]Fk

]N D
n$Qk%

52fk ~29!

and

S ]2U

]Qk
2D

N

5lk , ~30!

one gets

DU5mDN1
1

2
hDN21

1

2 (
k51

3N26

lkDQk
2

2DN (
k51

3N26

fkDQk . ~31!

Equation~31! holds for a molecule in its equilibrium geom
etry. In Eqs.~29! and ~31!, fk are the NFFs in terms of th
normal coordinates and, in Eqs.~30! and ~31!, lk are the
force constants of each normal mode.

A comparison of Eqs.~24! and ~31! leads to Eqs.~32!
and~34!. Equation~32! is obtained, considering the indepe
dent terms with respect toDN:

1
2 E E X~rW,rW8!Dn~rW !Dn~rW8!drWdrW8

1
1
2 E E x~rW,rW8!Dn~rW !Dn~rW8!drWdrW8

5
1
2 (

k51

3N26

lkDQk
2 , ~32!

and defining the nuclear linear response function as

X~rW,rW8!5S d2Vnn

dn~rW !dn~rW8! D
N

, ~33!

while Eq. ~34! appears matching the terms that depend
DN:

E f ~rW !Dn~rW !drW52 (
k51

3N26

fkDQk . ~34!

Equation~32! affords a relation for the nuclear and ele
tronic linear response functions. For small$Qk% displace-
ments, the term (1/2)(k51

3N26lkDQk
2 in Eq. ~32! gives the
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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total change in the potential energy due to nuclear rearran
ment. Equation ~32! shows that this change can b
decomposed in two parts: the first term
(1/2)**X( rW,rW8)Dn(rW)Dn(rW8)drWdrW8, represents the chang
of the nuclear potential energy due to the distortion while
remaining term is the change in electronic energy.

Equations~32! and~34! are the result of the Taylor serie
expansion of the PES functionalsU5U@N,n# and U
5U@N,$Qk%#. Similarly, one can expand the functionals
the electronic energyE5E@N,n# and E5E@N,$Qk%#. Fol-
lowing the same procedure one recovers Eq.~34! and also a
modified version of Eq.~32! that reads as

1

2 E E x~rW,rW8!Dn~rW !Dn~rW8!drWdrW8

5
1

2 (
k51

3N26

(
l 51

3N26 S ]2E

]Qk]Ql
D

N

DQkDQl . ~35!

Considering now the relation between the electronic ene
and the PES given by Eq.~22!, one obtains

1

2 E E x~rW,rW8!Dn~rW !Dn~rW8!drWdrW8

5
1

2 (
k51

3N26

lkDQk
22

1

2 (
k51

3N26

(
l 51

3N26 S ]2Vnn

]Qk]Ql
D

N

3DQkDQl . ~36!

This equation provides a way to compute t
(1/2)**x(rW,rW8)Dn(rW)Dn(rW8)drWdrW8 integral from the evalu-
ation of the other two terms in Eq.~36!. Remarkably, using
Eqs.~36! and ~32!, it is possible to compute numerically a
terms present in Eq.~24!. By means of Eq.~24!, one could
carry out an energy decomposition analysis of the interac
between two given systems. More research on the valu
such an energy decomposition analysis is underway in
laboratory.

Finally, from Eqs.~32! and ~36! one obtains Eq.~37!:

1

2 E E X~rW,rW8!Dn~rW !Dn~rW8!drWdrW8

5
1

2 (
k51

3N26

(
l 51

3N26 S ]2Vnn

]Qk]Ql
D

N

DQkDQl , ~37!

which provides a means to numerically compute t
(1/2)**X(rW,rW8)Dn(rW)Dn(rW8)drWdrW8 integral.

Coming back to Eq.~34!, this equation represents a bas
expression that connects the electronic and nuclear F
functions. It is a quantitative expression for the coupling
nuclear and electronic responses to perturbations. It was
found by Baekeland8 in differential form and in a different
way, starting from the definition of the NFF and using t
chain rule to express the derivative of the electronic chem
potential with respect to the external potential. According
this author the term2(k51

3N26fkDQk corresponds to the
nuclear-dependent part of the change in the electronic che
cal potential. Interestingly, we have recovered this import
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE I. The fa
1 , fa

2 , andfa
0 nuclear Fukui functions for 13 diatomic calculated using the different approximations represented by Eqs.~12! to ~14! and

~16! to ~18!. All values are given in atomic units.

Molecule

fa
1 fa

2 fa
0

LUMOa Ab
(]FW a /]N)n

1c HOMOa Ib
(]FW a /]N)n

2c m1
d m2

e
(]FW a /]N)n

0c

H2 20.004656 0.005600 0.005600 20.164816 20.152412 20.152412 20.084725 20.073406 20.073406
LiH 0.008700 0.009788 0.009789 20.028850 20.027875 20.027878 20.010075 20.009045 20.009045
BH 0.002550 0.007344 0.007344 0.014231 0.015300 0.015296 0.008396 0.011320 0.01
NH 20.006150 0.004069 0.004067 20.006225 20.027150 20.027155 20.006187 20.011544 20.011544
HF 0.011669 0.013050 0.013045 20.055213 20.085750 20.085735 20.021772 20.036345 20.036345
HCl 0.006694 0.008000 0.007973 20.013766 20.023050 20.023055 20.003537 20.007541 20.007541
N2 0.003209 0.003281 0.003280 20.239375 20.057675 20.057678 20.118075 20.027199 20.027199
F2 0.104200 0.475250 0.475245 0.127350 0.135722 0.135722 0.115750 0.305483 0.30
CO 20.009500 0.016750 0.016738 0.067800 0.044200 0.044197 0.029153 0.030468 0.03
NF 0.114562 0.132250 0.132248 0.164812 0.146031 0.146037 0.139694 0.139142 0.13
BF 0.009131 0.011438 0.011435 0.067762 0.068962 0.068962 0.038447 0.040198 0.04

NO1 0.302338 0.326063 0.326065 20.039825 20.136456 20.136455 0.131250 0.094805 0.094805
LiF 0.015687 0.016000 0.016012 20.058025 20.058938 20.058936 20.021169 20.021462 20.021462

aCalculated by evaluatingfa
1>2(d«LUMO /dRW a)N or fa

2>2(d«HOMO /dRW a)N.
bCalculated by evaluatingfa

1>(dA/dRW a)N or fa
2>(dI /dRW a)N .

cCalculated using Eqs.~12! to ~14!.
dCalculated using Eqs.~18! and ~20!.
eCalculated using Eqs.~18! and ~19!.
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connection between electronic and nuclear Fukui functi
through a Taylor functional expansion of the energy a
functional ofN and$Qk%.

III. CALCULATION OF THE TERMS INVOLVED
IN THE RELATIONS BETWEEN NUCLEAR
AND ELECTRONIC REACTIVITY INDEXES

Throughout this paper we have assumed that all Ta
series converge. Moreover, we expect that if the exte
potential of the final system resembles that of the refere
state sufficiently closely, low-order truncations of the
functional Taylor series will be accurate. Our aim in th
section is first to check this hypothesis by carrying o
calculations of the two terms of Eq.~34!. Second, the
calculation of the (1/2)**x(rW,rW8)Dn(rW)Dn(rW8)drWdrW8 and
(1/2)**X( rW,rW8)Dn(rW)Dn(rW8)drWdrW8 integrals will be per-
formed for a series of diatomic molecules.

All calculations have been carried out with theGAUSS-

IAN 98 package21 at the Hartree–Fock~HF!22 level using the
aug-cc-pVQZ basis set,23 except for the lithium atom, for
which the cc-pVQZ has been used. The energy and grad
of the cationic and anionic doublet species has been c
puted within the unrestricted methodology at the geometry
the neutral systems, while the neutral singlet molecules h
been calculated using the restricted formalism.

The numerical differentiation of«HOMO, «LUMO , m1 , I ,
A, andm2 needed to evaluate Eqs.~16!–~18! has been car-
ried out performing displacements of the equilibrium geo
etry of 6(1,2,4,8,16,32,64)3102n (n52 to 5! bohrs. Then,
the smallest magnitude displacement that produced a s
derivative has been selected using a Romberg me
triangle.24

Before starting the evaluation of the2(k51
3N26fkDQk

term in Eq.~34!, we have checked for 13 diatomic molecul
the consistency of thefa

1 , fa
2 , andfa

0 nuclear Fukui func-
tions calculated using the different approximations rep
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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sented by Eqs.~12! to ~14! and ~16! to ~18!. The results
obtained are listed in Table I. It is remarkable to see t
calculations of the nucleophilic NFF,fa

1 , by numerical dif-

ferentiation of (dA/dRW a)N or (]FW a /]N)n
1 yield practically

the same values providing reliability on the computed v
ues; while the calculation offa

1 using the orbital approxi-

mation 2(d«LUMO /dRW a)N results in somewhat differen
numbers. The same is found for the electrophilic and rad
NFFs. It is worth noting that the results obtained by Ba
wender and Geerlings10 for fa

1 andfa
2 of H2 , LiH, BH, HF,

HCl, N2 , F2 , CO, BF, and LiF at the HF/6-3111G** are,
in general, in good agreement with those reported in Tab
As already pointed out by Baekelandt8 and Geerlings and
coworkers,9,10 NFF data can be related to the Berlin
function8,13,14 to analyze bonding in molecules. Thus, in d
atomic molecules a positive nucleophilic NFF is associa
to an increasing bond length upon the addition of an electr
which increases the total electron density in antibonding
gions. All species studied show positive nucleophilic NFF

indicated by the values obtained from the (dA/dRW a)N and

(]FW a /]N)n
1 derivatives. Likewise, a negative electrophil

NFF is also related to an increase of the bond length du
ionization, which means a reduction of the total electron d
sity in bonding regions upon ionization. We found negati
electrophilic NFF for all species studied, except for BH, F2 ,
CO, NF, and BF, for which positive electrophilic NFFs a
obtained, indicating that the ionization should lead to a
crease of the bond length in these molecules.

Let us now numerically test the validity of Eq.~34!. We
have checked Eq.~34! for different displacements using th
NFF obtained from Eqs.~12! to ~14!, although we only show
in Table II the results forDQk51310253Am a.u., wherem
is the reduced mass, because with this displacement the
percentage becomes stable. We note that, from Eq.~8!, the
first term appearing in Eq.~34! is
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE II. The calculation of the two terms given in Eq.~34! for the three approximations of the electronic and nuclear Fukui functions for 13 diato
molecules. All values are given in atomic units.

Molecule * f1~rW!Dn~rW!drW 2fk
1DQk

a
* f2~rW!Dn~rW!drW 2fk

2DQk
a * f 0(rW)Dn(rW)drW 2fk

0DQk
a

H2 25.3031028 25.6031028 1.5231026 1.5231026 7.34x1027 7.34x1027

LiH 21.0731027 29.7931028 3.0031027 2.7931027 9.65x1028 9.04x1028

BH 27.9131028 27.3431028 21.0931027 21.5331027 29.41x1028 21.13x1027

NH 23.2231028 24.0731028 2.8031027 2.7231027 1.24x1027 1.15x1027

HF 21.0131027 21.3031027 8.6131027 8.5731027 3.80x1027 3.63x1027

HCl 25.2031028 27.9731028 2.3731027 2.3131027 9.25x1028 7.54x1028

N2 21.7931028 23.2831028 3.2931027 5.7731027 1.55x1027 2.72x1027

F2 23.4431026 24.7531026 21.2131026 21.3631026 22.32x1026 23.05x1026

CO 21.9031027 21.6731027 25.9531027 24.4231027 23.92x1027 23.05x1027

NF 21.1531026 21.3231026 21.2631026 21.4631026 21.20x1026 21.39x1026

BF 29.5531028 21.1431027 27.36x1027 26.9031027 24.16x1027 24.02x1027

NO1 23.1031026 23.2631026 1.0531026 1.3631026 21.0231026 29.4831027

LiF 21.8531027 21.6031027 6.5331027 5.8931027 2.3431027 2.1531027

aThe values of nuclear Fukui functions are obtained using Eqs.~12!, ~13!, and~14!. TheDQk employed in all these cases is 1310253Am a.u., wherem is
the reduced mass.
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E f 1~rW !Dn~rW !drW

>E ~rN11
0 ~rW !2rN

0 ~rW !!~n~rW !2n0~rW !!drW

5E rN11
0 ~rW !n~rW !drW2E rN11

0 ~rW !n0~rW !drW

2E rN
0 ~rW !n~rW !drW1E rN

0 ~rW !n0~rW !drW, ~38!

whererN
0 (rW) and rN11

0 (rW) are the electronic density at th
equilibrium geometry for a system withN and N11 elec-
trons, respectively, whilen0(rW) is the external potential at th
equilibrium geometry andn(rW) is the external potential ob
tained increasing or decreasing the equilibrium bond len
The *rN11

0 (rW)n0(rW)drW and*rN
0 (rW)n0(rW)drW integrals are ex-

plicitly the electron–nucleus potential energy of the syst
with N11 andN electrons at the equilibrium geometry, r
spectively. The*rN11

0 (rW)n(rW)drW and *rN
0 (rW)n(rW)drW inte-

grals in Eq.~38! are the electron–nucleus potential ener
introducing the modified external potentialn(rW), but using
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
h.

the N11 andN electronic density at the equilibrium geom
etry. All integrals present in Eq.~38! have been obtained
from electron–nucleus potential energies computed with
GAUSSIAN 98program.21,25Equivalent expressions to Eq.~38!
can be used to evaluate the integrals containingf 2(rW) and
f 0(rW).

As can be seen in Table II, the difference between
first and the second term of Eq.~34! is usually quite small for
all systems studied and for the different nucleophilic, ele
trophilic, and radical approximations to the electronic a
nuclear Fukui functions. The similarity between the values
the NFF computed using the two most reliable approxim
tions make us confident about the accuracy of the calcula
NFFs, while operational equations that provide the electro
Fukui function @Eqs. ~8! to ~10!# are unavoidably approxi-
mate. Thus, in our opinion, the numerical errors that prod
the differences observed may be larger in the computatio
the integrals of the type* f (rW)Dn(rW)drW than in the evaluation
of the 2(k51

3N26fkDQk term. Figure 1 depicts the good co
relation observed between the* f 2(rW)Dn(rW)drW and the
2(k51

3N26fk
2DQk values giving an equation with a slope ve
n
FIG. 1. A representation of the linear equatio
* f 2(rW)Dn(rW)drW52fk

2DQk for the 13 molecules
studied.
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close to 1, which is the expected value according to Eq.~34!.
Similar results are obtained for the analogous relations
volving the nucleophilic and radical Fukui functions. W
have checked Eq.~34! using different basis sets and we ha
found that, in general, the correlation between
* f (rW)Dn(rW)drW and the 2(k51

3N26fkDQk values improves
when the quality of the basis set used increases. Finally
have also tested Eq.~34! using the B3LYP method and w
have found similar results to those given in Table II.

As a final point, Table III gathers the computed valu
for the (1/2)(k51

3N26lkDQk
2 and (1/2)(k51

3N26( l 51
3N26(]2Vnn /

]Qk]Ql)NDQkDQl terms appearing in Eq.~36!. The integral
(1/2)**x(rW,rW8)Dn(rW)Dn(rW8)drWdrW8 is evaluated as the dif
ference between the two previous calculated terms, acc
ing to Eq.~36!. It is also worthwhile noting that in line with
Eq. ~37!, the second term corresponds to the integ
(1/2)**X(rW,rW8)Dn(rW)Dn(rW8)drWdrW8. From Eq.~32!, one can
see that, starting from a system in its equilibrium geome
the change~up to second order! in the energy of the molecu
lar system due to a molecular distortion can be split into
electronic and a nuclear term. The electronic ter
(1/2)**x(rW,rW8)Dn(rW)Dn(rW8)drWdrW8, is the change in the
electronic energy due a change in the external poten
while the nuclear part, (1/2)**X(rW,rW8)Dn(rW)Dn(rW8)drWdrW8,
gives the change in nuclear repulsion energy due to the s
perturbation. Interestingly, for the diatomic molecules stu
ied, the change in electronic energy due to molecular dis
tion is always negative and smaller in absolute value than
nuclear energy variation, which is always positive~see Table
III !. It would be interesting to investigate whether the sign
these integrals are preserved in polyatomic molecules.
markably, those molecules that suffer a large nuclear e
getic change in the distortion~for instance, the N2, F2 , CO
and NO1 species!, also experience a large electronic en
getic change. Let us finish by mentioning that the values
(1/2)**x(rW,rW8)Dn(rW)Dn(rW8)drWdrW8 in Table III can be a
good starting point for discussing the validity of possib

TABLE III. The calculation of the (1/2)**x(rW,rW8)Dn(rW)Dn(rW8)drWdrW8 in-
tegral from the evaluation of the remaining two terms in Eq.~36! for the 13
diatomic molecules studied. All values are given in atomic units.a

Molecule
1

2
lkDQk

2
1

2 S]2Vnn

]Qk
2 D

N

DQk
2

1

2
** x~rW,rW8!Dn~rW!Dn~rW8!drWdrW8

H2 2.00310211 3.75310211 21.75310211

LiH 3.40310212 1.07310211 27.34310212

BH 1.08310211 4.08310211 23.00310211

NH 2.30310211 9.89310211 27.60310211

HF 3.62310211 1.85310210 21.48310210

HCl 1.83310211 1.24310210 21.06310210

N2 1.08310210 6.00310210 24.92310210

F2 2.88310211 5.14310210 24.85310210

CO 7.64310211 5.31310210 24.55310210

NF 2.72310211 4.59310210 24.32310210

BF 2.95310211 3.45310210 23.16310210

NO1 1.14310210 7.70310210 26.56310210

LiF 8.61310212 1.07310210 29.79310211

aTheDQk employed in all these cases is 1310253Am a.u., wherem is the
reduced mass.
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analytical expressions for the electronic linear response fu
tion.

IV. CONCLUSIONS

In this paper, we have derived a set of connectio
among several nuclear and electronic indexes of reactivit
the framework of the conceptual Density Functional Theo
by using an expansion of the energy functional in terms
the total number of electrons and the normal coordina
within a canonical ensemble. The relations obtained prov
explicit links between important quantities related to t
chemical reactivity of a system.

First, we have demonstrated that the derivative of
electronic energy with respect to the external potential o
system in its equilibrium geometry is equal to the negative
the nuclear repulsion derivative with respect to the exter
potential, giving a proof up to the first order for the so-call
‘‘Quantum Chemical le Chatelier Principle.’’ Second, follow
ing this particular approach, we have given an alternat
proof the relation between the nuclear and the electro
Fukui functions, and, for the first time, we have numerica
checked this relation. Finally, the nuclear linear respo
function has been introduced and a relation of this funct
with the electronic linear response function and the fo
constant has been provided.
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